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ABSTRACT

Wennström, M., 2002. On MIMO Systems and Adaptive Arrays for Wireless Com-

munications: Analysis and Practical Aspects, 291 pp. Uppsala. ISBN 91-506-

1619-6.

This thesis is concerned with the use of multiple antenna elements in wireless communica-

tion over frequency non-selective radio channels. Both measurement results and theoretical

analysis are presented. New transmit strategies are derived and compared to existing trans-

mit strategies, such as beamforming and space time block coding (STBC). It is found that

the best transmission algorithm is largely dependent on the channel characteristics, such

as the number of transmit and receive antennas and the existence of a line of sight compo-

nent. Rayleigh fading multiple input multiple output (MIMO) channels are studied using

an eigenvalue analysis and exact expressions for the bit error rates and outage capacities

for beamforming and STBC is found. In general are MIMO fading channels correlated and

there exists a mutual coupling between antenna elements. These findings are supported by

indoor MIMO measurements. It is found that the mutual coupling can, in some scenarios,

increase the outage capacity. An adaptive antenna testbed is used to obtain measurement

results for the SIMO channel. The results are analyzed and design guidelines are obtained

for how a beamformer implemented in hardware shall be constructed. The effects of non-

linear transmit amplifiers in array antennas are also analyzed, and it is shown that an array

reduces the effective intermodulation distortion (IMD) transmitted by the array antenna

by a spatial filtering of the IMD. A novel frequency allocation algorithm is proposed that

reduces IMD even further. The use of a low cost antenna with switchable directional prop-

erties, the switched parasitic antenna, is studied in a MIMO context and compared to array

techniques. It is found that it has comparable performance, at a fraction of the cost for an

array antenna.
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Chapter 1
Introduction

WIRELESS systems are now popular worldwide to help people and machines

to communicate with each other irrespectively of their location. So far,

using a cellular system is by far the most common wireless method to access data

or to perform voice dialling. But in a near future, we will be surrounded by a

numerous of options to set up an unwired connection over the radio interface. One

of the slogans for the fourth generation wireless communications system (4G) is

“always best connected”, meaning that your wireless equipment should connect to

the network or system that at the moment is the “best” for you. Various connections

ranges from satellites that provides low bit rates but global coverage and cellular

systems with continental coverage to high bit rate local area networks and personal

area networks with a maximum range of a few to a hundred meters. If these systems

should co-exist, then we would obtain a crowded frequency spectrum, since there

are many different actors that wants their share of the limited frequency resource.

To use a signalling strategy that is spectrally efficient is thus of utmost importance.

The current trend to achieve high spectral efficiency is by utilizing adaptivity in

the ever changing radio environment and sources of interference. Adaptivity on the

physical layer can be used in all possible dimensions: Time, frequency, power and

space. Adaptivity can also be used on higher signalling layers to boost performance

even further; an example is multi-user scheduling.

This thesis is devoted to the physical layer of wireless communication systems

and will focus mainly on the adaptive utilization of the space dimension. Space

utilization is possible through the use of multiple antenna elements arranged in an

array, for the transmission and/or reception of the signals. Or, in some cases a

single antenna element that has several polarizations or modes is used to obtain

polarization or angle diversity. In the mid-1990s, the terms “smart antennas” and

1
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“adaptive antennas” were introduced since through signal processing, the array

antenna can be made adaptive, and in a smart manner change its transmission or

reception characteristics when the radio environment changes.

Using an array of antenna elements to improve a wireless connection is an old

technique, even used by Guglielmo Marconi in 1901 to increase the gain of the

Atlantic transmissions of Morse codes [1]. Marconi used four 61 meter high tower

antennas arranged in a circular array in Poldhu, England to transmit the Morse sig-

nal for the letter “S”, the distance 3425 km to Signal Hill, St. John, Newfoundland.

Today, array antennas in wireless communication systems are used to improve per-

formance in several ways, not just for range improvement. Systems with array

antennas in commercial operation have been reported for GSM networks [2, 3],

fixed broadband wireless access networks (BWA) [4] and 3G CDMA networks

[5]. A numerous of field trials with testbed antenna arrays have also been reported,

see [6–12] among others.

This trend in wireless communications has been possible mainly through the

advents of signal processing, digital signal processors and high speed ADC. The

main arguments today, for using multiple antennas when transmitting over a wire-

less link are:

Array gain Due to the use of multiple antennas, the antenna gain is increased and

this leads to an increased range and coverage. This is useful in remote areas

with low population. A large area can thus be served with less basestations.

Alternatively, the transmit power of the mobile units can be reduced due to

the increased gain, or sensitivity, of the receiving basestation antenna array.

Interference suppression By using the spatial dimension provided by multiple

antenna elements, it is possible to suppress interfering signals in a way that is

not possible with a single antenna. Hence, the system can be tuned to be less

susceptible to interference and the distance between basestations using the

same time/frequency channel can be reduced, which is beneficial in densely

populated areas. This leads to a system capacity improvement.

Spatial diversity Multiple antennas can also be used to counteract the channel

fading due to multipath propagation. Sufficiently spaced multiple anten-

nas at the receiver gives copies of the transmitted signal that has propagated

through channels with different fading. The probability that all signal copies

are in a deep fade simultaneously is small. Thus, spatial diversity increases

the robustness of the wireless link and this can be utilized to obtain a higher

data throughput or to decrease the transmission power. A link capacity im-

provement is thus obtained.
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Figure 1.1: The concept of (a) SISO and (b) MIMO systems. A MIMO system has

an additional mapping Π and de-mapper Π−1 which can be optimized to decrease

BER or increase spectral efficiency of the wireless link.

Transmitter localization A receiver array antenna can be used to localize the

transmitter, just as we can use our both ears to localize the source of a sound

in a room without using our eyes. This has application in positioning ser-

vices and emergency call localization.

Systems consisting of a transmitter, radio channel and receiver are often catego-

rized by their number of inputs and outputs. Multiple inputs or outputs to a channel

are realized as multiple antennas, polarizations or antenna modes. The trivial con-

figuration is a single antenna at each side of the radio channel, hence a single input

and single output system commonly abbreviated as a SISO system. With the use

of multiple antennas on either or both sides of the wireless link, MISO, SIMO and

MIMO systems can be defined in a similar manner.

The main difference between a SISO wireless communication system and a

MIMO system with nt transmit antennas and nr receive antennas is the additional

moment of mapping from a single stream of data symbols to nt streams of symbols

and the corresponding inverse operation at the receiver. This is illustrated in Figure

1.1 where the mappings1 are denoted by the blocks Π and Π−1.

The MIMO definition is the most general and contains the SISO, SIMO and

1The majority of MIMO systems can be described by the concept illustrated in Figure 1.1. How-

ever, there exists methods where the bit to symbol mapping and symbol to antenna mapping cannot

be separated as in Figure 1.1(b).
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MISO systems as special cases. The fundamental problem is, how shall the map-

pings Π and Π−1 be designed to optimize the performance of the wireless link ?.

Performance might be expressed in the following entities

Bit rate The goal is to provide the highest possible bit rate per unit bandwidth.

This is often defined as the spectral efficiency. The ultimate limit or highest

possible bit rate that can be achieved, with arbitrarily low bit error probability

in a Gaussian noise channel2, was derived by Shannon and is sometimes

used as a reference. In cellular systems, the spectral efficiency is sometimes

defined as the number of transmitted bits per bandwidth per unit area of

coverage.

Reliability Often conflicting with high bit rate is the reliability or robustness of the

transmission which can be measured using the average bit error rate. Since

the radio channel is time varying (unless the mobile is standing still), it is

important to choose a communication strategy that can withstand the fading

dips in the received SNR caused by the multipath propagation.

Complexity As one end of the wireless link might be battery powered, it is im-

portant to have low complexity mappings or inverse mappings since an al-

gorithm with higher complexity will be more power consuming. Hence, it

is often desirable to design the transmission/reception schemes so that the

complexity is non-symmetric, locating the low complexity algorithms at the

battery powered side. Hence, the mappings Π, P i−1 are usually different on

different sides of the channel in a duplex system.

The objectives above are often mutually conflicting and the system designer must

carefully choose a trade-off, including the economic and the mobility aspects as

well.

An important factor that have impact on the mapping Π in Figure 1.1 is knowl-

edge of the instantaneous MIMO channel parameters at the transmitter side. This

divides the mapping Π into two subclasses, one with channel state information

(CSI) at the transmitter and one without. CSI at the transmitter requires in most

cases a feedback channel, which consumes system bandwidth, but improves ro-

bustness and spectral efficiency. Hence, the possible use of a feedback channel

is another tradeoff that must be considered. The mappings Π and Π−1 are some-

times implemented in hardware, which gives a system with lower computational

complexity. This will degrade the performance somewhat compared to a software

solution and the degradation depends on the channel scenario. This is further ex-

plored in Chapter 5.

2If the time delay is not a matter of concern.
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A simple example is now given to illustrate how the mappings Π and Π−1 can

be constructed in the case of a MIMO system.

EXAMPLE 1.1

Assume that a person is using a portable computer that has a wireless connection.

The portable computer is assumed to be equipped with two antennas and it is

currently connected to a base-station which also has two antennas, hence, we

have a 2 × 2 MIMO system. Due to reflections and scattering of the transmitted

signals from the base-station, the received signals at the computer antennas will

be a superposition of many reflected signals that sometimes add constructively

and sometimes destructively. This is called multipath fading. Furthermore, since

the environment (cars, people,..) around this person is not stationary, the channel

between a transmitter antenna and a receiver antenna will be time-varying. We

will now compare different transmission and reception strategies (different Π and

Π−1), that can be used in this simple example. These are the spatial multiplexing,

the space time block coding and the beamforming methods, where beamforming

requires CSI at the transmitter.

Assume that the symbol to be transmitted from the base-station at time n is

s(n), where |s(n)| = 1. Write the received and transmitted signals as 2 × 1
vectors y(n) and c(n) respectively and H as the 2 × 2 channel matrix, which is

assumed constant during the time it takes to transmit at least two transmit vectors

c(n), c(n + 1). The channel matrix H is assumed to be known at the receiver

through an estimation process, utilizing for instance a training sequence in the

transmitted data. Then the MIMO input-output relation can be written as

y(n) = Hc(n) + v(n) (1.1)

where v(n) is the 2 × 1 receiver noise vector which is assumed to be white in

space and time with covariance matrix σ2
nI.

Spatial Multiplexing

If spatial multiplexing is used, then the mapping Π is obtained by first de-multiplexing

the incoming data stream s(n) into two data streams, se(n) and so(n). This can

be made by for example directing all symbols with even index n into se(n) and

odd index n into stream so(n). Then the transmission vector is created as

c(n) =

√
PT

2

[
se(n)
so(n)

]
(1.2)
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where the factor

√
PT
2 ensures that the total transmitted power is PT . The two

data streams are then transmitted on separate antennas and the received signals

on the two receive antennas becomes

y1(n) =

√
PT

2
{H11se(n) + H12so(n)} + v1(n)

y2(n) =

√
PT

2
{H21se(n) + H22so(n)} + v2(n) .

(1.3)

One way to recover the transmitted signals is to multiply the received vector,

y(n), with the pseudo-inverse, H† △
= (H∗H)−1H∗, of the channel matrix. This

is called zero-forcing (ZF) equalization and yields

ĉ(n) = H†y(n) = H†Hc(n) + H†v(n) . (1.4)

Since H in this example is 2× 2, H†H = I and the channel impact on the trans-

mitted vector is removed. Note that the receiver noise vector v(n) is multiplied

by the pseudo inverse of the channel matrix. This leads to noise amplification

which can destroy the possibility to detect c(n) correctly. The SNR for the ZF

receiver is

SNRZF
k =

PT

2σ2
n [H∗H]−1

kk

(1.5)

where k = 1, 2 gives the SNR for the two subchannels.

Noise amplification is a problem with spatial multiplexing transmission strate-

gies, although better methods exists, such as the minimum mean square error

(MMSE) receiver, which balance the error in channel equalization and noise am-

plification in an mean square error optimal way. Furthermore, additional anten-

nas on the receiver side of the channel reduces the probability that the channel

matrix H is ill conditioned. The benefits of spatial multiplexing with two trans-

mit antennas is that two symbols are transmitted per transmitted vector, so the

bit rate is high. In the general case with nr receive and nt transmit antennas,

min(nr, nt) symbols can be transmitted per transmit vector c(n).

Space-time block coding

When space-time block codes (STBC) are used in this 2 × 2 example, the map-

ping, Π, of the data sequence is performed over two consecutive transmit vectors



7

c(n), c(n + 1) as

c(n) =

√
PT

2

[
s(n)

s(n + 1)

]

c(n + 1) =

√
PT

2

[
−s∗(n + 1)

s∗(n)

]
.

(1.6)

The reason for this mapping will be explained in Chapter 2. Since two symbols

are transmitted per transmit vector, but twice, the total equivalent bit rate is 1

symbol per transmit vector c(n). The receive vector y(n) has the components

y1(n) =

√
PT

2
{H11s(n) + H12s(n + 1)} + v1(n)

y2(n) =

√
PT

2
{H21s(n) + H22s(n + 1)} + v2(n)

y1(n + 1) =

√
PT

2
{−H11s

∗(n + 1) + H12s
∗(n)} + v1(n + 1)

y2(n + 1) =

√
PT

2
{−H21s

∗(n + 1) + H22s
∗(n)} + v2(n + 1) .

(1.7)

With this particular structure on c(n), c(n + 1), also called the Alamouti code

[13], the receiver (de-mapper Π−1) takes the form

ŝ(n) =H∗
11y1(n) + H12y

∗
1(n + 1) + H∗

21y2(n) + H∗
22y

∗
2(n + 1)

ŝ(n + 1) =H∗
12y1(n) − H11y

∗
1(n + 1) + H∗

22y2(n) − H21y
∗
2(n + 1)

(1.8)

which, if (1.1) is inserted becomes

ŝ(n) =

√
PT

2

{
|H11|2 + |H12|2 + |H21|2 + |H22|2

}
s(n) + v′(n)

ŝ(n + 1) =

√
PT

2

{
|H11|2 + |H12|2 + |H21|2 + |H22|2

}
s(n + 1) + v′(n + 1)

(1.9)

where v′(n), v′(n + 1) are noise terms that are linear combinations of the ele-

ments in v(n),v(n+1). Note that the detection becomes completely decoupled,

that is, the detection of s(n) is independent of the detection of s(n + 1). It is

possible to write the equations (1.8) as a matrix multiplication which is a lin-

ear operation and this yields a very low complexity receiver for the STBC. The
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SNR:s for the symbols s(n), s(n + 1) are equal and found to be (see Chapter 2)

SNRSTBC =
PT

2σ2
n

{
|H11|2 + |H12|2 + |H21|2 + |H22|2

}

=
PT

2σ2
n

(λ1 + λ2)

(1.10)

where λ1 ≥ λ2 are the two eigenvalues to the matrix HH∗. The benefits of us-

ing this transmission scheme is the reduced variability in the SNR, which gives

a robust transmission channel. The SNR for each symbol is proportional to the

squared magnitude of all 4 channels in the 2 × 2 MIMO system. Hence, this

scheme is a diversity scheme. The drawback compared to spatial multiplexing

is that the bit rate is halved. For larger systems than 2 × 2, the maximum ob-

tainable bit rate is even smaller than a fraction 1/nt of the corresponding spatial

multiplexing rates.

Beamforming

If full CSI is available at the transmitter, for instance, if there is a feedback chan-

nel from the receiver to the transmitter, then beamforming can be utilized. Beam-

forming gives diversity, as the space time block code, but also an array gain, since

the symbols can be transmitted so they combine coherently at the receiver anten-

nas. Denote the transmitter and receiver beamforming vectors as wT and wR

respectively, where the power constraint |wT |2 = PT is applied to the trans-

mit beamforming vector. Then the transmitted vector is found by the following

mapping Π:

c(n) = wT s(n) (1.11)

and the input-output relation is

ŝ(n) = w∗
Ry(n) = w∗

RHwT s(n) + w∗
Rv(n) . (1.12)

If wR and wT are chosen as the principal left and right singular vectors to H re-

spectively, then the receiver SNR is maximized and this relation can be expressed

as

ŝ(n) = λ
1/2
1 s(n) + w∗

Rv(n) (1.13)

where λ1 is the largest eigenvalue to the matrix HH∗. Hence, the SNR for the

beamforming method is

SNRBF =
PT

σ2
n

λ1 . (1.14)

The bit rate for this beamforming method is one transmitted symbol per transmit

vector, the same as for the space-time block coding system described above.
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Figure 1.2: Comparisons of the received signal to noise ratios for a 2 × 2
MIMO system with different transmission/reception strategies. In the simulation,

PT /σ2
n = 100. The time axis has arbitrary scale units, depending on the prod-

uct of the channel Doppler frequency fd and the symbol time Ts, which are not

specified in this example.

Comparisons

We shall now compare the three exemplified methods to construct the mappers

Π and Π−1, using a computer generated fading MIMO channel. The results are

shown in Figure 1.2 where the time scale units on the x-axis depends on the

Doppler frequency of the channel. We see that beamforming has an average 3

dB gain over space time block coding (STBC), due to combining gain, however

it requires CSI at the transmitter. The SNR curve for beamforming and STBC

shows a low variability compared to spatial multiplexing. This is due to the

diversity obtained in these two methods, which ”hardens” the equivalent channel

and makes it more reliable for communication. Furthermore, spatial multiplexing

with the ZF receiver shows the worst performance, but one must remember that

it has the double bit rate compared to the two other schemes and better receivers

for spatial multiplexing than the ZF receiver used in this example exists.

To conclude, the choice of transmission strategy depends on what is most
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important for this particular wireless connection; reliability, hardware complexity

or bit rate. STBC has low complexity since the receiver is linear, and it requires

no CSI at the transmitter. It is reliable due to the diversity property but the bit rate

is low. Spatial multiplexing provides high bit rate, especially for large systems,

it is less reliable but can be made more robust (than shown in this example)

against channel variations at the cost of increased complexity. Beamforming has

diversity gain, hence it is robust against channel fading, but it requires CSI. It has

also an average to high complexity since a singular value decomposition of the

channel matrix must be performed. The bit rate for beamforming is low, equal to

the STBC bit rate, in this example. However, for larger MIMO systems than 2×2,

beamforming has a higher data rate than STBC. It should also be mentioned that

beamforming and STBC can operate over MISO channels as well, so this gives

an option to put all the complexity (several antennas) at one side of the wireless

link, preferably the non-battery powered side.

It shall be noted that the mappings can be designed to take co-channel interference

(CCI) from other users into account. If something is known about the CCI, then

it can be utilized by the mappings Π, Π−1 to improve the link performance. The

array antenna can then not only provide SNR gain, but also signal to interference

(SIR) gain since the interfering signals are suppressed.

1.1 Modelling the wireless MIMO system

In this section the necessary prerequisites for the following chapters of this thesis

are presented. To be able to analyze and improve a wireless communication system,

models for signals, for hardware, and also for the channel are needed.

1.1.1 Signal models

Many digital information-bearing signals are transmitted using a modulated carrier

over a bandwidth constrained channel. If the signal and channel (system) band-

widths are small compared to the carrier frequency, then the system is said to be

narrowband and bandpass. When analyzing communication systems, it is often

unnecessary to model the up- and down-conversion from the baseband to the car-

rier frequency, so one can choose to work with baseband models, or equivalent low

pass signals and channels, which then becomes complex valued. If a signal has the

form

x(t) = A(t) · sin (2πfct + φ(t)) (1.15)
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where fc is the carrier frequency and A(t), φ(t) are the amplitude and phase of the

envelope respectively, then its complex baseband equivalent is x̆(t) where

x(t) = Re
{

x̆(t) · ej2πfct
}

(1.16)

and thus x̆(t) = A(t)ejφ(t). The rest of this thesis uses complex baseband represen-

tation of signals if not stated otherwise and the breve on the variables is dropped.

A guide on how to represent bandpass signals, systems and stochastic processes

can be found in e.g. [14, 15].

Furthermore, the models and signals are often assumed to be discrete in time,

i.e. sampled with an uniform sampling rate, spaced Tsamp, where fs = 1/Tsamp

is the sampling frequency. The continuous time signal x(t) is then replaced by

x(nTsamp) or just x(n), where n is a non-negative integer. In Chapter 6, where

non-linearities in wireless systems are investigated, continuous-time signal models

are used, however, for computer simulations of non-linear systems the continuous-

time signals will be sampled at a sampling rate much higher than the symbol rate.

The choice of sampling frequency when simulating non-linear systems depends on

the accuracy and the desired number of higher order harmonics in the output signal.

1.1.2 Channel models

A casual, linear3, discrete-time multiple-input, multiple-output model is used to

describe the multi-element antenna wireless system with nt transmit antennas and

nr receive antennas. Due to multipath propagation from the transmitter to the

receiver, the received signal at a certain antenna contains a weighted sum of pre-

viously transmitted symbols. Thus, in the most general case, the MIMO channel

model can be written as the infinite series

H(q−1) =
∞∑

n=0

Hnq−n (1.17)

where Hn are matrices with dimension nr × nt that contains complex valued el-

ements that represent the attenuation and phase shift for the received signal with

delay n. The i, j:th element of H is the transfer function from transmitter j to

receiver i. In practice, it is impossible to estimate the infinite number of channel

matrices Hn from a finite number of data, so often a linear model with finite num-

ber of parameters is used, described by a rational function [17] or by limiting the

3This means that the modulation format must also be linear, however some non-linear modulation

formats can be approximated by a linear modulation. See for example the linearization of the GMSK

modulation used in GSM [16].
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number of terms in (1.17) which results in a finite impulse response (FIR) channel

model. The discrete time complex low pass channel model must also incorporate

the effect of the pulse shaping and sometimes also the effect of receive and transmit

filtering.

The most common configuration is that the transmitters and receivers are con-

nected to different antennas. Other options include connections to different polar-

izations of a single antenna [18, 19], different beams in a multibeam antenna [20],

a multimode antenna [21], a switched beam antenna [22], or even combinations of

these [23]. Hence, there are many configurations that all are covered by the chan-

nel model (1.17). Degenerate cases of the MIMO channel model in (1.17) are the

single-input multiple-output (SIMO), multiple-input, single-output (MISO) where

H(q−1) is a column or row vector respectively and the single-input, single-output

(SISO) case where H(q−1) is a sum of scalar terms.

Assume that we would like to model the communication between a terminal

and a base-station or vice versa and NI + 1 multiple users are active and sharing

the common radio space in all dimensions; time, frequency and space, see Figure

1.3. Then NI users are said to be interfering with the particular transmission under

investigation (the desired user) and are termed co-channel interferers (CCI). Us-

ing the channel model (1.17), the MIMO communication system with co-channel

interferers can be written as

y(n) = H(q−1)c(n) +

NI∑

i=1

Hi(q
−1)ci(n) + nT (n) (1.18)

where y(n) is the received signal vector of dimension nr × 1 and nT (n) is the

thermal noise in the receivers. Furthermore, c(n) and ci(n) are the transmitted

vector from our desired user and the interferers respectively, and H(q−1) is the

channel for the desired user. The matrices
{
Hi(q

−1)
}NI

i=1
are the channels for the

interfering users with row dimension nr and a column dimension that matches the

number of transmit antennas of the particular co-channel interferer, i.e. the row

dimension of ci(n).

Definitions for the flat fading model

The general MIMO model (1.17) is now restricted to the flat fading scenario. Also

slow fading is assumed, that is, the channel coefficients are constant during the

transmission of several symbols. Flat fading, or frequency non-selective fading,

applies by definition to systems where the bandwidth of the transmitted signal is

much less than the coherence bandwidth of the channel. Then all the frequency

components of the transmitted signal undergoes the same attenuation and phase
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Figure 1.3: A 4 × 2 MIMO system with NI = 2 co-channel interferers.

shift when propagating through the channel. In the time domain, flat fading corre-

sponds to a channel delay spread which is much less than the symbol time, hence

the channel induces no inter-symbol interference (ISI). This means that flat fad-

ing apply well to environments where there are significant scatterers close to the

transmitter and/or the receiver, and no distant reflectors or scatterers are present.

What is meant by “close” depend on the symbol time. An indoor channel mea-

sured at 1.8 GHz in an office environment at Uppsala University had an estimated

coherence bandwidth of 2.8 MHz, see Section 3.4. So this is the upper limit on

the transmission bandwidth in this particular location to be able to use a flat fading

channel model.

In outdoor channels, the channel delay spread may become too large for the flat

fading assumption to hold. Orthogonal Frequency Division Multiplexing (OFDM)

is one method to overcome the ISI in these wide-band channels. In OFDM, the data

is multiplexed over a large number of sub-carriers that are spaced apart at separate

frequencies. This modulation scheme provides orthogonality between sub-carriers

which simplifies the detection. Furthermore, the bandwidth of each sub-carrier is

smaller than the channel coherence bandwidth so the frequency selective channel

has been turned into a set of parallel flat fading channels, which makes channel

equalization due to ISI superfluous4. OFDM is used in digital broadcasting of

audio and television (DAB and DVB), and broadband indoor wireless systems [24].

4Channel equalization for the sub-carriers due to channel phase shifts and attenuation must still

be performed.
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For multiple antenna systems, OFDM is attractive since multiple received signals

requires a multidimensional equalizer if the channel is frequency selective. This is

very computationally demanding, especially if the number of receive antennas is

large. The flat fading subchannels provided by OFDM simplifies the multi-antenna

equalization dramatically [25]. OFDM is also a viable choice in proposals for 4G

technologies, since it allows the transmitter to be adaptive in both power, frequency

and modulation space [26].

The above discussion motivates the use of a flat fading channel model which

will be used in the rest of this thesis. Hence, (1.17) can be simplified to

H(q−1) = H0
△
=H (1.19)

and by assuming that all CCI channels also can be described by a flat fading model

the corresponding input-output relation can be written as

y(n) = Hc(n) +

NI∑

i=1

Hici(n) + nT (n)
△
=Hc(n) + v(n) (1.20)

where the noise plus interference has been lumped together into a single vector

v(n).

Array with plane wave input

If a plane wave is impinging on the array antenna (considering a SIMO system),

then the channel vector (matrix) h has a particular structure as follows. Assume

that a plane wave is impinging in the horizontal plane from direction θ and define

the complex-valued vector function h = a(θ) as the array response vector or array

manifold. This vector incorporates all the spatial characteristics of the array and is

the response to a unit power signal from the direction θ. Sometimes, the number

of plane waves, or paths is large, due to multipath reflections. Then the channel

vector h can be modelled as

h =

Lm∑

k=1

αka(θk) (1.21)

where Lm is the number of multipaths sharing the same time delay, i.e. the re-

sponse due to a point reflector, αk are the complex amplitude of path k and θk is

the direction to reflector k.

A block fading model

The block fading model applies to systems where several adjacent symbols (a

block) are subject to the same fading value [27]. This could be due to a slow fading
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channel where the channel coherence time (Tcoh) is much larger than the symbol

time (Ts) so the channel is assumed to be constant over N symbol intervals.

