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ON MILNOR’S FIBRATION THEOREM

AND ITS OFFSPRING AFTER 50 YEARS

JOSÉ SEADE

To Jack, whose profoundness and clarity of vision
seep into our appreciation of the beauty and depth of mathematics.

Abstract. Milnor’s fibration theorem is about the geometry and topology of
real and complex analytic maps near their critical points, a ubiquitous theme
in mathematics. As such, after 50 years, this has become a whole area of
research on its own, with a vast literature, plenty of different viewpoints, a
large progeny, and connections with many other branches of mathematics. In

this work we revisit the classical theory in both the real and complex settings,
and we glance at some areas of current research and connections with other
important topics. The purpose of this article is twofold. On the one hand, it
should serve as an introduction to the topic for nonexperts, and on the other
hand, it gives a wide perspective of some of the work on the subject that has
been and is being done. It includes a vast literature for further reading.
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Introduction

Milnor’s fibration theorem in [193] is a milestone in singularity theory that has
opened the way to a myriad of insights and new understandings. This is a beautiful
piece of mathematics, where many different branches, aspects and ideas, come
together. The theorem concerns the geometry and topology of analytic maps near
their critical points.

Consider the simplest case, a holomorphic map (Cn+1, 0)
f
→ (C, 0) taking the

origin into the origin, with an isolated critical point at 0. As an example one can
have in mind the Pham–Brieskorn polynomials,

(0.1) z �→ za0
0 + · · ·+ zan

n , ai ≥ 2 for all i = 0, 1, . . . , n .

Since f is analytic, there exists r > 0 sufficiently small so that 0 ∈ C is the only
critical value of the restriction f |Br

, where Br is the open ball of radius r and center
at 0. Set

V := f−1(0) and V ∗ := V \ {0} .

So V ∗ is an n-dimensional complex manifold. We know (see section 3) that V ∗

meets transversally every sufficiently small sphere Sε in Cn+1 centered at 0 and
contained in Br. The manifold LV := V ∩ Sε is called the link of the singularity,
and its diffeomorphism type does not depend on the choice of the sphere. Then
Milnor’s theorem in [193] says that for every such sphere Sε we have a smooth fiber
bundle

(0.2) ϕ :=
f

|f |
: Sε \ LV −→ S

1 .

In fact f can have nonisolated critical points. The fibers Ff (see Figure 1) are
diffeomorphic to the complex manifolds obtained by considering a regular value t
sufficiently near 0 ∈ C and looking at the piece of f−1(t) contained within the open
ball Bε bounded by Sε.

Early versions of this theorem arose when Brieskorn [47] discovered that the
fibration (0.2) can be used to prove that exotic spheres show up naturally as links
of isolated singularities of complex hypersurfaces. In fact Brieskorn proved that
every exotic sphere that bounds a parallelizable manifold is diffeomorphic to the
link of a singularity as in (0.1), for appropriate ai.

These kinds of ideas led to studying the local conical structure of all real and
complex analytic sets, which we discuss in section 3. In the rest of this paper
we describe the fibration theorem for real and complex singularities, and various
extensions of it. We discuss too the main ideas of its proof, and we exemplify these
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Figure 1. The Milnor fiber Ff .

with the case of the Pham–Brieskorn polynomials, where the main ingredients of
the proof are shown in an elementary way.

When the map in question is holomorphic and has an isolated critical point, the
fiber is diffeomorphic to a 2n-ball to which one attaches handles of middle index.
The number of such handles is now called the Milnor number of the singularity. If
the critical point is nonisolated, then the Milnor fiber is diffeomorphic to a ball to
which we must attach handles of various indices. The precise number of handles of
each index is prescribed by the Lê numbers of the singularity, a concept introduced
by D. Massey in [175, 176].

The study of the Milnor number and its generalizations, such as the Lê numbers,
has given rise to a vast literature, discussed in sections 6 to 9. In fact there are
interesting relations with the theory of Chern classes for singular varieties: One
has the Milnor classes, defined as the difference between the Schwartz–MacPherson
and the Fulton–Johnson classes. For varieties which are complete intersections with
isolated singularities, there is only one Milnor class, an integer equal to the sum of
the local Milnor numbers at the singular points. So Milnor classes generalize the
Milnor number to varieties which may not be complete intersections and can have
nonisolated singularities.

In section 10 we glance at the important concept of equisingularity. This emerges
from Zariski’s seminal works [281–285], and it has important ties with Milnor’s fibra-
tion theorem. The basic idea is that if V is a variety with nonisolated singularities,
we want to know whether the singularity of V at a given point is “worse than” or
“equivalent to” its singularities at other nearby points; and what does “equivalent”
mean?

As mentioned above, singularity theory is a meeting point of various areas of
mathematics. In section 11 we briefly discuss relations of complex singularities
with open-book decompositions and fibered knots, contact structures, and low di-
mensional manifolds. Later we discuss relations with the so-called moment-angle
manifolds, which spring from mathematical physics. For this we need to extend the
discussion beyond the holomorphic realm.
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284 JOSÉ SEADE

Milnor proved in [192, 193] that the fibration theorem also holds for analytic

maps (Rn, 0)
f
→ (Rp, 0), n ≥ p ≥ 1, with an isolated critical point, and one has a

fiber bundle

(0.3) ϕ : Sε \ LV −→ S
1 .

Yet, in general the projection map ϕ can only be taken as f/|f | in a neighborhood
of the link LV . Also, as pointed out in [193, Chapter 11], the condition of having
an isolated critical point is very stringent. Generically, the set of critical values has
positive dimension, and even if the only critical value is 0, it is fairly stringent to ask
to have an isolated critical point. In sections 12 to 14 we discuss Milnor fibrations
for real analytic maps in general, starting with the isolated singularity case. We
discuss a regularity condition that is necessary and sufficient to ensure that if we
have the fibration (0.3), we can take the projection ϕ to be f/|f | everywhere. This
is called d-regularity.

We look also at two particularly interesting classes of maps: the meromorphic
germs and maps of the form fḡ with f, g holomorphic. Notice that away from the
set fg = 0, one has

f/g

|f/g|
=

fḡ

|fḡ|
.

The study of Milnor fibrations for meromorphic germs began with a couple of papers
[125, 126] by Gusein–Zade et al. (see also [33, 34]). The study of Milnor fibrations
and open-books defined by functions fḡ essentially began in [235,237], though this
type of map had already appeared in [1,130,193]. We study these in a section under
the name “Mixed singularities”, which by definition are critical points of analytic
functions in the complex variables z1, . . . , zn and their conjugates.

Polar weighted homogeneous singularities are a particularly interesting class of
mixed functions which are reminiscent of the classical weighted homogeneous poly-
nomials. Now one has a weighted action of S1 ×R+ ∼= C∗ on Cn, and the function
brings out scalars to some power. Unlike the classical case of weighted homo-
geneous functions, now S1 and R+ can act with different weights. The paradigm
examples of such singularities are the twisted Pham–Brieskorn polynomials, studied
in [241, 248, 249]:

(z1, . . . , zn) −→ za1
1 z̄σ(1) + · · ·+ zan

n z̄σ(n) , ai ≥ 2 ,

where σ is a permutation of the set {1, . . . , n}. If σ is the identity, these are
essentially equivalent to usual Pham–Brieskorn singularities (by [222, 241]).

The notions of weighted polar actions and polar singularities were introduced in
[62], inspired by [241]. The name mixed singularity was coined by M. Oka [219],
and his vast contributions to the subject have turned this into a whole new area
of research. These singularities also provide interesting open-book decompositions
similar to Milnor’s open-books but which do not appear in complex singularities
(see for instance [5–7, 236]).

We finish this article with an especially interesting class of mixed singularities
that spring from the study of holomorphic linear actions of Cm in Cn, 0 < m ≪ n.
Under appropriate conditions, there is an open dense set in Cn of points that
belong to a type of orbits called “Siegel leaves”. These are parameterized by a
C∞-manifold V ∗ := V \ {0}, where V is a complete intersection defined by 2m
real-valued quadratic polynomial equations: V ∗ consists of the points where the
orbits are tangent to the foliation in Cn \ {0} given by all spheres centered at the
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ON MILNOR’S FIBRATION THEOREM AND ITS OFFSPRING 285

origin. The manifold V ∗ has a canonical complex structure that comes from being
everywhere transversal to the orbits of the Cm-action, and it has a canonical C∗-
action with compact quotient V ∗/C∗. These quotients are known as LVM-manifolds

(for López de Madrano, Verjovsky, and Meersseman); these have a rich geometry
and topology, and they are a class of the so-called moment-angle manifolds, of
relevance in mathematical physics.

We begin this article by pointing out important relations between complex singu-
larities and exotic spheres, and we close it with an important relation between real
singularities and moment-angle manifolds: this exemplifies the strong interactions
singularity theory has with other areas of mathematics.

My aim with this article is to share with the readers some of the beauty and
richness of singularity theory, a fascinating area of mathematics which somehow
begins with Isaac Newton and is built upon the foundational work of Hassler Whit-
ney, René Thom, John Milnor, Oscar Zariski, Heisuke Hironaka, Egbert Brieskorn,
Vladimir Arnold, and many others. Arnold used to say [18] that the main goal
in most problems of singularity theory is to understand the qualitative change in
objects that depend on parameters, and which may come from analysis, geometry,
physics, or from some other science. Milnor’s fibration theorem certainly fits within
this framework.

Part I. Complex Singularities

1. The initial thrust: Searching for homotopy spheres

In 1956 John Willard Milnor (b. 1931) surprised the world by finding [191] the
first “exotic spheres”: seven-dimensional smooth manifolds homeomorphic to S7

but with nonequivalent differentiable structures.
The set of equivalence classes of smooth structures on the n-sphere Sn is a

monoid where the operation is the connected sum. For n 	= 4 this monoid is a
group and it is isomorphic to the finite abelian group Θn of h-cobordism classes
of oriented homotopy n-spheres, with the connected sum as operation; the identity
element is the standard Sn. This group was studied by Kervaire and Milnor in
[140] for n ≥ 5. They noticed that Θn contains a “preferred subgroup”, denoted
bPn+1 ⊂ Θn, of those homotopy spheres that bound a parallelizable manifold, i.e.,
a manifold with trivial tangent bundle. For n 	= 3 odd, this is a finite cyclic group
which has finite index in Θn. This cyclic group has order 1 or 2 for n ≡ 1 (mod 4),
but for n ≡ 3 (mod 4) its order |bP4m| grows more than exponentially:

|bP4m| =
[
22m−2(22m−1 − 1)

]
·
[
numerator of (

4Bm

m
)
]
,

where the Bm are the Bernoulli numbers. Thus for instance (see [133, 140]), for
n = 7, 11, 15, or 19 there are, respectively, |bPn+1| = 28, 992, 8128, and 130816
nonequivalent differentiable structures on the n-sphere that bound a parallelizable
manifold.

A question was, How do we construct those exotic spheres? An approach to this
problem is by looking at the links of isolated complex singularities. This led to
Milnor’s fibration theorem, as we now explain.

Let (V, P ) be a complex analytic variety of complex dimension n in some affine
space CN , with a unique singular point at P . Then V ∗ = V \ {P} is a complex
n-manifold. One has the following.
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Proposition 1.1. There exists ε > 0 sufficiently small, so that every sphere Sr in

CN of radius r ≤ ε and center at P meets V ∗ transversally.

This is proved in [193, Chapter 2] when X is algebraic and it is a particular case
of a general theorem about the local conical structure of analytic sets; see section
3. It follows that if (V, P ) is as above, then its link LV := Sε ∩ V is a smooth real
analytic manifold of dimension 2n− 1.

Question 1.2. Can we know when LV is a homotopy sphere? And if so, can we
determine which element in Θn it represents?

For n = 1, the question is trivial since LV is a union of circles, one for each branch
of V . For n = 2, if V has a normal singularity at P , then its link is never simply
connected; see [199]. When V is a complex hypersurface (i.e., defined by one single
equation), Question 1.2 was answered by the work of various people in the 1960s,
most notably by E. Brieskorn, F. Hirzebruch, and J. Milnor; see [47, 119, 134, 193].

For instance, in dimension 7 we know from [140] that there exist 28 classes of
homotopy spheres including the standard one, and all of them bound a parallelizable
manifold. Brieskorn proved in [47] that all these 28 classes can be represented by
the link LV of some hypersurface in C5 of the form

za0
0 + za1

1 + · · ·+ za4
4 = 0 .

The fibration theorem is the culmination of a series of works by various authors,
starting with F. Pham [232].

Let V be the zero-locus of an analytic map (Cn+1, 0)
f
→ (C, 0) with an isolated

critical point at 0. Equip its link L2n−1
V with its natural differentiable structure as

the transverse intersection LV = Sε ∩ V of two smooth submanifolds of Cn+1. One
has a map

(1.3) ϕ :=
f

|f |
: Sε \ LV −→ S

1 ,

and Milnor’s fibration theorem says that this is a smooth fiber bundle.
Milnor also proves that the fiber Ft is diffeomorphic to the portion of a noncritical

level f−1(t) contained within the ball Bε bounded by Sε; see Figure 2. This implies
that the normal bundle of Ft is trivial, being the inverse image of a regular value.
Hence the tangent bundle TFt is stably trivial, i.e., Ft is stably parallelizable, and
we know from [140] that for compact connected manifolds with nonempty boundary,
stably parallelizable implies parallelizable. Thus we get the following.

Proposition 1.4. The link LV of every complex hypersurface isolated singularity

bounds the fibers Fθ, which are parallelizable manifolds.

The point is to know when LV is a homotopy sphere, and when this happens,
which element it represents in bP2n. For this, Milnor proved the following in [193].

Proposition 1.5. The link of every isolated hypersurface singularity in Cn+1 is

(n− 2)-connected, and the fiber Ft has the homotopy of a bouquet
∨
Sn of spheres

of middle dimension.

The number of spheres in the bouquet
∨
Sn is strictly positive, unless V has no

singularity. This is now called the Milnor number μ of f (see section 6).
For n > 2, the link is simply connected, and therefore the Hurewicz isomorphism

implies that the homology of LV also vanishes in dimensions i = 1, . . . , n−2. Since
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LV is always orientable, by the Poincaré duality isomorphism its homology vanishes
in dimensions n+ i, i = 1, . . . , n−2 as well. Thus the only possibly nonzero groups
are in dimensions i = n, n−1 and of course i = 0, 2n−1 where they are isomorphic
to the group of the integers (or the corresponding ring of coefficients).

If Hn−1(LV ) vanishes, then Hn(LV ) also vanishes by duality, and LV is a ho-
mology sphere. If n ≥ 2, then LV is simply connected by [193]. Hence, if n > 2,
then Smale’s theorem in [256] implies (Poincaré’s Conjecture in dimensions ≥ 5)
that LV is actually homeomorphic to S2n−1. So the question is to decide when
Hn−1(LV ) vanishes, and it is here that the fibration theorem enters the scene: fix a
fiber F0 and notice that F0 and its complement in Sε \LV have the same homotopy
type. Consider the monodromy h (a first return map) of the bundle (1.3) and the
induced representation in the middle homology of the fiber

h∗ : Hn(F0) → Hn(F0) .

One has the corresponding Wang sequence (see [193, p. 68])

Hn(F0)
h∗−I∗−→ Hn(F0) −→ Hn(Sε − LV ) −→ 0 .

Using this, one arrives at Milnor’s theorem [193, Theorem 8.5], that for n > 2 the
link is a topological sphere if and only if the determinant of h∗ − I∗ is ±1, which was
already proved by F. Pham in [232] for the Pham–Brieskorn polynomials. Using
this, for instance Hirzebruch proved in [134, pp. 20–21] that the links of the following
singularities are all homotopy spheres:

z30 + z6k−1
1 + z22 + · · ·+ z22m = 0 ; k ≥ 1 , m ≥ 2 .

One has the following remarkable theorm of Brieskorn [47, Korollar 2].

Theorem 1.6. Every exotic sphere of dimension m = 2n − 1 > 6 that bounds a

parallelizable manifold is the link of some hypersurface singularity of the form

za0
0 + za1

1 + · · ·+ zan
n = 0 ,

for some appropriate integers ai ≥ 2, i = 0, 1, . . . , n.

One may consider singularities which are not hypersurfaces and try to produce
other elements in the homotopy of spheres. To my knowledge, little is known about
this problem. If we consider complex isolated complete intersection singularities,
one always has a Milnor fibration and the fibers can be regarded as being the
interior of compact parallelizable manifolds with the link as its boundary, by [128].
So in these cases, if the link is an exotic sphere, this is in bP2n ⊂ Θ2n−1, which is
the simplest and best understood part of Θ2n−1.

I thank Patrick Popescu-Pampu for bringing to my attention the following in-
teresting question posed by A. Durfee in [277, Problem H, p. 252]:

Question 1.7. Does every exotic sphere occur as the link of an isolated complex
singularity?

A step for answering Question 1.7 is the question that Popescu-Pampu originally
asked me:

Question 1.8. Does there exist a complex isolated singularity whose link is a
homotopy sphere that does not bound a parallelizable manifold?

Such examples, if they exist, would produce elements in the most mysterious
part of the groups Θn.
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2. An example: The Pham–Brieskorn singularities

Consider a Pham–Brieskorn polynomial f : Cn → C,

(z1, . . . , zn)
f
�→ za1

1 + · · ·+ zan
n , ai ≥ 2 .

The origin 0 ∈ Cn is its only critical point, so V := f−1(0) is a complex hypersurface
with an isolated singularity at 0. Let d be the lowest common multiple of the ai
and for each i = 1, . . . , n set di = d/ai. Then for every nonzero complex number
λ ∈ C∗ one has a C∗-action on Cn determined by

λ · (z1, . . . , zn) �→ (λd1z1, . . . , λ
dnzn) .

Observe that one has

f(λd1z1, . . . , λ
dnzn) = λdf(z1, . . . , zn) ,

so f is weighted homogeneous. This C∗-action has 0 as its only fixed point and V
is an invariant set, union of C∗-orbits. This has the following properties.

Property 1. Restricting the action to the positive real numbers t ∈ R+, we get a
flow such that the following hold.

• Each orbit converges to 0 as t tends to 0, and it goes to infinity as t tends
to ∞.

• Each orbit is transversal to all spheres centered at 0. Hence V intersects
transversally every (2n − 1)-sphere Sr centered at 0, so Kr := V ∩ Sr is a
real codimension 2 smooth submanifold of Sr.

• Given arbitrary spheres Sr, Sr′ centered at 0, the flow gives a diffeomor-
phism from Sr into Sr′ taking Kr into Kr′ . Moreover, the flow determines
a one-parameter group of diffeomorphisms that exhibits the pair (Cn, V )
as the cone over (Sr,Kr). We denote the manifold Kr by Lf and call it the
link (see [77, 193]).

Property 2. The argument of the complex number f(z) is constant on each orbit
of the above flow, i.e., f(z)/|f(z)| = f(tz)/|f(tz)| for all t ∈ R+.

Property 3. The restriction of the C∗-action to S1 leaves invariant every sphere
around 0. Multiplication by eiθ in Cn transports each fiber f−1(ζ) into the fiber
f−1(eiθd ·ζ). Hence S1 acts on each tube N(δ) := f−1(∂Dδ) , where ∂Dδ

∼= S
1 is the

boundary of the disc in C of radius δ > 0 and centered at 0. A direct computation
shows that the orbits of this action are transverse to the fibers of f . So we have a

smooth fiber bundle, N(δ)
f
→ ∂Dδ .