Assume that block k has a length of N symbol intervals, and contains ns trans-

mitted symbols. Each symbol belongs to a finite complex constellation X with

Md
△
= |X | symbols. Denote the n:th symbol in the k:th block by s(k)(n) and de-

fined the set S of transmitted symbols in block k as
{
s(k)(n)

}ns

n=1
. Next, form the

nt ×N matrix C(k) containing the ns transmitted symbols
{
s(k)(n)

}ns

n=1
in block

k. Furthermore, coding is assumed to be performed over M blocks, see Figure 1.4,

so each group of M codeword contains Mns symbols, denoted a super-codeword.

The blocks can be separated in time, as in a narrowband TDMA systems or in fre-

quency [27]. An example is OFDM, where each of the M sub-carriers are assumed

to be flat fading and independent. M can also be interpreted as the interleaving de-

lay, so for strictly delay limited systems, M is small5. The input-output relation in

nt

N

Block 1

Block 2 Block M

Figure 1.4: One super-codeword in a block-fading model consisting of a group of

M codewords.

the block fading model can be written as

Y(k) = H(k)C(k) + V(k) k = 1, . . . , M (1.22)

where Y(k) is the block received data matrix and V(k) is the receiver noise plus

interference matrix, both with dimension nr × N . The matrix C(k) is sometimes

called a (space-time) code-word and by proper design, diversity gain, multiplexing

gain and/or coding gain can be achieved.

A set of ns symbols, belonging to S, uniquely defines a code-word matrix

C(k). In many coding schemes the code-word matrix is restricted to be a linear

combination of the real and imaginary part of the input symbols
{
s(k)(n)

}ns

n=1
.

Then a code-word matrix can be written as

C(k) =

√
PT

2nt

ns∑

n=1

[
Ans̄(k)(n) + jBns̃(k)(n)

]
(1.23)

5An example is the half rate GSM standard where M = 4 but N ≈ 100 due to the slow fading.

The mapping over M = 4 blocks is due to interleaving and channel coding.
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where s(k)(n) = s̄(k)(n) + js̃(k)(n) and An,Bn are ns “elementary” matrices of

dimension nt × N that completely specifies the code. The notation (̄·) and (̃·) de-

notes real and imaginary part respectively. Furthermore, PT is the total transmitted

power from the transmitting array antenna. For an example on how the space-time

linear code-word matrix is used, see the expressions (2.68)-(2.70) in Section 2.3.2.

A codeword that can be expressed as (1.23) is called a linear space-time code

word with rate R = (ns/N) log2(Md). Note that rd
△
= log2(Md) is the number of

bits per symbol. The linear model (1.23) incorporates for instance the delay diver-

sity [28], the Alamouti scheme [13], space time block codes [29] and the V-BLAST

spatial multiplexing scheme [30] as special cases as well as beamforming and low

complexity beamforming schemes such as switched beamforming. The linear cod-

ing techniques mentioned above all belong to the family of linear dispersion (LD)

codes recently proposed by Hassibi and Hochwald [31]. LD codes have the form

(1.23) and are designed to optimize the mutual information between the transmit

and receive antennas, at the cost of increased complexity for the transmitter and

the receiver.

Channel State Information

An important factor when deriving transmission strategies for MIMO systems is

the availability of channel knowledge at the transmitter6. The transmitter is said to

have full Channel State Information (CSI) if the instantaneous channel H is known

at the transmitter. Full or partial CSI can be obtained by either a feedback channel

or in a TDD system with time duplex distance shorter than the channel coherence

time by direct applying the CSI from the receive channel estimate7. A feedback

channel is already implemented in some systems for a fast power control8 which

provides the transmitter with partial CSI. In the W-CDMA standard the terms open

loop and closed loop transmission is used for the cases without and with (partial)

CSI at the transmitter respectively.

The feedback data of the channel matrix is often quantized. An interesting

problem is then how to quantize the feedback data in the most efficient way, which

is a problem related to vector quantization. This was further explored in [32] where

the term transmitter side information was used instead of partial CSI at the trans-

mitter. The feedback information can also be constituted of the long term behavior

6In this thesis, it is always assumed that CSI is known at the receiver through channel estimation.
7Also the time from the CSI becomes available at the transmit side to when it is used for the

transmission must be shorter than the channel coherence time for the full CSI to be valid at the

transmitter, to ensure causality.
8In the 3GPP Release 99 standard for W-CDMA, 1 bit per frame is allocated for feedback of

channel information. This implies a feedback signalling rate of 1500 bits per second.
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of the channel such as the channel covariance matrix [19, 33, 34]. Hence the trans-

mitter can transmit in a way that on average is superior to a method that has no

CSI at all. Another example of partial CSI is the trace of the matrix HH∗ [35].

Since this quantity is a sufficient statistic for the probability of error for orthog-

onal space-time block codes, it can be used to minimize the bit error rate for the

connection.

The issue of what and how to feed back partial CSI is still an open problem and

one approach is discussed in Section 3.7 of this thesis. An adaptive approach is

likely to be useful here since the channel can vary between being static for a long

time and be subject to rapid changes in the channel coefficients.

In this context it should be noted that by using differential modulation, the

need for CSI at the receiver can be avoided as well. This was explored in e.g. [36]

for space-time block codes and it was shown that the differential detector has a 3

dB penalty in signal to noise ratio compared to the coherent detector. Differential

modulation will not be covered by this thesis.

Diversity advantage and coding advantage

Finally, two important measures are defined for transmission over a MIMO chan-

nel. These are the diversity advantage, p, and coding advantage, Ac. In [37] they

were defined from the pairwise codeword error probability PEP (see Section 2.1)

by finding an upper bound of the PEP.

Definition 1.1 If the pairwise error probability (PEP), which is the probability

that a transmitted codeword matrix C1 is detected in the receiver as another valid

codeword matrix C2, as a function of the receiver signal to noise ratio (SNR) is

upper bounded as

PEP ≤ Ac · SNR−p (1.24)

in the region SNR≫ 1, then the system is said to have diversity advantage p and

coding advantage Ac.

A system with a diversity advantage p > 1 is said to have diversity gain, since for a

given PEP, a lower SNR is required if compared to a system with diversity advan-

tage p = 1. The coding advantage shifts the upper bound of the PEP up or down

and is the approximate measure of the gain over an uncoded system operating with

the same diversity advantage. Later it will be shown that orthogonal space time

block codes as well as beamforming achieves the maximum diversity advantage

p = nrnt. For a SISO channel with binary modulation, the PEP is the same as the

bit error rate (BER) of the transmission.



18 Chapter 1. Introduction

1.2 Outline and contributions of this thesis

The main contributions presented in this thesis are now briefly presented. Then, a

summary of the publications follows.

One aim of this thesis is to find methods for the transmission over a channel

with multiple antenna elements at either or at both sides. Hence, a novel transmis-

sion strategy, applicable when when CSI is available at the transmitter, is presented,

called eigenmode transmission. It utilizes adaptive modulation to maximize the

data throughput or to minimize the BER. The performance is evaluated theoret-

ically, by assuming a Rayleigh fading channel, and by using the marginal pdf:s

of the eigenvalues to the matrix HH∗, where H is the MIMO channel. These

marginal pdf:s are derived in this thesis, to our knowledge, for the first time. These

pdf:s are also used to analyze the performance of the traditional beamforming

method over a Rayleigh fading channel. Some of the important conclusions of

this analysis is (assuming that the transmitter has full CSI):

• Beamforming is capacity and SNR optimal in a MISO channel.

• Beamforming minimizes the BER in a MIMO channel if no constraints are

put on data throughput rate.

• Eigenmode transmission minimizes BER in a MIMO channel under a data

throughput constraint by assigning more power to “weak” subchannels, if

the subchannels have the same bit rate. Hence, the BER of the subchannels

is balanced.

• Eigenmode transmission maximizes data throughput in a MIMO channel un-

der a target BER constraint by assigning more power to “strong” subchan-

nels. For high SNR, the power distribution between subchannels becomes

becomes approximately equal, which supports an constant-power variable-

rate algorithm.

• Beamforming performance is enhanced in LOS channels.

An analysis of STBC is performed, assuming a correlated Nakagami-m fading

MIMO channel with mutual coupling between antenna elements. It is shown,

somewhat contrary to intuition, that in certain scenarios, the mutual coupling im-

proves the performance of the STBC.

Furthermore, an investigation of the hardware limitations on the performance

of an adaptive antenna array is also made in this thesis. The motivation for this

investigation is that it is useful for engineers who design adaptive antenna arrays to

know how different design choices affects the final performance of the system. The
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design choices can consist of the number of bits used for the ADC or the accuracy

of the phase and amplitude of the array antenna weights. Also effects from non-

linearities in the transmit amplifiers for array antennas are analyzed and a novel

method for reducing the intermodulation distortion is proposed.

An adaptive antenna testbed which was one of the first of its kind, designed

specifically for a digital wireless communication system is used to validate some

of the derived theories. Previously, adaptive array technology was mainly used by

the military in radar applications and most of the work on hardware limitations

was made with the military application in mind. We apply this theory to wireless

communication systems. Also, two new algorithms for array calibration is derived.

In the last chapter, a switched parasitic antenna (SPA) is presented, which

shows very promising results for direction finding (DF) applications. The SPA

has only a single receiver/transmitter but can generate a set of radiation patterns

with different directional properties. We investigate the performance of the SPA in

a MIMO communication scenario and in a DF application.

Next, an overview of the thesis is given and the contributions are summarized,

chapter by chapter.

1.2.1 MIMO systems

The first part of this thesis aims at analyzing and deriving transmission strategies

for MIMO systems over flat fading channels. Both statistical models and measured

channel models are used.

Chapter 2

In this chapter, the MIMO system is introduced and the maximum likelihood de-

tector is derived for the flat fading channel. Performance is compared between

MIMO systems with and without CSI at the transmitter. For the case of full CSI

at the transmitter, an optimal transmission strategy is derived based on the singular

value decomposition of the channel. This leads to an interpretation of the MIMO

system as a set of independent subchannels.

For the case of a target BER, the bit rate is maximized using a Lagrange multi-

plier optimization method and similarly, for the case of a target bit rate, the BER is

minimized. It turns out that maximization of the bit rate is achieved by allocating

more transmit power to the best subchannels through a “water filling” approach. On

the other hand, minimizing BER is obtained by balancing the subchannel BER:s,

giving most power to the subchannel with the poorest quality. Other aspects such

as power constraints and symbol constellation restrictions are also discussed.

Finally, beamforming is discussed as a transmission strategy, which can be used
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when only partial CSI is available at the transmitter, or to reduce implementation

complexity.

Chapter 3

In Chapter 3, the performance of MIMO systems is investigated for Nakagami-m
and Rayleigh fading channels and for measured MIMO channels. It is observed

that if the amplitude of the elements of the channel matrix H has a Rayleigh dis-

tribution, then the matrix HH∗ has a Wishart distribution. This result is utilized in

the analysis. The measured MIMO channels and the comparisons between com-

munication with and without CSI at the transmitter have in parts been presented

in

Mattias Wennström, Mats Helin, Anders Rydberg and Tommy Öberg,

“On the Optimality and Performance of Transmit and Receive Space

Diversity in MIMO Channels” IEE Technical Seminar on MIMO Com-

munication Systems: From Concept to Implementation., London, De-

cember 12, 2001.

Furthermore, space time block codes over flat Nakagami-m fading channels are

examined. A general model is assumed that includes an arbitrary correlation be-

tween the signals at the receiver antennas which can consider both correlation due

to multipath and due to mutual coupling. The result is submitted to

Mattias Wennström, Tommy Öberg, and Anders Rydberg, “Perfor-

mance Analysis of Space-Time Block Codes in Correlated Nakagami

Fading Channels”, Submitted to IEEE Transactions on Wireless Com-

munications.

If partial CSI is available at the transmitter, due to a quantized feedback channel,

then it can be used to improve the space time block code. It is further shown that

knowledge of the receive covariance matrix of the interferers can be used to further

improve the link performance. The transmitter can then avoid to transmit in the

subspace spanned by the interfering signals. This was presented in parts at the

conference

Mattias Wennström and Tommy Öberg, “Transmit Antenna Diversity

in Ricean fading MIMO channels with co-channel interference”,Nordic

Radio Symposium 2001, Nynäshamn.
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1.2.2 Measurements and analysis of a SIMO system

The second part of the thesis emanates from the adaptive antenna testbed for the

GSM-1800 system. Measurement results are presented and analyzed and sugges-

tions for improved calibration algorithms are derived and compared.

Chapter 4

Chapter 4 handles results from measurements on an adaptive antenna testbed devel-

oped at Uppsala University in co-operation with Ericsson Radio Access AB. The

testbed is briefly described and the interference suppression capability in outdoor

field trials is determined to be more than 30 dB. The results were published in

Jonas Strandell, Mattias Wennström, Anders Rydberg, Tommy Öberg,

Olle Gladh, Leonard Rexberg, Erik Sandberg, Bengt-Victor Anders-

son and Mikael Appelgren, “Experimental Evaluation of an Adaptive

Antenna for a TDMA Mobile Telephony System” IEEE International

Symposium on Personal Indoor and Mobile Radio Communications

1997 (PIMRC), Helsinki, September 1-4, 1997, pp.79-84.

and in the conference

Jonas Strandell, Mattias Wennström, Anders Rydberg, Tommy Öberg,

Olle Gladh, Leonard Rexberg and Erik Sandberg, “Design and Eval-

uation of a Fully Adaptive Antenna for Telecommunication Systems”

Antenn 97, Gothenburg, Sweden, May 27-29, 1997, pp. 357-365.

Chapter 5

In Chapter 5, the hardware imperfections are modelled and bottlenecks in the per-

formance of adaptive antenna arrays are identified. Design rules are presented on

how to balance phase and amplitude accuracy, if hardware beamforming weights

are used, for optimal performance. The results were published in

Mattias Wennström, Tommy Öberg, and Anders Rydberg, “Effects of

finite weight resolution and calibration errors on the performance of

adaptive array antennas.” IEEE Transactions on Aerospace and Elec-

tronic Systems, vol.37, no.2, April 2001, pp.549-562

and as a conference paper version in

Mattias Wennström, Tommy Öberg, and Anders Rydberg, “Analysis

of Quantisation Effects in Adaptive Array Antennas” RVK’99, Ra-

diovetenskap och Kommunikation, Karlskrona, Sweden, June 14-17

1999, pp.451-455.
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The analysis presented in these two publications showed that an accurate calibra-

tion of the antenna array is crucial for high performance. It is desirable to calibrate

the adaptive antenna continuously, so two successful auto-calibration algorithms

were derived and then published in

Mattias Wennström, Tommy Öberg, Jonas Strandell, Anders Rydberg

and Erik Lindskog, “Auto-Calibrating Adaptive Array for Mobile Telecom-

munications” IEEE Transactions on Aerospace and Electronic Sys-

tems, vol.36, no.2, April 2000, pp.729-736.

1.2.3 Non-linear transmit amplifiers in MISO systems

The third part of the thesis handles non-ideally linearized multi-carrier power am-

plifiers in MISO systems. The novelty is the analysis of the combination of transmit

non-linearities and array antennas, which previously had only been briefly men-

tioned in the literature.

Chapter 6

In Chapter 6, the effect of non-linear power amplifiers in the transmit chain of

array antenna systems are presented. An analysis and a novel method to perform

channel allocation to reduce intermodulation distortion is presented. It utilizes the

spatial dispersion of the intermodulation interference and is capable of significantly

reduce the intermodulation distortion received by the mobile. The results will be

published in

Mattias Wennström, Tommy Öberg, and Anders Rydberg, “Effects of

Nonlinear Distortion on Switched Multibeam FDMA Systems” IEEE

Transactions on Antennas and Propagation , Accepted for publication,

tentative issue: vol. 50, February 2003.

Furthermore, the case with intermodulation distortion in SISO systems was

analyzed and for the first time, a closed form expression was derived for the outage

probability in a log-normal fading channel. This result was published in

Mattias Wennström, Tommy Öberg, and Anders Rydberg, “Analy-

sis of Intermodulation Distortion on Log-Normal Shadowed WLAN

Channels.”, IEE Electronic Letters , vol.36, no.9, 2000, p.833-834.

Related contributions, although not included in this thesis are publications re-

lated to the analysis of the effects of antenna arrays in combination with non-

linearities on a system level performance. These results were presented in the

following conferences
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Mattias Wennström, Anders Rydberg and Tommy Öberg “Intermodu-

lation Distortion in Switched Multibeam Antennas for Cellular Radio

Systems ”, IEEE International Symposium on Personal, Indoor and

Mobile Radio Communication (PIMRC’2000)., London, September

18-21, 2000, pp.1495-1499.

and in the conference

Mattias Wennström, “Considering Downlink Intermodulation Distor-

tion in Switched Multibeam Antennas for Cellular Radio Systems”

IEEE Vehicular Technology Conference (VTC Fall), Boston, USA,

September 24-28, 2000, pp.1858-1865.

and finally also at the conference

Mattias Wennström, Anders Rydberg and Tommy Öberg “Effects of

Nonlinear Transmit Amplifiers in Smart Antennas in Wireless Sys-

tems” European Wireless ’99, Münich, Germany, October 4-9, 1999,

pp.119-124.

1.2.4 A novel antenna concept - The switched parasitic antenna

The last part of this thesis handles the switched parasitic antenna and an analysis

of its performance in a MIMO context and in a direction finding application.

Chapter 7

In Chapter 7, a switched parasitic antenna is presented and analyzed. By using a

single antenna element connected to a transceiver and surrounding passive antenna

elements, which can be shorted to ground using pin-diodes, directional antenna

patterns are obtained. It is shown that the correlation between patterns are suf-

ficiently low to obtain diversity gain. The SPA uses only one transceiver and is

attractive due to the low cost compared to the antenna array solution which uses

one transceiver per antenna. It is shown that the capacity limit is comparable with

the antenna array and by using a space time block code, the array and the SPA is

compared in terms of bit error rates. The SPA requires a slightly higher SNR to

achieve the same BER as the antenna array. The results was published in

Mattias Wennström and Thomas Svantesson, “An Antenna Solution

for MIMO Channels: The Switched Parasitic Antenna ”, IEEE Sympo-

sium on Personal Indoor and Mobile Radio Communication (PIMRC)

2001,pp.159-163, San Diego, USA, September 2001.
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By exploiting the directional properties of the SPA, it can be used in direction

finding (DF) applications. The DF performance is examined by calculating the

lower bound on the DF accuracy, the Cramer-Rao Bound. It is shown that the SPA

offers a low cost alternative to traditional array solutions of DF problems. The

results of this analysis are presented in

Thomas Svantesson and Mattias Wennström, “High Resolution Di-

rection Finding using a Switched Parasitic Antenna”, IEEE Statistical

Signal Processing Workshop 2001, pp.508-511, Singapore, August 6-

8, 2001.

1.3 Topics for future research

In this thesis, several derived communication methods required full CSI at the

transmitter. This assumption holds in TDD systems, where the CSI is directly

known from the estimated uplink channel. It is certainly an interesting problem to

see how much can be gained in FDD systems, where only partial or delayed CSI

is available at the transmitter due to a feedback channel with low bit rate. In [38],

the open-loop and closed-loop performance were compared for a MISO system in

a Rayleigh fading channel with feedback delay. It was shown that if the Doppler

frequency of the channel is above a threshold, then an open-loop scheme is supe-

rior to a closed-loop (beamforming) scheme. With the results on marginal pdf:s of

the eigenvalues to the matrix HH∗, derived in this thesis, these results could be

extended to MIMO systems.

A related research topic is to investigate the robustness of the derived eigen-

mode transmission strategies to channel estimation errors at the receiver and also to

delayed and quantized CSI at the transmitter. The eigenmode transmission strate-

gies could also be combined with space time codes to improve the equivalent chan-

nel gain, especially for the weakest subchannels. For example, in a 4 × 4 MIMO

system, two subchannels can be used for STBC and two can be used for spatial

multiplexing transmission. Hence, a total rate of 3 symbols are transmitted over

the MIMO channel. In a time-variant channel, the division ratio of the number of

subchannels allocated to spatial multiplexing and to STBC, can be made adaptive,

to always maximize the performance.

Which transmission strategy to use over a MIMO channel, depends on many

varying factors, the CSI availability, the channel characteristics such as coherence

time, LOS/NLOS, orientation of the array etc. The results in this thesis can be used

as a starting point when further exploring this.

An identified problem with the average power constraints in the eigenmode

transmission algorithms, is the large peak-to-mean ratios of the transmitted signal
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power. Hence, to investigate the effect on the system performance, utilizing the

developed theory for nonlinear amplifiers and array antennas in Chapter 6 is an

interesting topic. To our knowledge, the effect of nonlinearities on MIMO systems

has not yet been analyzed.

The pdf:s for the eigenvalues in the uncorrelated Rayleigh fading MIMO chan-

nel, derived in this thesis, has proven to be useful when analyzing the performance

of different applications. An interesting research topic is to try to find the corre-

sponding pdf:s for the Rice or Nakagami-m fading cases. With these at hand, it

would then be possible to compare e.g. beamforming performance for different

values of the Rice K-factor. We have tried to derive this for a Ricean MIMO chan-

nel, but not completely succeeded. If the elements of H have Ricean distributed

amplitudes, then the matrix HH∗ has a non-central complex Wishart distribution

[39]. The joint pdf of the eigenvalues to HH∗ contains hypergeometric functions

with matrix arguments. These can be calculated through a series expansion in zonal

polynomials [39], but the mathematics involved gets too intricate to pursue this any

further. However, for 2×2 and 3×3 systems, there exists closed form expressions

for the zonal polynomials and there might be more results from the mathematics of

complex multivariate statistics that can be used on this problem.

In indoor environments, the channel can become static for quite some time, as

observed in the MIMO channel measurements presented in this thesis. If a receiver

or transmitter, say a laptop computer, has a single antenna, it might be located in a

fading dip. Since the channel coherence time is so long, the user will experience a

low bandwidth, if any, for a long time, which is undesirable. An expensive solution

to this problem is to provide the computer with an additional diversity antenna. A

cheaper solution could be to equip the laptop computer with parasitic antenna el-

ements, perhaps parasitic patch antennas. Now, if the receiver/transmitter antenna

is in a deep fading dip, the parasitic antenna pin diodes are switched until a setting

is found where the fading dip is reduced. Switching parasitic antenna elements

changes the radiation pattern of the antenna and thus, angle diversity is obtained.

How well this idea work in indoor and outdoor environments is an interesting topic

for future research. More work on how to optimally place the parasitic elements

for maximum diversity gain is also needed.
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Chapter 2
Multiantenna systems with general

flat fading channels

IN this chapter the multiple input multiple output wireless communication sys-

tem is discussed in general terms without making any prior assumptions on the

channel except the basic assumptions of flat and quasi-stationary fading (the chan-

nel is constant during the transmission of N symbols). In Chapter 3, the analysis

is extended by assuming more specific channels such as physical channel models,

stochastic channel models, and by using measured channel data.

The chapter is organized as follows: The maximum likelihood receiver is de-

rived in Section 2.1 and it will be used in the subsequent chapters. The fundamental

limits in terms of mutual information and Shannon capacity are analyzed in Section

2.2. Some practical space and time coding methods are then presented in Section

2.3, for the case of no CSI at the transmitter, using results from the derivation of

the ML-receiver in the preceding section. In Section 2.4, CSI is assumed to be

known at the transmitter and a derivation of a novel transmit algorithm is presented

that either maximizes the spectral efficiency at a given target BER or minimizes

the average BER at a target spectral efficiency. Then beamforming is discussed as

a special case of the derived method in Section 2.5. Finally, in Section 2.6 compar-

isons are made and the chapter is concluded.

27
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2.1 The Maximum Likelihood detector for linear space

time codes

The maximum likelihood (ML) detector for linear space-time codes used over a

flat fading MIMO channel with spatially and temporally colored Gaussian noise is

now derived. The derivation gives insight to the problems associated with spatial

multiplexing transmission and the resulting detector is used in other sections of

this thesis. Furthermore, the pairwise error probability (PEP) for the linear space

time code is also studied. The PEP characterizes the performance of a system with

coding over a finite number of blocks, M , and captures the diversity advantage of

a code. In Section 3.7, it is shown how the PEP of an orthogonal space-time block

code can be improved by the use of CSI.

Consider the channel model (1.22), with M = 1 so the block indices k on the

matrices are dropped for notational convenience,

Y = HC + V . (2.1)

The block index is implicit throughout this chapter, if not stated otherwise. This

means that only a single space-time codeword can be examined at a time and that

the channel H is constant during the transmission of the valid space-time codeword

C. The elements of the interferer plus noise matrix V are dependent, i.e. the noise

is correlated in both space and time. To make it possible to analyze this scenario,

we introduce the following vectors and a matrix as follows

C △
= vec(C) (2.2)

Y △
= vec(Y) (2.3)

V △
= vec(V) (2.4)

H △
= IN ⊗ H (2.5)

where ⊗ is the Kronecker product and IN is the N ×N identity matrix. With these

definitions, (2.1) can be expressed as

Y = HC + V (2.6)

where Y,V are nrN × 1 vectors, C is an ntN × 1 vector and the channel matrix

is now described by an nrN × ntN block diagonal matrix. Form the covariance

matrix of the noise vector as

RVV = E {VV∗} (2.7)

where the ∗ denotes complex conjugate transpose (Hermitian transpose). A special

case occur, if the noise plus interference is temporally white. Then

RVV = IN ⊗ Rvv (2.8)
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where Rvv
△
=E {v(n)v∗(n)} is the positive definite unstructured spatial covari-

ance matrix of the interferers plus noise. The temporally white assumption is cus-

tomary, but clearly an approximation since the interference may consist of modu-

lated signals that are not perfectly white.

The derivation of the ML detector begins by first forming a hypothesis test.

Assume that the transmitter chooses between the codewords C0, . . . , CP−1 where

each codeword Ci is uniquely defined by its sequence {si(n)}ns
n=1 ∈ S and where

each symbol belongs to the used complex symbol constellation X , si(n) ∈ X .

Note that a new index i has been introduced to separate different valid codeword

matrices. Mathematically, we have the following multiple hypothesis problem at

the receiver side:

H0 : Y =HC0 + V
H1 : Y =HC1 + V

...

HP−1 : Y =HCP−1 + V

(2.9)

where the codewords Ci are assumed to have equal a priori probabilities. Now,

assume that the elements of the noise plus interference vector V are zero mean and

have a circular complex Gaussian distribution with covariance matrix RVV . The

optimal receiver is then a minimum distance receiver [14, 40]. It is found “after

some calculations” that hypothesis Hi is chosen if the test statistic

Ti(Y) = −1

2
(Y −HCi)

∗R−1
VV (Y −HCi) +

1

2
Y∗R−1

VVY (2.10)

is the maximum statistic of (T0(Y), . . . , TP−1(Y)). This is the maximum likeli-

hood (ML) rule as we select the hypothesis with the largest conditional probability.

Hence, the hypothesis whose signal vector after the channel is closest to the re-

ceived vector Y in the Euclidian sense is chosen.

Equation (2.10) can be expanded as

Ti(Y) = − 1

2
Y∗R−1

VVY +
1

2
Y∗R−1

VVHCi +
1

2
C∗

i H∗R−1
VVY

− 1

2
C∗

i H∗R−1
VVHCi +

1

2
Y∗R−1

VVY

=
1

2
C∗

i H∗R−1
VVY +

(
1

2
C∗

i H∗R−1
VVY

)∗

− 1

2
C∗

i H∗R−1
VVHCi

(2.11)
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and by using the relation z + z∗ = 2Re(z) and the fact that RVV is Hermitian,

(2.11) can be written compactly as

Ti(Y) = Re
(
C∗

i H∗R−1
VVY

)
− 1

2
Ei (2.12)

where Ei = C∗
i H∗R−1

VVHCi.

Note that since H and C are deterministic, the test statistic is a linear combi-

nation of the complex Gaussian vector V . Hence, the test statistic Ti(Y) has also

a Gaussian distribution, since a linear combination of Gaussian distributed random

variables is also Gaussian distributed.

Pairwise error probability

To determine the codeword error probability in general is difficult. Instead, a com-

mon measure for error probability, denoted the pairwise error probability (PEP), is

used which is the probability that a transmitted codeword, say C0, is detected as C1

in the receiver. In other words, the sequence
{
s(0)(n)

}ns

n=1
that defines the space-

time codeword C0 is errornously detected as another sequence
{
s(1)(n)

}ns

n=1
. The

PEP can be used in the codeword design, see Section 3.7, to maximize the Eu-

clidean distance between the received signals under the finite energy constraint by

minimizing the PEP between pairs of codewords. The PEP in this binary case is

PPEP = Pr {C0 → C1|H0} = Pr {T1(Y) > T0(Y)|H0} . (2.13)

Now, define

T (Y) = T1(Y) − T0(Y) = Re
(
(C1 − C0)

∗H∗R−1
VVY

)
− 1

2
(E1 − E0) (2.14)

and since T1(Y) and T0(Y) are Gaussian distributed so is the difference T (Y). The

conditional mean of T (Y) under the hypotheses H0 and H1 differ by sign

E {T (Y)|H0} = − 1

2
Tr
(
OH∗R−1

VVH
)

E {T (Y)|H1} =
1

2
Tr
(
OH∗R−1

VVH
) (2.15)

where

O △
= (C1 − C0) (C1 − C0)

∗ . (2.16)

The derivation of (2.15) is shown in Appendix 2.A on page 68 together with deriva-

tion of the conditional variance, which becomes

Var {T (Y)|H0} =
1

2
Tr
(
OH∗R−1

VVH
)

= Var {T (Y)|H1} . (2.17)
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Note that it obtains the same value as the expectation value under H1.

To summarize, the test statistic T (Y) is Gaussian distributed with mean and

variance given by (2.15) and (2.17) respectively. Under hypothesis H0, the test

statistic
T (Y|H0) − E {T (Y|H0)}√

Var {T (Y|H0)}
(2.18)

is Gaussian distributed with zero mean and variance 1. Hence, the PEP, that is, the

probability that the transmitted codeword C0 is detected as another codeword C1,

can be written as

Pr {C0 → C1|H0} =Pr {T (Y|H0) > 0}

=Pr

{
T (Y|H0) − E {T (Y|H0)}√

Var {T (Y|H0)}
>

0 − E {T (Y|H0)}√
Var {T (Y|H0)}

}

=Q

{
−E {T (Y|H0)}√

Var {T (Y|H0)}

}

=Q

{√
1

2
Tr
(
OH∗R−1

VVH
)
}

(2.19)

where Q(x) is the Gaussian Q-function defined as [14]

Q(x) =
1√
2π

∫ ∞

x
e−λ2/2dλ . (2.20)

The same expression for the PEP is obtained under hypothesis H1. Often, an upper

bound for the Q-function is used, called the Gaussian tail approximation. It is

derived from the Chernoff bound [15] and states

Q(x) ≤ 1

2
e−x2/2, x ≥ 0 . (2.21)

The use of this bound in (2.19) gives

Pr {C0 → C1|H0} ≤ 1

2
exp

{
−Tr

(
OH∗R−1

VVH
)
/4
}

. (2.22)

Even if orthogonal codeword matrices are chosen, that is O = I, the distance

properties of the transmitted codewords are not preserved (unless R−1/2
VV H is uni-

tary) after the channel. Hence, spatial multiplexing, which can be designed to use

orthogonal data streams from the nt transmit antennas, will have poor detection

performance if the matrix R−1/2
VV H is ill conditioned. An example of this is when
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the noise is uncorrelated in time and space, R−1
VV = σ2

nI and the channel has a

strong line of sight (LOS) component. Then H become an ill conditioned matrix

and spatial multiplexing will show bad performance.

The bound (2.22) can be further explored to calculate an upper bound on the

error probability [41], by using the fact that Tr
(
OH∗R−1

VVH
)

= |R−1/2
VV H(C0 −

C1)|2 and the Rayleigh-Ritz theorem [42] for an arbitrary vector e
∣∣∣R−1/2

VV He

∣∣∣
2

|e|2
≥ λmin(H∗R−1

VVH) (2.23)

with equality if e is the minimum right singular vector to R−1/2
VV H. Using this

inequality, the worst case PEP is given by

Pr {C0 → C1|H0} ≤ 1

2
exp

{
−λmin(H∗R−1

VVH)|C1 − C0|2/4
}

. (2.24)

So, the upper bound on PEP depends on the smallest eigenvalue to the matrix

H∗R−1
VVH and if this matrix is rank deficient, the upper bound on PEP is 1/2. The

expected value of λmin is increased if the number of antennas on the receiver side

is increased so that nr > nt. Hence more receive antennas give a reduced PEP and

a more robust transmission.

In Section 2.3.2, orthogonal space time block codes (STBC) are analyzed and it

is shown that STBC performance depends on the average of the eigenvalues instead

of the smallest eigenvalue (under the condition that the noise is white; RVV = σ2I).

This unique property of the STBC makes them robust to channel conditions and

therefore attractive although they have a bit rate which is lower than the bit rate for

a spatial multiplexing transmission scheme [41].

Temporally white noise

To investigate the temporally white noise case, the relations [43, Sec. 2.2]

Tr(BCD) = vec(B∗)∗(I ⊗ C)vec(D) (2.25)

and

(I ⊗ C)−1 = (I ⊗ C−1) (2.26)

will be used. When the noise is temporally white, the noise covariance matrix is

given by (2.8), so the matrix product in (2.12) can be simplified using (2.25),(2.26)

to

C∗
i H∗R−1

VVY = [vec [(HCi)
∗]∗]∗ [I ⊗ Rvv]

−1
vec(Y)

=Tr((HCi)
∗R−1

vv Y)

=Tr(C∗
i H

∗R−1
vv Y) .

(2.27)
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Hence, the test statistic in (2.12) for hypothesis i is

Ti(Y) = Re
[
Tr
(
C∗

i H
∗R−1

vv Y
)]

− 1

2
Ei (2.28)

where Ei = Tr(C∗
i H

∗R−1
vv HCi). The maximum likelihood sequence estimate

(MLSE) is

{ŝ(n)}ns
n=1 = arg max

k

{
Re
[
Tr
(
C∗

kH
∗R−1

vv Y
)]

− 1

2
Ei

}
(2.29)

where {sk(n)}ns
n=1 ∈ S defines a valid, space-time codeword matrix Ck and each

symbol belongs to the set X . The MLSE searches among all possible transmitted

sequences (search over k) for the sequence with which the probability conditioned

on the channel matrix and noise covariance matrix is maximized. This search can

for general space-time codeword matrices Ck be prohibitively lengthy (search over

|X |ns symbol combinations) and also ill-conditioned. However, in Section 2.3.2 it

will be shown how orthogonal space time block codes imposes a special structure

on Ck that decouples the search problem at the receiver into a scalar one (search

over ns|X | symbol combinations).

It is straightforward to show that the test statistic for the pairwise error proba-

bility, T (Y) becomes

T (Y) = Re
[
Tr
(
(C1 − C0)

∗H∗R−1
vv Y

)]
− 1

2
(E1 − E0) . (2.30)

Remark 2.1 Define the matrix

W∗
bf

△
=H∗R−1

vv (2.31)

in equation (2.28). It can be interpreted as the generalized matched spatial fil-

ter that operates on the received matrix Y before correlating with the codeword

Ci and is sometimes called the beamforming vector or the weight vector for the

receiving beamformer since in some cases it can be interpreted as the weighting

coefficients that forms a pointing “beam” in the radiation pattern, towards the

transmitter. Its significance will be seen in later chapters.

The corresponding PEP will in the temporally white noise case be

Pr {C0 → C1|H0} =Q

{√
1

2
Tr
(
(C1 − C0) (C1 − C0)

∗
H∗R−1

vv H
)
}

=Q

{∥∥∥∥
1

4
R−1/2

vv H (C1 − C0)

∥∥∥∥
F

} (2.32)

where in the second step, the relations Tr(AB) = Tr(BA) and Tr(A∗A) = ‖A‖2
F

were used.
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Temporally and spatially white noise

If the noise is temporally and spatially white, Rvv = σ2
nI, then the detector bases

the decisions on the statistics

Ti(Y) = Re [Tr (C∗
i H

∗Y)] /σ2
n − 1

2
Ei (2.33)

where Ei is the received SNR when codeword Ci was transmitted. The PEP be-

comes

Pr {C0 → C1|H0} = Q





√
‖H (C1 − C0)‖2

F

2σ2
n



 . (2.34)

To summarize, the ML detectors for transmission over MIMO channels with space

time block code-word matrices was derived, assuming a correlated circularly com-

plex Gaussian noise model. As in the scalar case [15], the error probability is

expressed using the Q-function, due to the Gaussian assumption. The PEP is a

function of the distance between two code-word matrices and is used in the anal-

ysis and design of space-time codes [41, 44, 45]. It is a difficult problem to find a

set of space-time code-word matrices that have a low average PEP, but if a linear

structure is imposed on the code-word matrix, see equation (1.23), it is possible to

find a set of matrices with attractive properties. This will further be explored in

Section 2.3.2.

2.2 Mutual Information and Channel Capacity

Information-theoretic studies of wireless fading channels have relatively recently

accelerated remarkably. The results inspire researchers to find new, interesting and

better ways to transmit data over the wireless channel [46]. This renaissance has

already lead to interesting results and new coding techniques, such as space time

codes and linear dispersion codes.

The multi antenna wireless communication system is now discussed from an

information theoretic perspective. This discussion motivates the use of specific

transmission techniques, as space time codes, multi mode transmission and single

mode transmission (beamforming) in subsequent chapters. The concept of mutual

information gives a guideline to how well our design performs and how close the

system operates to the ultimate Shannon limit.

For the analysis in this section, it is assumed that no co-channel interferers are

present and that the noise is spatially and temporally white with variance σ2
n. The

transmitter is limited to a maximum output power of PT .
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Rewrite the general block fading MIMO channel model (1.22) vector by vector

as

y(n) = Hc(n) + v(n) n = 1, . . . , N . (2.35)

Recall that the block index k has been dropped for notational convenience. The

vector v(n) contains i.i.d. circular symmetric Gaussian noise samples,

E {v(r)v∗(s)} = δrsσ
2
nInr . Define1

Rcc = E {c(n)c∗(n)} (2.36)

as the covariance matrix of the transmitted signal. Furthermore, we introduce the

following average power constraint on the transmitted signal,

E {c∗(n)c(n)} = Tr {Rcc} ≤ PT (2.37)

where PT is the maximum transmitted power and define the signal to noise ratio2

(SNR) as PT /σ2
n.

Given a deterministic flat fading channel matrix H, define the instantaneous

mutual information as [47, 48]

I = max
Rcc>0

log2 det

{
Inr +

HRccH
∗

σ2
n

}
(2.38)

measured in bit/s/Hz and where Tr (Rcc) ≤ PT . In words, the mutual information

is the information of the event that the transmission of the particular signal vector

c(n) has taken place by the reception of the signal vector y(n) given the model

(2.35) [49].

Ergodic and Non-Ergodic Channel Capacity

So far, the channel matrix H has been treated as a deterministic constant matrix.

Due to channel dynamics, this is not true for any longer period of time. The time-

variant channel is due to movement of the receiver and transmitter but also due to

scattering from moving objects in the channel. We shall in the sequel assume H

to be time-variant. Let H be a stochastic channel matrix, where the elements of H

are random variables. The quasi-stationary block fading model, defined in Section

1Recall that σ2
n stands for the noise variance in this thesis. The subscript n in σ2

n stands for

“noise” and is not an index n.
2Note that this definition of the SNR is somewhat unconventional, since the transmit power is

referred to the transmitter side and the noise power is referred to the receiver side. Hence, this is

the SNR in a channel with channel gain normalized to one so it can be interpreted as the SNR at the

receiver. This is however a common definition in the literature when dealing with information theory

and will also be adopted here.
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1.1.2 is assumed, hence, the channel matrix H randomly generated but constant

during the transmission of one space-time code-word of length N . A new random

channel matrix, independent of the previous ones, is then assumed generated for

each new space-time code-word.

Due to the stochastic nature of the channel matrix H, it becomes necessary

to distinguish between ergodic and non-ergodic channel capacity. In the ergodic

case, there are no time delay constraints on the transmission and we may allow

the number of symbol blocks, M , which the coding is performed over to increase

without bound. Specifically, the time it takes to transmit the M blocks is much

larger than the coherence time of the channel. The ergodic capacity is equivalent

with the capacity formula derived by Shannon.

Definition 2.1 Ergodic channel capacity is the expected value of the mutual infor-

mation,

C = max
Rcc>0,Tr(Rcc)≤PT

EH

[
log2 det

{
Im +

HRccH
∗

σ2
n

}]
, (2.39)

over all possible channel realizations, and is measured in bits per second per Hertz.

Hence, the ergodic channel capacity is normalized with the transmission band-

width. It represents the long term achievable bit rate of the channel, averaged over

the fading distribution, for which the error probability can be driven asymptotically

to zero. Hence, it is the inherent bit rate limit of the channel, and if perfect CSI

is available at the transmitter, it can be achieved by adapting transmission power

and bit rate relative to the channel quality [50]. This will be further explored in

Section 2.4. The capacity in (2.39) was derived assuming no co-channel interfer-

ence (CCI). To take CCI into account, the channel matrix, H, is exchanged for

H̃ = R
−1/2
vv H, where Rvv is the covariance matrix of the noise plus interference

term in (1.20)[51].

The ergodic assumption will not be satisfied in practical communication sys-

tems, especially not in delay constrained applications, such as speech transmission

which must have a small value of M , where M is the number of blocks the coding

is performed over. Hence, the capacity given by Definition 2.1 is too optimistic.

In the non-ergodic case, when M is comparable with the channel coherence time,

other information theoretic measures must be used, and we make the following

definitions:

Definition 2.2 The outage probability, P0, is defined as the probability that the

mutual information I , in equation (2.38) is less than some pre-determined value

CP0 . Hence

P0 = Pr(I < CP0) . (2.40)
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The value CP0 is the outage capacity corresponding to the outage probability P0.

Definition 2.3 Zero outage capacity, C0, or delay-limited capacity is the outage

capacity with the outage probability P0 = 0.

The outage probability is closely related to the codeword error probability, as av-

eraged over the ensemble of codewords and all channel realizations. For block

lengths of around N = 100 symbols, the information outage probability predicts

the word error probability well for good practical codes [45].

The above definitions are reasonable to use as capacity measures when the

transmission is delay limited since, when M and N are small, the coding and

eventually interleaving takes place over a channel matrix H that is just a “snap-

shot” of the underlying stochastic process. Hence, there is a probability P0 that

this particular channel realization is in such a deep fade that the communication

system, operating with CP0 bits/s/Hz will fail to transmit the bits without errors.

The zero outage capacity can be interpreted as the lowest transmission bit rate that

is invariant of the fading. For a SISO system, this corresponds to channel inver-

sion, which then makes the observed channel independent of the fading. Since a

SISO Rayleigh fading channel is not invertible with finite power, the zero outage

capacity is zero in this case.

We now proceed by distinguishing between the two cases with and without full

CSI available to the transmitter. In both cases, the receiver is assumed to have full

CSI.

2.2.1 Mutual information with CSI at transmitter

Assume that in some way, the transmitter has knowledge of the channel matrix

H. To investigate some important features of the channel capacity, the singular

value decomposition (SVD) of the channel and the transmit covariance matrix is

used. This approach has previously been taken in e.g. [47]. Define the SVD of the

channel matrix H as

H = UΛV∗ (2.41)

and for the covariance matrix of the transmit data

Rcc = SDS∗ (2.42)

where U and V are complex unitary matrices of dimensions nr × nr and nt × nt

respectively and Λ is an nr × nt matrix containing the

m
△
= min {nr, nt} (2.43)
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H +c(n)

v(n)

y(n)

λm
1/2 +

λ1
1/2 +

Figure 2.1: Channel model and equivalent channel model by the use of the singular

value decomposition of the channel matrix H.

real non-negative singular values denoted as λ
1/2
1 , . . . , λ

1/2
m on its main diagonal.

With this definition, λi, i = 1, . . . , m are the eigenvalues to the matrix HH∗.

Similarly, S is an nt ×nt square matrix whereas D is a diagonal matrix containing

the singular values of Rcc, here denoted γ1, . . . , γnt respectively. By defining

ỹ(n)
△
=U∗y(n) (2.44)

ṽ(n)
△
=U∗v(n) (2.45)

c̃(n)
△
=V∗c(n) (2.46)

the channel model (2.35) can be reformulated as

ỹ(n) = Λc̃(n) + ṽ(n) (2.47)

where the statistics E {ṽ(r)ṽ(s)∗} = δrsσ
2
nInr and Rc̃c̃ = Rcc are preserved.

Hence (2.35) and (2.47) are equivalent. Since Λ is diagonal with m nonzero diag-

onal elements, we have effectively m parallel and independent transmission chan-

nels. See Figure 2.1.

Using (2.41) and (2.42) in (2.38), the mutual information can be expressed as
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[47]

I = max
S,D

log2 det

{
Inr +

UΛV∗SDS∗VΛ∗U∗

σ2
n

}
(2.48)

under the average power constraint Tr {D} ≤ PT . Note that if S is chosen as

S = V, and since U∗U = Inr ,V∗V = Int we can use the relation

det(I + UAU∗) = det(UU∗ + UAU∗)

= det(U(I + A)U∗)

= det((I + A)U∗U)

= det(I + A)

(2.49)

to rewrite the mutual information as

I = max
D,T r{D}≤PT

log2 det

{
Im +

ΛDΛ∗

σ2
n

}

= max
γi

log2

m∏

i=1

{
1 +

λiγi

σ2
n

}

= max
γi

m∑

i=1

log2

{
1 +

λiγi

σ2
n

}
(2.50)

where λi, i = 1, . . . , m are the eigenvalues to the matrix HH∗ and γi are the nt

eigenvalues to Rcc. Note that if nt > nr, only nr out of the nt singular values

γi are used in calculation of the mutual information I . Hence, these are set to

γm+1 = . . . = γnt = 0 otherwise they will “consume” power that cannot reach

the receiver.

Hence, if the transmitter has CSI, the transmitted signal can be designed so the

covariance matrix of the transmitted signal has the same singular vectors, (S = V)

as the channel. This is sometimes denoted as eigen-beamforming or eigenmode

transmission since the eigenvectors of the channel is used as beamforming vectors.

The MIMO system will, with this transmission strategy, be decoupled to a system

with m parallel, non-interacting subchannels with corresponding gains λ
1/2
i and

the vector

c(n) = VD1/2c̃(n) (2.51)

is transmitted from the nt antennas. Note that if nt > nr then the nt − nr last

elements in c̃(n) must be zero, since only m subchannels (eigenvalues) have non-

zero gain. Similarly, if nt < nr, the nr − nt last elements in ỹ(n) are zero.

The power allocated to each parallel channel, given by the eigenvalues γi are free

parameters which can be chosen to maximize the mutual information. This method
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was derived by Gallager [49] and the optimal strategy is often referred to as water-

filling. In this case, spatial water filling is employed as the power is distributed

over spatial eigenmodes. For a given signal to noise ratio PT /σ2
n, the power γi is

allocated to eigenchannel i, where

γi =

(
µ − σ2

n

λi

)+

i = 1, . . . , m (2.52)

and (x)+ = max(0, x). The “water level” µ is given by the criterion

m∑

i=1

γi = PT . (2.53)

This gives the mutual information of a flat fading MIMO system when CSI is

available at the transmitter

ICSI =
m′∑

i=1

log2

{
µλi

σ2
n

}
(2.54)

where m′ is the number of non-zero power allocations γi. Note that the transmitter

also needs knowledge of σ2
n, the noise power at the receiver, to be able to calculate

the mutual information optimal power allocation.

The mutual information in (2.54) can be achieved by generating random data

sequences with Gaussian and i.i.d. components and having each codeword split

into M blocks of N vectors with nt components each. This gives an optimal

encoder for the constant gain AWGN channel concatenated with an optimal beam-

former, with weighting matrix V, that generates these m parallel subchannels over

the MIMO-channel H [27]. The m channels will have different SNR and hence,

the modulation method should be adapted to the subchannel SNR to optimize the

spectral efficiency or to minimize the BER. This technique will be further explored

in Section 2.4 and in Section 3.6 for a special case of the MIMO channel where the

elements of H are i.i.d. and have Rayleigh distributed amplitudes and uniformly

distributed phases over [−π, π[.
If the distribution of the fading in the channel is known, then it is possible to

calculate the ergodic (Shannon) capacity from Definition 2.1 as

CCSI = EH {ICSI} = Eλ

[
m′∑

i=1

log2

{
µλi

σ2
n

}]
(2.55)

since the water-filling algorithm maximizes the mutual information for every pos-

sible fading state, it will also maximize the ergodic channel capacity. Note that in

(2.55), µ depends on the eigenvalues.
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2.2.2 Mutual information with no CSI at the transmitter

When CSI is not available at the transmitter,no directions in the channels will be

preferred and hence, the transmission covariance matrix is chosen as

Rcc =
PT

nt
I . (2.56)

This corresponds to transmitting independent and equal power signals on each an-

tenna. Maximum capacity (if no CSI is available at the transmitter) is thus achieved

by random codes with independent and circularly symmetric Gaussian distributed

symbols [27]. To obtain this, a stream of data symbols can be scrambled with nt

orthogonal scrambling codes, to obtain the property in (2.56), and then be trans-

mitted from the nt antennas.

The mutual information becomes, from (2.38) (if nr < nt, otherwise HH∗ is

replaced by H∗H)

InoCSI = log2 det

{
Im +

PT

σ2
nnt

HH∗
}

=
m∑

i=1

log2

{
1 +

PT

σ2
nnt

λi

}
(2.57)

bit/s/Hz and the corresponding ergodic capacity is

CnoCSI = EH [InoCSI ] = Eλ

[
m∑

i=1

log2

{
1 +

PT

σ2
nnt

λi

}]
. (2.58)

For any channel distribution, CnoCSI ≤ CCSI . This is obvious, since by adding

CSI at the transmitter, capacity cannot be reduced compared to the no CSI case

because we could always choose not to exploit the CSI. The spatial multiplexing

BLAST code [30] actually achieves the full channel capacity (2.57). The BLAST

code imposes no restriction on the matrix Ck in (1.22) so it can be chosen to fulfill

(2.56). However, BLAST suffers from bad performance unless nr > nt and the

channel is not ill conditioned as was discussed in Section 2.1.

2.2.3 MISO and SIMO systems

A SIMO, H = h∗, and a MISO channel, H = h, yields a matrix HH∗ with only

a single non-zero eigenvalue λ = |h|2. Hence, the mutual information for a MISO

system where CSI is not available at transmitter is

IMISO
noCSI = log2

{
1 +

PT

σ2
nnt

λ

}
(2.59)
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and

IMISO
CSI = log2

{
1 +

PT

σ2
n

λ

}
= ISIMO

noCSI = ISIMO
CSI (2.60)

with CSI at transmitter. So, the difference between the open and closed loop system

in the MISO case can be seen direct in loss of SNR, which can be substantial if nt

is large since then the available transmit power is distributed over many transmit

antennas. In the SIMO case there is no difference in mutual information with or

without CSI at the transmitter since there is only one transmit antenna.

2.3 Communication with no CSI at the transmitter

2.3.1 Spatial Multiplexing

In spatial multiplexing the incoming data stream is split into nt data streams which

are transmitted independently and simultaneously on the nt antennas [30]. The

receiver is able to remove the mixing effect of the MIMO channel and de-multiplex

the nt symbol streams if3 nr ≥ nt. A number of algorithms are possible for this

operation, including e.g. the ML receiver derived in Section 2.1, the linear zero–

forcing (ZF) receiver, the minimum mean square error (MMSE) receivers [52] and

the successive cancellation receiver [30].

Spatial multiplexing is a linear code and can be expressed using (1.23). Since

symbols are not dispersed in time, the space time block code word length, N , is

N = 1. Thus, the code matrices become column vectors. If a real symbol alphabet

is assumed, s(n) = s̄(n), then we obtain ns = nt, N = 1 and

Ai =
√

2
[
0 · · · 0 1 0 · · · 0

]T
, (2.61)

c.f. (1.23), where the figure 1 is in the i:th position. Spatial multiplexing achieves

a high bit rate by transmitting independent symbol streams on each antenna but

suffers from sensitivity of the channel rank [41] and also from the requirement on

the number of receive antennas, nr ≥ nt if we want to transmit independent data

streams on the nt antennas. Hence only MIMO systems can use spatial multiplex-

ing4. The rank sensitivity was seen in (2.24) where the PEP bound was shown

to depend on the smallest eigenvalue λmin to the matrix H∗R−1
vv H. Furthermore,

spatial multiplexing has no built-in spatial or temporal coding so more robust cod-

ing schemes have been found at the expense of reduced bit rate. This motivates the

next section.

3The receiver can uniquely de-multiplex min(nr, nt) symbol streams.
4Sphere decoding finds the ML estimate even if nr < nt, but the computational complexity is

exponential in nt − nr [53].
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2.3.2 Space-Time Coding

Space time coding is a transmit diversity technique that applies to both MISO and

MIMO systems. Hence it is an attractive signalling scheme when the receiver

only has one antenna, due to space and/or cost limitations. Space time coding

introduces spatial and temporal correlation between the signals transmitted from

different antennas in an intelligent manner, to provide diversity at the receiver and

thereby a reliable reception of the transmitted symbols. Hence, a larger symbol

constellation set X can be used to decrease the difference in bit rate somewhat,

compared to spatial multiplexing. One member of the family of space time codes

is the space time trellis code (STTC) that combines the diversity advantage with a

coding advantage. The drawback of the STTC is the detection complexity, since a

Viterbi detector is required and the number of states increases as rnt
d when Md−ary

modulation is used. To avoid this disadvantage, orthogonal space-time block codes

(STBC) have been proposed. They belong to the family of linear codes and the

k:th codeword matrix can thus be described by

Ck =

√
PT

2nt

ns∑

n=1

[
Ans̄(k)(n) + jBns̃(k)(n)

]
. (2.62)

It has been shown that STBC can be combined with an outer trellis code and actu-

ally outperform the STTC with the same number of trellis states (same computa-

tional complexity) and in the SNR region of interest when nr = 1 or 2 [54].

Space time codes require CSI at the receiver, which in FDD systems has to be

estimated using a training sequence. Another option is to use differentially detected

STBC [36] which require no CSI at the receiver but has a performance penalty of

3 dB in SNR.