Now observe that for each line Lθ through the origin in C, we may consider the
set

Xθ := {z ∈ C
n | f(z) ∈ Lθ} .

Each Xθ is a real analytic hypersurface with an isolated singularity at 0, their union
fills the entire Cn, and their intersection is V . By Property 1, each Xθ is transversal
to all the spheres, and by Property 3, the S1-action permutes these hypersurfaces.
Thus one has the following.

Property 4. These varieties define a pencil in Cn, a sort of open-book where the
binding is now the singular variety V , and each of these varieties is transverse to
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Figure 2. The noncritical levels are all diffeomorphic.

every sphere around 0. If we remove V from C
n, then for every ball around 0 we

get a fiber bundle

(2.1) ϕ =
f

|f |
: B2n \ V −→ S

1 .

The fiber over a point eiθ is a connected component of Xθ\V . The other component
is f−1(e−iθ).

Property 5. We now focus our attention near the origin, say restricted to the unit
ball B2n in Cn. Since each Xθ meets transversally the sphere S2n−1 = ∂B2n, the
intersection is a smooth codimension 1 submanifold of the sphere, containing the
link Lf = V ∩ S2n−1. And since the orbits of the S1-action preserve the sphere
S2n−1, the restriction of ϕ to S2n−1 defines the classical Milnor fibration

(2.2) ϕ =
f

|f |
: S2n−1 \ Lf −→ S

1 ,

Property 6. Since V is transverse to the unit sphere S2n−1 and each point in
V \ {0} is regular, each fiber f−1(t) with |t| sufficiently small is also transverse to
S2n−1. Hence, if N(δ) is as in Property 3 and we set N(1, δ) := N(δ) ∩ B2n, where
the 1 means that the ball B2n has radius 1, we have that the fiber bundle described
by Property 3 determines a fiber bundle

(2.3) f : N(1, δ) → ∂Dδ
∼= S

1 .

This is the second classical version of Milnor’s fibration for the map f ; see Figure
2.

Property 7. Notice that by Property 2, each R+-orbit is everywhere transverse
to the tube N(δ) and transverse to the sphere S

2n−1, and the complex numbers
f(z) have constant argument along each orbit. Thence the integral lines of this
action determine a diffeomorphism between N(1, d) and S2n−1 minus the part of the

sphere contained inside the open solid tube f−1(
◦

Dδ). This determines the classical
equivalence between the Milnor fibration in the sphere (4.1) and the Milnor–Lê
fibration in the tube (4.2).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



290 JOSÉ SEADE

We now remark that everything we said above works in exactly the same way
for all weighted homogeneous complex singularities; i.e., for all complex polyno-
mials f for which there is a C

∗-action on C
n as above, for some positive integers

{d; d1, . . . , dn},

λ · (z1, . . . , zn) = (λd1z1, . . . , λ
dnzn) ,

satisfying that for all λ ∈ C∗ and for all z ∈ Cn, one has

f(λ · z) = λd · f(z) .

These all have the same Properties 1 to 7. As we will see in what follows, all real
analytic isolated singularities can be equipped with flows that satisfy properties
analogous to 1 and 3 to 6, but not always 2. This implies that we have a fibration
as in (2.3) and it can be carried to a fibration on the sphere as in (2.2) but the
projection map ϕ may not always be taken to be f/|f | away from a neighborhood of
the link. Also, having Property 2 grants that ϕ can be taken as f/|f | everywhere,
and this is equivalent to the map-germ being d-regular, a concept that we discuss
in section 14.

3. Local conical structure of analytic sets

Consider a reduced, equidimensional real analytic space V of dimension n, de-
fined in an open ball Br(0) ⊂ RN around the origin. Assume V contains the origin
0 and V ∗ := V − {0} is a real analytic manifold of dimension n > 0. The following
is proved in [193], and it can be deduced from [168].

Theorem 3.1 (Milnor 1968). There exists ε > 0 sufficiently small, so that every

sphere in R
N centered at 0 and with radius ≤ ε intersects V ∗ transversally. More-

over, there is a smooth one-parameter family of diffeomorphisms {γt}, t ∈ [0, ε),
such that γ0 is the identity, and if Sε−t denotes the sphere of radius ε− t, then

each γt carries the pair (Sε, Sε ∩ V ) into (Sε−t, Sε−t ∩ V ). The pair (Bε,Bε ∩ V ) is
homeomorphic to the cone over (Sε, Sε ∩ V ).

The idea of the proof is simple: Consider the function RN d
→ R given by

d(x1, . . . , xN ) = x2
1 + · · ·+ x2

N , so that d is the square of the function “distance to

Figure 3. The link of the singularity determines the topological type.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON MILNOR’S FIBRATION THEOREM AND ITS OFFSPRING 291

0”. The solutions of its gradient vector field ∇d are the straight rays that emanate
from the origin. Let us adapt this vector field to V . For this, take the restriction
dV of d to V . At each point x ∈ V ∗ the gradient vector ∇dV (x) is obtained by
projecting ∇d(x) to TxV

∗, the tangent space of V ∗ at x, so ∇dV (x) vanishes if
and only if TxV

∗ ⊂ TSx. This means that a point x ∈ V ∗ is a critical point of dV
iff V ∗ is tangent at x to the sphere passing through x and centered at 0. Just as
in [193, Corollary 2.8], one has that dV has at most a finite number of critical values
corresponding to points in V ∗, since it is the restriction of an analytic function on
Br(0). Hence V ∗ meets transversally all sufficiently small spheres around the origin
in RN . The gradient vector field of dV is now everywhere transversal to the spheres
around 0, and it can be assumed to be integrable. Hence it defines a one-parameter
family of local diffeomorphisms of V ∗ taking each link into “smaller” links, proving
Theorem 3.1.

Theorem 3.1 was extended in [51] to varieties with arbitrary singular locus using
Whitney stratifications (we refer to [71,116] for background material on stratifica-
tions). A more refined argument due to A. Durfee [77] (see also [159]) and based
on the Curve Selection Lemma of [193], shows that in fact the diffeomorphism type
of the manifold V ∩ Sε is also independent of the choice of the embedding of V in
RN . One has the following.

Theorem 3.2. Let V be a real or complex analytic set in Rm, and let P be a

singular point in V . Then there exists a Whitney stratification of Rm for which V
is a union of strata, P is a point stratum, and one has the following (see Figure 3).

(1) There exists ε > 0 sufficiently small, so that every sphere Sr in Rm of radius

r ≤ ε and center at P meets transversally at every stratum in V .

(2) One has a homeomorphism of pairs: (Bε,Bε ∩ V ) ∼= Cone (Sε, Sε ∩ V ).
(3) The homeomorphism type of LV := Sε ∩ V is independent of the choice of

the defining equations for V .

Definition 3.3. The manifold LV := V ∩ Sε is called the link of V at 0, and a
sphere Sε as in Theorem 3.2 is called a Milnor sphere for V . We also denote LV by
Lf when we want to emphasize the function rather than the space V .

4. The classical fibration theorems for complex singularities

The first version of Milnor’s fibration theorem says the following.

Theorem 4.1 (Fibration theorem, first version). Let U be an open neighborhood

of the origin 0 ∈ Cn+1, and let f : (U, 0) → (C, 0) be a complex analytic map. Set

V := f−1(0) and LV := V ∩Sε, where Sε is a sufficiently small sphere in U centered

at 0. Then

ϕ :=
f

|f |
: Sε \ LV −→ S

1

is a C∞ fiber bundle.

The proof by Milnor in [193] uses the Curve Selection Lemma first to show that
the map ϕ has no critical points and then to construct an appropriate vector field on
Sε \LV that shows the local triviality, i.e., that each fiber of ϕ has a neighborhood
which is a product. Nowadays, the most common proof of Theorem 4.1 follows the
original approach sketched by Milnor himself in a previously unpublished article
[192]. The starting point is the following.
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Theorem 4.2 (Fibration theorem, second version). With the above hypothesis and

notation, let δ > 0 be sufficiently small with respect to ε so that for every t ∈ C

with |t| ≤ δ the fiber f−1(t) meets the sphere Sε transversally. Let Dδ be the disc

in C of radius δ and center at 0; let ∂Dδ
∼= S1 be its boundary and set N(e, δ) :=

f−1(∂Dδ) ∩ Bε, where Bε is the open ball in Cn+1 bounded by Sε. Then,

f|N(e,δ)
: N(e, δ) −→ ∂Dδ ,

is a C∞ fiber bundle (essentially) isomorphic to that in Theorem 4.1.

The word “essentially” in the last statement is because the fibers in 4.2 are
compact, while those in Theorem 4.1 are open manifolds. To have an actual iso-
morphism of the two fibrations, one must restrict the fibration in 4.2 to the open
ball.

Milnor proved this theorem in [192] when the map-germ f has an isolated critical
point. In the general case, Milnor proved in [193] that the fibers in Theorem 4.2
(restricted to the open ball) are diffeomorphic to those in Theorem 4.1. In order
to prove that one actually has a fiber bundle in Theorem 4.2 one must grant that
given ε > 0 as above, there exists a δ as stated, such that all fibers f−1(t) with
|t| ≤ δ meet the sphere Sε transversally. This was not known until 1977 when
Hironaka proved in [131] that all complex-valued holomorphic maps have a Thom
stratification.

To prove Theorem 4.2, we restrict f to a sufficiently small open ball Br around
0 so that 0 ∈ C is its only critical value. We equip Br with a Thom stratification
[131], so that V is a union of strata, and we assume that 0 itself is a stratum. Now
let Sε ⊂ Br be a Milnor sphere for f , so that every sphere of radius ≤ r meets
transversally each stratum in V ; this is possible by Theorem 3.2. By compactness,
this implies that there exists δ > 0 such that for each t ∈ C with 0 < |t| ≤ δ, the
fiber f−1(t) meets Sε transversally. Hence all fibers in Theorem 4.2 are compact
smooth manifolds with boundary. The proof of the local triviality is as in the usual
proof of Ehresmann’s fibration lemma—lifting via the Jacobian of f the appropriate
vector fields in C to vector fields in Bε which are normal to the fiber. The only
additional thing is that we must choose the liftings so that the vector fields are also
tangent to Sε, which is possible because the fiber is transversal to the sphere (see
[249, 279]).

The next step to prove Theorem 4.1 is implicit in [193]: we inflate the Milnor
tube, carrying the fibration in the tube into the fibration in the sphere as stated
(see Figure 4). This relies on the Curve Selection Lemma. The key for this is
constructing a vector field as stated in the following lemma.

Lemma 4.3. There exists an integrable vector field ξ on Bε \ V such that the

following hold.

(1) Its integral lines are transversal to all Milnor tubes f−1(S1r).
(2) Its integral lines are transversal to all spheres centered at 0.
(3) Its integral lines travel along points where f has constant argument. That

is, if z, w are points in Bε \V which are in the same integral line of ξ, then
f(z)/|f(z)| = f(w)/|f(w)|.

We remark that constructing a vector field that satisfies the first two conditions
is easy and can also be done in the real analytic category. This allows one to inflate
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Figure 4. The vector field that carries a Milnor tube into the sphere.

the tube to the sphere so that we get a homeomorphism

h : N(ε, η) −→ Sε \N(ε, η)

in the obvious way: for each z ∈ N(ε, η), we consider the unique integral line of ξ
passing by z; and we then travel along this integral line until it hits the sphere Sε.
We thus get a fiber bundle ϕ : Sε \LV → S1 with projection map ϕ := f ◦h−1. The
hard part is having one such vector field that further satisfies the third condition.
This grants that the projection map in Theorem 4.1 can be taken as ϕ = f/|f | and
the two fibrations are equivalent. �

Having these two equivalent fiber bundles associated to a map-germ brings great
richness. The first fibration is interesting for topology and differential geometry.
This has important relations with knot theory, open-book decompositions, and
contact and symplectic geometry. The second fibration lends itself more naturally to
generalizations, and this has strong relations with algebraic geometry, as it exhibits
the special fiber V as the limit of a flat family of complex manifolds that degenerate
to V .

5. Extensions and refinements of Milnor’s fibration theorem

A natural extension of Milnor’s theorem is due to Hamm in [128] (see also [167])
for isolated complete intersection singularities (ICIS). This means a local complete
intersection germ

f = (f1, . . . , fk) : C
n+k → C

k ,

such that V := f−1(0), has an isolated singularity at the origin. One has a fibration
over the regular values of f sufficiently near the origin, where the fiber Ft is the
intersection of the complex manifold f−1(t) with a small ball around the origin in
Cn+k. Notice that in this case the set of critical values has in general complex
codimension 1 in Ck (see for instance [74, Theorem 1.1]).
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It is proved in [120, Lemma 1.10] (see also [167]) that given an ICIS as above, one
can always find good representatives of these singularities, which means that the
first k−1 equations define an ICIS W of one dimension more, and the last equation
defines an isolated singularity hypersurface germ in W . Therefore, we may see this
as a special case of the following theorem from [154] (see [65] for the equivalence of
the two fibrations).

Theorem 5.1 (Lê Dũng Tráng). Let X be an analytic subset of an open neighbor-

hood U of the origin 0 in Cn. Given f : (X, 0) → (C, 0) holomorphic with a critical

point at 0 ∈ X (in the stratified sense [116]), let V := f−1(0), let Bε be a closed

ball of sufficiently small radius ε around 0 ∈ Cn, and let Sε be its boundary. Then

the following hold.

(1) Let LX = X ∩ Sε be the link of X, and let LV = f−1(0) ∩ Sε be the link of

V in X. One has a fiber bundle,

(5.2) ϕ =
f

|f |
: LX \ LV −→ S

1 .

(2) Now choose ε ≫ δ > 0 sufficiently small and consider the Milnor tube

N(ε, δ) = X ∩ Bε ∩ f−1(∂Dδ)

where Dδ ⊂ C is the disc of radius δ around 0 ∈ C. Then

(5.3) f : N(ε, δ) −→ ∂Dδ

is a fiber bundle, C∞-isomorphic to the previous bundle.

Notice that the fibers in (5.2) are subsets of the link LX := X ∩ Sε, while the
fibers in (5.3) are contained in the interior of X ∩ Bε, in analogy with the classical
Milnor fibrations Theorems 4.1 and 4.2. These statements can be refined by giving
a fibration on the whole ball Bε minus the variety V := f−1(0) which has the two
fibrations in Theorem 5.1 as subfibrations. For this we need the following.

Theorem 5.4 (The Canonical Pencil). For each θ ∈ [0, π), let Lθ be the line

through 0 in R2 with an angle θ with respect to the positive orientation of the x-
axis. Set V = f−1(0) and Xθ = f−1(Lθ). Then the following hold.

(i) The Xθ are all homeomorphic real analytic hypersurfaces of X with singular

set Sing(V ) ∪ (Xθ ∩ Sing(X)). Their union is the whole space X, and they

all meet at V , which splits each Xθ in two homeomorphic halves.

(ii) If {Sα} is a Whitney stratification of X adapted to V , then the intersection

of the strata with each Xθ determines a Whitney stratification of Xθ, and for

each stratum Sα and each Xθ, the intersection Sα ∩Xθ meets transversally

with every sphere in Bε centered at 0.
(iii) There is a uniform conical structure for all Xθ, i.e., there is a homeomor-

phism

h : (X ∩ Bε, V ∩ Bε) →
(
Cone(LX),Cone(Lf )

)
,

which, when restricted to each Xθ, defines a homeomorphism

(Xθ ∩ Bε) ∼= Cone(Xθ ∩ Sε).

The next theorem implies that the fibrations over the circle in Milnor’s theorem
are actually liftings of fibrations over RP1.
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Theorem 5.5 (Fibration theorem). One has a commutative diagram of fiber bun-

dles

(X ∩ Bε) \ V
ϕ

��

Ψ
��▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

S
1

π

��

RP
1 ,

where Ψ(x) = (Re(f(x)) : Im(f(x))) with fiber (Xθ ∩ Bε) \ V , π is the natural

twofold covering, and ϕ(x) = f(x)
|f(x)| . The restriction of ϕ to the link LX \Lf is the

usual Milnor fibration (5.2), while the restriction to the Milnor tube f−1(∂Dη)∩Bε

is the fibration (5.2) (up to multiplication by a constant), and these two fibrations

are equivalent.

The proof of Theorem 5.5 follows the same line as in the case where X is non-
singular. The key point is constructing an appropriate integrable vector field in the
vein of Lemma 4.3 above. When the ambient space X is singular, we must con-
sider stratified vector fields and use either Mather’s controlled vector fields [181] or
Verdier’s rugose vector fields [274], which are all continuous and integrable. The
proof in [65] of Theorem 5.5 also shows the following.

Corollary 5.6. Let f : (X, 0) → (C, 0) be as above, a holomorphic map with a

critical point at 0 ∈ X, and consider its Milnor fibration

ϕ =
f

|f |
: LX \ Lf −→ S

1 .

If the germ (X, 0) is irreducible, then every pair of fibers of ϕ over antipodal points

of S1 are glued together along the link Lf producing the link of a real analytic

hypersurface Xθ, which is homeomorphic to the link of {Re f = 0 }. Moreover, if

both X and f have an isolated singularity at 0, then this homeomorphism is in fact

a diffeomorphism, and the link of each Xθ is diffeomorphic to the double of the

Milnor fiber of f regarded as a smooth manifold with boundary Lf .

6. The topology of the fibers: Milnor and Lê numbers

This section surveys known results about the topology of the Milnor fibers. We
refer to Massey’s expository articles [178, 179] and lecture notes [177] for more
complete accounts of the subject.

We start with an example.

Example 6.1. Consider the homogeneous map f : C2 → C defined by (x, y) �→ xy;
this has a unique critical point at x = 0 = y. Its zero locus V (f) consists of the
two axes {x = 0} ∪ {y = 0} with the origin as an isolated singularity. So its link
Lf := V (f) ∩ S

3 is the Hopf link. By [193, Lemma 9.4], the Milnor fiber Ff is
diffeomorphic to the whole fiber f−1(1), which consists of the points where x 	= 0
and y = 1/x. Hence Ff is diffeomorphic to a copy of C∗; in fact it is an open
cylinder S1 × R, and it can be regarded as being the tangent bundle of the circle.
In particular Ff has the homotopy type of S1.

We extend these considerations to higher dimensions in two different ways.
First notice that we can make the change of coordinates (x, y) �→ (z1, z2) with
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z1 = (x+ iy) and z2 = (x− iy). In these new coordinates the above map becomes
z21 + z22 , and we may consider, more generally, the homogeneous polynomial

f(z0, . . . , zn) = z20 + · · ·+ z2n .

The link Lf consists of the points where one has

Re(z20 + · · ·+ z2n) = 0 , Im(z20 + · · ·+ z2n) = 0 , and |z0|
2 + · · ·+ |zn|

2 = 1 .

Hence Lf is diffeomorphic to the unit sphere bundle of the n-sphere Sn. By Milnor’s
Lemma 9.4 in [193], the Milnor fiber Ff is diffeomorphic to the set of points where
z20 + · · ·+ z2n = 1, i.e.,

Re(z20 + · · ·+ z2n) = 1 and Im(z20 + · · ·+ z2n) = 0.

This describes the tangent bundle of the n-sphere Sn, and Ff actually is the corre-
sponding open unit disc bundle. In particular, Ff has the sphere S

n as a deforma-
tion retract and therefore Ff has nontrivial homology only in dimensions 0 and n;
in these dimensions its integral homology is isomorphic to Z.

Starting again with the initial example, consider now the map f : C3 → C

defined by (x, y, z) �→ xyz. Its zero set V (f) consists of the coordinate planes
{x = 0}∪{y = 0}∪{z = 0}, with the three axes as a singular set. The Milnor fiber
Ff is diffeomorphic to {xyz = 1}, i.e., x 	= 0, y 	= 0, and z = 1/xy. Therefore Ff is
diffeomorphic to C∗ ×C∗ and it has the torus S1 × S1 as a deformation retract. So
Ff now has nontrivial homology in dimensions 0, 1, and 2.

We know from [193] that the Milnor fiber Ff of an arbitrary holomorphic map-
germ (Cn+1, 0) → (C, 0) has the homotopy type of a finite CW-complex of middle-
dimension n. This follows too from [12] since Ff is a Stein manifold and, perhaps
moving the origin 0 slightly if necessary, the square of the function distance to 0 is
a strictly plurisubharmonic Morse function on Ff , so one has severe restrictions on
the possible Morse indices.

If we further assume that f has an isolated critical point at 0, then Milnor used
Morse theory to show [193, Lemma 6.4] that Ff is (n − 1)-connected. Lefschetz
duality, together with the above observations about the homology of F , implies
that in this setting the fiber Ff has the homotopy type of a bouquet of n-spheres.
The number μ = μ(f) of such spheres is now called the Milnor number of f . This
statement can be made stronger in at least two ways.

On the one hand, we know from [155] that there exists in Ff a polyhedron P of
middle dimension, with the homotopy type of a bouquet of spheres of dimension n,
which is a deformation retract of Ff , and there is a continuous map Ff → V that
carries P into 0 and is a homeomorphism in the complement of P . So Ff can be
thought of as being also a topological resolution of the singularity. This is implicit
in [232] for the Pham–Brieskorn polynomials; the polyhedron P is the so-called join
of Pham. The theorem in general is in [155] with a sketch of its proof. A complete
proof is given in [161].

On the other hand, as proved in [157, 193], the fiber Ff is in fact diffeomorphic
to a 2n-ball with μ n-handles attached. To explain this, we first recall S. Smale’s
classical process of attaching handles. To attach a p-handle to an m-manifold M ,
we assume one has a smooth embedding ι of Sp−1 ×Dm−p into the boundary ∂M .
Set Hp = Dp ×Dm−p and define a manifold M ∪f H

P by taking the disjoint union
of M and Hp and by identifying Sp−1 × Dm−p with its image by ι. We think of
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M ∪f HP as being obtained from M by attaching a p-handle; the integer p is the
index of the handle.

Milnor noticed in [193] that, in high dimensions, Smale’s h-cobordism theorem
and the fact that the fiber Ff has the homotopy type of a bouquet of n-spheres
actually imply that Ft is diffeomorphic to a 2n-ball with μ n-handles attached.
This claim also holds for n = 1. The only case left open was n = 2; this was done
by Lê and Perron in [157] by a different method, and their proof actually works in
all dimensions. This introduces an important technique which in fact is a first step
toward the celebrated Lê’s carroussel. The idea is to consider an auxiliary function
ℓ : Cn+1 → C, which is linear and “sufficiently general” with respect to f . The two
maps together determine a map-germ

ϕ = (f, ℓ) : (Cn+1, 0) → (C2, 0) ,

and the Milnor fiber of f corresponds to the inverse image of an appropriate line
ℓ = c. This allows us to reconstruct Ft by looking at the slices determined by the
level hyperplanes of ℓ (see Theorem 6.2). This brings us to the remarkable theory
of “polar varieties” developed by Bernard Teissier and Lê Dũng Tráng in the 1970s.
We define first the relative polar curve of f with respect to a linear form, Γ1

f,ℓ (see

for instance [149, 152, 153, 263, 265]).
Given f and ℓ as above, as a set the curve Γ1

f,ℓ is the union of those components

in the critical set of (f, ℓ) which are not in Σf , the critical points of f . In other
words, assume we have coordinates (z0, . . . , zn) so that the linear function ℓ = z0 is
sufficiently general. Then the critical locus of (f, ℓ) is V (∂f/∂z1, . . . , ∂f/∂zn), the
set of points where ∂f/∂zi = 0 for all i = 1, . . . , n. Now write the cycle represented
by V (∂f/∂z1, . . . , ∂f/∂zn) as a formal sum over the irreducible components,

[
V
( ∂f
∂z1

, . . . ,
∂f

∂zn

)]
=

∑
ni[Vi]

Then Γ1
f,ℓ, as a cycle, is defined by

Γ1
f,ℓ =

∑

Vi�Σf

ni[Vi] .

Now, given f , we need to choose the linear form ℓ to be “general enough”. For
this, let us equip f with a good stratification at the singular point 0 in the sense
of [129]. This means we have an analytic stratification of a neighborhood U of 0,
such that V (f) is a union of strata, the regular set of V (f) is a stratum, and one
has Thom’s af -condition with respect to U \ V (f). We further need ℓ to define a
prepolar slice for f at 0 with respect to the good stratification {Sα}. This means
that the hyperplane H = ℓ−1(0) meets transversely all the strata in U , except
perhaps the stratum 0 itself.

If H is a prepolar slice for f at 0 defined by a linear form ℓ, one has that the

intersection number
(
Γ1
f,ℓ · V (f)

)
is finite and well-defined. We may now state

Lê’s attaching theorem.

Theorem 6.2 (Lê’s attaching theorem). Given a map-germ f as above, with a

possibly nonisolated critical point at 0, consider its local Milnor fiber Ff at 0. If H
is a prepolar slice for f at 0, then Ff is obtained from the Milnor fiber of the slice

V (f)∩H by attaching a certain number of n-handles. The number of such handles

is the intersection number
(
Γ1
f,ℓ · V (f)

)
.
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This leads naturally to the definition of the Lê numbers, introduced by Massey
in [175, 177]. The idea is similar to the above discussion. A linear functional
C

n+1 → C
r gives rise to a polar variety relative to f , determined by the points

of nontransversality of the fibers of ℓ and f . Massey showed that this gives rise
to certain local analytic cycles, that he called the Lê cycles, that depend on the
choice of the linear functional ℓ, but they are all equivalent when the form is general
enough. These cycles encode deep topological properties of the Milnor fibration.
We denote these by Λk

f,ℓ(0). Up to equivalence, these are independent of the choice
of the prepolar slice.

Each of these analytic cycles has a certain local multiplicity: these are the
(generic) Lê numbers λk

f,ℓ(0). If the singularity is isolated, then there is only one

generic Lê number, and it coincides with the Milnor number. Massey’s theorem (see
[179, Theorem 3.1] and also [175–177]) tells us how to build up the Milnor fiber by
successively attaching handles of various dimensions. This is the second statement
in Theorem 6.3 below, and it essentially summarizes the above discussion.

Theorem 6.3. Let f : (Cn+1, 0) → (C, 0) be a holomorphic map-germ, and let

Ff be its Milnor fiber. Then Ff is a parallelizable complex Stein manifold that can

be regarded as the interior of the compact manifold obtained by attaching to it its

boundary; Ff has the homotopy type of a CW-complex of middle dimension and the

following.

(1) If the defining function f has an isolated critical point, then:

• The boundary of Ff is isotopic to the link Lf .

• Ff has the homotopy type of a bouquet
∨
Sn of spheres of middle di-

mension, and it actually is diffeomorphic to a closed ball B2n to which

we attach μ n-handles. The number μ is called the Milnor number

of f .
• The number μ can be computed as the intersection number

μ = dimC
On+1,0

Jac f
,

where On+1,0 is the local ring of germs of holomorphic functions on

C
n+1 at 0 and Jac f is the Jacobian ideal generated by the derivatives(
∂f/∂z0, . . . , ∂f/∂zn

)
.

• There is in Ff a polyhedron P of middle dimension, which is a de-

formation retract of Ff , and there is a continuous map Ff → V that

carries P into 0 and is a homeomorphism in the complement of P .

(2) If the defining function f has a nonisolated critical point:

• If the complex dimension s of its critical set is s ≤ n − 2, then Ff is

obtained up to diffeomorphism from a 2n-ball by successively attaching

λn−k
f,ℓ (0) k-handles, where n− s ≤ k ≤ n and λn−k

f,ℓ (0) is the (n− k)-th
Lê number.

• If the complex dimension of its critical set is s = n − 1, then Ff

is obtained up to diffeomorphism, from a real 2n-manifold with the

homotopy type of a bouquet of λn−1
f,ℓ (0) circles, by successively attaching

λn−k
f,ℓ (0) k-handles, where 2 ≤ k ≤ n.

The literature about this topic is vast and includes important bouquet theorems
by D. Siersma [255] and M. Tibăr [268] for functions defined on singular spaces;
both of these theorems are reminiscent of Lê’s attaching theorem, Theorem 6.2.
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Remark 6.4 (Vanishing cycles, monodromy and the Milnor lattice). The fibration
theorem, Theorem 4.2, tells us that the Milnor fibers can be regarded as a one-
parameter flat family {Ft} of complex manifolds that degenerate to the special
fiber F0 = V := f−1(0). Since V is a topological cone, this means that all the
homology groups of F vanish in the limit. In particular, if the critical point of f
at 0 is isolated, then Theorem 6.3 says that the only interesting homology group of
the Milnor fiber F is in dimension n and it is generated by μ(f) cycles of dimension
n, which are called the vanishing cycles. This group,

L(f) := Hn(F,Z) ∼= Z
μ(f) ,

is naturally equipped with a (−1)n-symmetric bilinear form 〈 , 〉 coming from the
intersection of cycles. This group L(f) together with this additional structure is
called the Milnor lattice of the singularity. The literature about it is vast; we refer
to Dimca’s book [71] for an account of this subject.

The E8 lattice is an example of a unimodular lattice which is rather famous in
singularity theory as well as in low dimensional topology. This is the Milnor lattice
of the singularity z2 + z32 + z53 = 0 in C3, whose link is the celebrated Poincaré
homology 3-sphere.

A cornerstone in the study of Milnor lattices is the monodromy of the fibration.
For this, it is useful to consider distinguished bases of the vanishing cycles. We refer
for this to [71,83,84,103,243,253]. Another viewpoint for studying the monodromy
is via its zeta-function; see for instance [1,2,125,218,272] for some classical material,
or [19, 49, 60] and their bibliographies for more recent work on the subject.

7. On the Milnor number

Given a map-germ (Cn+1, 0)
f
→ (C, 0) with an isolated critical point at 0, we

know from the previous section that F has the homotopy type of a bouquet
∨

S
n

of spheres of middle dimension. Therefore all its homology groups vanish except in
dimension 0 where it is Z, and in dimension n where it is free abelian of rank bn.
The Milnor number μ := μ(f) is defined as the nth Betti number bn(F ).

Theorem 8.2 in Milnor’s book [193] says that μ(f) equals the multiplicity of the
map-germ f at 0, which equals the local Poincaré–Hopf index of its gradient vector
field ∇f(z) :=

(
∂f/∂z0(z), . . . , ∂f/∂zn(z)

)
. Since the vector field ∇f is holomor-

phic, standard arguments in algebraic geometry say this index is the intersection
number in Theorem 6.3:

(7.1) μ = dimC
On+1,0

Jac f
.

It follows that the Euler characteristic of the fiber F is χ(F ) = 1+ (−1)nμ . If we
think of F as being a compact manifold with boundary the link Lf

∼= ∂F , then the
theorem of Poincaré–Hopf for manifolds with boundary says that χ(F ) is the total
Poincaré–Hopf index of a vector field in F that points outward at each point of the
boundary.

We know from [128] that one has a Milnor fibration for ICIS germs:

f := (f1, . . . , fk) : (C
n+k, 0) → (C, 0) .

Hamm proved that in this setting, the Milnor fiber also has the homotopy type of
a bouquet of spheres of middle dimension. So ICIS germs have also a well-defined
Milnor number, defined as the rank of the middle homology of the Milnor fiber. It
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is thus natural to search for an algebraic expression for the Milnor number of ICIS
germs in the vein of (7.1). This is known as the Lê–Greuel formula for the Milnor
number:

Theorem 7.2. If f1, . . . , fk and g are holomorphic map-germs (Cn+k+1, 0) →
(C, 0) such that f = (f1, . . . , fk) and (f, g) define ICIS germs, then their Milnor

numbers are related by

(7.3) μ(f) + μ(f, g) = dimC
On+k,0

(f, Jack+1(f, g))
,

where Jack+1(f, g) denotes the ideal generated by the determinants of all (k + 1)
minors of the corresponding Jacobian matrix.

This formula was proved independently by Lê [150] and G.-M. Greuel [118].
At about the same time Teissier proved [263, Proposition II.1.2], a “formule de

restriction”, which is the same theorem in the case where one of the two functions
is linear; this is known as Teissier’s lemma. We also have the celebrated Teissier
sequence of numbers of an ICIS, which are the Milnor numbers of the corresponding
complete intersection germs one gets by taking linear slices of various dimensions.
This is briefly discussed in the following section. We refer to [56, 63, 81] for other
recent viewpoints on the Lê–Greuel formula for the Milnor number.

There are two questions that arise naturally.

Question 7.4. What is (or what ought to be) the Milnor number of a nonisolated
hypersurface or complete intersection singularity?

Question 7.5. What is (or what ought to be) the Milnor number of an isolated
complex analytic singularity (V, P ) which may not be an ICIS?

There is a vast literature about both of these questions, with different viewpoints.
Concerning the first of these, there are two particularly interesting viewpoints. One,
due to D. Massey, is via the Lê numbers of V , explained in section 6. These describe
the topology of the local Milnor fiber (cf. Theorem 6.3), and when the singularity
is isolated, there is only one Lê number and it coincides with the Milnor number.

Another viewpoint is that of Parusiński in [227]. He considers a compact complex
manifold M and a codimension 1 subvariety V defined by a holomorphic section of
some line bundle L over M . There is a Milnor number μ(S;V ) associated to each
connected component of its singular set. This has important properties; some of
these are listed here.

(i) It coincides with the usual Milnor number when the singularity is isolated.
(ii) Its total index in V equals the 0-degree Fulton–Johnson class (cf. section

9).
(iii) If we can approximate V by a family of manifolds {Vt} defined by sections

of L which are transversal to the zero section, then μ(S;V ) measures the
change in the Euler characteristic as the {Vt} degenerate into V .

(iv) For complex polynomials f : Cm → C, it measures the change in the Euler
characteristic of the fibers at infinity [20].

Concerning Question 7.5, for a reduced complex curve (X,P ), Buchweitz and
Greuel in [52] define the Milnor number by

μBG := dim
ωX

dOX

,
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where ωX is Grothendieck’s dualizing module (cf. [195]). When the germ (X,P )
is smoothable, it equals the first Betti number of the smoothing, so for ICIS it
coincides with the usual Milnor number. We recall what smoothable means.

Definition 7.6. A normal isolated singularity germ (X,P ) of pure dimension n is
smoothable if there exists an (n+ 1)-dimensional complex analytic space W with
an isolated normal singularity that we also denote P , and a flat morphism

G : (W , P ) −→ (C, 0) ,

such that G−1(0) is X and G−1(t) is nonsingular for all t 	= 0 with |t| sufficiently
small.

The fibers of a smoothing give a similar picture to that of the Milnor fibration
of a hypersurface singularity, the difference being that W may now be singular.

The above definition in [52] of the Milnor number was generalized in [50] to
isolated not necessarily reduced curve singularities, and in [117] to isolated singu-
larities of arbitrary dimension.

There is in [88] an invariant ν that can be regarded as an “alternative Milnor
number”. This is defined in all dimensions using indices of 1-forms (cf. section 8
below). One has in [88] a Lê–Greuel type formula for ν, proved using Greuel’s work
[118]. For curves one gets

ν := dimΩX/dOX ,

where ΩX is the canonical module of holomorphic 1-forms, so ν coincides with the
Milnor number in [52] when X is an ICIS.

In dimension 2, Greuel and Steenbrink proved in [121] that if an isolated surface
singularity (V, 0) is normal and Gorenstein, then its first Betti number b1(V, 0)
vanishes and b2(V, 0) is independent of the choice of the smoothing. Hence every
such germ has a well-defined Milnor number μGS(V, 0) := b2(V, 0). One has the
Laufer–Steenbrink formula for the Milnor number, proved in [146] for hypersurfaces
(the same proof works for ICIS), and by Steenbrink [257] in general.

Theorem 7.7. Assume that (V, 0) is a smoothable Gorenstein normal surface sin-

gularity. Then

μGS + 1 = χ(Ṽ ) +K2 + 12ρg(V ),

where χ(Ṽ ) is the usual Euler characteristic of a good resolution, K2 is the self-

intersection number of the canonical class of Ṽ , and ρg := dimH1(Ṽ ,O) is the

geometric genus.

For surfaces, the Milnor number ν defined in [88] seems to coincide with μGS.

8. Indices of vector fields and the Milnor number

The Poincaré–Hopf local index of a vector field on a smooth manifold is a funda-
mental invariant that has given rise to a vast literature. In the case of vector fields
on singular varieties, there are several extensions of this concept, each having its
own properties and characteristics (see [41] for a thorough account of the subject).

In the case of manifolds, up to sign issues, it is essentially the same to consider
indices of 1-forms or vector fields. In the case of singular varieties, this is no longer
the case, though the two theories are parallel and have many similarities. The case
of 1-forms has been developed mostly by W. Ebeling and S. Gusein–Zade (see for
instance [85–88] or [41, Chapter 9]). Here we focus on vector fields.
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(a) (b)

Figure 5. The (a) radial and (b) GSV indices.

Let (V, 0) be an analytic variety of dimension n (say, irreducible and reduced)
for simplicity, with a unique singular point in an open set U in some Cm, and let
v be a vector field tangent to V , singular only at 0, and restricting a continuous
vector field in U . Then one has several possible notions of its local index:

(i) the radial index;
(ii) the GSV index;
(iii) the virtual index;
(iv) the homological index;
(v) the local Euler obstruction (see section 8.1).

Let us say a few words about these. The Euler obstruction is discussed on its
own in section 8.1.

(i) The radial index. This is reminiscent of the Schwartz index in [244],
defined only for radial vector fields. The radial index was introduced in [141] and
then, independently, in [4, 85]; see Figure 5(a). This is defined for continuous
stratified vector fields on arbitrary compact (real or complex) varieties equipped
with a Whitney stratification (and even more generally, see [141]), and it measures
the lack of radiality of the vector field:

Indrad(v; 0, V ) = 1 + d(v, vrad) ,

where d(v, vrad) is the total Poincaré–Hopf index of a vector field in a cylinder in
V bounded by two copies of the link, and which is radial in the “smaller” link and
coincides with v in the “larger” link.

The extension of this index for vector fields on varieties with nonisolated singu-
larities is straightforward (see [4, 41]).

(ii) The GSV index. The GSV index was the first “index of vector fields”
in the literature defined in general, since the Schwartz index and the local Euler
obstruction were defined only for radial vector fields; see Figure 5(b). To define
the GSV index, we need V to be a complete intersection. For simplicity we assume
(V, 0) is a hypersurface defined by some map f in an open neighborhood U of 0
in Cn+1. Given a continuous vector field v tangent to V and singular only at 0,
we notice that (∇f, v) determine a continuous map from the link Lf to the Stiefel
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manifold of complex orthonormal 2-frames in Cn+1. Such maps have a degree, and
this is the GSV index of v, IndGSV(v; 0, V ); see [41, 111] for details.