The ML-detector for the sequence of symbols {s(n)}ns
n=1, derived in Section

2.1, becomes linear and decoupled for orthogonal STBC, as will be shown below.

These properties makes orthogonal STBC attractive since a linear detector implies

a simple algorithm in the receiver. Also the channel estimation process using pilot

symbols becomes trivial since the orthogonal STBC codewords are semi-unitary

(that is, CC∗ = I). Hence, the ML estimate of the channel using training symbols

involves the inverse of the matrix CC∗ [55] which then is trivial due to its diagonal

form. The low complexity receiver makes it possible to put most of the complexity

on one end of the wireless link. A portable unit might only have one antenna and

limited battery power. The basestation can then use classical receive diversity and

STBC transmit diversity since the detection and channel estimation in the mobile

is computationally simple.
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Orthogonal Space-Time Block Codes

We will now discuss how the underlying structure of the orthogonal STBC simpli-

fies the expression (2.33), the test statistic for the ML-detector of linear space time

block codes in temporally and spatially white noise. To simplify the discussion,

assume that the symbol constellation X is unitary, i.e. |s(n)|2 = 1, even though

this is not strictly necessary. The ML-detector for the real part of the transmitted

symbol s(n) is then

ˆ̄s(n) = arg max
s(n)∈X

ReTr {s̄(n)A∗
nH

∗Y} (2.63)

and for the imaginary part of s(n)

ˆ̃s(n) = arg max
s(n)∈X

ReTr {−js̃(n)B∗
nH

∗Y} (2.64)

where the details of these derivations are carried out in Appendix 2.B on page 69.

The derivation relies on the special properties of the matrices Ak and Bk of the

space time block code-word matrix (1.23):

AjA
∗
j =I ∀j

BjB
∗
j =I ∀j

AjA
∗
k = − AkA

∗
j j �= k

BjB
∗
k = − BkB

∗
j j �= k

AjB
∗
k =BkA

∗
j ∀j, k .

(2.65)

These relations were first presented by Tarokh et.al. in [29] using coding theory

and then re-derived by Ganesan and Stoica in [56, 57] using maximum receiver

SNR arguments. It is shown in Appendix 2.B that the symbol estimation of (2.63)

and (2.64) decouples and an equivalent SISO model, as ”seen” by each symbol

s(n) can be derived. The received symbol r(n) at time instant n for the underlying

SISO channel5 can be written, for the real part as

r̄(n) =

√
PT

2nt
‖H‖2

F s̄(n) + ReTr {A∗
nH

∗V} (2.66)

and for the imaginary part

r̃(n) =

√
PT

2nt
‖H‖2

F s̃(n) + ReTr {−jB∗
nH

∗V} . (2.67)

5Note that a whole space time codeword of length N must be received before r(n) can be calcu-

lated.
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The problem of finding matrices that satisfy the relationships (2.65) is non-trivial

and linked to the theory of Radon-Hurwitz matrices [58] and forms the basis of

the design of orthogonal space time block codes. Before the existence of matrices

that satisfy the relations above is discussed, a few definitions related to STBC is

required.

The rate of the code is the number of transmitted symbols per symbol interval,

ns/N which is ns/N ≤ 1 for orthogonal STBC. The STBC is called full rate if

ns/N = 1, since then in N symbol intervals, a maximum of ns = N symbols are

transmitted. Furthermore, the STBC is called minimum delay if N = nt, since this

is the minimum value of N for a code still to be full rate. A drawback of orthogonal

STBC is that full rate code matrices does not exists for all values of ns, N and nt,

i.e. matrices that fulfill the criterions (2.65) does not exist. For a complex symbol

alphabet, eg. QPSK, a full rate, delay optimal STBC exists only for nt = 2 and it

is achieved by the Alamouti scheme [13]

A1 =

(
1 0
0 1

)
,A2 =

(
0 −1
1 0

)
(2.68)

and

B1 =

(
1 0
0 −1

)
,B2 =

(
0 1
1 0

)
. (2.69)

The corresponding code-word matrix for the Alamouti scheme is

C =

√
PT

2

(
s(n) −s∗(n + 1)

s(n + 1) s∗(n)

)
. (2.70)

For nt = 3, 4, codes with rate 3/4 have been found [58]. The key property of or-

thogonal space time block codes is that the modulation matrices Ai,Bj in (2.62) of

the STBC are unitary and pairwise orthogonal, that is, for any weighting matrix Q,

ReTr(A∗
kQAl) = 0 for all 0 ≤ k �= l ≤ ns. It was shown in [59] that modulation

matrices with this property achieves the minimum upper bound on symbol error

probability conditioned on the channel matrix H, without any assumptions on the

statistics of H, or in other words without knowledge of CSI at the transmitter. This

general approach to design orthogonal STBC:s was first presented in [29], although

the Alamouti scheme for nt = 2 antennas was discovered somewhat earlier.

The SISO equivalence of orthogonal STBC

We noted above that the input symbols get decoupled by the orthogonal space time

block code, see also Appendix 2.B. For each transmitted symbol, s(n), the MIMO
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or MISO system can be treated as an equivalent SISO system

r =

√
PT

2nt
‖H‖2

F s + v . (2.71)

In the complex symbol alphabet case, s and r are the 2ns × 1 input and output

signal vectors and v is the 2ns × 1 noise vector. It was shown in [60] that the

noise vector has i.i.d Gaussian zero mean elements with variance σ2
n ‖H‖2

F /2.

This means that the received power of the equivalent SISO system (2.71) is (per

complex dimension) [60]

SNReq =
E
{
‖H‖2

F (
√

PT
2nt

)2|s(n)|2 ‖H‖2
F

}

σ2
n ‖H‖2

F /2
=

PT

σ2
nnt

‖H‖2
F . (2.72)

A SISO system with this SNR has the channel capacity6

C = EH

{
R log2

{
1 +

PT

σ2
nnt

‖H‖2
F

}}
(2.73)

where the factor R = ns/N is the (complex symbol) code rate. If this capacity

is compared to the Shannon capacity of the channel, expression (2.58), then it is

observed that orthogonal STBC equals the Shannon capacity if R = 1 and the

channel has rank one. This can easily be shown by observing that for a rank one

matrix H, the Frobenius norm ‖H‖2
F = λ1, so (2.58) and (2.73) are equivalent if

R=1.

For a channel with arbitrary fading, and multiple transmit antennas, only a

MISO system is guaranteed to have rank one. So orthogonal STBC with a single

receiver antenna can achieve Shannon capacity. A code rate of R=1 can for com-

plex symbol alphabets only be achieved with two transmit antennas. The Alamouti

code used for a 2×1 MISO channel can thus attain the full Shannon capacity. This

is the only orthogonal STBC over a MIMO (MISO) channel that has this property

if CSI is not available at the transmitter.

2.4 Communication when CSI is available at the trans-

mitter

Now, a novel way to transmit in a MIMO channel when CSI is available at the

transmitter is derived. The aim is to approach the channel capacity as promised

6For real symbols C = (R/2) log2

�
1 + 2PT

σ2
nnt

‖H‖2
F

�
.
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by Shannon, see the discussion in Section 2.2.1. However, the Shannon capacity

places no restrictions on the complexity or delay of the transmission scheme which

achieves this capacity. Therefore, a practical transmission scheme is derived using

a combination of adaptive modulation and power waterfilling over the m parallel

spatial eigenmodes of the channel. The idea is inspired by Section 2.2.1 where

it was shown that the input output MIMO channel could be written as a set of m
non-interfering and thus parallel channels, from (2.47)

ỹ(n) = Λc̃(n) + ṽ(n) (2.74)

where c̃(n) is the m × 1 vector of input symbols, ỹ(n) the corresponding m × 1
vector of output symbols and ṽ(n) is the noise vector7. Note that the channel has

been diagonalized using the singular value decomposition (SVD) of the channel

and the left and right singular vectors as receive and transmit weight vectors re-

spectively. The parallel channel power gains are given by the eigenvalues λi to the

Hermitian matrix W
△
=HH∗. The channel H is assumed to be quasi-stationary,

hence (2.47) holds during a block of symbols of length N . See also the block fad-

ing model in Section 1.1.2. Thus the SVD of the channel that leads to Λ in (2.47)

is valid for N symbols.

How the available transmit power PT is distributed over the m channel eigen-

modes depends on the particular design goal, such as e.g. high bit rate or low BER.

Utilization of only one of the m eigenmodes is equivalent to beamforming (this

eigenmode then receives all power PT ), see Section 2.5.

Compared to SISO channel adaptive modulation techniques [50, 61, 62], the

m parallel channels of the MIMO channel gives us more degrees of freedom to

adapt the bit rate and power to mitigate the channel fading. Although rate8 adap-

tion over the MIMO channel is new, the problem formulation is similar to bit-

loading of discrete multitone modulation (DMT) over wired lines such as twisted

pair connections [63, 64]. It is also similar to rate adaption in OFDM, see [65].

In [66], adaptive modulation over a Rayleigh fading SIMO channel was investi-

gated for different diversity combining methods. An interesting conclusion was

that adapting rate and power simultaneuously gives a small improvement over just

rate adaption and constant power transmission.

The authors of [67] presented, independently of the work presented here, a

joint optimal precoder and decoder for a MIMO channel where the CSI is available

at the transmitter. In their work a minimization of the weighted sum of symbol

errors over the subchannels under a peak power constraint and with continuous

number of bits per symbol allocations (unrestricted modulation constellation sets)

7The nt − m zero elements in c̃(n) is removed so this vector is of dimension m × 1.
8“Rate” in the meaning bit rate.
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is performed. The work presented in this section extends parts of the work in [67]

to include average power constraints, BER minimization and restricted modulation

constellation sets as well. Furthermore, in [67], the Rayleigh fading channels were

obtained through Monte Carlo simulations. In Chapter 3, expressions are derived

for the pdf:s of the subchannel gains, assuming a Rayleigh fading MIMO channel.

These are used here to analytically examine the performance instead of performing

a Monte Carlo simulation.

Some practical constraints are linked to the design of rate adaptation systems.

For instance, the channel must not change so fast that the CSI becomes invalid,

which is determined by the maximum Doppler frequency of the channel9. This

will also determine the block length N , which defines the length of the interval

where the channel is assumed to be time-invariant.

In the following derivations we shall assume that the channel is known without

errors at the transmitter and that the power and the bit rate can be adapted instanta-

neously10. Furthermore, it is assumed that the receiver and transmitter has agreed

on a data transmission rate, that is, a modulation constellation for each utilized sub-

channel. Some of the derived algorithms require the probability density function

(pdf) of the channel gains (eigenvalues to HH∗). In a practical system, these must

be estimated using some identification algorithm. In this section, it is assumed that

the pdf:s are known without errors.

The used power constraint in the derivations is a constraint on the total trans-

mitted power PT , from the antenna array. The power distribution over different an-

tenna elements will depend on the power distribution over channel eigenmodes and

on the channel eigenvectors. Thus, the power amplifiers at each antenna element

must be designed to have a maximum output power PT . Although this scenario,

where all power is transmitted from one out of nt antenna elements is unlikely,

it cannot be ruled out. It is however possible to impose an element-wise power

constraint in addition to the total power constraint. In [57] it was shown that max-

imum SNR at the receiver with element-wise power constraints is achieved when

Rcc ∝ I which is a restriction that leads to a reduction in the maximum data

transmission rate.

Adaptive transmission provides many parameters that can be adjusted relative

to the channel fading. The important factors for the optimization are the bit rate

(or spectral efficiency), the transmit power and the BER. Different optimization

problems occur if average rate11, power and BER, or instantaneous rate, power and

BER, or combinations of average and instantaneous constraints are considered.

9This validity time can be extended using channel prediction.
10The time it takes for the amplifiers to ramp up or down their transmitted power is thus neglected.
11In this section, we use the term rate in the meaning bit rate.
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Also the issue of continuous rate adaption, where the set of signal constellations X
is unrestricted, or a more practical scenario, where only a discrete and finite set of

constellations are available12, are handled in the derivation. Continuous rates lead

to an optimization problem that can be solved analytically. Such a solution give

more insight into the problem.

The optimization can be formulated as one of three objectives

1. Maximize the bit rate subject to constraints on bit error probability and trans-

mission power.

2. Minimize bit error probability subject to constraints on bit rate and transmis-

sion power.

3. Minimize transmission power subject to constraints on bit rate and bit error

probability.

The study in this thesis focus on the two first problems. The effect of channel cod-

ing is not considered. In Section 2.4.2, the bit rate is maximized under an instan-

taneous BER constraint for both unrestricted and restricted symbol constellations.

In Section 2.4.3, the average BER is minimized under average and instantaneous

power constraints and for both unrestricted and restricted constellations.

2.4.1 Preliminaries

Assume that Md-ary modulation is used for the transmission over the MIMO sub-

channels. Hence, rd
△
= log2(Md) bits is mapped onto each symbol in the complex

modulation constellation. We assume square constellations in the following, and

denote the modulation as Md-QAM. Square constellations are used due to their

inherent spectral efficiency and ease of implementation [15].

A variable-rate and variable-power Md-QAM technique for a flat fading MIMO

channel with the transmission bandwidth W is now derived, inspired by the SISO

results in [62]. Assume that subchannel i, where i = 1, . . . , m, is allocated an

Mi-QAM modulation alphabet and thus transmits ri
△
= log2 Mi bits/symbol. The

total number of bits transmitted during a symbol interval of time Ts is then

R
△
=

m∑

i=1

ri =
m∑

i=1

log2 Mi (2.75)

and since T−1
s symbols are transmitted per second, the total bit rate is the equal to

RT−1
s bits per second. The spectral efficiency equals the average bit rate per unit

12Normally BPSK, QPSK, 16-QAM, 64-QAM,... are the used constellations.
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bandwidth, so we normalize (2.75) with the transmission bandwidth W and apply

the expectation operator to obtain the average

R

W
= E

{
m∑

i=1

log2 Mi

}
(2.76)

bits/Hz, where Nyquist data pulses are assumed (W = 1/Ts).

Assume that the transmitter has the option to use some or all of the m =
min(nr, nt) subchannels (also called eigenmodes) with corresponding power gains

λi, i = 1, . . . , m. If the transmitted power in mode i is defined as γi, then the re-

ceiver SNR of mode i will be

SNRi
△
=

γiλi

σ2
n

(2.77)

where σ2
n is the receiver noise power. If Mi-QAM is used on subchannel i, then

the BER for coherently detected Mi-QAM with Gray bit mapping is approximately

given by [62]

BERMi−QAM ≈0.2 exp

(
−1.6

SNRi

(Mi − 1)

)

=0.2 exp

(
−1.6

λiγi

σ2
n(Mi − 1)

) (2.78)

which is tight within 1 dB when Mi ≥ 4 and BER≤ 10−3. This approxima-

tion gives a BER expression that is invertible in its arguments and is differentiable

which is required for the adaptive transmission design.

If a target BER, denoted BERt, is desired for the particular transmission over

the MIMO channel, modulation schemes and transmit powers for the set of m sub-

channels can now be assigned by choosing the {Mi}m
i=1 and {γi}m

i=1. Alternatively,

if a total bit rate RT for the MIMO transmission is desired, modulation schemes

and powers are allocated to the different subchannels to minimize the resulting

BER. How this shall be performed is derived in the next section.

2.4.2 Maximizing spectral efficiency at a target BER

Assume that all subchannels are set to have the same target BER, denoted BERt.

This is equivalent to stating that we minimize the maximum BER for any subchan-

nel i [63]. That is

BERt = min
γi,Mi

max
i=1,...,m

BERMi−QAM(γi,Mi, λi) . (2.79)
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Hence the total target BER is equal to each subchannel:s target BER (note that the

symbol error rate for the subchannels can vary). Under this constraint, we would

like to maximize the spectral efficiency in (2.76).

If the number of bits per symbol for subchannel i fulfill ri ≥ 2 and the corre-

sponding bit error rate fulfill BERi ≤ 10−3, then (2.78) is valid. The number of

bit/symbol for subchannel i, is then obtain by solving for ri in expression (2.78)

ri = log2 (1 + Koγiλi) (2.80)

where

Ko =
−1.6

σ2
n ln(5BERt)

. (2.81)

Continuous rate allocation

The following theorem summarizes the result from the optimization of spectral

efficiency.

Theorem 2.1 Assume that a MIMO channel has been converted to a set of m
non-interfering and parallel channels, according to (2.74), and that (2.78) holds

exactly. The marginal probability density function of the i:th subchannels gain

(eigenvalue) is pi(λi). If the number of bits per symbol, ri, used on the i:th sub-

channel, is real and non-negative and an average total transmitted power con-

straint of PT is used, then the power control law for subchannel i that maximizes

the spectral efficiency (2.76) under a target BER constraint is given by

γi(λi) =





1
µ − 1

Koλi
γi ≥ 0, ri ≥ 0

0 otherwise

(2.82)

where µ is a constant and Ko is given by (2.81). The constant µ is given by solving

the average power constraint criterion

m∑

i=1

∫ ∞

0

[
1

µ
− 1

Koλi

]+

pi(λi)dλi = PT . (2.83)

The resulting spectral efficiency is given by

R

W
=

m∑

i=1

∫ ∞

µ/Ko

log2

(
Koλi

µ

)
pi(λi)dλi . (2.84)

Proof: See Appendix 2.C on page 72.
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Corollary 1 If the same derivations as above are performed under the peak power

constraint, then the same power control law (2.82) is found. However, µ is now

given by the equation
m∑

i=1

[
1

µ
− 1

Koλi

]+

= PT . (2.85)

Proof: Immediate result from the peak power constraint criterion

m∑

i=1

γi(λi) = PT (2.86)

and by inserting (2.82).

Remark 2.2 The power control law is a water filling solution. The threshold µ−1

is a function on the average power PT , the target bit error rate BERt, the receiver

noise variance σ2
n, and the fading distribution. It determines when a subchannel

should be used. It is sometimes denoted the “water-level” of the water filling

algorithm.

Remark 2.3 The resulting spectral efficiency is equal to the Shannon capacity

with a power penalty 1/Ko. If the water filling solution in Section 2.2.1, that

achieves the Shannon capacity is compared with (2.82), then it can be seen that the

difference is in the constant Ko that depends on the target BER. 1/Ko is the maxi-

mum possible coding gain for an adaptive MQAM method [61]. This gap between

the Shannon capacity and MQAM spectral efficiency was reported earlier in [61]

for SISO systems and is here extended to a MIMO system.

Remark 2.4 There is no dependence on the fading distribution under the peak

power constraint, since the transmission is optimized instantaneously, with no

“memory” as opposed to the average power constraint case.

Since the average power solution requires the pdf of the eigenvalues to HH∗, a

model for the channel fading statistics is required to further examine this case.

However, the case with a peak power constraint is can be illustrated by an example,

since it is independent on the fading distribution:
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EXAMPLE 2.1

Assume that the minimum number of receive and transmit antennas is two, i.e.

m = 2 and λ1 ≥ λ2. The power allocation that maximize the spectral efficiency

while maintaining a target bit error rate is sought. Assume that both subchannels

are active, that is 1
µ − 1

Koλi
> 0 for i = 1, 2, where Ko is given by (2.81). The

constant µ can then be solved from (2.85) to be

µ =
2

PT + 1
Ko

(
1
λ1

+ 1
λ2

)

and the corresponding power to the two subchannels are

γ1 =
PT

2
+

1

2Ko

(
1

λ2
− 1

λ1

)

γ2 =
PT

2
− 1

2Ko

(
1

λ2
− 1

λ1

)
.

More power is allocated to the subchannel with the largest gain (λ1) and from

(2.80) it is seen that more power also implies the use of a symbol constellation

with more bits allocated per symbol. Furthermore, if λ1 ≫ λ2 as in a line of

sight channel, much more power is allocated to subchannel 1 until subchannel 2

is shut off completely. A decrease in the target BER implies a decrease in Ko

and hence, even more power is allocated to the channel with the highest gain, and

eventually, the weakest channel is shut off and becomes unused.

For low target bit error rate applications, or in channels with low SNR, the use of

only one channel eigenmode, i.e. beamforming, is thus often equal to the optimal

transmission strategy. However, the dependence on the channel eigenvalues and

available transmit power is strong, as will be illustrated in the next example. The

power distributions over the channel eigenmodes as a function of available power

PT is calculated for two scenarios corresponding to a LOS and a NLOS channel.
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Figure 2.2: Power distribution over subchannels when m = 3 and the eigenvalue

distribution is 30 : 2 : 1. Peak power constraints are imposed and BER target is

10−5. The noise power is set to σ2
n = 1.

EXAMPLE 2.2

First, assume a 3 × 3 MIMO channel that has a strong LOS component, hence

one eigenvalue dominates. Figure 2.2 shows the calculated distribution of power

when the relation between the eigenvalues are 30 : 2 : 1. The target BER is

set to BERt = 10−5 and the noise power σ2
n = 1. At low transmit power,

only the principal eigenmode is used, which is equivalent to beamforming with

adaptive modulation (see Section 2.5). When the transmit power is increased,

the next subchannel becomes active and when the total output power PT is large,

the power is divided uniformly between the three channel modes. Hence, in the

high SNR scenario, information of the relation between the eigenvalues becomes

unnecessary. Figure 2.3 shows the corresponding distribution in the 1.2 : 1.1 : 1
eigenvalue ratio case, corresponding to an NLOS channel. Note the expanded

scale on the power axis. At high power, all three modes are asymptotically given

an equal share of the available transmit power. Also, more power is given to the

best channel, to maximize the number of bits allocated per symbol, as opposed

to BER minimization at a target spectral efficiency (Section 2.4.3), where the

most power is given to the weakest subchannel. This is a fundamental difference

between rate optimization and BER optimization.
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Figure 2.3: Power distribution over subchannels when m = 3 and the eigenvalue

distribution is 1.2 : 1.1 : 1. Peak power constraints are imposed and BER target is

10−5. The noise power is set to σ2
n = 1.

Finite constellation set X
The derivation is now restricted by assuming that the modulation uses Md-QAM

constellations. The number of bits allocated per symbol can thus only take cer-

tain integer values ri = 0, 1, 2, 4, 6, . . . corresponding to BPSK, 4QAM, 16QAM,

64QAM an so forth and where zero rate means that the subchannel is unused. We

are interested in the impact on spectral efficiency imposed by the finite constel-

lation restriction. The problem of maximizing the bit rate subject to peak power

and BER constraints is equivalent to the discrete bit loading techniques that have

developed for DMT wired links. A number of algorithms have been proposed to

solve the discrete bit loading problem and for large systems, a low complexity al-

gorithm is crucial. Campello has presented a optimal discrete bit loading algorithm

for DMT with O(m) complexity [68]. In MIMO systems, m is usually small com-

pared to DSL applications. Therefore, a search algorithm can be used despite its

higher complexity, but it still finds the optimum since the search is exhaustive.

The boundaries of the optimal bit rate regions for all the m subchannels are

required in the solution for the general case. They depend on both the fading dis-

tribution and the amount of power allocated to each subchannel. To find these
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region boundaries involves optimization of a mixture of discrete and continuous

variables for which no general method exists. Instead the problem is approached

here by assuming that the fading state defined by λ1, . . . , λm is fixed and then cal-

culate the optimal transmission strategy by choosing bit per symbol allocations and

power for the individual subchannels based on this particular fading state. An ex-

haustive search over all possible combinations of {ri}m
i=1 (which now are discrete)

is performed and the one that yields the highest spectral efficiency is selected. The

discrete optimization problem can thus be formulated as

max
m∑

i=1

ri (2.87)

when

m∑

i=1

∫ ∞

0
γi(λi)p(λi)dλi = PT , (2.88)

in the average power case and

max
m∑

i=1

ri (2.89)

when

m∑

i=1

γi(λi) ≤ PT (2.90)

in the peak power constrained case. The power allocation for subchannel i, to

achieve the target bit error rate BERt for a given ri is found from (2.78) to be

γi(λi) =
2ri − 1

Koλi
. (2.91)

which is valid if ri ≥ 2 and with K0 given by (2.81). In addition, to allow the

solution to contain an one-dimensional modulation technique, the exact relation

[15] between BER and SNR is BER=Q(
√

2γiλi/σ2
n) so

γi(λi) =
σ2

n

2λi

(
Q−1(BERt)

)2
(2.92)

is used for the case ri = 1 (e.g. BPSK) where Q−1 is the inverse Q-function.

An example to the optimization problem is now given by using the search tech-

nique.
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Figure 2.4: Throughput (spectral efficiency), that is, the sum of the number of

bits allocated per symbol per subchannel, of a m = 4 system with peak power

constraints and eigenvalue relations 30 : 8 : 2 : 0.1. BER target is set to 10−5.

EXAMPLE 2.3

Assume a 4 × 4 MIMO system. Figure 2.4 shows the maximum total bit rate,

or spectral efficiency, of a channel with eigenvalue relations 30 : 8 : 2 : 0.1
as a function of the peak power constraint and noise power set to σ2

n = 1. The

discrete bit per symbol solution is within 3 dB of the continuous solution and

there is an additional 9 dB to the Shannon limit.

Figure 2.5 shows the corresponding subchannel rates and how the optimal

solution depends on the available peak power for this particular ratios of the

subchannel gains (the eigenvalues). Sometimes a subchannel lowers its bit rate

at an increased power to the benefit of an increased bit rate for a subchannel with

better channel gain.

2.4.3 Minimizing the total BER at a target spectral efficiency

Now, suppose that the target bit rate R is fix and that the power and bit per symbol

allocation that minimizes the average bit error rate at the receiver is sought. Define
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Figure 2.5: Subchannel rates (number of bits allocated per symbol) for m = 4
system with peak power constraints and eigenvalue relations 30 : 8 : 2 : 0.1.

the target spectral efficiency RT /W as

RT

W
=

m∑

i=1

ri . (2.93)

The average bit error rate is

BER =
1

RT

m∑

i=1

∫ ∞

0
riBERi(λi, γi)pi(λi)dλi (2.94)

which can be minimized by allocating the correct continuous bit per symbol alloca-

tions ri to the subchannels and jointly allocating the optimal distribution of power,

γi, to the subchannels. The optimal allocations are given in the following theorem.

Theorem 2.2 Assume that a MIMO channel has been converted to a set of m
non-interfering and parallel channels, according to (2.74). The marginal proba-

bility density function for the i:th subchannel gain (eigenvalue) is pi(λi). If the m
subchannels bit per symbol allocations are real and non-negative and an average

power constraint of PT is used, then the power control law and the bit per symbol

allocation for subchannel i that minimizes the average BER at a target spectral

efficiency, are given by the two coupled equations

γi =

[
2ri − 1

c1λi
ln

(
c1c2λiri

(2ri − 1)RT µ1

)]+

(2.95)
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and
∫ ∞

0

(
BER(λi, γi) + ri

∂BERi(λi, γi)

∂ri

)
pi(λi)dλi + µ2RT = 0 . (2.96)

where c1 = 1.6/σ2
n, c2 = 0.2 and BER(λi, γi) is given by (2.78).

The Lagrange multipliers µ1 and µ2 are found by solving the average power

constraint
m∑

i=1

∫ ∞

0
γipi(λi)dλi = PT (2.97)

and the target bit rate constraint

m∑

i=1

ri = RT . (2.98)

Proof: See Appendix 2.D on page 74.