The GSV index can be interpreted as follows: We can always assume that v is
the restriction of a continuous vector field ṽ on U , which is tangent to the Milnor
fibers Ft for all t sufficiently near to 0 ∈ C, and the restriction vt of ṽ to each Ft

has finitely many singularities. As t tends to 0, the fibers Ft degenerate to the
special fiber V and the vector fields vt degenerate to v. If V is irreducible, then
IndGSV(v; 0, V ) equals the total Poincaré–Hopf index of each vt.

One has (see [41]):

Proposition 8.1. Given an ICIS germ (V, 0) and a continuous vector field v on

V singular only at 0, the difference of the radial and GSV indices is independent of

the vector field and equals the Milnor number up to sign:

μ(f) = (−1)n
(
IndGSV(v; 0, V )− Indrad(v; 0, V )

)
.

(iii) The virtual index. The virtual index was defined in [162] for v holo-
morphic and extended to continuous vector fields in [251]. The idea is very simple.
Recall first that classical Chern–Weil theory tells us how to construct the Chern
classes of complex manifolds out of a connection. Recall too that the Gauss–Bonnet
formula allows us to identify the Euler characteristic χ(M) of a compact complex
m-manifold M with cm(M)[M ], the top Chern class of M evaluated on the orien-
tation cycle. When we have a vector field with singularities on M , we can follow
the classical Baum–Bott theory and construct a special connection which, around
each connected component of the singular set S of v, is v-trivial. This yields a
curvature form on M which determines a representative of cm(M) that vanishes
away from a regular neighborhood of S. We thus get an expression for cm(M)[M ]
which is localized at S. When S consists of isolated points, the contribution of v
at each singularity is the Poincaré–Hopf local index of v. The point is that exactly
the same idea goes through for vector fields on a complete intersection V in a com-
pact complex manifold M , defined by a regular section of a rank k vector bundle
E over M . Now we have the virtual tangent bundle of V , which by definition is
τV := TM |V − E|V . This virtual bundle has well-defined Chern classes, and just
as above, a continuous vector field v on V allows us to localize the top Chern class
of this virtual bundle at the singular set S of v. What we get is the virtual index

of v associated to each connected component of S. When the singularities of both
V and v are isolated, the virtual index coincides with the local GSV index (see
[41, 162]). One has [41, Theorem 6.2]:

Theorem 8.2. Let V be a global complete intersection in a complex manifold M ,

and let S be a connected component of the singular set of V . Let v be a continuous

vector field defined in a neighborhood of S in V , with no singularities away from

S. Then the difference between the radial and the GSV indices is independent of

v. Furthermore, if V has codimension 1 in M , then this difference is Parusiński’s

Milnor number up to sign: μ(S;V ) = (−1)n
(
IndVir(v;S, V )− Indrad(v;S, V )

)
.

(iv) The homological index. Using the fact that when the ambient space
is smooth, the Poincaré–Hopf local index can be interpreted as the Euler charac-
teristic of a certain Koszul complex, Gómez-Mont introduced in [112] the notion
of a homological index of holomorphic vector fields. Let us explain this invariant.
Let (V, 0) ⊂ (Cm, 0) be a germ of a complex analytic variety of pure dimension n,
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which is regular on V \ {0}. A vector field v on (V, 0) can always be defined as
the restriction to V of a vector field v̂ in the ambient space which is tangent to
V \ {0}; v is holomorphic if v̂ can be chosen to be holomorphic. So we may write
v as v = (a1, . . . , am), where the ai are restrictions to V of holomorphic functions
on a neighborhood of 0 in Cm.

A (germ of) holomorphic j-form on V at 0 means the restriction to V of a

holomorphic j-form on a neighborhood of 0 in Cm. We denote by Ωj
V,0 the space of

all such forms (germs); these are the Kähler differential forms on V at 0. So Ω0
V,0

is the local structure ring O(V,0) of holomorphic functions on V at 0 and each Ωj
V,0

is an Ω0
V,0-module. Now, given a holomorphic vector field v̂ at 0 ∈ Cm with an

isolated singularity at the origin and a differential form ω ∈ Ωj
Cm,0, we can always

contract ω by v in the usual way, thus getting a differential form iv(ω) ∈ Ωj−1
Cm,0. If

v = v̂|V is tangent to V , then contraction is well-defined at the level of differential
forms on V at 0, and one gets a complex (Ω•

V,0, v):

(8.3) 0 −→ Ωn
V,0 −→ Ωn−1

V,0 −→ · · · −→ OV,0 −→ 0 ,

where the arrows are contractions by v, and n is the dimension of V . We consider
the homology groups of this complex:

Hj(Ω
•
V,0, v) = Ker (Ωj

V,0 → Ωj−1
V,0 )/Im (Ωj+1

V,0 → Ωj
V,0) .

Since the contraction maps are OV,0-module maps, this implies that if V has an
isolated singularity at the origin, then the homology groups of this complex are
concentrated at 0, and they are finite dimensional because the sheaves of Kähler
differentials on V are coherent. Hence it makes sense to define the following.

Definition 8.4. The homological index Indhom(v, 0;V ) of a holomorphic vector
field v on (V, 0) with an isolated singularity at 0 is the Euler characteristic of the
above complex,

Indhom(v, 0;V ) =

n∑

i=0

(−1)ihi(Ω
•
V,0, v) ,

where hi(Ω
•
V,0, v) is the dimension of the corresponding homology group as a vector

space over C.

The homological index coincides with the GSV index when the germ of V is a
complete intersection, by [36]. Hence in this case its difference with the radial index
is the Milnor number. Yet, the homological and the radial index are defined for
holomorphic vector fields on arbitrary normal isolated complex singularity germs.
It is an exercise to show that their difference does not depend on the choice of
vector field, so it is an invariant of the germ (V, 0). This leads us to a question.

Question 8.5. If (V, 0) is a normal isolated complex singularity germ which is not
a complete intersection, and v is a holomorphic vector field tangent to V and is
nonsingular away from 0, what is the difference between its homological and radial
indices?

8.1. The local Euler obstruction. MacPherson defined in [174] the notion of
the local Euler obstruction of a complex analytic space at each of its points. This
was a key ingredient for constructing Chern classes for singular varieties.
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The idea is that whenever we have a singular variety V in some complex manifold

M , we can consider its Nash transform Ṽ . This is the analytic space obtained by
removing from V its singular set, and replacing this by all limits of tangent spaces
over the regular part Vreg. So we may think of it as being a blowup. The space

Ṽ itself is again singular in general, but it has the nice property that it has a

natural projection Ṽ
ν
→ V which is a biholomorphism over Vreg, and Ṽ is naturally

equipped with a vector bundle T̃ called the Nash bundle, which over ν−1(Vreg) is
isomorphic to the tangent bundle.

Recall that if we equip V with a Whitney stratification (a stratified vector field
means the restriction to V of a continuous vector field v in a neighborhood of V in
M) such that for each x ∈ V , the vector v(x) is contained in the space tangent at
x to the corresponding stratum. We know from [37] that the Whitney a-condition

implies that every stratified vector field on V has a natural lifting to a section of T̃ .
We may now consider a local index EuV (v, x) of vector fields as follows: Given

V as above (and equipped with a Whitney stratification), a point x ∈ V and a
stratified vector field v in a neighborhood U of x, which is nonsingular away from

x, we lift it to a nowhere-zero section ṽ of the Nash bundle T̃ over ν−1(U \ {x}).
Then EuV (v, x) is an integer which is the obstruction to extending ṽ as a nowhere-

zero section of T̃ over ν−1(U).
A stratified vector field v in a neighborhood of a point xo in V is radial at xo

if there is small ball Bε in M , such that v(x) is pointing outward the ball at each
point x ∈ Sε ∩ V , where Sε := ∂Bε is the boundary sphere.

Definition 8.6. The local Euler obstruction EuV (x) ∈ Z of V at a point x is the
local index EuV (vrad, x) of a stratified vector field which is radial at x.

Besides its importance for MacPherson’s proof of the Deligne–Grothendieck con-
jecture that we discuss in section 9, this index has important relations with the
Milnor number when V is an ICIS (see [39,75]) and with various important invari-
ants of singular varieties (cf. [40, 86, 87, 115, 124, 158, 252]). In particular one has
Dubson’s theorem [75]:

Theorem 8.7. Let f : (Cn+1, 0) → (C, 0) be holomorphic with an isolated critical

point at 0, and let H be a generic hyperplane in Cn+1 passing through 0. Set

V = f−1(0). Then EuV (0) is determined by the Milnor number of the hyperplane

section V ∩H. More precisely,

EuV (0) = 1 + (−1)nμ(V ∩H) .

This generalizes to varieties with arbitrary singular locus [39]. If we cut down
V by a linear form which is not general enough or by a function with an isolated
critical point on V at 0, the above formula gets a correction term: this is the Euler

defect in [40].

9. Milnor classes

Milnor classes are another generalization of the classical Milnor number to vari-
eties with arbitrary singularities. These measure the difference between two natu-
ral extensions for singular varieties of the classical Chern classes, namely the total
Schwartz–MacPherson class cSM

∗ (X) (see [174,244]) and the total Fulton–Johnson
class cFJ

∗ (X) (see [101]). By definition, the total Milnor class is

(9.1) M(X) := (−1)dimX
(
cFJ (X)− cSM (X)

)
.
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Given the category of compact algebraic varieties, one has the functor F(X) that
assigns to each such variety X the abelian group of Z-valued constructible functions
on X. One also has the funtor H∗(X) that assigns to X its singular homology with
integer coefficients. In 1974 MacPherson [174] settled a conjecture of Deligne and
Grothendieck stating that there is a unique natural transformation from the functor
F to homology, associating to the constant function �X on a nonsingular variety
X the Poincaré dual of the total Chern class of the tangent bundle TX of X
(cf. [258, p. 168] and Grothendieck’s own comments in [123, Note 871, p. 376]).
Therefore, for a possibly singular variety X, the homology class corresponding to
the function �X is a natural candidate for a notion of Chern class. It was proved in
[37] that these classes agree, up to Alexander duality, with certain classes defined
earlier by M.-H. Schwartz in analogy with the classical definition of Chern classes
via obstruction theory. Hence these are known as Schwartz–MacPherson classes.
In particular, the 0-degree class is an integer and it equals the Euler characteristic,
essentially by definition. A key ingredient in MacPherson’s proof of the Deligne–
Grothendieck conjecture is the local Euler obstruction introduced in section 7.

On the other hand, whenever we have a subscheme X of a nonsingular variety
M , its Fulton class [101] is the cap product of the total Chern class of M with the
Segre class of X:

cF (X) := c(TM |X) ∩ s(X,M) .

When X is an (n−k) local complete intersection in M , defined by a regular section
of some rank k holomorphic bundle E over M , the Fulton class is the total Chern
class of the virtual bundle τX := TM |X − E|X , and it coincides with the Fulton–
Johnson class previously defined in [102]. Fulton proved in [101] that cF (X) is
independent of M .

In the complex analytic context, Milnor classes are elements in the homology
group H2∗(X,Z), and in the algebraic context, these can be lifted to elements in
the Chow group A∗(X).

Just as Chern classes are related to the local index of Poincaré–Hopf, so too,
the Schwartz–MacPherson and the Fulton–Johnson classes are related to the radial
and virtual indices defined in section 8 (see [41]).

We know from [38, 261] that for local complete intersections the total Milnor
class actually has support in the singular set Sing(X) of X, and there is a Milnor
class in each dimension, from 0 to that of Sing(Y ). Presumably, this also happens
in general for varieties with arbitrary singular locus, but to my knowledge, this has
not yet been proved.

It follows that if X is a complete intersection and its singularities are all isolated,
then there is only a 0-degree Milnor class, which is an integer, and we know from
[251] that this integer is the sum of the local Milnor numbers. This is a consequence
of Proposition 8.1, the fact that the 0-degree Schwartz–MacPherson class can be
regarded as being the total radial index of a continuous vector field on X, and that
for complete intersections, the 0-degree Fulton–Johnson class equals the total GSV
index of a vector field on X. This justifies the name “Milnor classes”.

Milnor classes spring from [9], and they are an active field of current research
with significant applications to other related areas. There is a large literature on
Milnor classes, for instance [10, 11, 25, 38, 41, 42, 53, 55, 58, 182, 183, 217, 230, 245].
Milnor classes encode much information about the varieties in question, and this is
being studied by various authors from several points of view.
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Most of the literature on Milnor classes is for hypersurfaces, though there are
some recent works that throw light on the subject in the case of complete inter-
sections. In [54] the authors study the total Milnor class of complete intersections
Z(s) defined by a regular section s of a rank r holomorphic bundle E over a com-
pact manifold M . It is noticed that s determines a hypersurface Z(s̃) in the total
space of the projectivization P(E∨) of the dual bundle E∨, and one has a formula
expressing the total Milnor class of Z(s) in terms of the Milnor classes of the hy-
persurface Z(s̃). This means that morally, everything known for the Milnor classes
of hypersurfaces is also known for complete intersections.

In [55] there is a surprisingly simple formula for the total Milnor class when X is
defined by a finite number of hypersurfaces X1, . . . , Xr in a complex manifold M ,
satisfying certain transversality conditions:

M(X) = (−1)dimX c
(
(TM |X)⊕r−1

)−1

∩
(
cFJ (X1) · · · c

FJ (Xr)− cSM (X1) · · · c
SM (Xr)

)
.

Notice that for r = 1 this is just the definition of the class M(X). There is also
[246] where the author gives a general transversality formula that throws light on
the theory of Chern classes for complete intersections.

For varieties which are not complete intersections, essentially nothing is known
regarding their Milnor classes. In fact, there is even an ambiguity in the definition,
since it is not clear if one should consider the Fulton or the Fulton–Johnson class
[102], which coincide for complete intersections; perhaps both and get two different
interesting concepts. Here is an easy way to state the question (cf. Question 7.5).

Question 9.2. Consider an algebraic normal isolated singularity germ (V, P ) of
dimension n ≥ 1 which is not a complete intersection. Consider a projective com-
pactification of it, and resolve its singularities at infinity. We get a compact variety
V with an isolated singularity. What is the difference between its Fulton and
Schwartz–MacPherson classes?

10. Equisingularity

The vast field of equisingularity theory emerged after the seminal work of O.
Zariski [281–284], B. Teissier (see for instance [263, 264, 266]), Lê Dũng Tráng (see
for instance [151,156,160]), and many others, for instance [94,95,104–106,176,216].
A recent extensive survey with open problems is given in [117].

The term “equisingular” refers to a relation of equivalence which formalizes the
intuitive idea of singularities of “the same type” in some sense. In general one
would like to find conditions, and perhaps numerical invariants, that grant some
type of equisingularity. There are several important notions of equisingularity. The
most basic one is as follows.

Definition 10.1. Two germs of reduced complex analytic hypersurfaces (V1, q1)
and (V2, q2) in Cn+1 are topologically equisingular if they have the same embedded
topological type, i.e., if there exist representatives of these germs (Vi, qi) ⊂ (Ui, qi),
i = 1, 2, with Ui an open set in Cn+1, and a homeomorphism of pairs (U1, q1) ∼=
(U2, q2) taking V1 into V2.

One has the celebrated Question A by Zariski in [285], known as Zariski’s mul-
tiplicity conjecture:
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Question 10.2. Does topological equisingularity of two hypersurface germs V1 and
V2 at q1 and q1 imply that these have the same multiplicity, ν(V1, q1) = ν(V2, q2)?

Recall that if f : (Cn+1, 0) → (C, 0) is a holomorphic map-germ, we can write it
in terms of its Taylor series expansion,

f(z) =
∞∑

j=1

f j(z) , with f j(z) =
∑

α0+···+αn=j

aα zα ,

where each f j is homogeneous of degree j, α = (α0, . . . , αn) ∈ N
n+1, zα =

zα1
0 · · · zαn

n and aα ∈ C. The order of f at 0 is the smallest degree j such that
f j is not identically 0. If the germ is reduced, this coincides with its multiplic-

ity ν(f, 0), which by definition is the number of points of intersection, near 0, of
V = f−1(0) with a generic complex line in C

n+1 passing arbitrarily close to 0 but
not through 0.

There is a vast literature about this question, known as Zariski’s multiplicity
conjecture, with many partial answers. We refer to [93] for a survey on the topic,
and to [98] for the answer to a metric version.

Another important notion of equisingularity is Whitney regularity, which has
already appeared several times in this work. The existence of Whitney stratifica-
tions for every analytic space X was proved by Whitney in [278, Theorem 19.2] for
complex varieties, and by Hironaka [132] in a more general setting. Thom [267] and
Mather [181] proved that Whitney equisingularity implies local topological trivial-
ity; this is essentially a consequence of the first Thom isotopy lemma (cf. [3, 274]).

Definition 10.3. Let V be a reduced complex analytic hypersurface in Cn+1,
and let Vα ⊂ V be a stratum of some Whitney stratification. We say that V is
topologically trivial along Vα at a point x ∈ Vα if there is a neighborhood W of x in
Cn+1, homeomorphic to Δ × Uα, where Uα is a neighborhood of x in Vα and Δ is
a small closed disk through x of complex dimension (n+ 1)− dimC Vα, transverse
to all the strata of V , and such that W ∩ Vβ = (Δ ∩ Vβ)× Uα for each stratum Vβ

with x ∈ Vβ.

In his remarkable “Cargèse” article [263], B. Teissier introduced a decreasing
sequence of numbers μ∗, today known as the Teissier sequence, and proved that if
a family has constant μ∗-sequence, then it is Whitney equisingular. The converse,
that Whitney equisingularity implies constant μ∗-sequence was proved later by
Briançon and Speder in [46] (cf. [45]). The μ∗-sequence of an isolated hypersurface
singularity (X, 0) in Cn+1 is

μ∗ := {μn+1(X), . . . , μi(X), . . . , μ0(X)} ,

where μn+1(X) = μ(X) is the usual Milnor number, and μi(X) is the Milnor
number of the intersection of X with a general plane in C

n+1 of dimension i,
passing through 0.

There are several other concepts of equisingularity, for instance the Milnor eq-
uisingularity studied in [160], μ-constant families as in Lê–Ramanujam’s theorem
[156], bi-Lipschitz equisingularity (see [197,228]), etc. The concept of equisingular-
ity is also closely related to that of “simultaneous resolution” and work by Hironaka,
Lipman, and others (see [264, p. 595]).
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Equisingularity has proved to be a very subtle subject, with a myriad of different
aspects and open questions. For more on this subject, we refer to the literature,
which is vast; see for instance the survey articles [120,165] or [94–96,108,175–177].

10.1. Lipschitz geometry of singularities. Recall that a continuous map
f : Y → Z between metric spaces (Y, dY ) and (Z, dZ) is Lipschitz if there is a
constant L ≥ 1 such that

L−1dY (a, b) ≤ dZ(f(a), f(b)) ≤ LdY (a, b)

for each pair of points a, b ∈ X. A metric space Y admits local bi-Lipschitz pa-
rameterizations by R

n if every point in Y has a neighborhood that is bi-Lipschitz
homeomorphic to an open subset of Rn. Two metric spaces Y, Z are bi-Lipschitz
equivalent if there is a bi-Lipschitz homeomorphism Y → Z. Bi-Lipschitz classifi-
cation is stronger than topological and weaker than C∞ classifications.

A topological n-manifold, n ≥ 2, is a Lipschitz manifold if it can be equipped
with an atlas where all transition functions are bi-Lipschitz. Such a manifold is
smoothable if there is further a subsystem of charts where the transition functions
are diffeomorphisms. A deep theorem of D. Sullivan in [260] guarantees that in
dimensions 	= 4, there is a unique Lipschitz structure on every topological manifold
[57], and this can be used to study the smoothability of topological manifolds, which
is a deep theory explored in [254].

Bi-Lipschitz homeomorphisms have good properties that can be of interest in
various fields of research, particularly for studying the geometry and topology of
analytic spaces.

The study of bi-Lipschitz geometry of complex spaces started with Pham and
Teissier in [233]. Later, Mostowski in [196, 197] studied Lipschitz equisingularity
and Lipschitz stratifications in analytic sets, a notion that grants the constancy
of the Lipschitz type of the stratified set along each stratum. The existence of
Lipschitz stratifications for complex analytic sets was established in [197], and in
the real analytic case, including semianalytic sets, this was done by Parusiński in
[228, 229] (see also [215]).

In [30] the authors look at Lipschitz properties of semialgebraic sets with singu-
larities and study the concept of normal embeddings, which has opened an impor-
tant line of research. For this, notice that given an analytic subset X of Rn, we
have two natural metrics on X: One is the metric induced from the ambient space;
this is called the outer metric. The other is the inner, or length, metric defined
in the usual way in differential geometry—as the infimum of lengths of piecewise
smooth curves connecting two given points. The Lipschitz equivalence in terms of
the outer metric is more rigid, and it implies the equivalence in an inner metric, but
not inversely. The set X is normally embedded if these two metrics are equivalent.

The main result in [30] states that every compact semialgebraic set is bi-Lipschitz
equivalent to some normally embedded semialgebraic set. The article [27] started
the study of the bi-Lipschitz geometry of complex surface singularities, and in recent
years there has been remarkable progress in this and other related topics thanks
to the work of L. Birbrair, A. Fernandes, A. Pichon, W. Neumann, G. Valette,
D. Kerner, T. Gaffney, J. E. Sampaio, and many others (see for instance [26–29,
31, 98, 107, 139, 210–214,271], and the references therein).

Some of the important recent results in this area are the complete classification
of the inner metrics of surfaces in [31]; the proof in [212] that Zariski equisingularity
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is equivalent to bi-Lipschitz triviality in the case of surfaces; the proof in [28] that
outer Lipschitz regularity implies smoothness; and the important partial answer in
[98] of Zariski’s multiplicity conjecture (10.2), proving that if f, g : Cn → C are
irreducible homogeneous polynomials such that there is a bi-Lipschitz homeomor-
phism h : (Cn, V (f), 0) → (Cn, V (g), 0), then f and g have the same multiplicity
at 0.

11. Relations with other branches

11.1. Fibered knots and open-books. The concept of open-books was intro-
duced by E. Winkelnkemper, and we refer to his appendix in [240] for a clear
account of the subject. An open-book decomposition of a smooth n-manifold M
consists of a codimension 2 submanifold N , called the binding, embedded in M with
trivial normal bundle, together with a fiber bundle decomposition of its complement

θ : M −N → S
1 ,

satisfying that on a tubular neighborhood of N , diffeomorphic to N × D2, the
restriction of θ to N × (D2 − {0}) is the map (x, y) �→ y/‖y‖. The fibers of θ are
called the pages of the open-book. These are all diffeomorphic and each page F
can be compactified by attaching the binding N as its boundary, thus getting a
compact manifold with boundary.

Milnor’s fibration theorem grants that in the isolated singularity case, we get
open-book decompositions. In fact, given a complex analytic space X which is
nonsingular away from a point, say 0, and a holomorphic map-germ

f : (X, 0) −→ (C, 0) ,

which is regular away from 0, by the fibration theorem one has an open-book
decomposition on the link LX of X,

ϕ :=
f

|f |
: LX \ Lf −→ S

1 ,

where Lf is the link of f in X and the pages of the open-book are the Milnor fibers.
Recall that if M is a smooth, closed, connected manifold, a knot in M means

a smooth codimension 2 closed, connected submanifold N of M . If N has several
connected components then it is called a link in M ; so the binding of an open-book
is a knot (or link). The name “algebraic knot” was coined by Lê Dũng Tráng in
[154] to characterize the knots defined by an algebraic (or analytic) equation with
complex values.

In the literature there are also real algebraic knots. For instance Perron proved in
[231] that the figure eight knot is real algebraic where, in analogy with the complex
case, this means that it is defined by the link of a polynomial map R4 → R2 with
an isolated critical point. In [8] the authors prove that “all knots are algebraic”;
yet, one must be careful that the statement here is slightly different: although
the codimension 2 real algebraic varieties that define the knots have an isolated
singularity, the functions that define them may have nonisolated critical points.
When this happens, the corresponding knot is not fibered: a knot (or link) N ⊂ M
is fibered if it is the binding of an open-book decomposition of M . The concept of
fibered knots was introduced by A. Durfee and B. Lawson in [78], where they use
Milnor fibrations to construct codimension 1 foliations on odd-dimensional spheres.
By Milnor’s theorem, every (complex) algebraic knot is fibered.
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The classical theory of one-dimensional knots in the 3-sphere which are algebraic
goes back to Brauner [44]. The literature on this topic is vast, and we refer to the
excellent book [48] for a clear account (see also [122, 276] and [193, Chapter 10]).
Just a few words: every map-germ

f : (C2, 0) −→ (C, 0) ,

has an essentially unique prime factorization f = fa1
1 · · · far

r . The zero locus V (f)
of f is the union of the zero loci V (fi) of the fi. Each of these defines a branch of
f , an irreducible component of V (f), and we would like to describe these branches.

As an example consider the complex polynomial f(z1, z2) → zp + zq , for some
p, q > 1. Let k be the greatest common divisor of p, q and set p′ = p/k, q′ = q/k.
Set V = f−1(0). Then V has k branches and the intersection of each branch with
the unit sphere is a torus knot of type (q′, p′), i.e., it is wrapped in a torus S1 ×S1

so that it goes around a parallel q′ times, and around a meridian p′ times.
It is known in general that each branch of an analytic plane curve admits a par-

ticular type of parameterization called a Newton–Puiseux parameterization. This
describes the link as an iterated torus knot, and the corresponding Puiseux pairs
tell us exactly how to construct it (see [48] for details).

For n = 1, the link of the singularity is either a circle or one circle for each branch,
and the interesting point is knowing how these knots are embedded in the sphere.
For n > 1, the link itself has interesting topology. It is also interesting to study the
links of holomorphic functions on complex surface singularities. These give knots
and open-books in the link of the surface singularity, which is a 3-manifold (see for
instance [234, 235, 237]).

11.2. Open-books and contact structures. Recall that if M is an oriented
(2n− 1)-dimensional manifold, a contact structure on M is a hyperplane distribu-
tion ζ in its tangent bundle TM , which is locally given by a 1-form α such that
α ∧ (dα)(n−1) 	= 0. In this case we say that the pair (M, ζ) is a contact manifold

and α is a contact form. The contact structure is called oriented if the vector
bundle ζ is oriented. If α is a contact form, it is called positive if the volume form
α ∧ (dα)(n−1) defines the orientation of M .

There is a natural way in which contact manifolds arise in complex geometry:
Start with a complex manifold X and a real hypersurface M in it. At each point
z ∈ M , we have the tangent spaces TzM ⊂ TzX. Multiplication of TzM by the
complex number i gives another real hyperplane i(TzM) ⊂ TzX. The intersection
ζz := TzM ∩ i(TzM) is a real hyperplane in TzM .

This hyperplane distribution in M may or may not be a contact structure: if
the real hypersurface M in the complex manifold X is strongly pseudoconvex, then
the distribution ζ defined above is a naturally oriented contact structure (see for
instance [239, Proposition 5.11]). Pseudoconvex means that M can be defined
locally, in a neighborhood of each of its points, as a regular level of a strictly
plurisubharmonic function.

Consider now a complex analytic variety X of pure dimension n in some complex
space Cm, and let p be an isolated singularity in X. Consider the intersection of
X with the spheres in Cm centered at p. Varchenko in [273] noticed that the
square of the distance function restricted to X is still a strictly plurisubharmonic
function, so the link LX is pseudoconvex and it can be equipped with a natural
contact structure as above. Furthermore, this contact structure on the link is
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independent of the choices of the embedding and of the (sufficiently small) spheres,
up to contactomorphisms (well-defined up to isotopy). This leads to the following
definition.

Definition 11.1. The oriented contact manifold associated in this way to every
isolated singularity germ (X, p), up to contactomorphisms isotopic to the identity,
is called the contact boundary of (X, p) and is denoted (∂(X, p), ξ(X, p)).

An oriented contact manifold which is contactomorphic to the contact boundary
of an isolated singularity is called Milnor fillable, a name introduced in [59] in
reference to Milnor’s work [193].

Every Milnor fillable contact manifold (M, ξ) is holomorphically fillable, since
every resolution of a singularity whose contact boundary (∂(X, p), ξ(X, p)) is con-
tactomorphic to (M, ξ) gives a holomorphic filling of it. Moreover, if there is a
singularity germ (X, p) with contact boundary (∂(X, p), ξ(X, p)) which is smooth-
able (see Definition 7.6), then it is easy to construct Stein representatives of its
Milnor fibers, and these are Stein fillings of the contact boundary (∂(X, p), ξ(X, p))
(see [239, Proposition 6.8]).

As pointed out in [239, p. 62] there is a remarkable difference between complex
dimension 2 and higher dimensions which is highlighted by the following two the-
orems. First recall the Pham–Brieskorn singularities envisaged in section 1. One
knows from [47] that in the special case

(11.2) z20 + z21 + · · ·+ z22m−1 + zp2m = 0 , m ≥ 2 ,

with p ≡ ±1(mod 8), the link is always diffeomorphic to the standard (4m− 1)-
sphere. One has Ustilovsky’s theorem in [270]:

Theorem 11.3. Varying p ∈ N in (11.2) above, the contact boundaries of the corre-
sponding isolated hypersurface singularities are pairwise noncontactomorphic. One

thus gets in this way infinitely many different contact structures on the (4m − 1)-
sphere which are contact boundaries of some isolated complex hypersurface singu-

larity.

In complex dimension 2 the situation is radically different, as was proved by
Caubel, Némethi, and Popescu-Pampu in [59]:

Theorem 11.4. Every Milnor fillable oriented 3-manifold admits a unique Milnor

fillable contact structure up to contactomorphism.

The proof of Theorem 11.4 uses work by E. Giroux in [109] that motivates the
title for this subsection: the notion of contact structures carried by an open-book.

Definition 11.5. A positive contact structure ξ on a closed oriented manifold M is

carried by an open-book (N, θ) if it admits a defining contact form α which verifies
the following:

• α induces a positive contact structure on N ;
• dα induces a positive symplectic structure on each fiber of θ.

If a contact form α satisfies these conditions, then it is said to be adapted to (N, θ).

Giroux proved in [109] that on each three-dimensional closed oriented manifold,
every contact structure is carried by some open-book, and two positive contact
structures carried by the same open-book are isotopic. Thus, in order to describe a
positive contact structure on a three-dimensional closed and oriented manifold, it
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is enough to describe an open-book which carries it. This is the strategy adopted
in [59] to prove Theorem 11.4.

There is another important line of research that springs from the following the-
orem of Eliashberg [91].

Theorem 11.6. Every Stein filling of the natural contact structure on S3 is dif-

feomorphic to the four-dimensional compact ball.

We may naturally ask when and how this theorem extends to the contact bound-
aries of normal complex surface singularities. For this we may want to characterize
the Milnor fibers of a given isolated singularity (up to diffeomorphisms) amongst
the fillings of the boundary of the singularity. Since the Milnor fibers of every
smoothing can be choosen to be Stein fillings, it is natural to restrict our attention
to the Stein fillings of the contact boundary. In complex dimension 2 one has Theo-
rem 6.3, so in this case one is led to asking the following questions (see [239, Section
6.2]).

• Is it possible to characterize the Milnor fibers of the various isolated surface

singularities with a given topological type among the Stein fillings of the

associated Milnor fillable contact 3-manifold?
• Are there situations in which one gets all the Stein fillings up to diffeomor-

phisms as such Milnor fibers?

There are several important contributions to this line of research done by various
authors, and we refer to [239, Section 6.2] for an account of this. We finish this
subsection with the following theorem from [204] that provides a generalization of
Eliashberg’s theorem, Theorem 11.6.

Theorem 11.7. The Milnor fibers of a cyclic quotient singularity exhaust the Stein

fillings of its contact boundary up to diffeomorphism.

We refer to [239, Section 6] for a clear account of the subject discussed in this
subsection, including a fairly complete bibliography and a list of interesting open
questions.

11.3. Low-dimensional manifolds. If (V, 0) is a normal surface singularity in
some affine space CN , then its link LV := V ∩ Sε is a closed oriented 3-manifold
with a rich geometry. The interplay between 3-manifold theory and complex surface
singularities goes back to F. Klein [143] and many others; see for instance [72, 73,
193, 194, 199, 207, 208]. We refer to [249, Chapters 3, 4] for a thorough discussion
on that subject.

For instance consider the polynomial map (C3, 0)
f
→ (C, 0) given by

(z1, z2, z3) �→ zp1 + zq2 + zr3 , with p, q, r ≥ 2.

The link is a three-dimensional Brieskorn manifold. Klein in [143] showed that
when 1/p+ 1/q + 1/r > 1, the link is diffeomorphic to a quotient of S3 divided by
a discrete subgroup. For instance for the triple (2, 2, r) we get the quotient S3/Zn

which is the lens space L(n, 1). For the triple (2, 3, 5), the group is the binary
icosahedral group and Lf is Poincaré’s homology 3-sphere.

Notice that if we order p, q, r so that p ≤ q ≤ r, then the condition 1/p+ 1/q +
1/r > 1 is satisfied only for the triples (2, 2, r), for every r ≥ 2, (2, 3, 3), (2, 3, 4),
and (2, 3, 5). In all cases the singularity we obtain is a rational double point, also
called a Klein or Du Val singularity.
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For 1/p+1/q+1/r = 1, the only possible triples up to permutation are (2, 3, 6),
(2, 4, 4), (3, 3, 3); Milnor proved in [194] that the links of all these singularities are
quotients of the three-dimensional Heisenberg group of all 3 × 3 matrices which
are upper triangular, with 1’s in the diagonal, divided by appropriate discrete
subgroups. In all other cases we have 1/p+ 1/q + 1/r < 1, and the corresponding

links are quotients of the universal cover S̃L(2,R) of PSL(2,R) divided by the

commutator of the lifting of the triangle group 〈p, q, r〉 ⊂ PSL(2,R) to S̃L(2,R).
We refer to [194] or [249, Chapter 3] for details; see also [72, 73, 208].

In general, it follows from work by Grauert and Mumford and also (indepen-
dently) Du Val, that an oriented closed 3-manifold M is orientation preserving
diffeomorphic to the link of an isolated complex surface singularity if and only if
it is a Waldhausen manifold with negative definite intersection matrix (cf. [207]).
The following is a classical open problem and, to my knowledge, there has not been
any significant improvement in more than two decades (cf. [280]).

Problem 11.8. Characterize the Waldhausen manifolds (with negative definite
intersection matrix) that appear as links of surface singularities in C

3.

By [207] the orientation preserving homeomorphism type of the link LV of a
normal surface singularity (V, 0) depends only on the analytic type of (V, 0). Hence
every 3-manifold invariant is an invariant of singularities and, conversely, whatever
invariant of 3-manifolds we want to understand, the links of surface singularities
are a great source of examples.

It is interesting to study, in particular, the relations between topological in-
variants of the singularity, which can be determined from the link, and analytic
invariants, for instance the Milnor number, the geometric genus, and the signature
of the Milnor fiber.

This begins with M. Artin in [21, 22], proving that the rational singularities are
taut, i.e., they are characterized by the topology of the link. Laufer proved in
[146] a formula for the Milnor number of hypersurface singularities in C3 using the
Hirzebruch–Riemann–Roch theorem,

μ+ 1 = χ(Ṽ ) +K2
Ṽ
+ 12ρ(V ) ,

where Ṽ is a good resolution, χ is its topological Euler characteristic, K2
Ṽ

is the

self-intersection number of the canonical class of the resolution, and ρ(V ) is the
geometric genus. This formula was extended in [257] to all smoothable Gorenstein
surface singularities.

Notice that the right-hand side in Laufer’s formula is well-defined for nonsmooth-
able singularities; this is called the Laufer invariant in [250]. In fact that invariant

splits into two parts, χ(Ṽ ) + K2
Ṽ

and 12ρ(V, q). The first of these is topological,

depending only on the topology of the link LV . Notice that if LV is a rational

homology sphere, then the first Betti number b1(Ṽ ) of Ṽ vanishes and χ(Ṽ ) +K2
Ṽ

essentially coincides with the invariant in a conjecture by Némethi and Nicolaescu
(see [202, Remark 4.8]; also [203, Subsection 2.4]) related to the Casson invariant
conjecture that we state below.

Laufer’s formula inspired Durfee’s theorem in [76], which states that if a normal
surface singularity (V, p) is numerically Gorenstein, smoothable, and the complex
tangent bundle of the Milnor fiber F of a smoothing is trivial, then the signature
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of F can be expressed as

σ(F ) = −
1

3

(
2(χ(Vt)− 1) +K2

Ṽ
+ 2b1(Ṽ ) + b2(Ṽ )

)
.

The proof is based on Hirzebruch’s signature theorem for closed oriented 4-mani-
folds. This formula was completed in [247] by proving [76, Conjecture 1.6], that
the tangent bundle of the Milnor fiber of every smoothing of a Gorenstein surface
singularity is trivial. Hence Durfee’s formula applies to all Gorenstein smoothable
singularities.

Just as Laufer’s formula, Durfee’s signature formula can be regarded as a con-
sequence of the general Atiyah–Singer index theorem. It is then natural to ask
what information about invariants such as the Milnor number, the signature of the
Milnor fiber, and the geometric genus can be determined topologically. This brings
us to [92, 247] and several important articles by Némethi et al.; see for instance
[200–203,206].

Consider the minimal resolution π : Ṽ → V of a Gorenstein surface singularity
(V, 0), and let K := K

Ṽ
be a divisor of the canonical bundle K := K

Ṽ
. Assume

further (with no loss of generality) that the divisor K is vertical; i.e., the support
of the divisor is contained in the exceptional curve. For each vertical divisor D ≥ 0,
set W = 2D −K

Ṽ
. Such a divisor W was called characteristic in [92], in analogy

with the classical theory of characteristic vectors and submanifolds (see for instance
[99, 142, 144]), because W represents an integral homology class whose reduction
modulo 2 essentially is the second Stiefel–Whitney class of K

Ṽ
. Then we have the

equalities

dim H1(Ṽ ,O
Ṽ
) = dimH0(−K,K|K) = dimH0(W,D|W ) +

1

8
(W 2 −K2

Ṽ
) ,

where D is the line bundle of the divisor D. Since the first term above is the
geometric genus and the last term in the right is obviously topological, it follows
that ρg is topological whenever we can find a characteristic divisor W for which the
integer dimH0(W,D|W ) is topological.

The 3-manifolds which are links of complex surface singularities carry canonical
contact and Spinc structures inherited from the holomorphic structure on V . If the
singularity is Gorenstein, which includes all hypersurface and ICIS germs, then the
link also has a Spin structure, canonical up to homotopy (by [250]). Assume the
link is an integral homology sphere Σ, and let

R(Σ) = Hom∗
(
π1(Σ), SU(2)

)/
(ad SU(2)

)

be the space of irreducible SU(2)-representations of its fundamental group modulo
conjugation. The space R(Σ) is nondegenerate if it satisfies a certain condition for
every α ∈ R(Σ) (see [262]). In this case R(Σ) has finite cardinality and its Casson
invariant is defined via a signed count of its points

λ(Σ) =
1

2

∑

α∈R(Σ)

εα , with εα = ±1 .