Remark 2.5 The power control law γi(λi, ri) and the bit rate allocation law

ri(λi, γi), implicit in equation (2.96) are a set of coupled non-linear equations.

Different subchannel rates and powers are also coupled through the Lagrange

multipliers µ1, µ2. To solve this optimization problem, numerical methods are re-

quired.

To achieve some insight into the power control law, assume for a moment that the

subchannel rates are constants and equal ri = RT /m. The power control law can

be expressed as the function f(x) = [ln(x/b)/x]+ and is plotted in Figure 2.6. By

finding the maximum of the function f(x) it can be seen that the power per channel

is upper bounded by max(γi) = c2ri/(RT µ1e
1) and this occurs when the channel

gain λi is λi = eµ1(2
ri − 1)RT /(c1c2ri). If the parameter b is small, then the

power control function will be sharply peaked around its maximum value which

implies that weak subchannels will be given a large transmit power and strong

subchannels a lower power. Under a certain threshold, the subchannel is unused.

Hence, the algorithm balances the subchannel links, in a form of power inversion.

Corollary 2 In the peak power constrained case

m∑

i=1

γi(λi, ri) = PT (2.99)

is exchanged for (2.97) and solved to obtain µ1.

Proof: Immediate since the total power of the m subchannels must be PT .
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Figure 2.6: The power control law (2.95) as a function of the subchannel gain.

The function has it maximum at be with the value (be)−1.

Finite constellation set X

If the subchannel rate allocations ri are discrete and belonging to a known set X ,

then the minimization of BER is performed by a search algorithm over all possible

combinations of bit per symbol allocations that fulfills the total bit rate criterion

(2.98). Then we select the allocations that yields the lowest BER. The Lagrange

multiplier µ1 in (2.95) is given in the average power case by solving

m∑

i=1

∫ ∞

0

[
2ri − 1

c1λi
ln

(
c1c2λiri

(2ri − 1)RT µ1

)]+

pi(λi)dλi = PT (2.100)

and in the peak power case by

m∑

i=1

[
2ri − 1

c1λi
ln

(
c1c2λiri

(2ri − 1)RT µ1

)]+

= PT . (2.101)

Examples are given for the Rayleigh fading channel in Section 3.6.



2.5. Beamforming 61

2.5 Beamforming

An important special case of the transmission strategies discussed in the previous

section is beamforming. Transmit beamforming is, by definition, the transmit strat-

egy with the covariance matrix Rcc of the transmitted data a priori chosen to have

rank one. This can be achieved by forming

c(n) = wT s(n) (2.102)

where wT is the nt × 1 transmit beamforming vector or simply the weight vector

and s(n) is the transmitted symbol. It is possible to implement the beamformer

in hardware using phase shifters and attenuators [69]. It can also be implemented

using a fixed beamforming network (consisting of passive components) and by

switching between the fixed beams. The weight vector is a constant during trans-

mission of a block of N symbols, that is, during the time where the channel H is

time-invariant, and then re-calculated for each block.

With (2.102), the covariance matrix becomes

Rcc = E {cc∗} = wTw∗
T E

{
|s(n)|2

}
(2.103)

which clearly has rank one. Assume in the following that E
{
|s(n)|2

}
= 1 and

|wT |2 = PT , the total transmitted power.

Receive beamforming is defined as a linear combination of the nr received sig-

nals at time instant n using the nr×1 normalized receive beamforming vector, that

is |wR| = 1. A MIMO system with beamforming at the receiver and transmitter

has the input output relation

z(n) = w∗
Ry(n) = w∗

RHwT s(n) + w∗
Rv(n) . (2.104)

Here, v(n) is the received noise plus interference. The received signal to inter-

ference plus noise ratio (SINR) for the system (2.104) is

SINR =
E
{
|w∗

RHwT s(n)|2
}

E
{
|w∗

Rv(n)|2
} =

w∗
RHwTw∗

TH∗wR

w∗
RRvvwR

(2.105)

where Rvv
△
=E {vv∗} is the covariance matrix for the interference plus noise. To

maximize (2.105) with respect to wT , we first select the transmit weight vector wT

as the scaled right principal eigenvector, e1, to H, (He1 = λ
1/2
maxe1), to obtain

SINR = PT
w∗

Re1e
∗
1wRλmax

w∗
RRvvwR

(2.106)
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where λmax is the principal eigenvalue to the matrix HH∗. Equation (2.106) is a

generalized Rayleigh quotient [70] and for fixed wT the maximizing wR is found

by solving the corresponding generalized eigenvalue problem

e1e
∗
1wR = εRvvwR (2.107)

for the largest generalized eigenvalue ε. The solution is [71, Sec 3.2]

wR = R−1
vv e1 (2.108)

and the corresponding SINR is

SINRmax = PT λmaxe
∗
1R

−1
vv e1 (2.109)

where e1 is the principal eigenvector to HH∗. In the case of spatially white noise,

Rvv = σ2
nI, the solution maximizes the receive SNR. Equation (2.106) is then a

Rayleigh quotient which is maximized by choosing wR = αwT where α is an

arbitrary constant. The resulting maximized SNR is

SNRBF =
PT

σ2
n

λmax . (2.110)

The corresponding ergodic capacity for a MIMO system with receive and transmit

beamforming is

C = Eλmax

{
log2

(
1 +

PT

σ2
n

λmax

)}
. (2.111)

The receive and transmit beamforming has transformed the MIMO system to an

equivalent SISO system

z(n) = λ1/2
maxs(n) + v′(n) (2.112)

where v′(n) = w∗
Rv(n). This noise has the variance σ2

n in the spatially white case

if w∗
RwR = 1, since then E

{
|v′(n)|2

}
= E

{
|w∗

Rv(n)|2
}

= σ2
nw

∗
RwR = σ2

n.

The SNR for the equivalent SISO system is given by (2.110). In Section 2.3.2,

it was shown how the STBC over a MIMO channel could be interpreted as an

equivalent SISO system with SNRSTBC = PT ‖H‖2
F /(σ2

nnt). Comparing the

STBC SNR with the beamformer SNR gives

SNRBF

SNRMIMO
=

PT λmax

σ2
n

σ2
nnt

PT ‖H‖2
F

=
λmaxnt

‖H‖2
F

=
λmaxnt

λ1 + . . . + λm
≥ 1

(2.113)

since m = min(nr, nt) ≤ nt. Hence, the SNR for a beamforming system is

never lower than the SNR of a STBC, however, beamforming requires CSI at the

transmitter.
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2.5.1 Receive beamforming in SIMO Channels

When transmitting with one antenna and receiving with an array, the channel ma-

trix can be described by the column vector h and the received vector is y =
hs(n) + v. The SINR from (2.105) is then given by

SINR =
E
{
|w∗

Rhs(n)|2
}

E
{
|w∗

Rv(n)|2
} =

w∗
Rhh∗wR

w∗
RRvvwR

PT . (2.114)

This expression is a generalized Rayleigh quotient which is maximized by choos-

ing wR as

wR = R−1
vv h . (2.115)

Note the equivalence with the spatial matched filter (2.31) in the maximum likeli-

hood detector for a SIMO system.

Sometimes a training sequence d(n) is embedded in the received signal. This

can be utilized to find the receive beamforming vector wR as the vector that mini-

mizes the mean square error

min
wR

E
{
|d(n) − w∗

Ry(n)|2
}

. (2.116)

The solution is the Wiener-Hopf solution and is given by

wR = R−1
yyryd (2.117)

where the cross-correlation vector ryd = E {y(n)d∗(n)}.

Use that ryd = h if y(n) = hd(n) + v(n) where d(n) is assumed to be

uncorrelated with v(n) and have unit variance. Applying Woodbury’s identity13

[71, p.39] on the matrix Ryy, to write

R−1
yy =

1

1 + h∗Rvvh
R−1

vv = βR−1
vv . (2.118)

Therefore, the optimum Wiener solution can be expressed as

wR = βR−1
vv h (2.119)

which is a scaled beamforming vector in the maximum SINR solution (2.115).

Hence the Wiener-Hopf and the maximum SINR solutions yield the same output

SINR, a result also shown in [71, Chapt.3].

13Woodbury’s identity states that if R = hh
∗ + Rvv , then R

−1 = R
−1
vv /(1 + h

∗
R

−1
vv h).
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2.5.2 Fixed multibeam antennas

Fixed multibeam antennas are a viable choice for the implementation of the down-

link (base-to-mobile) in wireless cellular communication systems due to the attrac-

tive trade-off between system performance and the complexity and cost of imple-

mentation [2, 72, 73]. The switched multibeam antenna has thus been the scope of

several testbed and field trial investigations for its feasibility in GSM/FDMA net-

works [3, 6, 7, 74]. A multibeam antenna consists of an array of antenna elements

and a beam-forming network that generates multiple narrow beams together with

a beam switching algorithm [75] of low-complexity which points (or switches) the

downlink main beam in the direction of the strongest received signal [7, 76]. In

some implementations the downlink beamforming is performed entirely in hard-

ware, thereby relaxing the signal processing requirements even further [69].

The multibeam technique is a common downlink beamforming method used in

frequency division duplex (FDD) systems, because the frequency duplex distance

is typically significantly larger than the coherence bandwidth of the radio channel,

which makes the uplink and downlink channel uncorrelated and only partial CSI

is available at the transmitter. The partial CSI consists of the direction of arrival

estimate of the uplink signal which still is a useful estimate of the direction to the

mobile at the downlink frequency [77].

The low side-lobes of the radiation pattern suppress the co-channel interference

from users in neighboring cells. A linear array antenna with nt antenna elements

can generate nt beams with distinct spatial orientations in the horizontal plane, by

the use of the BFN.

An FFT based BFN is often implemented as a Butler matrix [14, 20, 78], see

also Appendix A. It has the property of a constant phase gradient ∆θ over the

antenna array aperture, yielding

θn = (n − 1)∆θ (2.120)

for n = 1, . . . , nt, where the n:th element of the weight vector has phase θn and

unit amplitude. The phase gradient, ∆θ belongs to the set ΩS of nt (or nr) different

phase gradients, unique for each beam the BFN can generate,

ΩS =

{
2πp

nt

}nt−1

p=0

. (2.121)

The finite set ΩS is a closed group under integer multiplication and addition, fol-

lowing modulo-2π algebra, due to the phase ambiguity of 2π. This property will be

important in Chapter 6 when intermodulation products from multibeam antennas

are studied.
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2.6 Concluding remarks

In this chapter it was shown that an important factor when choosing the transmis-

sion strategy is the relation between the eigenvalues to HH∗, which have a physi-

cal interpretation of how “directional” the channel is. As an example, two extreme

cases were examined; when there is a dominating eigenvalue to the matrix HH∗

(corresponding to a channel with a LOS component) and when there is no dominat-

ing eigenvalue (NLOS case). Mutual information was discussed as it is a measure

of the spectral efficiency of the wireless link. Figure 2.7 shows a comparison of the

mutual information for a 4 × 4 MIMO system for different transmission strategies

introduced in this chapter. When the channel has a dominating eigenvalue, Figure

2.7(a), beamforming is close or equal to the optimum mutual information given by

the water-filling algorithm. Hence, in LOS channels, beamforming is a spectrally

efficient transmission scheme, especially at low SNR. At high SNR, more chan-

nel eigenmodes can be used to fill the gap between beamforming capacity and the

optimal water-filling capacity, as was demonstrated in Section 2.4.

The open loop transmission scheme, used when CSI is not available at the

transmitter, is clearly suboptimal, because energy is “wasted” in modes with a

large attenuation. If the SNR is increased, by increasing the transmitter power

PT , then the “blind” transmission with uniformly allocated power over the channel

eigenmodes is asymptotically approaching the water-filling solution and at a certain

SNR it supersedes the beamforming capacity. Hence at high SNR, the gain from

using CSI is small and the capacity is equal with or without CSI at the transmitter.

When the channel has rich scattering, the eigenvalues are approximately equal,

and no eigenmode dominates. In this scenario, the “blind” method is expected to

perform well, as it transmits an equal amount of energy in each mode, and Figure

2.7(b) shows that the “blind” transmission scheme is asymptotically close to the

water-filling solution already at moderate SNR. Hence, in a rich scattering NLOS

channel, close to an unitary channel, CSI at the transmitter gives only a small

improvement in the mutual information. Beamforming is clearly suboptimal since

it only utilizes one of the m channel modes. Only in an MISO channel, where

m = 1 is beamforming optimal.

The optimal curves in Figure 2.7 are based on Shannon’s capacity formula

and gives the ultimate capacity limit. To compare these curves with a practical

scheme, STBC is plotted in Figure 2.7 as well. The mutual information of the

orthogonal STBC is always less than or equal to the mutual information of the

beamforming due to the inequality (2.113) and the fact that the rate for orthogonal

STBC ns/N ≤ 1. By comparing STBC (2.73) with beamforming (2.111) we see

that equality occurs when R = 1 and all eigenvalues λ1, . . . , λm are equal. This is

the case in an unitary channel where HH∗ ∝ I. In this case, the 1/nt loss in power
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of the STBC due to the unavailability of CSI at the transmitter is equal to the 1/m
loss in power by the beamformer by only using one of the m orthogonal channels.

Although the gap between the optimal systems with and without CSI at the

transmitter is small, at least for high SNR, the performance gap is in practical sys-

tems quite large [79] if the complexity should be kept low. Linear dispersion codes

have the ability to reduce this gap [31], although at the expense over a highly com-

plex optimization operation and also the requirement that the number of receive

antennas must be known at the transmitter.

On the other hand, if CSI is available at the transmitter, the gap to the Shannon

limit can be made small, if the transmission techniques developed in this chapter

is used, together with channel coding techniques. In this view, TDD systems with

no frequency duplex distance are preferable since then, full CSI is available at

the transmitter. If highly broadband connections are required, then OFDM can be

used together with the multiple antennas and on each OFDM subchannel, adaptive

modulation is performed for the transmission over the channel eigenmodes [65].

This will lead to water-filling over both frequency and space subchannels.

A drawback with the proposed technique is that a TDD system requires accu-

rate synchronization. This can be complicated to achieve for all mobile units and

base-stations in a large geographical area. Another problems is the interference en-

vironment at the receiver, which is unknown and differ from the interference at the

transmitter. This might reduce the gain of using adaptive modulation. A remedy for

this is to use the array at the receiver to perform spatial interference cancellation.

This is an interesting topic for further research in this field.
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Appendix 2.A Derivation of the equation (2.15) and (2.17)

The difference between the test statistics is

T (Y) = T1(Y) − T0(Y) = Re
(
(C1 − C0)

∗H∗R−1
VVY

)
− 1

2
(E1 − E0) (2.122)

which can, using the relations Re(z) = (z + z∗)/2 and Ei = C∗
i H∗R−1

VVHCi be

written as

T (Y) =
1

2
(C1 − C0)

∗H∗R−1
VVY

+
1

2
Y∗R−1

VVH(C1 − C0)

−1

2
(C∗

1H∗R−1
VVHC1 − C∗

0H∗R−1
VVHC0) .

(2.123)

Assume hypothesis H0 and insert Y = HC0 + V into (2.123). This gives

T (Y|H0) =
1

2
(C1 − C0)

∗H∗R−1
VV(HC0 + V)

+
1

2
(HC0 + V)∗R−1

VVH(C1 − C0)

−1

2
(C∗

1H∗R−1
VVHC1 − C∗

0H∗R−1
VVHC0) .

(2.124)

Since V has zero mean, we get

E {T (Y|H0)} =
1

2
(C1 − C0)

∗H∗R−1
VVHC0

+
1

2
C∗

0H∗R−1
VVH(C1 − C0)

−1

2
(C∗

1H∗R−1
VVHC1 − C∗

0H∗R−1
VVHC0) .

(2.125)

which can be more compactly written as

E {T (Y|H0)} = −1

2
(C1 − C0)

∗H∗R−1
VVH (C1 − C0) . (2.126)

Since this expression is a scalar and has the form a∗Aa, where a is a vector, we

can use the property a∗Aa = Tr(Aaa∗) = Tr(aa∗A) to write (2.126) as

E {T (Y|H0)} = −1

2
Tr
(
OH∗R−1

VVH
)

(2.127)

where O = (C1 − C0) (C1 − C0)
∗
. Similarly, E {T (Y|H1)} can be found and it is

seen that it differs from E {T (Y|H0)} only in sign.
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To derive Var {T (Y|H0)}, start with (2.124) and write

Var(T (Y|H0)) =
1

2
Var

{
(C1 − C0)

∗H∗R−1
VV(HC0 + V)

}

+
1

2
Var

{
((HC0 + V)∗R−1

VVH(C1 − C0)
}

−1

2
Var

{
((C∗

1H∗R−1
VVHC1 − C∗

0H∗R−1
VVHC0)

}
.

(2.128)

Since V is zero mean vector, the relations Var(AV) = AE(VV∗)A∗ and Var(V∗A) =
A∗E(VV∗)A can be used together with E (VV∗) = RVV to simplify (2.128) to

Var(T (Y|H0)) =
1

4
(C1 − C0)

∗H∗R−1
VVRVVR−1

VVH(C1 − C0)

+
1

4
(C1 − C0)

∗H∗R−1
VVRVVR−1

VVH(C1 − C0)

=
1

4
(C1 − C0)

∗H∗R−1
VVH(C1 − C0)

+
1

4
(C1 − C0)

∗H∗R−1
VVH(C1 − C0)

=
1

2
(C1 − C0)

∗H∗R−1
VVH(C1 − C0) .

(2.129)

Similarly, it can be shown that Var(T (Y|H1)) yields the same value. Since this

expression also is a scalar and has the form a∗Aa, where a is a vector, we can use

the property a∗Aa = Tr(aa∗A) to write (2.129) as

Var(T (Y|H0)) = Var(T (Y|H1)) =
1

2
Tr
(
OH∗R−1

VVH
)

(2.130)

where O = (C1 − C0) (C1 − C0)
∗
.

Appendix 2.B Derivation of equation (2.63) and (2.64)

Assume that the noise is spatially and temporally white and that each symbol s(n)
belongs to a unitary constellation X , that is |si(n)|2 = 1. This implies that Ei

can be removed from (2.33) as it does not affect the decisions. Assume that we

transmit the ns symbols {sk(n)}ns
n=1, so the transmitted codeword is Ck. The

received matrix is Y, where

Y = HCk + V . (2.131)

We shall now analyze ML-detector for this case in detail and show that the symbol

estimation problem decouples and that we can write the STBC-MIMO system as

an equivalent SISO system, as seen by each transmitted symbol.
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Insert the expression for linear block codes (1.23)

Ck =

√
PT

2nt

ns∑

n=1

[Ans̄k(n) + jBns̃k(n)] (2.132)

into (2.131) and use the test statistic for hypothesis i in the ML-detector, equation

(2.33), with Ei removed:

Ti(Y) =Re [Tr (C∗
i H

∗Y)] /σ2
n

=Re [Tr (C∗
i H

∗ (HCk + V))] /σ2
n .

(2.133)

Inserting (2.132) gives

Ti(Y) =
PT

2nt

ns∑

n=1

ns∑

p=1

ReTr {A∗
nH

∗HAps̄k(n)s̄i(p)

−jA∗
nH

∗HBps̄k(n)s̃i(p) + jB∗
nH

∗HAps̃k(n)s̄i(p)

+ B∗
nH

∗HBps̃k(n)s̃i(p)}

+

√
PT

2nt

ns∑

n=1

ReTr (AnH
∗Vs̄i(n) − jBnH

∗Vs̃i(n)) .

(2.134)

Now, we use the properties (2.65) together with Tr(XY) = Tr(YX) and

2Re(X) = X + X∗,2Re(jX) = X∗ − X to find the useful relations

ReTr (A∗
nH

∗HAp) =ReTr (H∗HApA
∗
n)

=
1

2
Tr (H∗HApA

∗
n + (H∗HApA

∗
n)∗)

=
1

2
Tr
(
H∗H(ApA

∗
n + AnA

∗
p)
)

= δnpTr (H∗H)

(2.135)

and

ReTr (jA∗
nH

∗HBp) =ReTr (H∗HBpA
∗
n)

=
1

2
Tr ((H∗HBpA

∗
n)∗ − H∗HBpA

∗
n)

=
1

2
Tr
(
H∗H(AnB

∗
p − BpA

∗
n)
)

= δnpTr (H∗H)

(2.136)

and similar results for ReTr (B∗
nH

∗HBp) and ReTr (B∗
nH

∗HAp). Using these,
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(2.134) is simplified to

Ti(Y) =
PT

2nt

ns∑

n=1

{Tr(H∗H)s̄k(n)s̄i(n) + Tr(H∗H)s̃k(n)s̃i(n)}

+

√
PT

2nt

ns∑

n=1

ReTr (AnH
∗Vs̄i(n) − jBnH

∗Vs̃i(n))

=
PT

2nt
Tr(H∗H)

ns∑

n=1

{s̄k(n)s̄i(n) + s̃k(n)s̃i(n)}

+

√
PT

2nt

ns∑

n=1

ReTr (AnH
∗Vs̄i(n) − jBnH

∗Vs̃i(n)) .

(2.137)

So, we see that the test statistic contains no cross products between symbols s̄i(n)
and s̄i(p) and the real and complex parts are also decoupled. This is due to the

properties of the underlying matrices An,Bn in (2.65). Now the sequence i is

picked, that is sequence {si(n)}ns
n=1, that maximizes Ti(Y). Recall that |si(n)|2 =

1. Since it is a maximization of a sum, the product in each term must be maximized,

which is obtained if s̄k(n) = s̄i(n) and s̃k(n) = s̃i(n) is chosen. Then the test

statistics Ti(Y) become

Ti(Y) =
PT ns

2nt
Tr(H∗H) +

√
PT

2nt

ns∑

n=1

ReTr (AnH
∗Vs̄i(n) − jBnH

∗Vs̃i(n)) .

(2.138)

If Ci in (2.133) is replaced by An then Tr (A∗
nH

∗ (HCk + V)) can be simplified

as

ReTr (A∗
nH

∗ (HCk + V)) =

√
PT

2nt
Tr (H∗H) s̄k(n) + Tr (AnH

∗V)

=

√
PT

2nt
‖H‖2

F s̄k(n) + ReTr (AnH
∗V)

(2.139)

and if −jBn is used instead, we get

ReTr (−jB∗
nH

∗ (HCk + V)) =

√
PT

2nt
Tr (H∗H) s̄k(n) + Tr (jBnH

∗V)

=

√
PT

2nt
‖H‖2

F s̄k(n) − ReTr (jBnH
∗V) .

(2.140)

So, we see that the transmitted symbol sk is multiplied by

√
PT
2nt

‖H‖2
F which then

can be interpreted as the gain of an equivalent SISO channel.
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In the ML-detector, if Ci in (2.133) is replaced by s̄(n)An or js̃(n)Bn, then

an equivalent ML-detector that directly estimates ŝ(n) is obtained. It becomes for

the real part of the symbol s(n)

ˆ̄s(n) = arg max
s(n)∈X

ReTr {s̄(n)A∗
nH

∗Y} (2.141)

and for the imaginary part of s(n)

ˆ̃s(n) = arg max
s(n)∈X

ReTr {−js̃(n)B∗
nH

∗Y} . (2.142)

Appendix 2.C Proof of Theorem 2.1

Using the joint pdf of the eigenvalues to HH∗, the spectral efficiency can be rewrit-

ten by using (2.76) and (2.80) as

R

W
=E

{
m∑

i=1

ri

}
= E

{
m∑

i=1

log2 Mi

}
=

=

∫ ∞

0
· · ·
∫ ∞

0

m∑

i=1

log2 (1 + Koγiλi) p(λ1, . . . , λm)dλ1 · · · dλm

=
m∑

i=1

∫ ∞

0
log2 (1 + Koγiλi) pi(λi)dλi

(2.143)

where pi(λi) is the marginal pdf of the i:th largest eigenvalue. The optimization

problem is to find the subchannel powers {γi}m
i=1 as a function of the eigenvalues

to HH∗, {λi}m
i=1 that maximizes the spectral efficiency (2.143) and meet the target

BER under the average power constraint. We assume that the assigned number of

bits per symbol, {ri}m
i=1, are real valued and non-negative. This can be formulated

as

max
γi

m∑

i=1

∫ ∞

0
log2 (1 + Koγiλi) pi(λi)dλi

when

m∑

i=1

∫ ∞

0
γipi(λi)dλi = PT

γi ≥ 0, ri ≥ 0, i = 1, . . . , m .

(2.144)

The optimization problem can be reformulated as an unconstrained optimization

problem14 by merging the number of bits per symbol and power through the La-

14This reformulation is equivalent provided that the rate is a convex function of power, which is

the case here [64].
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grange multiplier µ

J(γi, µ) = −
m∑

i=1

∫ ∞

0
log2 (1 + Koγiλi) pi(λi)dλi

+ µ

(
m∑

i=1

∫ ∞

0
γipi(λi)dλi − PT

)
.

(2.145)

For a fixed µ, the Lagrange cost is minimized when

∂J(γi, µ)

∂γi
= 0, i = 1, . . . , m . (2.146)

Differentiating (2.145), with respect to γk, we obtain

− ∂

∂γk

m∑

i=1

∫ ∞

0
log2 (1 + Koγiλi) pi(λi)dλi

+ µ
∂

∂γk

(
m∑

i=1

∫ ∞

0
γipi(λi)dλi − PT

)
= 0 .

(2.147)

And by exchanging the order of derivation and integration, which is allowed by

Leibniz’s rule since the boundaries of the integration interval are constants [80,

Eq.12.211], we obtain

∫ ∞

0

∂

∂γk
(− log2 (1 + Koγkλk) + µγk) pk(λk)dλk

=

∫ ∞

0

(
− Koλk

1 + Koλkγk
+ µ

)
pk(λk)dλk = 0 .

(2.148)

And for this integral to be zero, for arbitrary non-zero eigenvalue distributions

pk(λk), the expression in the parenthesis must be identically zero. Then the power

control law γk(λk) in (2.82) follows. Since power and bits per symbol by definition

are non-negative, the constraints γk ≥ 0 and rk ≥ 0 defines the region where (2.82)

is applicable.

The constant µ is given by evaluating the power constraint criterion

m∑

i=1

∫ ∞

0
γi(λi)pi(λi)dλi = PT (2.149)

with the power control law (2.82) inserted. The resulting spectral efficiency is
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obtained by inserting the power control law (2.82) into (2.143)

R

W
=

m∑

i=1

∫ ∞

0
log2

(
1 + Ko

[
1

µ
− 1

Koλi

]+

λi

)
pi(λi)dλi

=

m∑

i=1

∫ ∞

µ/Ko

log2

(
1 +

(
Koλi

µ
− 1

))
pi(λi)dλi

=

m∑

i=1

∫ ∞

µ/Ko

log2

(
Koλi

µ

)
pi(λi)dλi .

(2.150)

Appendix 2.D Proof of Theorem 2.2

The optimization problem for the continuous bit per symbol allocation case is for-

mulated as

min
γi,ri

1

RT

m∑

i=1

∫ ∞

0
riBERi(λi, γi)pi(λi)dλi

when

m∑

i=1

∫ ∞

0
γipi(λi)dλi = PT

and

m∑

i=1

ri = RT .

(2.151)

The problem can be reformulated to minimize the Lagrange cost function

J(ri, γi, µ1, µ2) =
1

RT

m∑

i=1

∫ ∞

0
riBERi(λi, γi)pi(λi)dλi

+ µ1

{
m∑

i=1

∫ ∞

0
γipi(λi)dλi − PT

}

+ µ2

{
m∑

i=1

ri − RT

}
(2.152)

where µ1 and µ2 are the two Lagrange multipliers. Equation (2.152) is now mini-

mized by fulfilling

∂J

∂ri
= 0 and

∂J

∂γi
= 0 i = 1, . . . , m . (2.153)
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We begin with the first partial derivative, for a specific subchannel k

1

RT

∂

∂rk

m∑

i=1

∫ ∞

0
riBERi(λi, γi)pi(λi)dλi

+ µ1

{
∂

∂rk

m∑

i=1

∫ ∞

0
γipi(λi)dλi − PT

}

+ µ2
∂

∂rk

{
m∑

i=1

ri − RT

}
= 0

(2.154)

by exchanging the order of the differentiation and the integration and merging the

terms we obtain

1

RT

∫ ∞

0

(
BERk(λk, γk) + rk

∂BERk(λk, γk)

∂rk

)
pk(λk)dλk + µ2 = 0 . (2.155)

and the result (2.96) follows. The second partial derivative, for a specific subchan-

nel k, gives

1

RT

∂

∂γk

m∑

i=1

∫ ∞

0
riBERi(λi, γi)pi(λi)dλi

+ µ1
∂

∂γk

{
m∑

i=1

∫ ∞

0
γipi(λi)dλi − PT

}

+ µ2
∂

∂γk

{
m∑

i=1

ri − RT

}
= 0

(2.156)

which simplifies to

1

RT

∂

∂γk

∫ ∞

0
rkBERk(λk, γk)pk(λk)dλk

+ µ1
∂

∂γk

{∫ ∞

0
γkpk(λk)dλk − PT

}
= 0 .

(2.157)

Exchanging order of integration and differentiation and merging the terms gives
∫ ∞

0

(
rk

RT

∂BERk(λk, γk)

∂γk
+ µ1

)
pk(λk)dλk = 0 . (2.158)

For this to hold for arbitrary pk(λk) > 0, the term in the parenthesis must be

identically zero:

rk

RT

∂BERk(λk, γk)

∂γk
+ µ1 = 0 k = 1, . . . , m . (2.159)
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Using this expression together with (2.78), and the fact that ri = log2 Mi, the

power control law becomes

γi(λi, ri) =

[
2ri − 1

c1λi
ln

(
c1c2λiri

(2ri − 1)RT µ1

)]+

(2.160)

where c1 = 1.6/σ2
n and c2 = 0.2. The Lagrange multipliers can be solved for by

using the power and bit rate constraints in (2.151) with (2.160) inserted.



Chapter 3
MIMO system performance

MIMO systems in flat fading channels are in this chapter analyzed and com-

pared, with and without partial CSI at the transmitter, under the assumption

of different fading statistics. It will be assumed that the signals from different re-

ceive and/or transmit antennas are correlated. Mutual coupling is also introduced

between the antenna elements. Measurement results from a MIMO testbed is pre-

sented and it is verified that the i.i.d. Rayleigh fading assumption is valid in some

cases. Finally, the gain from using feedback information about the channel state is

discussed.

3.1 Introduction

Accurate and tractable channel modelling is critical to realize the full potential of

antenna arrays. The chapter begins with a review of the channel models used in

this thesis. Two subgroups of channel models for MIMO systems can be identified.

One is based on the physical properties of the channel, and is a parametric model

where the parameters are; the number of scatterers, angle of arrival of the signal

from the scatterer, time delay, and power decay profiles. These parameters are

often modelled as random variables from a given distribution. Such models can

adapt to the multipath environment and the array geometry and its flexibility makes

them attractive for computer simulations. For analytical derivations, however, a

reductionistic approach is taken, where random matrix theory is used to define the

channel with fewer parameters than in the physical model, although at the expense

of lower accuracy in capacity prediction [81].

The chapter is organized as follows, in Section 3.2, the existing SISO channel

models based on probability distribution functions of the channel gain coefficient

77
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are reviewed and the Rayleigh fading model is then extended to the MIMO case.

Section 3.3 introduces the physical channel models used in this thesis and in Sec-

tion 3.4, results from MIMO channel measurements made in an office location at

Uppsala University are presented. These measurements are used to validate the

assumptions made in Section 3.2. Section 3.5 analyzes the performance of orthog-

onal STBC in a Nakagami-m fading channel and in Section 3.6, the performance

of the eigenmode transmission method derived in Section 2.4 is investigated. This

method requires full CSI at the transmitter which may not be the case if the chan-

nel coherence time is short and the feedback channel has low bandwidth. In Sec-

tion 3.7 the performance of beamforming and orthogonal STBC is compared when

the channel coherence time is varied and when the feedback channel has different

bandwidths. Finally, the chapter is concluded in Section 3.8.

3.2 Stochastic channel models

The propagation scenario in a wireless communication system is very complex and

the signal transmitted from an antenna will reach the receiving antenna after many

path reflections. If the scattering is rich enough, then a stochastic method is suit-

able to model the channel. The well known stochastic models for the SISO channel

are in this section extended to the MIMO channel. The elements of the H matrix

are assumed to be random variables taken from a probability distribution function

(pdf). The elements are in general correlated but sometimes the correlation is ne-

glected in an initial analysis to make it tractable. The correlation depends on the

scattering scenario, the antenna element radiation patterns, their configuration and

separation distance. It is modelled using a general correlation model, where the

covariance matrix of the channel matrix elements is defined. However, in the def-

inition of the Rayleigh fading MIMO channel, a special structure will be imposed

on the correlation matrix. This structure makes further analysis of the Rayleigh

fading MIMO case possible, since the joint pdf of the eigenvalues to HH∗ for this

case is known.

The phase of the channel matrix elements are assumed to be uniformly dis-

tributed between [−π, π[ and the amplitude is assumed to have a Nakagami-m,

Rayleigh or Ricean fading distribution.

Let the elements of the channel matrix H be expressed as

Hpq = Xpq + jYpq = Apqe
jφpq p = 1, . . . , nr q = 1, . . . , nt (3.1)

in Cartesian and polar coordinates respectively.
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3.2.1 The Nakagami-m fading distribution

The amplitude Apq is Nakagami-m distributed if the probability density function

of Apq is

pApq(Apq) =
2

Γ(mf )

(mf

Ω

)mf

A
2mf−1
pq e−mf A2

pq/Ω, Apq ≥ 0 (3.2)

where Ω = E
{
A2

pq

}
is the second order moment (average power)[82]. The letter

m in the name ”Nakagami-m” is the parameter of the distribution called the fading

figure. In this thesis we denote the fading figure as mf and it is equal to

mf =
Ω2

E
{(

A2
pq − Ω

)2} , mf ≥ 1

2
. (3.3)

If mf is an integer, then for mf and mf/2, the Nakagami random variable is the

square root of the sum of squares of 2mf independent Gaussian random variables

[83]. The Nakagami distribution covers a wide range of distributions, when mf =
1/2 it is the one-sided Gaussian distribution, if mf = 1 then it is equal to the

Rayleigh distribution and when mf approaches infinity the channel becomes static

and the pdf becomes an impulse function located at
√

Ω.

The marginal pdf of the squared amplitude γpq = A2
pq of a Nakagami-m dis-

tributed variable is Gamma distributed with 2mf degrees of freedom since it is

composed of 2mf independent Gaussian distributed random variables. In the case

Ω = 1

pγpq(γpq) =
1

Γ(mf )
γ

mf−1
pq e−γpq . (3.4)

Nakagami-m fading MIMO channels

The Nakagami-m SISO channel is now extended to the MIMO case. Although the

Nakagami-m distribution was originally empirically found, it has a physical inter-

pretation as follows (from [83]). In a mobile radio environment, it is reasonable

to assume that the received signal from transmit antenna q to receive antenna p
is superimposed by a large number of multipath signals. All component signals

can be treated as mf independent groups and in each of these groups, there are

ηj , j = 1, . . . , mf unresolvable “subpath” signals r
(j)
pq which have almost identical

phase and amplitude. The sum of the “subpath” signals in each group forms the

j:th resolved multipath signal

r(j)
pq =

∑

{ηj}
r
j,ηj
pq = A(j)

pq ejξ
(j)
pq = X(j)

pq + jY (j)
pq , j = 1, . . . , mf . (3.5)
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Assume that the set of ηj is large, and that no line of sight (NLOS) between the

receiver and transmitter exists. This NLOS assumption ensures that r
(j)
pq has zero

mean. By invoking the central limit theorem, both X
(j)
pq and Y

(j)
pq can be approxi-

mated by independent Gaussian distributed random variables with zero mean and

with variance σ2
H . We normalize the variance to σ2

H = 1/2 with no loss of gen-

erality. Thus, the amplitude A
(j)
pq is Rayleigh distributed. The channel amplitude

defined by the index pq can then be written as

Apq =

√√√√
mf∑

j=1

|X(j)
pq + jY

(j)
pq |2 △

= |rpq| (3.6)

where rpq =
[
r
(1)
pq , . . . , r

(mf )
pq

]T
. Hence, each element of this mf -dimensional

random vector is independent of the others and has a Rayleigh distributed envelope.

So, when defining the correlation between different channels in the MIMO system

(different values on p and q), it is only necessary to model the correlation between

Gaussian component waves.

We are now ready to define the correlated Nakagami-m fading MIMO channel.

Definition 3.1 Assume that the nr×nt channel matrix H has elements with Nakagami-

m distributed amplitudes with fading figure mf and independent and uniformly

distributed phases on [−π, π[. The covariance matrix

RH = E [vec(H)vec(H)∗] . (3.7)

calculated for mf = 1, i.e. the Rayleigh fading case, together with the assumptions

above defines the correlated Nakagami-m fading MIMO channel.

3.2.2 The Rayleigh and Ricean fading distributions

In the Rayleigh fading channel, the amplitude Apq has a Rayleigh distribution

pApq(Apq) =
Apq

Ω
e−A2

pq/2Ω Apq ≥ 0 (3.8)

and if the amplitude Apq has non-zero mean, then it has a Ricean distribution

pApq(Apq) =
Apq

Ω
e−(A2

pq+A2
0)/2ΩI0

(
ApqA0

Ω

)
, Apq ≥ 0 (3.9)

where A0 is the mean [84] and I0(·) is the 0:th order modified Bessel function of the

first kind. Ricean fading is a commonly used fading model for LOS channels. The
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Ricean pdf is often characterized by the ratio of the power in the direct component

(LOS) and the diffuse component as

K =
A2

0

2Ω
. (3.10)

When K = 0, the Ricean distribution becomes Rayleigh. Note also that the

Nakagami-m distribution can well be approximated by a Ricean distribution, es-

pecially for high values of the fading parameter mf .

Rayleigh fading MIMO channels

The correlated Rayleigh fading MIMO channel is obtained from Definition 3.1

with the parameter mf =1. However, a few more assumptions are needed regarding

the channel covariance matrix RH to enable an analysis of the Rayleigh fading

case. These assumptions are:

Assumption 3.1 The correlation between signals transmitted from antennas p and

q and received by antenna k is independent of k.

Assumption 3.2 The correlation between signals received by antennas j and k
transmitted from antenna p is independent of p.

The assumptions 3.1 and 3.2 are quite accurate when the antenna elements are co-

located in the same physical unit at the transmitter and receiver (i.e. a mobile phone

unit or a basestation) [85]. Before proceeding, the following definition is made.

Definition 3.2 The matrix Hw is defined as an nr × nt matrix with independent

and identically distributed elements. Each element has zero mean and complex

circular Gaussian distribution with variance 1/2 per complex dimension.

The matrix Hw is used as a hypothetical Rayleigh fading MIMO channel matrix

where all the underlying subchannels (matrix elements) are independent and have

the same fading statistics. In a rich scattering environment, where the antenna

elements are sufficiently separated, the channel matrix can sometimes be approxi-

mated as Hw. As will be seen later, under the assumption that the channel is Hw,

it is possible to derive several theoretical results for transmission over this chan-

nel, such as the bit error rate. The channel Hw can also be used to construct a

new random channel matrix, with correlated matrix elements. Hence, we make the

following definition [85, 86].

Definition 3.3 Under the assumptions 3.1 and 3.2, the correlated Rayleigh fading

MIMO channel is defined as the matrix Hr, where Hr is given by

Hr
△
=CRHwCT . (3.11)
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The matrices CT and CR are of dimension nt × nt, nr × nr respectively that

models spatial fading correlation. The matrix Hw is given by Definition 3.2.

The model (3.11) is general for introducing correlation between elements in a ran-

dom matrix. Hence, it can also be used to introduce mutual coupling between array

antenna elements. In this case, the channel matrix Hw between the coupling ma-

trices is not necessarily a “white” matrix according to Definition 3.2. Rather it can

be a matrix that already contains the spatial fading correlation, for instance Hr.

Then (3.11) is used to add mutual coupling to the analysis by using CR and CT as

mutual coupling matrices for the receiver and transmitter side arrays respectively.

This approach is useful when a channel matrix is given from e.g. channel simula-

tions and the additional impact from mutual coupling between antenna element is

studied. This approach will be used in Section 3.5.1. For a more thorough analysis

of mutual coupling in MIMO systems, see [87].

An alternative description is to use the transmit and receive covariance matrices

with elements defined as

(RT )p,q =E
{
Hk,pH

∗
k,q

}
(3.12)

(RR)l,m =E
{
Hl,pH

∗
m,p

}
. (3.13)

The matrices CT and CR are related to RT and RR as [88]

(
R

1/2
T

)T
= CT (3.14)

R
1/2
R = CR (3.15)

where for any matrix R, R1/2 fulfills R = R1/2(R1/2)∗. The relation (3.11)

implies that the covariance matrix of vec(H) can be written as

RH
△
=E {vec(H)vec(H)∗} = RT ⊗ RR . (3.16)

It can be shown that the properties (3.16) and (3.11) are equivalent in the sense that

the channel matrix H has the same statistical properties [88].

In [89], the structure (3.16) was verified using measurements on an indoor

channel at 5.2 GHz, using a least square rank one approximation method to mini-

mize the Frobenius norm of the difference between RH and RT ⊗ RR. The error

was less than 5% for a 3 × 3 MIMO system in an NLOS channel.

The matrix product HH∗ and its eigenvalues are of great interest for perfor-

mance calculations in MIMO systems. An example where this matrix product

occurs is the capacity derivations in Section 2.2.1. Results from random matrix

theory is now used to derive probability density functions for the eigenvalues of
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HH∗. Under certain conditions in the Rayleigh and Ricean fading case, HH∗ has

a Wishart distribution [43]. These conditions are reviewed here for the Rayleigh

fading case.

Define the matrix W
△
=HrH

∗
r when nt ≤ nr and W

△
=H∗

rHr otherwise,

where Hr is a correlated Rayleigh fading MIMO channel matrix given in Defi-

nition 3.3. In the following analysis, assume nt ≤ nr and using (3.11), write the

matrix HrH
∗
r as

W
△
=HrH

∗
r = CRHwCTC∗

TH∗
wC∗

R . (3.17)

If CTC∗
T is idempotent1, then W is known to be complex Wishart distributed

[39, 43]. Real Wishart matrices can also be defined, but in this application, we

are more interested in the complex case and henceforth we shall refer to a com-

plex Wishart matrix as simply Wishart. The requirement that CTC∗
T is idempotent

is a restriction, but to be able to proceed with the analysis, this assumption must

unfortunately be made. Proceed by assuming that CTC∗
T is idempotent and to

simplify the analysis even further, we assume that2 CT = I, that is, the transmitter

antennas is sufficiently spaced apart so the mutual coupling and the spatial correla-

tion induced at the transmitter side can be neglected3. Under this assumption, the

following definition is made [43]:

Definition 3.4 If the nr × nr matrix is defined as W = HrH
∗
r , where Hr is

a correlated Rayleigh fading MIMO channel matrix given by Definition 3.3 with

CT = I, that is, with covariance matrix

E {vec(Hr)vec(Hr)
∗} = Int ⊗ CRC∗

R (3.18)

and if nt ≤ nr, then W is Wishart distributed with nt degrees of freedom and

covariance matrix CRC∗
R. This is written as

W ∼ Wnr (nt,CRC∗
R) (3.19)

where the subscript nr denotes the size of the matrix W.

Random matrix theory now gives the joint pdf of the ordered eigenvalues to a

Wishart distributed matrix. The matrix W is Hermitian and self adjoint, hence its

eigenvalues are non-negative and real. Since they are ordered, assume λ1 ≥ λ2 ≥
1A matrix A is idempotent if AA = A
2This is a stricter assumption than CT is idempotent.
3Note that if nt > nr then the corresponding requirement is that the antenna elements at the

receiver side should be sufficiently spaced to make CR = I. Hence, the requirement applies to the

side which has the fewest number of antennas.
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· · · ≥ λm. The eigenvalues to a Wishart matrix plays an important role in prin-

cipal component analysis and other multivariate techniques. The joint probability

density function is [39]

p(λ1, . . . , λm) =
Km,n

det(CRC∗
R)n 0F0(−(CRC∗

R)−1,W)
m∏

i=1

λn−m
i

m∏

i<j

(λi − λj)
2

(3.20)

where

m
△
= min(nr, nt) (3.21)

and

n
△
= max(nr, nt) (3.22)

and Km,n is a scalar constant that depends on n and m

Km,n
△
=

πm(m−1)

Γm(n)Γm(m)
(3.23)

and where

Γm(a) = πm(m−1)/2
m∏

i=1

Γ(a − i + 1) (3.24)

is the complex multivariate gamma function. A useful property of Wishart matrices

in this context is also [90]

E {det (I + ψW)} = m!ψmLn−m
m (−1/ψ) (3.25)

where Lα
k is the generalized Laguerre polynomial of order k [80, Eq.8.970.1].

The function 0F0(−(CRC∗
R)−1,W) is the hypergeometric function with ma-

trix arguments [43]. Its computation is in general very difficult and involves a

series expansion in zonal polynomials [43], which converges slowly. Fortunately,

the special case of i.i.d. circularly complex Gaussian distributed elements of H ,

i.e. CR = I or equivalently when the channel is H = Hw, gives a more simple

expression for the ordered eigenvalues distribution as

p(λ1, . . . , λm) = Km,n

m∏

i=1

e−λiλn−m
i

m∏

i<j

(λi − λj)
2 (3.26)

which follows from the property 0F0(−I,W) = exp (−Tr(W)) [39].
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Before proceeding, this section is summarized. The Definition 3.3 of the cor-

related Rayleigh fading MIMO channel, which is a restriction on the correlation

between the matrix elements that is equivalent to the covariance structure (3.16),

makes the product W = HH∗ Wishart distributed, if CTC∗
T is idempotent. For

a Wishart distributed matrix, the joint pdf of the eigenvalues is known, equation

(3.20), but is difficult to use, due to the involvement of the hypergeometric func-

tion with matrix arguments. For the case of a “white” channel matrix, Hw, defined

in Definition 3.2, the joint pdf of the eigenvalues is simplified to expression (3.26),

which will be utilized in the following analysis.

The marginal pdf of λi

It is possible in the case of i.i.d. Rayleigh distributed elements of H, that is H =
Hw, to find the marginal distribution of any of the m = min(nr, nt) eigenvalues

to the matrix W. These pdf:s will be useful in later sections. We now present the

following theorem.

Theorem 3.1 Assume that W is Wishart distributed according to Definition 3.4

with CRC∗
R = I, that is,

W ∼ Wnr (nt, Inr) . (3.27)

The marginal probability density function of the k:th largest eigenvalue to W is

then given by

pk(λk) = Q

∫ ∞

λk

dλk−1

∫ ∞

λk−1

dλk−2 · · ·

· · ·
∫ ∞

λ3

dλ2

∫ ∞

λ2

dλ1

∫ λk

0
dλk+1 · · ·

∫ λm−1

0
dλmp(λ1, . . . , λm) (3.28)

where Q is a constant that normalizes the pdf to unity, if desired, and p(λ1, . . . , λm)
is given by (3.26).

Proof: The joint pdf of the eigenvalues is given by (3.26). Since the eigenval-

ues are ordered, λ1 ≥ λ2 ≥ · · · ≥ λm, the marginal pdf of an arbitrary eigenvalue

λk is found by integrating out the other m − 1 eigenvalues from (3.26) one by

one in a certain order. Start by integrating out the smallest eigenvalue, λm. Since

0 ≤ λm ≤ λm−1, these are the integration limits that should be used to find the

marginal pdf p(λ1, . . . , λm−1). Hence

p(λ1, . . . , λm−1) =

∫ λm−1

0
p(λ1, . . . , λm)dλm . (3.29)
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Now, since λm has been integrated out, the smallest eigenvalue is λm−1 which

is bounded by 0 ≤ λm−1 ≤ λm−2. Hence the joint pdf of the m − 2 largest

eigenvalues is found from

p(λ1, . . . , λm−2) =

∫ λm−2

0
p(λ1, . . . , λm−1)dλm−1 . (3.30)

This procedure is iterated until we reach the joint pdf of the k largest eigenvalues,

p(λ1, . . . , λk). Now, we integrate out the largest eigenvalue, which is bounded as

λ2 ≤ λ1 < ∞, to find

p(λ2, . . . , λk) =

∫ ∞

λ2

p(λ1, . . . , λk)dλ1 (3.31)

and then proceed iteratively until only the marginal pdf for the eigenvalue pk(λk)
remains. This iterative manner for finding pk(λk) can be written compactly as

(3.28). Sometimes it is desirable to normalize the marginal pdf to have the property∫∞
0 pk(λk)dλk = 1, so the normalization constant Q is introduced in (3.28) for this

purpose.

We demonstrate this theorem by an example.

EXAMPLE 3.1

Assume that the 3 × 3 MIMO channel is given by Hw in Definition 3.2 on page

81. Then W = HwH∗
w has a Wishart distribution according to Definition 3.4

and the joint pdf of the eigenvalues is given by Equation (3.26) with m = n = 3
as

p(λ1, λ2, λ3) =
1

4
e−λ1−λ2−λ3(λ1 − λ2)

2(λ2 − λ3)
2(λ3 − λ1)

2 . (3.32)

To find the marginal pdf of the smallest eigenvalue, we use Theorem 3.1 and

integrate out the two largest as

p3(λ3) =

∫ ∞

λ3

{∫ ∞

λ2

p(λ1, λ2, λ3)dλ1

}
dλ2 = 3e−3λ3 (3.33)

The middle eigenvalue has the marginal pdf

p2(λ2) =

∫ ∞

λ2

{∫ λ2

0
p(λ1, λ2, λ3)dλ1

}
dλ3

=
1

2
(12 − 12λ2 + 6λ2

2 + 2λ3
2 + λ4

2)e
−2λ2 − 12e−3λ2

(3.34)
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and the largest eigenvalue

p1(λ1) =

∫ λ1

0

{∫ λ2

0
p(λ1, λ2, λ3)dλ3

}
dλ2

=
1

4
(12 − 24λ1 + 24λ2

1 − 8λ3
1 + λ4

1)e
−λ1

−1

2
(12 − 12λ1 + 6λ2

1 + 2λ3
1 + λ4

1)e
−2λ1 + 3e−3λ1 .

(3.35)

The pdf for the largest eigenvalue of a Wishart matrix is related to the maximum

achievable path gain in a beamforming system and to emphasize its importance we

state that the pdf has a particular form in the following corollary

Corollary 3.1 Assume that W is Wishart distributed according to Definition 3.4

with CRC∗
R = I. That is

W ∼ Wnr (nt, Inr) . (3.36)

The marginal probability density function of the largest eigenvalue to W has then

the form

pλ(λmax) =
m∑

k=1

φk (λmax) e−kλmax , (3.37)

where, m
△
= min(nr, nt) and the functions φk(x) are polynomials. The polynomi-

als for m = 2, 3, 4 and n
△
= max(nr, nt) = 2, 3, 4 are given in Table 3.1.

Proof: See Appendix 3.A on page 144.

Conjecture 3.1 The polynomials φk(x) are of maximum degree nr + nt − 2.

This conjecture is discussed in Appendix 3.A and it is not included in the corollary

since it is not formally proven. Furthermore, we have not been able to find a way to

express the polynomials φk(x) explicitly, given arbitrary nt and nr, without having

to resort to the m − 1-fold integration. However, we believe that this is possible

and it is a topic for future research.

The largest eigenvalue of a matrix is called the spectral radius of the matrix and

it is bounded by

1

m

m∑

i=1

λi ≤ λmax ≤
m∑

i=1

λi = Tr (W) (3.38)

where m is the rank of W, denoted rk(W). The upper bound is attained when

rk(W) = 1 and the lower bound when all eigenvalues λi are identical. This prop-

erty will be used later in the thesis.
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To calculate the polynomials φk(x) for large m and n is difficult. Fortunately,

as the matrix dimensions grow large, the pdf for the eigenvalues converges, and

especially the extreme eigenvalues λmax and λmin converge to non-random quan-

tities. If n and m increase without bound such that m/n → β ≤ 1, then it can be

shown that [91–93]

λmax → (1 +
√

β)2

λmin → (1 −
√

β)2 .
(3.39)

These relations will be used in this thesis for finding the asymptotic value of the

channel capacity and bounds for bit error rates of Rayleigh fading MIMO channels.

3.3 Physical channel models

To generate signal correlation matrices CR and CT , a model that resembles the

physical scattering in the channel can be used. Many different approaches to model

signal correlation, or directly the channel matrix for MIMO systems have been

presented. The Saleh-Valenzuela model [94] is partially based on channel physics

and characterizes the channel by representing the multipath components in terms of

their amplitude, arrival time and angle of arrival/departure (AOA/AOD) and with

specified pdf:s for the AOA/AOD, amplitudes and arrival times [95]. In this thesis,

the one-ring model is used to generate correlation matrices and a scattering disc

model is used to obtain channel matrices directly.

3.3.1 Scattering disc model

In [96], a simple model based on a circular disc of uniformly distributed scatterers

placed around the receiving antenna array was presented. This model was then

extended to a MIMO scenario with general antenna radiation functions in [21].

Since the model is based on fundamental physics, the correlations between the

received signals when the antennas are arranged in different configurations or with

different radiation patterns, are physically motivated. Different channel scenarios

can easily be obtained by varying the radius of the scattering disc as well as the

location of the transmitting array relative to the disc [21].

In the scattering disc model, the path gain can be written as

Hpq =

L∑

l=1

αl exp
{
−jkc(DTXq→sl

+ Dsl→RXp)
}

gtq(φ
T
l )grp(φ

R
l ), (3.40)

where the number of scatterers is L and αl represents the independent and com-

plex Gaussian distributed reflection coefficients with zero mean and unit variance.
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Furthermore, Dsl→RXp and DTXq→sl
, denote the distance from receiving array

antenna p to scatterer l and scatterer l to transmitting array antenna q respectively.

Note that the wave number is denoted kc
△
= 2π/λc. Finally gtq(φ

T
l ) and grp(φ

R
l )

are the complex voltage radiation patterns of the transmitting and receiving anten-

nas respectively. This model is suitable for simulations where the L scatterers are

randomly placed. The channel matrix is calculated using (3.40) and then normal-

ized according to some criterion4. The model (3.40) will be used in Section 3.7

and Chapter 7.