The integers εα = ±1 are determined from an intersection theory associated with
a Heegaard splitting of Σ. If R(Σ) is degenerate, then it needs to be perturbed
first to make it finite and then λ(Σ) can be defined similarly; see [262]. In [100]
Fintushel and Stern proved that the Casson invariant of the Brieskorn homology
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spheres Σ(p, q, r) is

λ(Σ(p, q, r)) =
1

8
σ(F (p, q, r)) ,

where F (p, q, r) is the Milnor fiber (see [69] for a geometric proof). This led to the
Casson invariant conjecture stated in [209].

Conjecture 11.9. If Σ is an integral homology sphere which is the link of an ICIS

surface singularity, then its Casson invariant equals 1/8 the signature of the Milnor

fiber,

λ(Σ) =
1

8
σ(F ) .

This conjecture was proved in [209] for all weighted homogeneous surface singu-
larities and for other families also, including the Brieskorn–Hamm complete inter-
sections. Yet, the conjecture remains open.

This can also be regarded from the viewpoint of the Seiberg–Witten monopole
equations (see [202, p. 282, 3.1]). The Seiberg–Witten invariant of a closed oriented
3-manifold M is a function SW from the set S(M) of Spinc-structures on M to the
integers Z. Roughly speaking, this invariant counts the gauge equivalence classes
of solutions to the Seiberg–Witten equations. In the case of homology spheres Σ
there is only one Spinc-structure and, therefore, a single Seiberg–Witten invariant
that we denote SW(Σ). In [198] is proved that for the Brieskorn homology spheres,
this coincides with the Casson invariant

SW(Σ(p, q, r)) = λ(Σ(p, q, r)) .

It was then conjectured by P. Kronheimer that these two invariants coincide for all
three-dimensional homology spheres. That conjecture is proved in [163]. Hence the
Casson invariant conjecture can be studied in terms of Seiberg–Witten invariants.
This line of research is being done by A. Némethi et al. (cf. [145, 201–203, 206]).
They also study conditions under which the geometric genus is a topological invari-
ant.

In the previous discussion the surface singularities in question are isolated, so
the link is a smooth 3-manifold, and if the singularity is an ICIS, then the link
is isotopic to the boundary of the Milnor fiber. In [205] the authors consider the
boundaries of Milnor fibers of nonisolated surface singularities in C

3. These turn out
to be Waldhausen manifolds as well, by [189, 190, 205]. In [205] the authors give
a way to determine the Waldhausen decomposition of these manifolds, and they
thoroughly study their geometry and topology. The fact that the boundaries of the
Milnor fibers of nonisolated complex hypersurfaces in C3 are Waldhausen manifolds
is proved also in [97], where the authors extend that theorem to singularities defined
by functions of the type fḡ with f, g being holomorphic (see section 13).

Part II. Beyond the Holomorphic Realm

We now look at Milnor fibrations for real analytic singularities. This emerged too
from Milnor’s seminal work in [192, 193]. We also look at meromorphic functions,
and remark that the much of the discussion below goes through for semialgebraic
and subanalytic maps (see [70, 79, 80]).
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12. Foundations and first steps

The following was stated as Hypothesis 11.1 in [193].

Definition 12.1. A real analytic map-germ f : (Rn, 0) → (Rp, 0), n ≥ p > 0,
satisfies the Milnor condition at 0 if the derivative Df(x) has rank p at every point
x ∈ U \ 0, where U is some open neighborhood of 0 ∈ Rn.

The following extends the fibration theorem to the real setting.

Theorem 12.2 (Milnor). Let f satisfy Definition 12.1 at 0. For every ε > 0
sufficiently small, let δ > 0 be sufficiently small with respect to ε, and consider the

Milnor tube N(ε, δ) := f−1(∂Dδ) ∩ Bε, where Dδ is the disc in Rp of radius δ and

center at 0, ∂Dδ is its boundary, and Bε is the closed ball in Rn of radius ε and

center 0. Then

(12.3) f |N(ε,δ) : N(ε, δ) −→ ∂Dδ ,

is a fiber bundle. Moreover, the tube N(ε, δ) is diffeomorphic to

S
n−1
ε \

(
f−1(

◦

Dδ) ∩ S
n−1
ε

)
,

where
◦

Dδ is the interior, and (12.3) determines an equivalent fiber bundle

(12.4) ϕ : Sn−1
ε \ Lf → S

p−1 ,

where Lf = f−1(0) ∩ Sn−1
ε is the link. The projection ϕ is f/‖f‖ in a tubular

neighborhood of Lf .

The statement that ϕ = f/‖f‖ in a tubular neighborhood of the link Lf is
implicit in Milnor’s book, and it was made explicit in [66, 237]. The proof of
(12.3) is an easy extension of the proof of Ehresmann’s fibration lemma. As in the
complex case, one then constructs an integrable vector field v in the ball B̄ε, which
is transverse to all spheres in this ball centered at 0 and is transverse to all Milnor
tubes. The integral curves of v allow us to carry N(ε, δ) diffeomorphically into the
complement of f−1(Dδ)∩Sn−1

ε in the sphere Sn−1
ε , keeping its boundary fixed, and

one extends the induced fibration to all of Sn−1
ε \ Lf using, for instance, that the

normal bundle of the link is trivial.
Yet, we cannot in general inflate the tube in such a way that the projection ϕ is

f/‖f‖ everywhere. In fact this theorem has two weaknesses:

(1) It is much too stringent—map-germs satisfying Definition 12.1 are highly
nongeneric.

(2) One has no control over the projection map ϕ outside a neighborhood of
the link.

Of course every complex-valued holomorphic function with an isolated critical
point satisfies Definition 12.1, and does so also if we compose such a function with a
real analytic local diffeomorphism of either the target or the source. The interesting
point is finding examples which are honestly real analytic. Milnor exhibited the
following examples in his book, suggested to him by N. Kuiper. Let A denote either
the complex numbers, the quaternions, or the Cayley numbers, and define

h : A×A → A× R ,
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by h(x, y) = (2xȳ, |y|2 − |x|2). Milnor first proves ([193, 11.6]) that this mapping
carries the unit sphere of A × A to the unit sphere of A × R by a Hopf fibration.
Then he defines, more generally,

f : An ×An → A× R ,

by

(12.5) f(x, y) = (2〈x, y〉, ‖y‖2 − ‖x‖2) ,

where 〈·, ·〉 is the Hermitian inner product in A. This map is a local submersion
on a punctured neighborhood of (0, 0) ∈ An × An. The link of the corresponding
singularity is the Stiefel manifold of 2-frames in An and the Milnor fiber is a disc
bundle over the unit sphere of An.

For p = 1, Definition 12.1 is always satisfied (see for instance [274]). For maps
into R2, generically the critical values are real curves converging to (0, 0), though
there are several families of singularities satisfying Definition 12.1; see for instance
section 15. For p > 2, few examples are known of map-germs satisfying Definition
12.1 and having a nontrivial Milnor fibration, where “nontrivial” means that the
fibers are not discs.

There are in fact pairs (n, p) as above for which no such examples exist, as stated
in Theorem 12.6 below, as proved by Church and Lamotke in [61], and completing
previous work by Looijenga in [166]:

Theorem 12.6. Let n, p be positive integers.

(1) If 2 ≥ n−p ≥ 0, then such examples exist for the pairs {(2, 2), (4, 3), (4, 2)}.
(2) If n−p = 3, nontrivial examples exist for (5, 2) and (8, 5)6 and perhaps for

(6, 3).
(3) If n− p ≥ 4, then such examples exist for all (n, p).

In particular, if p = 2, such examples exist for all n ≥ 4. The case (6, 3) was left
open and it was recently settled affirmatively in [15].

The proof in [61] follows the line in [166] and consists of an inductive process
to decide for which pairs (n, p) there exists a codimension p submanifold K of the
sphere Sn−1 with a tubular neighborhood N which is a product N ∼= K ×Dp, such
that the natural projection K× (Dp \{0}) → Sp−1 given by (x, y) �→ y/‖y‖ extends
to a smooth fiber bundle projection Sn−1 \ K → S

p−1. No explicit singularities
satisfying the Milnor condition (Definition 12.1) were given.

The first explicit nontrivial example of a real analytic singularity with target
R2 satisfying Definition 12.1, other than those in [193], was given by A’Campo [1].
This is the map C

m+2 → C defined by

(u, v, z1, . . . , zm) �−→ uv(ū+ v̄) + z21 + · · ·+ z2m .

The following notion was introduced in [241].

Definition 12.7. Let f : (Rn, 0) → (Rp, 0) , n > p ≥ 2, be analytic and satisfy
the Milnor condition at 0, and let Lf be its link. We say that f satisfies the strong

Milnor condition at 0 if for every sufficiently small sphere Sε around 0,

f

|f |
: Sε − Lf → S

p−1

is a fiber bundle.
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Jacquemard in [138] studied sufficient conditions to ensure that maps into R2

satisfying Definition 12.1 actually satisfy the strong Milnor condition. He gave
two conditions which are sufficient but not necessary, and he constructs several
examples of maps satisfying these conditions. The first of Jacquemard’s conditions
is geometric, the second condition is algebraic:

Condition A. There exists a neighborhood U of the origin in Rn and a real number
0 < ρ < 1 such that for all x ∈ U − 0, one has

|〈grad f1(x), grad f2(x)〉|

‖grad f1(x)‖ · ‖grad f2(x)‖
≤ 1− ρ ,

where 〈· , ·〉 is the usual inner product in Rn.

Condition B. If εn denotes the local ring of analytic map-germs at the origin in
Rn, then the integral closures in εn of the ideals generated by the partial derivatives

(12.8)
( ∂f1
∂x1

,
∂f1
∂x2

, . . . ,
∂f1
∂xn

)
and

( ∂f2
∂x1

,
∂f2
∂x2

, . . . ,
∂f2
∂xn

)

coincide, where f1, f2 are the components of f .

One has the following.

Theorem 12.9 (Jacquemard). Let f : (Rn, 0) → (R2, 0), n > 2, be an analytic

map-germ. If the component functions f1 and f2 of f satisfy Conditions A and B,
then for every sphere S

n−1
ε of radius ε > 0 sufficiently small and centered at 0, one

has that the projection map in (12.4),

ϕ : Sn−1
ε \ Lf → S

1 ,

can be taken to be f/‖f‖ everywhere.

Problem 12.10. What is the equivalent of Theorem 12.6 for the strong Milnor
condition? That is, for which pairs (n, p) does there exist an analytic map-germ
f : (Rn, 0) → (Rp, 0) , n > p ≥ 2, satisfying the strong Milnor condition at 0?

When p = 2, such maps exist for all n ≥ 4. There are also several examples with
p = 3 in [138].

It was noted in [241] that Condition B can be relaxed and still have sufficient
conditions to guarantee the strong Milnor condition. For this we recall the notion
of the real integral closure of an ideal as given in [104].

Definition 12.11. Let I be an ideal in the ring εm. The real integral closure of I,
denoted by IR, is the set of h ∈ εm such that for all analytic ϕ : (R, 0) → (Rm, 0),
we have h ◦ ϕ ∈ (ϕ∗(I))ε1.

Given f : (Rn, 0) → (R2, 0) as above, let us set the following.

Condition BR. The real integral closures of the Jacobian ideals in (12.8) coincide.

For complex analytic germs, both conditions B and BR are equivalent (see [263],
[104]). As pointed out in [241], essentially the same proof of Jacquemard in [138]
gives the following.

Theorem 12.12. h Let f : (Rn, 0) → (R2, 0) be an analytic map-germ that satisfies

the Milnor condition. If its components f1, f2 satisfy Conditions A and BR, then

f satisfies the strong Milnor condition.
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This improvement of Theorem 12.9 was used in [241] to prove a stability theorem
for real singularities with the strong Milnor condition. This was also used in [16] to
find a theorem in the vein of Theorem 12.12 but using regularity conditions instead
of Jacquemard’s conditions. This inspired [241, 248] and the use of the canonical
pencil described in section 14. We refer for instance to [14, 15, 80, 82, 220–222, 224,
236] for recent work on the topology of the Milnor fibers.

D. Massey in [180] improved Theorem 12.12 using a different viewpoint, via
a generalized �Lojasiewicz inequality (see section 13). We remark that Massey’s
viewpoint applies in a larger setting, which does not require f to have an isolated
critical point, and it significantly relaxes condition BR.

13. On functions with a nonisolated critical point

As noted before, considering map-germs (Rn, 0) → (Rp, 0) with an isolated crit-
ical point is very stringent. We now discuss the general case of arbitrary critical
locus, starting with the slightly more general case of functions with an isolated
critical value.

13.1. Functions with an isolated critical value. Every holomorphic map-germ
(Cm, 0) → (C, 0) with a critical point at 0 has an isolated critical value, and the
fibration theorems in Theorems 4.1 and 4.2 hold in this setting. It is thus natural
to look for extensions of Milnor’s theorem, Theorem 12.2, for analytic map-germs
f := (f1, . . . , fp) : (Rn, 0) → (Rp, 0) with a possibly nonisolated critical point at
0, such that 0 ∈ R

p is the only critical value; i.e., all critical points of f are in the
special fiber V := f−1(0). This was first done in [237].

Definition 13.1. If f admits a fibration in tubes of the type (12.3), then we call
this the (local) Milnor–Lê fibration of f (or the Milnor fibration in tubes). If it
admits a fibration on the spheres of the type in Definition 12.7, then we call this
the (local) Milnor fibration of f (or the Milnor fibration on spheres).

Given a real analytic map-germ (Rn, 0)
f
→ (Rp, 0), n > p ≥ 1, with an isolated

critical value at 0 ∈ Rp, we want to know when is there a local Milnor–Lê fibration.
That is, we want conditions to ensure that given a ball Bε bounded by a Milnor
sphere Sε for f (see Definition 3.3), there exists a ball Dδ of some radius δ in Rp,
centered at 0, such that if we set Nf (ε, δ) := f−1(Dδ \ {0}) ∩ Bε, then

f |Nf (ε,δ) : Nf (ε, δ) −→ Δδ \ {0}

is a C∞ fiber bundle.
We know from [193] that this is always satisfied when f has an isolated critical

point (that is immediate from the implicit function theorem). Yet, when the critical
point is not isolated; the situation is more delicate. In [237] it was noticed that
if the map-germ f is such that V (f) = f−1(0) has dimension > 0 and f has the
Thom af -property, then f has a local Milnor–Lê fibration.

The study of Milnor fibrations for real analytic map-germs was also addressed by
D. Massey in [180]. Recall that in [129] Hamm and Lê used the complex analytic
�Lojasiewicz inequality to show that Thom stratifications exist. Massey gives the
appropriate generalization for the real analytic setting:

Definition 13.2. An analytic germ (Rn, 0)
f
→ (R2, 0) satisfies the strong �Lojasie-

wicz inequality at 0 if there exists a neighborhood W of 0 and constants c, θ ∈ R
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with c > 0, 0 < θ < 1, such that for all x ∈ W one has

‖f(x)‖θ ≤ c min
|(a,b)|=1

|a∇g(x) + b∇h(x)| .

In this case the germ f is said to be �L-analytic.

The main theorem in [180] says the following.

Theorem 13.3 (Massey). If f is �L-analytic, then for every Milnor sphere Sε there

is a Milnor tube Nf (ε, δ) where f is a proper stratified submersion and the projection

of a C∞ fiber bundle. That is, �L-analytic maps have Milnor–Lê fibrations.

Now we need the following definition from [68].

Definition 13.4. Let f : (Rn, 0)
f
→ (Rp, 0), n > p ≥ 1, have an isolated critical

value at 0 ∈ R
p. We say that f has the transversality property if for every sufficiently

small sphere Sε around the origin in Rn, there exists δ > 0 such that all the fibers
f−1(t) with ||t|| ≤ δ meet the sphere Sε transversally.

The transversality property appears already in [129], and in [224] this is called
the Hamm–Lê condition. Maps with the Thom af -property and nonempty link
have the transversality condition, but not conversely: there are examples by M.
Oka in [223] of maps with the transversality property which do not have the Thom
af -property (see also [188]).

The theorem below is Theorem 3.4 in [67]. This improves [237, Theorem 1.3].

Theorem 13.5. Let f : (Rn, 0)→(Rp, 0), n > p ≥ 1, have an isolated critical value

at 0 ∈ Rp. Assume further that f has the transversality property and V (f) :=
f−1(0) has dimension greater than 0. Then f has a local Milnor–Lê fibration

f |Nf (ε,δ) : Nf (ε, δ) −→ Δδ \ {0} ,

with Nf (ε, δ) := f−1(Dδ \ {0}) ∩ Bε for some ball Dδ ⊂ Rp, 0 < δ ≪ ε. This

determines an equivalent fiber bundle

ϕ : (Sε \ Lf ) −→ S
p−1 ,

where the projection map ϕ is f/‖f‖ restricted to [Sε ∩N(η, δ)].

The way to pass from the fibrations in tubes to that on the sphere is as be-
fore: one constructs a smooth vector field ζ in the ball Bε minus V , satisfying the
following.

• Each integral line is transversal to all spheres in Bε centered at 0.
• Each integral line is transversal to all tubes f−1(∂Dδ) contained in Bε.

The difference with the holomorphic setting is that we cannot now guarantee a
third condition: that the vectors f(z) are collinear for all points in each integral
line (cf. Theorem 14.4 below). We discuss this in section 14.

For maps of the type fḡ that we envisage below, there is simple criterion in [97]
and [188, Proposition 3.5] for deciding whether or not the map has the transversality
property. This is called CT-regularity in [188]. The advantage of this criterion is
that it is easy to use in practice.
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13.2. Functions with arbitrary discriminant. We now consider the general
setting and study Milnor fibrations for map-germs (Rn, 0)→(Rp, 0) with arbitrary
critical points, following [63, 68]. We start with an example studied in [171] by
López de Medrano.

Example 13.6. Consider maps (f, g) : Rn → R
2 the form

(f, g) =

(
n∑

i=1

aix
2
i ,

n∑

i=1

bix
2
i

)
,

where the ai and bi are real constants in generic position in the Poincaré domain.
This means that the origin is in the convex hull of the points λi := (ai, bi) and no
two λi are linearly dependent.

A simple calculation shows that (f, g) is a complete intersection and the corre-
sponding link is a smooth nonempty manifold of real codimension 2 in the sphere.
The critical points Σ of (f, g) are the coordinate axis of Rn, and the set Δ(f, g) of
critical values is the union of the n line segments in R

2 joining the origin to the
points λi. Hence Rp splits into various connected components, and it is proved in
[171] that the topology of the fibers over points in different components changes.
Yet, we know from [68] that these map-germs have the transversality property in
Defintion 13.4, and away from the critical set they have a Milnor–Lê fibration. In
fact these maps are d-regular too, a concept that we discuss in section 14 and which
implies that away from the discriminant, they have also a Milnor fibration on small
spheres with projection map (f, g)/‖(f, g)‖.

More generally, consider now an open neighborhood U of 0 ∈ Rn and a Cℓ map
f : (U, 0) → (Rp, 0), n > p ≥ 2, ℓ ≥ 1, with a critical point at 0. Denote by Cf
the set of critical points of f in Bε, and let Δf be the image f(Δf ). These are the
critical values of f ; we call Δf the discriminant of f .