This model can also be extended to generate channels where a LOS component

exists between the transmitter and the receiver. This resembles the Ricean fading

channel [84]. The channel matrix is then decomposed into the direct (LOS) com-

ponent and the scattered, Rayleigh distributed, component. Similar to the Ricean

fading model, the K-factor is introduced, and defined as the ratio of the deter-

ministic (LOS) and the scattered power components that gives pure LOS or pure

scattering as extreme cases (K = ∞ and K = 0). The channel matrix can thus be

expressed as,

H = HLOS + Hscat =

√
KG

K + 1
aTX(θTX)(aRX(θRX))∗ +

√
G

K + 1
H̃scat .

(3.41)

Here θ is the respective angle from array broadside and a(θ) is the normalized array

response vector. G is the large scale path gain including the antenna element gains.

It can be used to normalize H. The matrix Hscat is calculated using the scattering

disc model (3.40). By assigning the mobile a speed and a direction through the

cloud of scatterers, a time varying channel for each transmit-receive antenna pair

is obtained. Different characteristics of the fading and correlation between the

received signals can be obtained by varying the disc radius, the speed of mobile,

the LOS parameter K and/or the base to mobile distance.

3.3.2 One-ring model

For some derivations, the complex correlation coefficients between the MIMO

channel elements are required. The one-ring model, first introduced by Jakes [97]

and later also used in e.g. [88] is suitable for this. This model is in fact a ray-tracing

model and is based on the following assumptions: The receiver antenna array is sur-

rounded by a ring of scatterers of radius Rs, see Figure 3.1. The distance from the

center of the ring to the transmitter is D. Since D and Rs are typically large com-

pared to the antenna element spacing, the angular spread is ∆ ≈ arcsin(Rs/D)
for all transmitter antennas. The scatterers are assumed to be uniformly distributed

4A common normalization criterion for channel matrices is to set ‖H‖2
F = 1
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Figure 3.1: Description of the one-ring model. TXi, RXj are transmit and re-

ceive antenna i and j respectively. S(θ) is the scatterer at angle θ, ∆ is the angular

spread, D the transmit to receive antenna distance and Rs the radius of the scat-

tering ring

on the scattering ring. Denote the scatterer located on the ring at angle θ, S(θ)
and assume that rays that are scattered in S(θ) will change phase with the angle

φ(θ). Statistically, φ(θ) is distributed uniformly in [0, 2π[ and i.i.d for every angle

θ. Consider only rays that are reflected once and that all rays reaching the receiver

antennas are equal in power. With these assumptions, the complex correlation co-

efficients are written as [88]

E
{
HlpH

∗
mq

}
=

1

2π

∫ 2π

0
exp { − jkc [ DTXp→S(θ) − DTXq→S(θ)+

+ DS(θ)→RXl
− DS(θ)→RXm

]} dθ (3.42)

where DTXp→S(θ) is the physical distance between transmit antenna p and the

scatterer S(θ) on the ring and kc is the wavenumber. The other distances in (3.42)

are defined similarly. The elements defined by (3.42) are elements in the nrnt ×
nrnt channel covariance matrix RH in (3.7). Recently, an analytical expression

for the integral in (3.42) was given in [98], where a certain angular distribution of

the angle of arrival (AOA) was included in the integral kernel, to be able to analyze

scattering scenarios with non-uniform AOA distributions.

When ∆ is small, the distances from the different transmitting array antennas

via the scatterer to the receiver array are approximately equal, so the correlation

between two paths from different transmit elements to one receive elements is ex-

pected to be high as compared to the large ∆ case, where this correlation is smaller.

Hence, by adjusting ∆, channel fading scenarios with weak or strong spatial cor-
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relation is generated.

3.4 Measured MIMO channels

To collect real MIMO channel data, measurements were performed in an indoor

environment at the Signals and Systems Group, Uppsala University. The aim of

the measurements was to verify the assumptions made in the theoretical analysis

regarding fading distribution, signal correlation and the flat fading assumption. In

Chapter 4, outdoor measurements on a more advanced SIMO system are presented

in detail.

3.4.1 The Measurement Setup

The measurements were performed in an indoor office environment using a 4 × 4
MIMO system at the frequency 1.8 GHz. A Vector Network Analyzer was used

to measure the channel coefficients for the 16 channels using a switching method.

Each complete “MIMO snapshot” of all the 16 channels were measured in less than

3 seconds, which is fast enough in indoor environments to ensure that the channel

remains stationary during each measurement. The switching method was also used

in [99] on an 8×8 MIMO system. Between each measurement, the receiving array

was moved one eight of a wavelength in the broadside direction. The antenna ele-

ments were microstrip patch antennas placed in a linear array with an inter-element

spacing (δ) of half a wavelength (δ = λc/2) . The patch antennas had a half power

beamwidth of 80◦ and a half power bandwidth of 170 MHz and the measurement

SNR was set to 20 dB in all measurements. Two scenarios were investigated, one

line of sight (LOS) and one non-LOS (NLOS) setup. In the LOS scenario, the two

arrays were placed facing each other in an 8× 6 meter laboratory room containing

various instruments, tables and cabinets and ND = 146 measurements were con-

ducted. In the NLOS scenario, ND = 220 measurements were conducted and the

receive array was placed outside the laboratory room, centered in a long corridor

with the array broadside parallel with the corridor. The transmit array was kept in

the adjacent laboratory. To make comparisons with the theoretical models, each

element of the measured H matrix was normalized as

Hpq(k) =
Hm

pq(k)√
1

ND

∑ND
k=1 |Hm

pq(k)|2
(3.43)

for p = 1, . . . , nr, q = 1, . . . , nt and where Hm
pq(k) is the measured channel matrix

element in measurement k and Hpq(k) is the normalized matrix element.



3.4. Measured MIMO channels 93

3.4.2 Coherence bandwidth

The initial measurements aimed to verify the flat Rayleigh fading assumption. Fig-

ure 3.2 shows the measured power spectrum in the NLOS case from one transmit

antenna to the four receive antennas. The coherence bandwidth (at correlation co-

efficient 0.9) is estimated to Bc = 2.8 MHz so the flat fading assumption is valid if

the signalling bandwidth is less than Bc. If a system with higher bitrate is required,

then transmission over many subchannels can be used, where the bandwidth of

each subchannel is less than Bc.
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Figure 3.2: Power spectrum for NLOS channel. Each curve represents the received

power in one out of four half-a-wavelength spaced antennas from one transmit

antenna.

3.4.3 Fading statistics

Figure 3.3 shows the normalized channel amplitudes for all 16 channels in the

NLOS case and it is immediately apparent that the channels fading patterns are

different. The correlation between these subchannels is further explored below.

In Figure 3.4, the estimated probability density functions of the normalized

amplitudes in the LOS and NLOS cases are shown. The curves are fitted to a

Nakagami-m distribution using a moment based method [100]. The Nakagami-m

distribution is given in (3.2). The mf -parameter was estimated to mf = 1.07 in

the NLOS case and mf = 6.31 in the LOS case. The measured data was also used
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Figure 3.3: Channel amplitudes in a 4 × 4 MIMO NLOS channel as a function of

measurement.

to estimate the Ricean K-factor (3.10) using a moment based estimator [101], and

the value was found to be K = 11.1 in the LOS case and K = 0.14 in the NLOS

case. Hence, the fading amplitude in the NLOS case is approximately Rayleigh

distributed and the phase is close to uniformly distributed, see Figure 3.5.

3.4.4 Signal Correlation

An important property of the MIMO channel that essentially determines the chan-

nel capacity is the correlation between the channel coefficients. When multi an-

tenna systems are analyzed, it is commonly assumed that the fading between pairs

of transmit and receive antennas are independent and identically distributed ran-

dom variables with a Rayleigh distribution, as in [48, 60]. However, in real prop-

agation environments, the fades are dependent due to the local scattering environ-

ment or insufficient antenna element spacing [102]. On the other hand, a small

antenna element spacing is often necessary to fit multiple antennas on a portable

device. Small element spacing also introduces mutual coupling between the an-

tenna elements which affects the achievable capacity of the system, although not

necessarily in a negative way, as will be shown in Section 3.5. In [103] it was

shown that under the model (3.11), the performance of a space-time block code

having full diversity (nrnt) in the uncorrelated case, has its diversity order reduced

to the product of the ranks of the receive and transmit correlation matrices, CR
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Figure 3.5: Cumulative distribution of phase in NLOS channel.
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Figure 3.6: The magnitude of the envelope correlation matrix for a measured 4×4
MIMO channel. Non line of sight scenario.

and CT . Hence, in a LOS channel, where the received signals on the nr antennas

have a high correlation, diversity techniques are expected to perform poorly. On

the other hand, if average CSI is known at the transmitter, in form of the channel

covariance matrix RH , it was shown in [34] that a correlated channel has higher

outage capacity and higher ergodic capacity than the uncorrelated one in the low

SNR regime.

The envelope correlation coefficient can be approximated as [104]

ρm,q
l,p =

E2
[
Hm,qH

∗
l,p

]

E
[
|Hm,q|2

]
E
[
|Hl,p|2

] (3.44)

so the envelope correlation matrix is a normalization of the correlation matrix RH .

This matrix is estimated by replacing the expectation operators in (3.44) by their

sample mean equivalents. The 16 × 16 envelope correlation matrix can be seen in

Figure 3.6 and 3.7 respectively. Clearly, the LOS channel has highly correlated

channel coefficients and hence it is most suitable for beamforming, where coherent

signals are desirable.

3.4.5 Eigenvalue analysis

In Figure 3.8 and 3.9, the four eigenvalues to the matrix W = HH∗ is plotted

as a function of the measurement snapshot. In the LOS case, the largest eigen-

value is dominant, 10-15 dB larger than the second largest eigenvalue, whereas in
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Figure 3.7: The magnitude of the envelope correlation matrix for a measured 4×4
MIMO channel. Line of sight scenario.
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Figure 3.8: Eigenvalues for W in a non line of sight (NLOS) MIMO channel as a

function of measurement number.



98 Chapter 3. MIMO system performance

0 50 100 150
−30

−25

−20

−15

−10

−5

0

5

10

15

Measurement number

E
ig

e
n
va

lu
e
s 

[d
B

]

Figure 3.9: Eigenvalues for W in a line of sight (LOS) MIMO channel as a func-

tion of measurement number.

the NLOS case the difference is about 5 dB. Therefore, a beamforming method

(which utilizes only one eigenmode of the channel) is expected to have the best

performance in the LOS channel. Notice that changes in eigenvalues are some-

what dependent. The change in eigenvalues depends on how the array is moved

relative to the channel eigenvectors. A move parallel to an eigenvector will only

cause a change in its corresponding eigenvalue. For a discussion on temporal vari-

ations of MIMO channels, see [99]. In Figure 3.10, the cumulative distribution

functions (cdf) for the four eigenvalues in the NLOS case are plotted. A Monte

Carlo simulation was conducted to obtain the cdf:s for the four eigenvalues in the

i.i.d. Rayleigh fading case. The largest eigenvalue is slightly larger than in the i.i.d

Rayleigh case, which agrees with the observation that mf = 1.07 was the best

fit in the Nakagami-m distribution. A reasonable explanation is the measurement

setup in a corridor, which should make the signals more focused along the corridor

and hence the i.i.d. Rayleigh model with receiving signals uniformly distributed in

arrival angle is not valid.

3.4.6 The capacity of the measured channels

The measured channel data is now used to calculate the mutual information, the

capacity and the outage capacity. The data is used to investigate the performance

with and without CSI at the transmitter. The average mutual information, or chan-
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Figure 3.10: Cumulative distribution of the four eigenvalues in an NLOS channel.

The i.i.d. Rayleigh fading channel CDF:s are also plotted for reference.

nel capacity Ĉ, is estimated as

Ĉ =
1

ND

ND∑

i=1

log2 det

{
Im +

1

σ2
n

HiR
i
ccH

∗
i

}
(3.45)

where ND is the number of measurements and Hi is the channel matrix from mea-

surement i, and where Ri
cc is chosen to maximize mutual information for each

channel (in the case when CSI is available at the transmitter). For the no CSI at the

transmitter case, the capacity estimate

Ĉ =
1

ND

ND∑

i=1

log2 det

{
Im +

PT

σ2
n

HiH
∗
i

}
(3.46)

is used. In all results in this section, the measured channel matrices are normalized

so that the rms value of all the channel matrix elements over all ND measurements

is one. When ND → ∞, this is equal to stating that E
{
|Hpq|2

}
= 1. Furthermore,

in this limit, Ĉ approaches the Ergodic (Shannon) capacity of the channel. The

normalization ensures that path losses and antenna gains are removed from the

measurements and only the spatial, scattering characteristics of the channel are

investigated.
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Figure 3.11 shows the estimated ergodic channel capacity for a 2 × 2 MIMO

system where the element separation at the transmitter is λc/2 while for the re-

ceiver it varies between λc/2, λc and 3λc/2. The LOS capacity is lower than the

NLOS capacity. Note however that the normalization removes the gain the spec-

ular LOS channel has over the diffuse scattering NLOS channel. The gain in the

LOS case is due to the unobstructed path between the two arrays which has low

path loss. In [105], this was investigated using measurements and it was concluded

that if the measured channel matrix is un-normalized, the capacity rose when mov-

ing from NLOS to LOS. An upper bound of this capacity can be found using the

concavity of the log det operator [106] together with Jensen’s inequality5. Using

(2.58)

CnoCSI =EH

[
log2 det

{
Im +

PT

σ2
nnt

HH∗
}]

≤ log2 det

{
Im +

PT

σ2
nnt

EH [HH∗]

}

= log2 det

{
I +

PT

σ2
nnt

RR

}
(3.47)

where RR is the receive covariance matrix from (3.13). This upper bound is tight

when the main part of the correlation is from the receive part of the system and

when the channel is not rank deficient [106]. The ideal case RR = I is always

satisfied with a semi-unitary channel matrix H, so HH∗ = I. The reason for the

gap between the measured curves and the ideal, unitary channel, is the correlation

between the signals. The correlation seems to be approximately independent of

the antenna element separation, which indicates that the correlation is not due to

mutual coupling but from the scattering in the channel. The results in [106] also

suggests that the angular spread of the incoming signals, ∆, in the measurements

for the NLOS case, is larger than 1 rad≈ 52◦, since the channel capacity does not

depend on the element separation (when it is larger than λc/2).

To analyze the performance gains from using CSI at the transmitter, the average

mutual information (estimated Shannon capacity) when Ri
cc is chosen optimally,

see Section 2.2.1, are compared in Figure 3.12 by expressing the ratio of the chan-

nel capacity with and without CSI. The antenna element spacing is λc/2 in both

the 2 × 2 and the 4 × 4 cases. The benefits of CSI at the transmitter is decreased

for increasing transmit power (or reduced receiver noise) and at an SNR around 25

dB, the benefits of having CSI is negligible. This is in accordance with the con-

clusions in Section 2.6. It is also seen that CSI gives a larger improvement in the

5Jensen’s inequality states that if f(X) is a concave function and X is a random variable, then

E [f(X)] ≤ f(E [X]).
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Figure 3.11: Estimated ergodic channel capacity when receiver antenna element

distance is varied. Transmitter element distance fixed at λc/2 and no CSI at the

transmitter. SNR=10 dB

LOS case, because there exists a strong mode in the channel which is more effi-

ciently exploited by the water-filling algorithm. Furthermore, with more antennas,

which implies a larger number of channel eigenmodes, CSI at the transmitter gives

a larger advantage over the “blind” case in the NLOS scenario compared to the

LOS case since a few or only one of the channel eigenmodes will be exploited by

the water-filling algorithm.

Figure 3.13 shows the comparison between the beamforming and STBC. These

two strategies are implementations of transmission with and without CSI. The es-

timated outage capacity is plotted at 10% outage probability. The estimated outage

capacity, R, at 10% probability is defined as the median of the ND/5 smallest val-

ues of the estimated channel capacity Ĉ. This approach was used in [34] and is

there called the sample-mean outage capacity. For two antenna element arrays, the

difference between LOS and NLOS channels is small. At low SNR, knowledge of

CSI at the transmitter gives a large advantage over the STBC in the 4× 4 scenario.

The sub-optimality of beamforming

Figure 3.14 shows the sub-optimality of using beamforming when CSI is known

at the receiver compared to the optimal waterfilling solution which utilizes all m
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subchannels. Recall that beamforming is capacity optimal in the MISO case but

not in the general MIMO channel. Intuitively, a rank one MIMO channel would

give a beamforming performance equal to the optimal waterfilling performance

since the channel in this case has only one non-zero eigenvalue. This is confirmed

in Figure 3.14, where for nt = nr = 2 MIMO systems at low SNR in the LOS

case, the beamforming approach becomes equivalent to the waterfilling approach.

The probability for beamforming to be optimal is given by the probability that no

power is allocated to subchannel 2, that is, from (2.52):

γ2 =

(
µ − σ2

n

λ2

)+

= 0 . (3.48)

If this expression is combined with the total power criterion, (2.53), we get the

probability that beamforming is optimal as

Pr

{
1

λ2
− 1

λ1
>

PT

σ2
n

}
. (3.49)

In a LOS channel λ1 ≫ λ2, so from (3.49) it is expected that beamforming is

optimal at a larger SNR than in the NLOS case. In the 4 × 4 NLOS channel, the

gain of using several subchannels is substantial and the method derived in Section

2.4 should be used to exploit these subchannels.
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3.4.7 The bit error rate

Using the measured 2×2 channels, the BER assuming a coherently detected BPSK

modulation is now calculated. Figure 3.15 shows the BER estimated using the

measured channels along with the theoretical curves from (3.92) and (3.68) with

mf = 1, for beamforming and STBC respectively. Assuming coherently detected

BPSK modulation, the BER, denoted P̂STBC and P̂BF for Space Time Block Cod-

ing and beamforming respectively, for the measured systems are estimated as

P̂STBC =
1

ND

ND∑

i=1

Q

(√
2

PT

σ2
nnt

‖Hi‖2
F

)
(3.50)

and

P̂BF =
1

ND

ND∑

i=1

Q

(√
2
PT

σ2
n

λmax (HiH
∗
i )

)
(3.51)

where Hi are the channel matrices from the measurements. Due to the short mea-

sured data series, the measured curves cannot accurately estimate a BER below

10−2. This is the reason for the deviation from the theoretical curves in Figure

3.15. For low SNR however, the number of bit errors are so large that the theoret-

ical and measured curves coincide. The CSI at the transmitter gives a gain in the

2 × 2 case, of about 2 dB at a bit error rate of 10−2. Note that the slope of the

BER curves is equal, which indicates that beamforming and STBC has the same

diversity advantage. This will be theoretically verified for the i.i.d. Rayleigh fading

channel later in this chapter.

3.5 Transmission over fading channels without CSI at the

transmitter

The aim of this section is to analytically investigate the performance of an orthog-

onal space time block coding system in a fading environment with correlated sig-

nals at the nr receiver antennas. The amplitude of the flat fading channel gains are

assumed to be Nakagami-m distributed [82] with integer parameter mf , which in-

cludes the Rayleigh distribution as a special case (mf = 1), thereby allowing both

LOS and NLOS cases to be modelled. The correlated signals may arise from the

scattering environment, closely spaced antenna elements and from mutual coupling

between antenna elements. For the signal correlation generated by the scattering

environment, the unstructured general model for RH , given by equation (3.7), is
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Figure 3.15: Bit error rates for beamforming and STBC (nr = nt = 2) as a

function of SNR. The scale on the x-axis is in dB.

assumed where any real or imaginary part of two arbitrary elements of the channel

matrix may be correlated with each other. The mutual coupling is modelled by a

pre- and post-multiplication of the channel matrix H as H′ = CRHCT . This is

reasonable since the mutual coupling between an antenna element at the receiver

side and one at the transmitter side is negligible.

The outage capacity is derived as well as the bit error rate for the STBC under

the assumption of coherently detected BPSK modulation. The results are given in

Theorem 3.2 and 3.3 respectively.

Previous works studied the impact of spatial fading correlation on multiple in-

put multiple output (MIMO) capacity in a Rayleigh fading channel [88] by dividing

the MIMO channel into subchannels using an eigen-decomposition. The corre-

sponding subchannel gains are then determined by the fading correlation. Fur-

thermore, in [86], the performance in terms of average pairwise codeword error

probability (PEP) of a space time code system in a Rayleigh fading environment

was investigated and it was further shown how the diversity order is dependent on

the rank of the fading correlation matrices, RR and RT .

The orthogonal STBC over a MIMO channel can be written as an equivalent

SISO system, as was shown in Section 2.3.2. The SNR of the equivalent SISO

system depends on the Frobenius norm of the channel matrix, see equation (2.71)

and since the Frobenius norm is the sum of the magnitude of the matrix elements
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squared, the statistical properties of this norm is derived using the theory of sums

of correlated random variables and is presented in Lemma 3.1, which then is used

to prove the Theorems 3.2 and 3.3. A previously studied and related problem is the

performance of the maximum ratio diversity combiner in a correlated Nakagami-

m fading channel, given complex correlation coefficients between the diversity

branches [83] or envelope correlation coefficients [107].

The derived results are illustrated by a few examples in which the performance

of a STBC system with fading correlation and mutual coupling is found. The

fading correlation is modelled by the extended “one-ring model”, see Section 3.3.2.

Mutual coupling is modelled using half-wavelength dipoles, which are known to

give a high coupling due to the omni-directional radiation properties [108]. The

dipole model is convenient in the sense that it provides analytical expressions for

the mutual coupling coefficients. Some concluding remarks of this section are

presented in Section 3.5.6.

3.5.1 Analyzing orthogonal STBC performance

Assume that the space time block coding (STBC) encoder and decoder structure as

presented in Section 2.3.2 is used over a wireless link using a transmitter with nt >
1 antennas, a receiver with nr ≥ 1 antennas. Furthermore, the communication is

carried out using bursts or packets of length N symbols. The channel is assumed to

be quasi-static, i.e. the elements of H are fixed during the transmission of these N
symbols. The model can then be formulated as the block fading model presented in

Section 1.1.2. A key observation, made in [60], is that the input symbols become

decoupled and the MIMO channel model (1.22) can be written as an equivalent

SISO channel model (2.71),

y =

√
PT

σ2
nnt

‖H‖2
F s + v (3.52)

where the symbols s are defined as complex valued and unitary6. In the complex

symbol case, y is the 2ns ×1 vector after decoding of the received matrix Y, s is a

vector with two stacked ns×1 blocks corresponding to the real and imaginary parts

of the input symbols7 and v is the noise vector with circular normal i.i.d elements

and which variance can be shown to be ‖H‖2
F σ2

n, [60] see also equation (2.72). So

the effective SNR at the receiver is equal to PT
σ2

nnt
‖H‖2

F , and to evaluate the STBC

performance, the pdf of ‖H‖2
F is desired. It is given by the following lemma.

6If a symbol alphabet with non-equal powered symbols are used, such as 64QAM, then the as-

sumption that the average power of the complex-valued symbols is 1 is used.
7This stacking is an abstract operation to be able to formulate the equivalent SISO system (3.52).

In which order the ns symbols are arranged in the two blocks in the vector s is of no importance.
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Lemma 3.1 Assume that H is a correlated Nakagami-m fading channel, accord-

ing to Definition 3.1 on page 80. The probability density function of the squared

Frobenius norm,

Υ
△
= ‖H‖2

F (3.53)

is then

pΥ(x) =

nrnt∑

l=1

mf∑

r=1

cl,rp(x; l, r) (3.54)

where p(x; l, r) is a Gamma distribution,

p(x; l, r) =
1

νlΓ(r)

(
x

νl

)r−1

e−x/νl (3.55)

and νk, k = 1, . . . , m, m = min(nr, nt) are the distinct eigenvalues to the spatial

covariance matrix RH . The coefficients cl,r are given by

cl,r =




nrnt∏

k=1,k 
=l

(1 − sνk)
−r



∣∣∣∣∣∣
s=1/νl

(3.56)

for r = mf and

cl,r =
1

(mf − r)!(−νl)
mf−r

d(mf−r)

ds(mf−r)




nrnt∏

k=1,k 
=l

(1 − sνk)
−mf



∣∣∣∣∣∣
s=1/νl

.

(3.57)

for 0 < r < mf .

Proof: See Appendix 3.B on page 145.

Note that the covariance matrix RH in Lemma 3.1 has an arbitrary structure

and is thus not restricted to have the form (3.16). Hence, the assumptions 3.1 and

3.2 on page 81 must not necessarily hold for Lemma 3.1 to be valid. Note also that

it is the covariance matrix for the case of mf = 1, i.e. the Rayleigh fading MIMO

channel that should be used. Hence, even though mf > 1, the covariance matrix

RH in Lemma 3.1 should be calculated as if the channel was Rayleigh fading.

See the discussion prior to Definition 3.1. Furthermore, the eigenvalues must be

distinct for the calculations of the coefficient cl,r, using the described procedure

to be valid. The terms in the covariance matrix in Lemma 3.1 is most commonly

due to the scattering in the channel. However, it can contain the mutual coupling

if measurements or an electromagnetic software that takes mutual coupling into

account has been used to obtain RH . Otherwise, coupling matrices from the array

antenna design can be used to extend the Lemma. This method is described in the

following section.
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Mutual coupling

The theory derived above is now extended to take mutual coupling at the transmit

and receive antenna array into consideration. It is a reasonable assumption that

the coupling at the transmitter side is completely independent of the receiver side

coupling and vice versa. The mutual coupling at the transmitter and the receiver

is modelled by multiplying the channel matrix H with coupling matrices CT and

CR for the transmit and receive side respectively to form a new channel matrix

H′ = CRHCT . This approach was also taken in [109]. It shall be noted that this

model of mutual coupling, using coupling matrices, is a simplification, to make the

following examples tractable. In [87], a more rigorous study of mutual coupling is

performed, where the matching networks are incorporated.

As the correlation matrix RH is defined in the mf = 1 case, see Definition 3.1

on page 80, it is now shown in the following corollary how this correlation matrix

should be updated when mutual coupling is present.

Corollary 3.2 The pre- and post-multiplication of the correlated Nakagami-m

MIMO channel H, with the coupling matrices CR and CT under the condition

mf = 1 implies that the channel covariance matrix RH in Lemma 3.1 is updated

according to the following procedure.

Make the separation of the original RH as

RH = B + jC (3.58)

where B and C are real matrices. Define

Σ =

[
B C

−CT B

]
(3.59)

and

K =

[
Re
(
CT

T ⊗ CR

)
−Im

(
CT

T ⊗ CR

)

Im
(
CT

T ⊗ CR

)
Re
(
CT

T ⊗ CR

)
]

2nrnt×2nrnt

. (3.60)

The channel covariance matrix with mutual coupling taken into account is then

obtained by first forming Σ′ = KΣKT and then using (3.59) to find B′,C′, and

finally (3.58) to find the new channel covariance matrix R′
H .

Proof: See Appendix 3.C on page 149 .