Definition 13.7. We say that the map-germ f has the transversality property at
0 if there exists a real number ε0 > 0 such that, for every ε with 0 < ε ≤ ε0,
there exists a real number δ, with 0 < δ ≪ ε, such that for every t ∈ Bk

δ \Δf , one
has that either f−1(t) does not intersect the sphere Sn−1

ε or f−1(t) intersects Sn−1
ε

transversally in R
n.

The transversality condition of the fibers with small spheres ensures having a
Milnor–Lê fibration, even for Cℓ maps with nonisolated critical values. Of course,
as in Example 13.6, if the base of the fibration has several connected components
(sectors), then the topology of the fibers can change from one sector to another.
We have the following result from [68].

Proposition 13.8. Let f : (Rn, 0) → (Rp, 0), n ≥ p ≥ 2, be a map-germ of class

Cℓ with ℓ ≥ 1. If f has the transversality property, then the restrictions

• f | : Bn
ε ∩ f−1(D̊p

δ \Δf ) −→ (D̊p
δ \Δf ) ∩ Im(f),

• f | : Bn
ε ∩ f−1(Sp−1

δ \Δf ) −→ (Sp−1
δ \Δf ) ∩ Im(f)

are Cℓ fiber bundles, where ε and δ are small enough positive real numbers, Bn
ε ⊂ R

n

and D
p
δ ⊂ Rp are the closed balls of radius ε and δ centered at 0 and 0, respectively,

D̊
p
δ is the interior of the ball D

p
δ , and S

p−1
δ is its boundary. If f is analytic, then

the fibrations above are C∞.
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In [63] the authors study the topology of the fibers of real analytic maps Rn →
Rp+k, n > p+k, inspired by the classical Lê–Greuel formula for the Milnor number
of isolated, complex, complete intersection germs. The idea is that if the map-germ
is defined by analytic functions (f1, . . . , fp, g), then we can study the topology of
its fibers by comparing it with the topology of the germ we get by dropping down
g. We require for this that the map f := (f1, . . . , fp) actually satisfies the Thom
af -property with respect to some Whitney stratification {Sα} and that its zero-set

V (f) has dimension ≥ 2 and it is a union of strata. The map-germ (Rn, 0)
g
→ (Rk, 0)

is assumed to have an isolated critical point in R
n with respect to the stratification

{Sα}. By Proposition 13.8 the map-germs f and (f, g) have associated local Milnor–
Lê fibrations. Then one has the corresponding Lê–Greuel formula [63, Theorem 1],
as follows.

Theorem 13.9. Let Ff and Ff,g be Milnor fibers of f and (f, g) (any Milnor fibers,

regardless of the fact that the topology of the fibers may depend on the connected

component of the base once we remove the discriminant). Then one has

χ(Ff ) = χ(Ff,g) + IndPH∇g̃|Ff∩Bε′
,

where g̃ : Rn → R is given by g̃(x) = ‖g(x)− t0‖2 with t0 ∈ Rk such that Ff,g =

g|−1
Ff

(t0) and Bε′ is a small ball in Rn centered at the origin.

The term IndPH∇g̃|Ff∩Bε′
on the right, which by definition is the total Poincaré–

Hopf index in Ff of the vector field ∇g̃|Ff
, can be expressed also in the following

equivalent ways:

(1) as the Euler class of the tangent bundle of Ff relative to the vector field

∇g̃|Ff∩Bε′
on its boundary ;

(2) as a sum of polar multiplicities relative to g̃ on Ff ∩ Bε′ ;
(3) as the index of the gradient vector field of a map g̃ on Ff associated to g;
(4) as the number of critical points of g̃ on Ff ;
(5) when p = 1 = k, this invariant can also be expressed algebraically, as the

signature of a certain bilinear form that originates from [17,85,89,113,114].

When n = 2m, p = 2q, k = 2, and Cm (f,g)
−→ Cq+1 is holomorphic, this is a

reformulation of the classical Lê–Greuel formula, Theorem 7.3.
We remark that when k = 1 and the germs of f and (f, g) are both ICIS germs,

there is a Lê–Greuel type formula in [81] expressed in terms of normal data of f
with respect to an appropriate Whitney stratification. See also [187] for refinements
of the above discussion.

14. d-regularity and Milnor fibrations

The concept of d-regularity introduced in [66] is inspired by [16,24,241,248], and
it is a key for understanding the difference between real and complex singularities
concerning Milnor fibrations.

14.1. The case of an isolated critical value. Let U be an open neighborhood
of the origin 0 ∈ R

n, and consider a real analytic germ f : (U, 0) → (Rp, 0) which is
a submersion for each x /∈ V := f−1(0) and has a critical point at 0.

Definition 14.1. The canonical pencil of f is a family {Xℓ} of real analytic spaces
parameterized by RPp−1 and defined as follows. For each ℓ ∈ RPp−1, consider the
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line Lℓ ⊂ Rp that determines ℓ, and set

Xℓ = {x ∈ U | f(x) ∈ Lℓ} .

Note that every two distinct elements of the pencils XL and XL′ satisfy

XL ∩XL′ = V .

Each XL has dimension n− p+1, is nonsingular outside V , and their union covers
all of U .

Each line L intersects the sphere Sp−1 in two antipodal points θ− and θ+. We
decompose the line L into the corresponding half-lines accordingly:

L = L− ∪ {0} ∪ L+.

If we define Eθ∓ to be the inverse image f−1(L∓), respectively, then we can
express each element of the canonical pencil as the union

(14.2) XL = Eθ− ∪ V ∪ Eθ+ .

If LV is the link of f , we can describe the fibers of the map ϕ = f/‖f‖ : Sn−1
ε \LV →

S
p−1 as

ϕ−1(θ−) = Eθ− ∩ S
n−1
ε , ϕ−1(θ+) = Eθ+ ∩ S

n−1
ε .

Then we can write

XL ∩ S
n−1
ε = (Eθ− ∩ S

n−1
ε ) ∪ LV ∪ (Eθ+ ∩ S

n−1
ε ) = ϕ−1(θ−) ∪ LV ∪ ϕ−1(θ+).

We now assume that f : U → Rp is real analytic, with an isolated critical value
at 0, and it is locally surjective, i.e., the restriction of f to every neighborhood of
0 ∈ U covers a neighborhood of 0 ∈ R

p.

Definition 14.3. We say that f is d-regular if there exists ε0 > 0 such that for
every ε ≤ ε0 and for every line L through the origin in Rp, the sphere Sn−1

ε and
the manifold XL \ V are transverse.

As examples of d-regular maps one has the following.

• All holomorphic maps C
n → C, all polar weighted homogeneous polyno-

mials, and real weighted homogeneous maps with an isolated critical value
are d-regular maps.

• If f and g are holomorphic maps C2 → C such that the product fḡ has an
isolated critical value at the origin, then the map fḡ is d-regular, by [237].

• The strongly nondegenerate mixed functions in [221] are all d-regular, by
[66, 221].

• Direct sums of d-regular maps; that is, if f is d-regular in the variables
(x1, . . . , xn) and g is d-regular in the variables (y1, . . . , ym), then f + g is
d-regular in the variables (x1, . . . , xn, y1, . . . , ym), by [66].

The following is a fundamental property of d-regularity. We refer to [66] for its
proof.

Theorem 14.4. The real analytic map f is d-regular if and only if there exists a

smooth vector field ζ such that its integral lines are transverse to all spheres around

0, transverse to all Milnor tubes f−1(∂Dη) ∩ Bε , and tangent to each element XL

of the canonical pencil.

Such a vector field allows us to inflate the tube and get a fibration on the sphere
minus the link, granting that the projection map is f/‖f‖. Hence we get the slight
refinement of [66, Theorem 1] below.
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Theorem 14.5. Let f := (f1, . . . , fp) : (R
n, 0) → (Rp, 0) be a locally surjective real

analytic map with an isolated critical value at 0 ∈ Rp, and assume V = f−1(0)
has dimension > 0. Then f admits a Milnor–Lê fibration if and only if it has the

transversality property. If this is so, then f is d-regular at 0 if and only if one has

a commutative diagram of smooth fiber bundles

Sn−1
ε \ LV

φ
��

ψ
��▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

Sp−1

π

��

RPp−1 ,

where LV is the link, ψ = (f1(x) : . . . : fp(x)), and φ = f
‖f‖ : S

n−1
ε \ Kη → Sp−1

is the Milnor fibration. Furthermore, if the two fibrations exist (one on a Milnor

tube, another on the sphere minus the link), then these fibrations are smoothly

equivalent. That is, there exists a diffeomorphism between their corresponding total

spaces, carrying fibers into fibers.

This answers affirmatively a question raised by R. Araújo dos Santos in [13],
where the author proved it for p = 2 and f weighted homogeneous. The proof in
[66] of the equivalence of the two fibrations has a small gap that has been filled in
[68] where the theorem is proved in the more general setting of real analytic maps
with arbitrary linear discriminant; see Definition 14.7. In [66, 67] there are other
criteria to determine d-regularity which can be useful in practice.

The following corollary is an immediate consequence of the previous theorem.

Corollary 14.6. Given f : (Rn, 0) → (Rp, 0) as in Theorem 14.5, consider its

Milnor fibration,

φ =
f

‖f‖
: Sn−1

η \Kη → S
p−1.

Then the union of the link Kη and each pair of fibers of φ over antipodal points of

Sp−1 corresponding to the line Lℓ is the link of the real analytic variety Xθ.

For instance, if f : (Cn, 0) → (C, 0) is holomorphic and it has an isolated critical
point at 0, then {Re f = 0} is a real hypersurface, and its link is the double of
the Milnor fiber of f with the link Lf as an equator. If n = 2, then the link of
Re (f) = 0 is a compact Riemann surface of genus 2gf +r−1, where gf is the genus
of the Milnor fiber of f and r is the number of connected components of the link

of f . Thus for instance, we know from [65] that for the map (z1, z2)
f
�→ z21 + zq2 , one

gets that the link of Re f is a closed oriented surface in the 3-sphere, the union of
the Milnor fibers over the points ±i. An easy computation shows that it has genus
q − 1. This provides an explicit way to determine closed surfaces of all genera ≥ 1
in the 3-sphere by a single analytic equation.

It would be interesting to study the geometry and topology of the 4-manifolds
one gets in this way, by considering the link of the hypersurface in C3 defined by
the real part of a holomorphic function with an isolated critical point. For example,

for the map (z1, z2, z3)
f
�→ z21 + z32 + z53 , the corresponding 4-manifold is the double

of the E8 manifold, whose boundary is Poincaré’s homology 3-sphere.
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14.2. The general case. In [68] the authors continue the work begun in [63] and

extend the above discussion on d-regularity to differentiable functions (Rn, 0)
f
→

(Rp, 0) of class Cℓ, ℓ ≥ 1, n ≥ p ≥ 2, with a critical point at 0 ∈ Rn, arbitrary
critical values Δf , and nonempty link LV . This is immediate when the discriminant
Δf is linear,

Definition 14.7. The map-germ f : (Rn, 0) → (Rp, 0) has linear discriminant if
for some representative f there exists η = η(f) > 0 such that the intersection of
Δf with the closed ball Dp

η is a union of line segments, i.e.,

Δf ∩ D
p
η = Cone

(
Δf ∩ S

p−1
η

)
.

We call η a linearity radius for Δf . (The case where f has 0 ∈ Rp as an iso-
lated critical value is considered to have linear discriminant with arbitrary linearity
radius.)

Let f : (Rn, 0) → (Rp, 0) be as above, with linear discriminant, and consider a
representative f with linearity radius η > 0. Set ∂Δη := Δf ∩S

p−1
η . For each point

θ ∈ Sp−1
η , let Lθ ⊂ Rp be the open segment of line that starts at the origin and ends

at the point θ (but which does not contain these two points). Set Eθ := f−1(Lθ) ,
so each Eθ is a manifold of class Cℓ for every θ in Sp−1

η \ ∂Δη.

Definition 14.8. Let f : (Rn, 0) → (Rp, 0) be a map-germ of class Cℓ with ℓ ≥ 1
and linear discriminant. We say that f is d-regular at 0 if for some representative
f there exists ε0 > 0 small enough such that f(Bn

ε0
) ⊂ D̊p

η, where η is a linearity

radius for Δf , and such that every Eθ intersects the sphere Sn−1
ε transversally in

R
n, for every ε with 0 < ε ≤ ε0 and for all θ ∈ S

p−1
η \∂Δη such that the intersection

is not empty.

Example 14.9. Let K be either R or C. Let (f, g) : Kn → K2 be a K-analytic
map of the form

(f, g) =

(
n∑

i=1

aix
q
i ,

n∑

i=1

bix
q
i

)
,

where (ai, bi) ∈ K are constants in generic position as in Example 13.6, and q ≥ 2
is an integer. By [68] the discriminant Δ is linear and (f, g) is d-regular.

It is proved in [68] that the fibration theorems, Theorems 14.4 and 14.5, extend
to this general setting of Cℓ maps with linear discriminant which have the transver-
sality property and are d-regular. Also, in [68] there are examples of nonanalytic
maps for which these fibration theorems apply.

Consider now the following example that generalizes Example 14.9. Let
(f, g) : Rn → R

2 be

(f, g) =

(
n∑

i=1

aix
p
i ,

n∑

i=1

bix
q
i

)
,

with p, q ≥ 2 integers and the (ai, bi) as above. If p 	= q, the discriminant Δ(f,g)

is not linear. Yet we can always linearize it with a homeomorphism h in R2.
Moreover, these maps have the transversality property and they are dh-regular
in an appropriate sense that depends on the homeomorphism h. The fibration
theorems in [68] extend to this setting, and in fact to all Cℓ-maps that admit an
appropriate conic modification, a condition that seems to be always satisfied.
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15. Mixed singularities

A mixed function is a real analytic function Cn → C in the complex variables
z = (z1, , zn) and their conjugates z̄ = (z̄1, , z̄n). This type of function appeared in
singularity theory already in [193, Chapter 11] as well as in the work of N. A’Campo
[1] and Lee Rudolph [242]. The modern study of mixed functions in singularity
theory springs from [241, 249]. The term “mixed singularity” was coined by M.
Oka in [221].

15.1. Twisted Pham–Brieskorn singularities. The paradigm of real analytic
functions with target R2 and satisfying the strong Milnor condition Definition 12.7
are the twisted Pham–Brieskorn singularities [249, Chapter VII],

(z1, . . . , zn)
f
�→ za1

1 z̄σ(1) + · · ·+ zan
n z̄σ(n) , ai ≥ 2 ,

where σ is a permutation of the set {1, . . . , n}. It was noticed in [241, 248] that
there exists a smooth action of S1 × R

+ on C
n of the form

(λ, r) · (z1, . . . , zn) = (λd1rp1z1, . . . , λ
dnrpnzn) , λ ∈ S

1 , r ∈ R
+,

where the dj , pj are positive integers such that gcd(d1, . . . , dn)=1=gcd(p1, . . . , pn),
and one has

f((λ, r) · (z1, . . . , zn)) = λd rp f(z1, . . . , zn)

for some positive integers d, p. So these are reminiscent of weighted homogeneous
complex polynomials.

The basic properties are the following.

Lemma 15.1. The above S1-action on Cn has V := f−1(0) as an invariant set,

and it permutes the elements Xθ of the canonical pencil defined in section 14.

Lemma 15.2. The orbits of the R+-action are transversal to every sphere around

0 ∈ C
n, except the orbit of 0 ∈ C

n, which is a fixed point, and all the orbits converge

to 0 when the time tends to −∞. This action leaves V and each Xθ invariant.

The explicit weights for the above mentioned action of S1 × R
+ are easily com-

putable from the exponents ai and the permutation σ (see Lemmas 4.3 and 4.4 in
Chapter VII of [249]).

The name twisted Pham–Brieskorn singularities comes from the similarity that
these have with the classical Pham–Brieskorn polynomials (cf. section 2) and the
fact, proved in [222,241], that if the twisting σ is the identity, then the corresponding
open-books are equivalent to those of the usual Pham–Brieskorn singularities.

It was proved in [241, 248] that these functions have an isolated critical point
at 0, so they have a Milnor–Lê fibration in a tube, and in fact the local triviality
of this bundle follows easily from the S1-action in Lemma 15.1. The first return
map of this action is the monodromy map of the fibration. Then the flow given by
Lemma 15.2 carries this fibration into one in the sphere with projection map f/|f |.

15.2. Polar weighted and radial weighted singularities. Consider, more gen-
erally, nonconstant polynomial maps f : R2n → R2, n > 1, that carry the origin
0 ∈ R

2n into the origin 0 ∈ R
2. We identify the plane R

2 with the complex line C

and equip C∗ with polar coordinates {r eiθ | r > 0 ; θ ∈ [0, 2π)}. We also identify
R2n with Cn in the usual way. The following concept is introduced in [62].
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328 JOSÉ SEADE

Definition 15.3. The map f is a polar weighted homogeneous polynomial if there
exists an action of S1 × R+ on Cn of the form

(λ, r) · (z1, . . . , zn) = (λd1rp1z1, . . . , λ
dnrpnzn) , λ ∈ S

1 , r ∈ R
+,

where the dj , pj are positive integers such that gcd(d1, . . . , dn)=1=gcd(p1, . . . , pn),
and one has

f((λ, r) · (z1, . . . , zn)) = λd rp f(z1, . . . , zn) ,

for some positive integers d, p. The S1-action is called a polar action while that of
R

+ is a radial action.

This includes the twisted Pham–Brieskorn singularities as well as the weighted
homogeneous complex polynomials. There are many other families (see [64, 220]).
We remark that the polar action implies the critical value at 0 ∈ C, unless f is
constant.

Assuming that the dimension of V = f−1(0) is more than 0, the Properties 1–4
in section 2 continue to hold in this setting. One has the canonical pencil as in
section 14. Its elements Xθ are real algebraic hypersurfaces, smooth away from
V := f−1(0), they fill out the whole ambient space, and meet exactly at V . The
R

+ action leaves invariant every element of the pencil, which therefore is transverse
to all spheres around 0. And the orbits of the S1-action are tangent to all the
spheres around 0 and permute the hypersurfaces Xθ. Therefore, one has a global
fibration as in equation (2.1), which restricts to the Milnor fibration Theorem 4.1
on each sphere, and by Property 2 this is equivalent to the fibration on a tube as
in Theorem 4.2. The monodromy is the first return map of the S1-action.

In [64] the authors give a classification of the mixed homogeneous polynomials
in three variables which are polar weighted with an isolated critical point. This
generalizes classical work of Orlik and Wagreich on complex weighted homogeneous
polynomials. In [135–137] there are interesting relations with contact structures
and the enhaced Milnor number. And in [32], a special class of mixed singularities
is used to show that certain braids can be compactified to become fibered real
algebraic knots.

15.3. Meromorphic germs and the case fḡ. Given two holomorphic map-germs

C
n f,g
−→ C, we can associate to them:

• the meromorphic germ f/g;
• the real analytic map fḡ, where ḡ denotes complex conjugation.

Notice that the zero locus V (fḡ) of fḡ equals, as a set, the zero locus of fg and
consists of V (f) ∪ V (g), the union of the zero loci of f and g. Away from V (fḡ)
one has

(15.4)
f/g

|f/g|
=

fḡ

|fḡ|
.

Therefore the two cases are equivalent when we look at Milnor fibrations with this
map as projection. But they are very different when we look at the Milnor tubes;
see Figure 6. We discuss first the case fḡ.

The singular set of V (fḡ) contains all points in V (f) ∩ V (g), which necessarily
are critical points of fḡ. Hence if n > 2, this type of function must have nonisolated
critical points. Yet, these may have an isolated critical value, as in the following
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Figure 6. A Milnor tube f/g = |t0| for a meromorphic map.

examples from [237]. Define h : R2n → R2, n > 1, by h = fḡ, where g(z1, . . . , zn) =
z1 · · · zn and f is the Pham–Brieskorn polynomial

f(z1, . . . , zn) = (za1
1 + · · ·+ zan

n ) , ai ≥ 2.

A straightforward computation shows that h has an isolated critical value at 0 ∈ R2

if and only if the ai satisfy
∑n

i=1 1/ai 	= 1. For n = 2 this means that at least one
ai is more than 2. For n = 3 the condition is that the unordered triple (p, q, r) is
not (2, 3, 6), (2, 4, 4), or (3, 3, 3).

In [235, 237] the authors study functions fḡ restricted to a complex analytic
surface X with (at most) an isolated singularity; of course X can be C2. It is
proved that these functions have the so-called Thom property, and this implies
that one has a fibration of the Milnor–Lê type Theorem 4.2. Moreover, they prove
that in this case one has a Milnor fibration

(15.5) fḡ/|fḡ| : LX \ Lfḡ → S
1 .

In [237, Theorem 5.2] they further look at the geometry of the fibration near the
multilink Lfḡ in LX , and they prove the equivalence of the following three state-
ments (we refer to [90] for background on fibered multilinks):

(i) the real analytic germ fḡ : (X, p) → (R2, 0) has 0 as an isolated critical
value;

(ii) the multilink Lf − Lg is fibered; and

(iii) if π : X̃ → X is a resolution of the holomorphic germ fg : (X, p) → (C, 0),
then for each rupture vertex (j) of the decorated dual graph of π one has

mf
j 	= mg

j .

Moreover, it is proved that if these conditions hold, then the Milnor fibration in
(15.5) actually is a fibration of the multilink Lf−Lg (cf. [90]). This extends previous

results in [235] for maps C2 fḡ
→ C to map-germs defined on surface singularities.

The Thom property is used in this setting to grant that the germ fḡ has the
transversality property (Definition 13.4), and therefore it has a Milnor–Lê fibration.

By [237] this holds for all maps X
fḡ
→ C where X is a complex surface which

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



330 JOSÉ SEADE

is either regular or has a normal singularity. The same proof was generalized in
[238] to higher dimensions, but this is mistaken and the erratum to that paper gives
counterexamples. Yet, all the known counterexamples still satisfy the transversality
property (see [188, 223]). This suggests a question.

Question 15.6. Do there exist germs Cn fḡ
→ C which do not have the transversality

property, Definition 13.4? Can we classify them?

We now look at meromorphic germs. Let U be an open neighborhood of 0 in
Cn, and let f, g : U −→ C be two holomorphic functions without common factors
such that f(0) = g(0) = 0.

Let us consider the meromorphic function F = f/g : U → CP 1 defined by
(f/g)(x) = [f(x)/g(x)]. As in [125], two such germs at 0, F = f/g and F ′ = f ′/g′,
are considered as equal (or equivalent) if and only if f = hf ′ and g = hg′ for some
holomorphic germ h : Cn → C such that h(0) 	= 0. Notice that f/g is not defined
on the whole U ; its indetermination locus is

I =
{
z ∈ U | f(x) = 0 and g(x) = 0

}
.

In particular, the fibers of F = f/g do not contain any point of I: for each c ∈ C,
the fiber F−1(c) is

F−1(c) =
{
x ∈ U | f(x)− cg(x) = 0

}
\ I .

In a series of articles, Gusein–Zade, Luengo, and Melle-Hernández studied local
Milnor–Lê type fibrations in Milnor tubes f/g = |c| associated to every critical
value of the meromorphic map F = f/g. See for instance [125, 126]. Of course
these Milnor tubes are in fact pinched tubes that have 0 in their closure.

It is thus natural to ask whether one has for meromorphic map-germs Milnor
fibrations on spheres, and if so, how these are related to those of the Milnor–Lê type,
in Milnor tubes. The first of these questions was addressed in [33, 235, 237] from
two different viewpoints, while the answer to the second question is the bulk of [34]
where the authors compare the local fibrations in Milnor tubes of a meromorphic
germ f/g, with the Milnor fibration in the sphere. They prove that if the germ f/g
satisfies two technical conditions (it is semitame and (IND)-tame), then the Milnor
fibration for f/g in the sphere is obtained from the Milnor–Lê fibrations of f and
g in local tubes at 0 and ∞, by a gluing process that is “fiberwise”, reminiscent of
the classical connected sum of manifolds.

Remark 15.7. We know that if (V, p) is a normal isolated complex surface singu-
larity, then its link LV is a Waldhausen manifold, and there is a rich interaction
between 3-manifolds theory and complex singularities (see section 11). When the
germ (V, p) is defined by a single equation f : C3 → C, then LV can be regarded as

the boundary of the Milnor fiber Ft = f−1(t)∩
◦

Bε. If we now consider a holomorphic
map-germ C

3 → C with a nonisolated critical point, then the corresponding link is

no longer smooth, but we still have the Milnor fiber Ft = f−1(t)∩
◦

Bε, that can be
regarded as a compact 4-manifold by attaching to it its boundary ∂Ft = f−1(t)∩Sε.
It is proved in [189, 190, 205] that in this setting, the boundary of the Milnor fiber
is also a Waldhausen 3-manifold. By [97], this statement actually extends to the
boundary of the Milnor fibers of all map-germs in C3 of the form fḡ that have the
transversality condition, which includes the holomorphic germs.
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15.4. A glance at Oka’s work on mixed functions. Inspired by the theory
of complex singularities, Oka in [221] introduces for mixed functions the useful
notion of nondegeneracy with respect to a naturally defined Newton boundary. He
uses this to prove a fibration theorem for strongly nondegenerate convenient mixed
functions and to study their topology. We say a few words about this.

Let f(z) be a mixed analytic function of the form

f(z) =
∑

ν,μ

cν,μz
ν z̄μ ,

where ν + μ is the sum of the multi-indices of zν z̄μ, i.e.,

ν + μ = (ν1 + μ1, . . . , νn + μn).

Assume for simplicity c0,0 = 0, so that 0 ∈ V (f) := f−1(0). Following Oka, we
call V (f) a mixed hypersurface, though in general it has real codimension 2. The
(radial) Newton polygon (at the origin) Γ+(f) is defined in the usual way: it is the
convex hull of ⋃

cν,µ �=0

(ν + μ) + R
+n .

In analogy with complex polynomials, define the Newton boundary Γ(f) as the
union of the compact faces of Γ+(f). To every given positive integer (weight)
vector P = (p1, . . . , pn), we associate a linear function ℓP on the Newton boundary
Γ(f) defined by

ℓP (ν) =

n∑

j=1

pjνj

for ν ∈ Γ(f). Let Δ(P, f) = Δ(P ) be the face where ℓP attains its minimal value.
Then, for a positive weight P , define the face function fP (z) by

fP (z) =
∑

ν+μ∈Δ(P )

cν,μz
ν z̄μ .

Definition 15.8. Let P be a strictly positive weight vector. We say that f(z) is
nondegenerate for P if the fiber f−1(0)∩C∗n contains no critical point of the map

C
∗n fP→ C. The map f is strongly nondegenerate for P if the mapping C

∗n fP→ C has
no critical points at all, dimΔ(P ) ≥ 1, and fP : C∗n → C is surjective. The function
f(z) is called nondegenerate (resp., strongly nondegenerate) if it is nondegenerate
(resp., strongly nondegenerate) for every strictly positive weight vector P .

For a subset J ⊂ {1, 2, . . . , n}, we consider the subspace CJ and the restriction
fJ := f |CJ . Consider the set

NV(f) = {I ⊂ {1, . . . , n} | f I 	= 0}.

We call NV(f) the set of nonvanishing coordinate subspaces for f .

Definition 15.9. We say that f is k-convenient if J ∈ NV(f) for every J ⊂
{1, . . . , n} with |J | = n− k. We say that f is convenient if f is (n− 1)-convenient.

We may now state the main result in [221] concerning Milnor fibrations. In [221]
this is stated as Theorems 29, 33, and 36; here we combine them into a single
statement.
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Theorem 15.10. Assume the mixed polynomial f(z) is convenient and strongly

nondegenerate. Then one has a fibration of the Milnor–Lê type in a Milnor tube

as in Theorem 4.2, as well as a Milnor fibration on every sufficiently small sphere

with projection map f/‖f‖, as in Theorem 4.1, and the two fibrations are smoothly

equivalent.

In [221] Oka also uses toric geometry to get a resolution of the corresponding
singularity, in analogy with the complex case (see for instance the book [219]).
He then uses this to study the topology of the links, as well as the topology of
the Milnor fibers. Oka has subsequently studied and published various articles on
the subject. We list some of them ([220–223]), but there are several more, with
important results that cover a wide spectrum of topics, from intersection theory to
contact structures.

16. Linear actions, intersections of quadrics, and LVM manifolds

The motivation in [248] for studying the twisted Pham–Brieskorn singularities
comes from the pioneering work [169] by S. López de Medrano on intersections of
quadrics and the space of Siegel leaves of holomorphic linear flows. In fact, notice
that if ξ is the holomorphic vector field in C

n defined by

ξ(z) = (λ1z
a1

σ(1), . . . , λnz
an

σ(n)) , λi ∈ C
∗,

where σ is a permutation of the set {1, . . . , n}, then the set of points where the
Hermitian product 〈ξ(z), z〉 vanishes is the mixed variety in Cn defined by

(16.1) Vξ := {λ1z
a1

σ(1)z̄1 + · · ·+ λnz
an

σ(n)z̄n = 0} .

Relabelling the variables (z1, . . . , zn), and assuming all ai > 1, we arrive at the
twisted Pham–Brieskorn polynomials (up to the λi’s). Notice that the variety
defined in (16.1) is the set of points where the leaves (or solutions) of the vector
field ξ are tangent to the foliation in C

n by all the spheres centered at 0, union 0
itself.

If the exponents ai are all 1, the vector field is linear. And if the twisting σ is
the identity, then ξ is a linear diagonal vector field with eigenvalues λ1, . . . , λn. In
this case one has

〈ξ(z), z〉 =
n∑

i=1

λi|zi|
2 ,

and the variety Vξ in (16.1) is the intersection of the two real quadrics below,
corresponding to the real and the imaginary parts

Re(

n∑

i=1

λi|zi|
2) = 0 and Im(

n∑

i=1

λi|zi|
2) = 0 .

We say that ξ is in the Siegel domain if the convex hull of the λi in C contains the
origin 0; otherwise ξ is in the Poincaré domain; see Figure 7.

When ξ is in the Poincaré domain, it is easy to show that the variety Vξ actually
consists only of the point 0. So we will restrict our discussion from now on to linear
vector fields in the Siegel domain.

It is known that the equality, and even real dependence, of two eigenvalues of F
complicates the topology of F and VF very much. Therefore, one usually assumes
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Figure 7. Linear vector fields in the Poincaré and Siegel domains,
respectively. The curved arrow points into the space of Siegel
leaves.

the following generic hyperbolicity hypothesis. Any two eigenvalues are independent
over R:

(16.2) i 	= j ⇒ λi /∈ Rλj ∀ i, j = 1, . . . , n ,

So we now let F be a linear vector field in the Siegel domain satisfying (16.2). It is
clear that a point z ∈ Cn − 0 is in VF iff the restriction of the real function d(z) =
‖z‖2 =

∑n
i=1 |zi|

2 to the leaf Lz through z has a critical point at z. Furthermore,
as noted in [57, Section 3], the fact that the solutions of F are parameterized by
exponential maps implies that the leaves of F are concave. Thus, if a leaf L meets
V ∗
F , then it has a unique point in VF , and it is the point in L of minimal distance

to 0 ∈ Cn. Such a leaf is called a Siegel leaf. It is a copy of C embedded in Cn

and can be characterized by its unique point in VF . Furthermore, the fact that the
intersection L ∩ VF of each leaf that meets VF is at a local minimal point in L,
implies that L∩VF is a transverse intersection. By the flow-box theorem for complex
differential equations, this means that we have at each z ∈ V ∗

F a neighborhood of
the form Uz ×D2, where Uz is a disc of real dimension 2n− 2 and the second factor
denotes small discs in the leaves. It follows that V ∗

F is a smooth real submanifold
of Cn of codimension 2. In fact VF is a real analytic complete intersection in Cn,
and the union W = V ∗

F × C of all the Siegel leaves of F is an open subset of Cn

that can be identified with the total space of the normal bundle of V ∗
F .

It is shown in [57] that W is actually dense in C
n. It is an exercise to see

that VF is globally embedded as a cone with vertex at 0 and base the intersection
M = VF ∩ S2n−1 with the unit sphere, which is the link of the corresponding
singularity.

We summarize part of the above discussion in the following theorem, which
rephrases results in [57].
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Theorem 16.3. Let F (z) = (λ1z1, . . . , λnzn) be a linear vector field in the Siegel

domain satisfying the hyperbolicity condition (16.2). Then the real analytic variety

VF = { z ∈ C
n |Re (

n∑

i=1

λi|zi|
2) = 0 } ∩ { z ∈ C

n | Im (
n∑

i=1

λi|zi|
2) = 0 } ,

is a complete intersection of real codimension 2 with an isolated singularity at 0,
and the regular points of VF parameterize the Siegel leaves of F .

Notice that one has the mixed function defined by
(
Re (

∑n
i=1 λi|zi|2),

Im (
∑n

i=1 λi|zi|2)
)
, which determines the complete intersection germ in Theorem

16.3. It is easy to see that its discriminant ΔF consists of the n half-lines in C de-
termined by the eigenvalues λi. These split C into n-sectors and, just as in Example
13.6, one has a Milnor–Lê fibration over each sector. The topology of the Milnor
fibers over the various sectors is determined in [171]. In [172] it is shown that the
fibers over points in the discriminant necessarily are singular. This is related with
a problem studied by C. T. C. Wall [275] in relation with the topological stability
of smooth mappings.

The topology of the link of these singularities is studied in [57] when n = 3 and
in [169, 170] for n > 3. For n = 3, the link is always a 3-torus S1 × S1 × S1. For
n > 3, the link is always a connected sum of products of spheres determined by the
geometry of the polytope spanned by the eigenvalues of F .

These constructions extend to sets of m commuting vector fields on Cn, m ≪ n.
This is studied in [173, 184, 185]. A remarkable point is that in all these cases,
the manifold V ∗

F := VF \ {0} has a canonical complex structure. In fact, under
the appropriate hyperbolicity condition, V ∗

F is a smooth submanifold of Cn of real
codimension 2m; the leaves of F are transversal to V ∗

F everywhere, and this equips
V ∗
F with a canonical complex structure, by a theorem of Haefliger in [127]. We

remark that V ∗
F is not embedded in Cn as a complex submanifold.

This all is very surprising: for instance, consider the case n = 3 and m = 1. One
has that VF is a real analytic singularity with a canonical complex structure away
from 0 and the link is S1 × S1 × S1. Then VF is a real analytic complete intersec-
tion with a canonical complex structure on its regular part V ∗

F , but VF cannot be
complex at 0 because the 3-torus cannot be the link of a complex singularity, by
[259].

The complex manifolds V ∗
F one gets in this way are equipped with a canonical

C∗-action, and the quotient V ∗
F /C

∗ is a compact complex manifold. These are
known as LVM-manifolds (see [186]), and they are a special class of the so-called
moment-angle manifolds, with remarkable geometric and topological properties (cf.
[23, 110]).

It is also interesting to determine how the topology of the singularities defined as
above varies as we pass from one component in the Siegel domain to another one,
i.e., as we break the weak hyperbolicity condition. This is beautifully answered in
[35]. This is a wall-crossing problem as the authors explain, and they show that
crossing a wall means performing a precise surgery, which they describe. From the
viewpoint of singularities, what we do when crossing a wall is to put two complete
intersection singularities in a one-parameter family of singularities which are all
complete intersections, except that they bifurcate when crossing the wall.
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[13] R. N. Araújo dos Santos, Equivalence of real Milnor fibrations for quasi-homogeneous sin-
gularities, Rocky Mountain J. Math. 42 (2012), no. 2, 439–449, DOI 10.1216/RMJ-2012-42-
2-439. MR2915500 ↑325
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Math., Birkhäuser/Springer, Cham, 2017, pp. 77–104. MR3706214 ↑328

[65] J. L. Cisneros-Molina, J. Seade, and J. Snoussi, Refinements of Milnor’s fibration
theorem for complex singularities, Adv. Math. 222 (2009), no. 3, 937–970, DOI
10.1016/j.aim.2009.05.010. MR2553374 ↑294, 295, 325

[66] J. L. Cisneros-Molina, J. Seade, and J. Snoussi, Milnor fibrations and d-regularity
for real analytic singularities, Internat. J. Math. 21 (2010), no. 4, 419–434, DOI
10.1142/S0129167X10006124. MR2647448 ↑317, 323, 324, 325

[67] J. L. Cisneros-Molina, J. Seade, and J. Snoussi, Milnor fibrations and the concept of
d-regularity for analytic map germs, Real and complex singularities, Contemp. Math.,
vol. 569, Amer. Math. Soc., Providence, RI, 2012, pp. 1–28, DOI 10.1090/conm/569/11241.
MR2934587 ↑321, 325

[68] J. L. Cisneros-Molina, A. Menegón, J. Seade, and J. Snoussi, Fibration theorems and d-
regularity for differentiable map-germs with non-isolated critical value, preprint (2017).
↑321, 322, 325, 326

[69] O. Collin and N. Saveliev, A geometric proof of the Fintushel-Stern formula, Adv. Math.
147 (1999), no. 2, 304–314, DOI 10.1006/aima.1999.1842. MR1734525 ↑316

[70] R. de Souza Martins and A. Menegon, Milnor–Lê type fibrations for subanalytic maps,
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[73] I. V. Dolgačev, Automorphic forms, and quasihomogeneous singularities (Russian),
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France, Paris, 1995, pp. Exp. No. 314, 13–32. MR1610436 ↑286, 287

[135] K. Inaba, On the enhancement to the Milnor number of a class of mixed polynomials, J.
Math. Soc. Japan 66 (2014), no. 1, 25–36, DOI 10.2969/jmsj/06610025. MR3161391 ↑328

[136] K. Inaba, On deformations of isolated singularities of polar weighted homogeneous mixed
polynomials, Osaka J. Math. 53 (2016), no. 3, 813–842. MR3533471 ↑328

[137] K. Inaba, Topology of the Milnor fibrations of polar weighted homogeneous polynomi-
als, Manuscripta Math. 157 (2018), no. 3-4, 411–424, DOI 10.1007/s00229-018-0998-z.
MR3858409 ↑328

[138] A. Jacquemard, Fibrations de Milnor pour des applications réelles (French, with Italian
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[170] S. López de Medrano, Topology of the intersection of quadrics in Rn, Algebraic topology
(Arcata, CA, 1986), Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 280–292,
DOI 10.1007/BFb0085235. MR1000384 ↑334
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[230] A. Parusiński and P. Pragacz, Characteristic classes of hypersurfaces and characteristic
cycles, J. Algebraic Geom. 10 (2001), no. 1, 63–79. MR1795550 ↑306
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