The coupling matrices CT and CR depends on the type of antenna elements and

their orientation, and is often obtained by a calibration measurement, see Chapter 5

or an electromagnetic modelling software, see Chapter 7. If the coupling is known,

then it can be compensated for at the transmitter and the receiver [104], but requires
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repeated calibrations due to drift in the coupling parameters over time. Algorithms

for tracking these parameters are derived in Chapter 5 where also the effect of

calibration errors are investigated.

Lemma 3.1 is now used to formulate the theorems that express the bit error rate

and outage capacity of the orthogonal STBC system.

3.5.2 Outage capacity for STBC

Due to the rewriting of the MIMO system to an equivalent SISO system, (3.52),

the outage capacity, according to Definition 2.2 on page 36, for a space time block

coded system over a correlated Nakagami-m fading channel can be found and is

presented in the following theorem.

Theorem 3.2 The outage capacity CPo at outage probability Po for the orthogonal

STBC in a correlated Nakagami-m fading channel, see Definition 3.1, is given by

the solution to the equation

Po =

nrnt∑

l=1

mf∑

r=1

cl,r

Γ(r)
Γ

(
r,

σ2
nnt

PT νl
(2CPoN/ns − 1)

)
(3.61)

where

Γ(α, x) =

∫ x

0
e−ttα−1dt (3.62)

is the incomplete Gamma function [80, Sec. 8.351]. The eigenvalues νl and con-

stants cl,r are those given in Lemma 3.1. If mutual coupling is considered, then

the procedure in Corollary 3.2 is used to update the covariance matrix RH before

applying Lemma 3.1.

Proof: See Appendix 3.D on page 150.

The eigenvalues νl are in (3.61) multiplied with the SNR, PT /(σ2
nnt), so the eigen-

values can be seen as the power gain of the corresponding mode of the channel.

3.5.3 The bit error rate of STBC

Using the pdf of Υ from Lemma 3.1, it is also possible to calculate the bit error

rate. The result is summarized in this theorem.

Theorem 3.3 The bit error rate, PSTBC , for orthogonal STBC using coherently

detected BPSK modulation or Gray coded QPSK modulation, in a correlated
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Nakagami-m fading channel, according to Definition 3.1, is given by the expression

PSTBC =

nrnt∑

l=1

mf∑

r=1

cl,r

[
1

2
−
√

PT νl

ntσ2
nπ

Γ(r + 1/2)

Γ(r)
F

(
1

2
,
1

2
+ r;

3

2
;− PT

ntσ2
n

νl

)]

(3.63)

The eigenvalues νl and constants cl,r are those given in Lemma 3.1. If mutual

coupling is considered, then the procedure in Corollary 3.2 is used to update the

covariance matrix RH before applying Lemma 3.1. Here F (·) is the hypergeomet-

ric function which can be expressed as, [80, Sec. 9.100],

F

(
1

2
,
1

2
+ r;

3

2
;−x

)
=

1

(1 + x)r−1/2

r−1∑

k=0

(1 − r)k

(3
2)k

(−x)k (3.64)

where (a)k = a · (a + 1) · (a + 2) · · · (a + k − 1) is the hypergeometric coefficient

(and (a)0 = 1 by definition).

Proof: See Appendix 3.E on page 151.

Remark 3.1 In the Rayleigh fading case, mf = 1, and the property [80, Sec. 9.121]

F (−n, β;β;−z) = (1 + z)n (β arbitrary) (3.65)

can be used together with Γ(3/2) =
√

π/2 to simplify (3.63) as

PSTBC =

nrnt∑

l=1

cl

2

[
1 −

√
νl

ntσ2
n/PT + νl

]
. (3.66)

From (3.63) and (3.61), we see that the eigenvalues to the correlation matrix RH

is multiplied with the SNR, PT /σ2
n. Hence, the BER is a weighted sum of nrntmf

subchannels, each with an equivalent SNR of PT νl/σ2
n and with the weighting

factors cl,r. Similarly, the outage capacity is the linear combination of mnrntmf

subchannel capacities. Unfortunately, it is difficult to find the diversity advantage

from (3.66) in the general case, since it depends on the coefficients cl,r.

3.5.4 Independent fading and no mutual coupling

A commonly used assumption in the analysis of MIMO system is to assume i.i.d.

fading of the nrnt elements in the channel matrix H. The following corollary

handles this special case.
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Corollary 3.3 Assume that H is a Nakagami-m fading MIMO channel, according

to Definition 3.1, with uncorrelated elements and fading figure mf . The outage

probability is then

Po =
1

Γ(mfnrnt)
Γ

(
mfnrnt,

σ2
nnt

PT

(
2CPoN/ns − 1

))
(3.67)

and the BER in the coherently detected BPSK and QPSK case is

PSTBC =
1

2
−
√

PT

ntσ2
nπ

Γ(mfnrnt + 1/2)

Γ(mfnrnt)
F

(
1

2
,
1

2
+ mfnrnt;

3

2
;− PT

ntσ2
n

)
.

(3.68)

Proof: See Appendix 3.F on page 151.

We can calculate the diversity advantage of the STBC from (3.68) by expand

the expression (3.68) in the point PT /(ntσ
2
n) = ∞. From [110], the expansion of

the hypergeometric function F(a, b; c;x) in x = ∞ is

F(a, b; c; x) ∝Γ(b − a)Γ(c)

Γ(b)Γ(c − a)
(−x)−a(1 + O(x−1))

+
Γ(a − b)Γ(c)

Γ(a)Γ(c − b)
(−x)−b(1 + O(x−1)) |x| → ∞,∀a �= b .

(3.69)

If this result is used in (3.68) we get

PSTBC ≈
(

PT

ntσ2
n

)−mf ntnr

for
PT

ntσ2
n

≫ 1 (3.70)

hence, the diversity advantage for a STBC in the channel Hw defined in Definition

3.2 is mfnrnt. This is expected since we have nrnt uncorrelated elements in Hw

and in the Nakagami-m fading distribution, the amplitude consist of a sum of mf

independent terms. See Section 3.2.1.

In the SISO system with Rayleigh fading, mfnrnt = 1 and by using the rela-

tion (3.65), we obtain

PSTBC =
1

2

[
1 −

√
PT

σ2 + PT

]
(3.71)

which the observant reader identifies as the bit error rate for coherently detected

BPSK in a Rayleigh fading channel [15].
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3.5.5 Examples

A series of numerical examples are presented using the theory derived in the pre-

vious sections. The theory is exemplified with the “one-ring” scattering model to

introduce spatial correlation and mutual coupling, by assuming dipole antenna el-

ements. In all examples, Eb/N0 = 10 and λc is the wavelength of the transmitted

signals. For a given number of transmit and receive antennas, the STBC that has

the largest possible bit rate ns/N is chosen from the table in [56].

The one ring model is used to calculate values for the complex correlation

coefficients in the matrix RH above. The model is introduced and discussed in

Section 3.3.2 and here the integral in (3.42) is replaced by a summation over 180

equally spaced scatterers around the scattering ring. The spatial correlation in the

one-ring model is adjusted by the parameter ∆, see Figure 3.1. Mathematically, a

small ∆ corresponds to an RH matrix with a few dominant eigenvalues whereas a

large ∆ approaches the i.i.d. fading case which corresponds to all eigenvalues of

RH being equal and one.

The examples in this section are limited to uniformly spaced linear arrays and

the antenna element spacing is defined as δTX at the transmit antenna array and

δRX at the receive antenna array. The performance will depend on the mutual

orientation of the transmitter and receiver arrays. In the examples in this chapter,

the orientations presented in Figure 3.16 is used.

The first example shows the impact of the one-ring model on the STBC outage

capacity. Figure 3.17 shows the C0.1 outage capacity when the angular spread ∆ is

varied for a 2× 2 MIMO system with rate ns/N = 1 in a Rayleigh fading channel

(mf = 1). The probability that the channel capacity is less than C0.1 is thus 0.1

and is calculated using Theorem 3.2. When ∆ is increased, the outage capacity

increases rapidly for the case when the two arrays are placed parallel to each other

(arrays broadside facing each other), due to a reduced spatial correlation between

signals from different transmit antennas. If the receiver array is placed orthogonal

to the transmit antenna array, then the outage capacity reaches an upper limit, due

to the inability of the array to separate the transmission from different antenna

elements, which can also be interpreted as a smaller antenna aperture. In the inline

case, when the arrays are placed end-fire to end-fire, the performance increase is

very slow and it is concluded that the orientation of the antenna array have a large

impact on the achievable outage capacity. The same conclusion was made in [88]

where it also was shown that a hexagonal array structure was more robust to the

array orientation.

The effect of the Nakagami-m fading parameter on the outage capacity is

shown in Figure 3.18 for a fixed spreading angle of ∆ = 5◦ and also the i.i.d.

channel curve is plotted for comparison. Rate ns/N = 1 and ns/N = 3/4 codes
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Figure 3.16: The four different mutual orientations of the transmitter (TX) and

receiver (RX) antenna arrays, used in the examples. The circle is the ring of scat-

terers. The line represents one of the paths from a transmitter antenna to a scatterer

and then to a a receiver antenna.

are used for the nr = nt = 2 and nr = nt = 4 cases respectively. It is clear that

when the parameter mf increases, the probability of a deep fade decreases and the

channel becomes more reliable. Thus the outage capacity will increase.

Mutual coupling

In an array where no software compensation of the mutual coupling is performed,

the outage capacity will strongly depend on the array element coupling as is shown

in this example. The coupling matrix of an antenna array can be written as

Cco = (ZA + ZT ) (Z + ZT I)−1
(3.72)

where ZA is the antenna impedance, ZT the receiver or transmitter impedance and

Z is the mutual impedance matrix [111].

The mutual impedance can be calculated using the method of induced electro-

motive-force [108], but this usually leads to intractable calculations. One exception

is the case of thin dipoles of finite length, which gives an expression for the ele-

ments in the mutual impedance matrix Z which can be found in [108] and modified
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Figure 3.17: C0.1 outage capacity versus angular spread ∆, see Figure 3.1. The

number of antenna elements are nr = nt = 2 and the mutual orientation of the TX

and RX arrays are varied. The Nakagami-m parameter is mf = 1, i.e. Rayleigh

fading. The antenna spacing at the transmitter δTX = 2λc and at the receiver

δRX = 0.5λc.

in [104] to

Zpq =Rpq + jXpq (3.73)

Rpq =
η

4π sin(πδ/λc)
[2Ci(u0) − Ci(u1) − Ci(u2)] (3.74)

Xpq = − η

4π sin(πδ/λc)
[2Si(u0) − Si(u1) − Si(u2)] (3.75)

where the constants u0, u1 and u2 are defined as

u0 =
2πδ

λc
|p − q| (3.76)

u1 =
2π

λc

(√
δ2|p − q|2 + l2 + l

)
(3.77)

u2 =
2π

λc

(√
δ2|p − q|2 + l2 − l

)
. (3.78)

Here δ is the dipole spacing and l is the dipole length. The constant η is the intrinsic

impedance which for free space is approximately 377 Ω. The functions Ci(x) and
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Figure 3.18: C0.1 outage capacity versus Nakagami-m fading parameter. The

mutual orientation of the TX and RX arrays is parallel and the antenna spacing at

the transmitter is δTX = 2λc and at the receiver δRX = 0.5λc. ∆ is the angular

spread, see Figure 3.1.

Si(x) are the cosine and sine integrals

Ci(x) = −
∫ ∞

x

cos y

y
dy (3.79)

Si(x) =

∫ x

0

sin y

y
dy . (3.80)

Dipole antenna elements are assumed in the following analysis and due to their

omnidirectional radiation properties (in the broadside plane), the coupling will be

strong. The coupling for e.g. patch antennas are normally less, because of their

directive property.

In Figure 3.19 the outage capacity is shown as a function of receiver antenna

element separation for a 2 × 2 MIMO system in a Rayleigh fading environment,

using the one-ring model to generate spatial correlation. In the calculations, the

RH matrix was normalized to Tr (RH) = nrnt to make the comparison fair.

In the i.i.d. case, where the channel matrix is given by Hw in Definition 3.2 on

page 81, the mutual coupling can only degrade the outage capacity, especially at

strong mutual coupling, which is present when the element separation on the re-

ceiver side δRX < 0.5λc. On the other hand, when the spatial correlation is strong,

at ∆ = 6◦, the mutual coupling actually improves the outage capacity at small
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Figure 3.19: C0.1 outage capacity versus receiver antenna element separation δRX .

The number of antenna elements are nr = nt = 2 and the mutual orientation of

the TX and RX arrays is parallel. The Nakagami-m parameter is mf = 1, i.e.

Rayleigh fading. The antenna spacing at the transmitter δTX = 2λc and ∆ is the

angular spread, see Figure 3.1.

element spacing, as compared to a system without mutual coupling. The reason is

that the mutual coupling de-correlates the signals and in the case where the spa-

tial correlation is high, a few eigenvalues of RH is dominating and the mutual

coupling will actually make the eigenvalues of RH “more equal” in magnitude.

Figure 3.20 shows this further by plotting the outage capacity when the angular

spread is varied for a small (δRX = 0.2λc) receive antenna element spacing, as

might be necessary in a small portable handset. When the angular spread is less

than ∆ = 8◦, corresponding to a highly correlated fading between different chan-

nel paths, or mathematically, only one or two dominating eigenvalues of the RH -

matrix, the mutual coupling dominates over the spatial correlation and improves

the outage capacity. But when ∆ is increased, the mutual coupling degrades the

outage capacity. Results similar to this have recently been reported in [83] where

the BER of a Nakagami fading channel actually improved when the mutual cou-

pling increased and also in [109] where an increase of ergodic capacity of a MIMO

system was observed when mutual coupling was introduced.
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spread ∆. The number of antenna elements are nr = nt = 2 and the Nakagami-m

parameter is mf = 1, i.e. Rayleigh fading. The antenna spacing at the transmitter

δTX = 2λc and at the receiver δRX = 0.2λc.
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Figure 3.21: BER for STBC in a Rayleigh fading MIMO channel (mf = 1) as

a function of SNR PT /σ2
n in decibel. The antenna spacing at the parallel trans-

mitter and receiver arrays are δTX = 2λc and δRX = 0.5λc respectively and the

calculations include mutual coupling.
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Figure 3.22: BER for STBC in a 2× 2 Rayleigh fading MIMO channel (mf = 1)

as a function of the receive antenna spacing δRX . The antenna spacing at the

transmitter is δTX = 2λc. ∆ is the angular spread and PT /σ2
n = 10.

BER calculations

In Figure 3.21, the calculated BER is shown as a function of SNR for a 4 × 4 and

a 2 × 2 system in a Rayleigh fading channel with dipole antennas that introduce

mutual coupling. At BER=10−3, the loss for the 2 × 2 channel is 1.3 dB in SNR

between the i.i.d. channel and when the one-ring scattering model is introduced

with ∆ = 25◦. This is the penalty the correlated signals impose on the STBC.

The loss in the 4 × 4 case is approximately the same but in the ∆ = 6◦ channel,

the signals are highly correlated and the diversity advantage, which is equal to the

slope of the BER curves (equation (1.24)) in the 4× 4 case is approximately equal

to the 2× 2 curves. This indicates that correlation implies that the STBC looses its

diversity advantage, as expected.

Figure 3.22 shows the calculated BER using (3.66) for a 2× 2 Rayleigh fading

MIMO channel (mf = 1) as a function of the receive antenna spacing δRX . Mu-

tual coupling using the dipole model is used. The orientation of the receive array

is varied between perpendicular and parallel to the transmitter array. For low an-

gular spread and the arrays perpendicular to each other, the received signals have

high correlation independently of the antenna separation due to the small antenna

aperture. Hence, the BER decreases very slowly when increasing δRX . The lowest

BER is achieved by the largest angular spread and parallel array, since this scenario
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Figure 3.23: BER for STBC in a 2× 2 Rayleigh fading MIMO channel (mf = 1)

as a function of angular spread ∆. The antenna spacing at the transmitter and

receiver is δTX = 2λc and δRX = 0.5λc respectively and PT /σ2
n = 10.

gives the lowest signal correlation. However, when δTX = δRX the BER increases.

An explanation is a symmetry in the one-ring scattering model which gives signal

cancellations that reduces the received SNR. Hence, the peak should be attributed

to an anomaly in the underlying model. The oscillations in the BER curves are due

to the coherence and incoherence of the mutual coupling contribution.

Figure 3.23 shows the dependence on the bit error rate for the 2 × 2 Rayleigh

fading MIMO channel (mf = 1) as a function of the angular spread ∆. First,

notice that mutual coupling reduces BER in the perpendicular receive array case.

When the arrays are perpendicular, the signals are highly correlated and the mutual

coupling decouples the signals somewhat, but the effect on the BER is very small.

3.5.6 Conclusions of STBC performance in correlated Nakagami chan-

nels

The characteristic function of a sum of correlated random variables was used to

find the outage capacity of a coherent STBC system in a Nakagami-m flat fading

environment. The derived theory gives the outage capacity as a sum of incomplete

gamma functions, weighted by coefficients that depends on the correlation between

the elements in the channel matrix. Hence, given measurements or simulations of

the antenna element mutual coupling and a model for the spatial correlation due to

multipath scattering, it is possible to calculate the effects on the outage capacity of
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the STBC.

The numerical examples clearly shows the effect of mutual coupling on the

performance. Mutual coupling degrades performance when the spatial correlation

is low, i.e. when the channel fading is close to independent, but actually increases

performance for a two element receive array in an environment with high spatial

correlation, i.e. in the case of a line of sight channel. It is hard to utilize this

channel capacity improvement in the general case because the spatial correlation is

a random variable. A more important factor is the orientation of the array, which

can, in the worst case degrade a rich scattering channel into a low rank, line of sight

channel with poor performance. This can be mitigated by using several antennas

and use only the best subset of them [112, 113], or to place the antennas so the

array performance becomes robust to array orientation [88, 114].

It was also noticed how the performance increased with increasing mf , due to a

reduced probability of simultaneous fades. The channel thus becomes more robust

for increasing mf . However, often channels with high mf correspond to channels

with line of sight between transmitter and receive antenna array, and in these cases

it is expected that the spatial correlation increases. More work is needed on a model

for spatial correlation in multi antenna Nakagami fading channels. Further work

should also investigate the case of non-integer mf and a covariance matrix RH

with eigenvalues of (algebraic) multiplicity larger than one, which is not covered

in this thesis.

3.6 Transmission over a Rayleigh fading channel with CSI

at the transmitter

In Section 2.4, a novel method to transmit over a MIMO channel when CSI is avail-

able at the transmitter was derived, denoted the eigenmode transmission. It relied

on the singular value decomposition of the channel matrix and was inspired by in-

formation theoretic results. As the subchannel gains vary, the transmitter adapts the

modulation rate and power allocation to each of the subchannels to satisfy a chosen

goal. The goals are, as in Section 2.4, set to either maximize the throughput (total

bit rate) at a target BER or to minimize the BER at a target throughput.

In this section, the pdf of the subchannel gains, given by Theorem 3.1 on

page 85, are used to investigate the performance of eigenmode transmission in

the special case of a Rayleigh fading channel. In [115], the MMSE and symbol

error rate, of a MIMO system in a Rayleigh fading channel, was investigated in the

asymptotic case of an infinite number of transmit and receive antennas. Here, the

analysis cover the case with a finite, and small number of antennas which often is

the case in practically realizable MIMO systems.
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3.6.1 Maximizing the spectral efficiency at a target BER

Under the Rayleigh fading assumption, the marginal pdf for each of the eigenval-

ues to the matrix HwH∗
w is given by Theorem 3.1. The throughput maximization

problem at a given target BER under average power constraints was derived in Sec-

tion 2.4.2. The result was summarized in Theorem 2.1 on page 51. Equation (2.82)

gives the power control law where the constant µ is found by solving the average

power constraint

m∑

i=1

∫ ∞

0

[
1

µ
− 1

Koλi

]+

pi(λi)dλi = PT . (3.81)

For a given µ (which is fixed when target BER and average transmit power is fixed),

the probability that subchannel i is not used is equivalent that the power allocated

to subchannel i is zero. Hence, from (2.82)

γi = [1/µ − 1/Koλi]
+ = 0 (3.82)

and the probability that this occurs can be calculated as

Pr

{
1

µ
− 1

Koλi
< 0

}
= Pr

{
λi <

µ

Ko

}
=

∫ µ(Ko)/Ko

0
pi(λi)dλi (3.83)

where in the last step, the dependence of µ on Ko has been emphasized. This is

now illustrated by an example.

EXAMPLE 3.2

Assume that nr = nt = 2 and that the channel is i.i.d. Rayleigh fading according

to Definition 3.2 on page 81. The noise power is set to σ2
n = 1 without loss of

generality. The pdf for λ1 and λ2 where λ1 ≥ λ2 is calculated using Theorem

3.1 on page 85 and is found to be

p1(λ1) =(2 − 2λ1 + λ2
1)e

−λ1 − 2e−2λ1 (3.84)

p2(λ2) =2e−2λ2 . (3.85)

Inserting the pdf:s p1(λ1) and p2(λ2) into (3.81) gives the following equation for

µ

(
2

µ
+

1

Ko
) exp

(
− µ

Ko

)
− 2

Ko
Ei

(
1,

µ

Ko

)
= PT (3.86)

where Ei(n, x) =
∫∞
1 t−ne−xtdt is the exponential integral. In Figure 3.24, the
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Figure 3.24: The variation of µ as a function of target BER setting. The average

power PT = 10.

solution for µ is shown as a function of target bit error rate for an average power

of PT = 10. Note that for lower target BER, the constant µ becomes smaller

so it is more likely that only one mode is used or perhaps none of them. The

probability that the channel is not used at all can be calculated from (3.83)

Pr

{
1

µ
− 1

Koλ1
< 0

}
= 1 − e−µ/Ko

(
2 + (µ/Ko)

2
)

+ e−2µ/Ko (3.87)

and the probability that the mode with lowest gain (λ2) is not used as

Pr

{
1

µ
− 1

Koλ2
< 0

}
= 1 − e−2µ/Ko . (3.88)

Figure 3.25 shows these probabilities for this example. These probabilities

can also be interpreted as the amount of time the transmission is idle. If the target

BER is very low (10−10), then it is seen in Figure 3.25 that the transmission is

idle for 2.5% of the time. This level is of course dependent on the available

transmit power. In Figure 3.26 the corresponding spectral efficiency (2.84) is

plotted, here given by equation

R

W
=

(
µ

Ko
+ 1

)
e−µ/Ko + 2Ei

(
1,

µ

Ko

)
. (3.89)
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Figure 3.25: Probability that no or only one channel eigenmode is used. Average

power is PT = 10.

This example clearly shows the tradeoff between target BER and throughput of

the MIMO system. When the target BER is decreased, µ must be increased to

maintain the data throughput of the system. An increase in µ is obtained by

increasing the transmit power PT .

3.6.2 Minimizing BER at given throughput

The results from Section 2.4.3, summarized in Theorem 2.2 on page 58, are now

used to analyze the eigenmode transmission in the special case of an i.i.d. Rayleigh

fading MIMO channel. The aim is to minimize the BER of the transmission while

maintaining a specified spectral efficiency of RT /W bits/seconds per Hz of trans-

mission bandwidth. The power control law is given by (2.95) which together with

the power constraints (2.100) and (2.101) gives the Lagrange multiplier µ1. The

difference between the peak power and average power constraints is illustrated by

a 2 × 2 MIMO example. Furthermore, a restricted constellation set is assumed,

that is, an integer number of bits are allocated per symbol, so the calculations is

performed over all possible set of bits per symbol {ri}m
i=1 that meet the target

throughput
∑

ri = RT . When the system is implemented, an algorithm selects the
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Figure 3.26: Spectral efficiency for a 2 × 2 MIMO system in an i.i.d. Rayleigh

fading channel as a function of target BER. Average power is PT = 10.

rate assignment that minimizes the BER depending on the required throughput.

EXAMPLE 3.3

Assume that nr = nt = 2 and that the channel is i.i.d. Rayleigh fading according

to Definition 3.2. The noise power is set to σ2
n = 1 without loss of generality.

The pdf for λ1 and λ2 where λ1 ≥ λ2 is calculated using Theorem 3.1 and is

found to be

p1(λ1) =(2 − 2λ1 + λ2
1)e

−λ1 − 2e−2λ1

p2(λ2) =2e−2λ2 .
(3.90)

By inserting into the pdf:s p1(λ1) and p2(λ2) into (2.100) an equation for µ1 is

obtained that can be solved numerically, based on subchannel rates r1 and r2 that

fulfill the target throughput r1 + r2 = RT . With this µ1, the power allocations

for the two subchannels γ1 and γ2 can be calculated. To calculate the result-

ing average BER from (2.94) does not easily lend itself to an analytical solution

since γi depends on the eigenvalues λi and also the average power PT through

µ1. Hence, this integral is solved by Monte Carlo integration by first generat-

ing a series of i.i.d. Rayleigh MIMO channel matrices and their corresponding

eigenvalues. Then, the Lagrange multiplier µ1 is calculated analytically from
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Figure 3.27: Average bit error rate versus total transmission power PT for a 2× 2
MIMO system in i.i.d. Rayleigh fading channel. Total rate target RT = 8 bps/Hz.

For all power levels in the shown range, the optimal (discrete) rate allocation is

r1 = 6 bps/Hz and r2 = 2 bps/Hz.

(2.100) and then the BER is obtained from (2.78). This is repeated 1000 times

and the resulting average BER is plotted in Figure 3.27 for RT = 8 bps/Hz while

varying the total transmitted power PT . Both the peak constrained power and the

average constrained power is shown. Given a certain rate allocation (r1, r2) and

transmit power PT , there is a probability that the power of one of the subchan-

nels is zero. This is denoted as a rate allocation failure and the corresponding

probability for this to occur is estimated in the PT = 50 case and average power

constraint to 5% and under peak power constraint to 3%. When the power is in-

creased to 100, these failure rates has decreased to 1 and 0.5 % respectively. For

even larger PT , these rate allocation failures becomes negligible. However, these

cases are removed from the calculation of the BER. This also implies that the

actual achievable bit rate is less then 8 bps/Hz at low transmit power. First, note

that the average power constraint always outperforms the peak power constraints

in terms of BER. The reason is that in the average power constraint case the al-

gorithm can economize with the transmitter power and utilize a higher output

power than in the peak power constrained case when the channel is bad.

For all shown points in Figure 3.27, the rate allocation that minimizes the

average BER is the (r1, r2) = (6, 2) allocation (out of the possible (4,4), (6,2),
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(2,6), (8,0), (0,8)). Hence, the algorithm balances the rate allocation to the aver-

age gain in the channel, since, from (3.90), we can calculate the expected values

of the channel gains

E {λ1} =3.5

E {λ2} =0.5 .
(3.91)

Thus, the allocation (6,2) matches the average subchannel gains better than the

(4,4) allocation. Figure 3.28 shows estimated pdf:s on how the power is dis-

tributed between the two subchannels in the peak and average power constrained

case for the (6,2) subchannel rate allocation and PT =300. The most notable dif-

ference is in the power allocation for the subchannel with the largest path gain.

The average power allocation algorithm is much more conservative with the use

of ”power” and sometimes peaks with very large power allocations, to power

equalize deeply faded channels (the maximum value of γ1 in this average power

case was found to be PT > 1000 in these simulations). Furthermore, in this

example, the subchannel with the highest gain, is allocated the most power since

it uses the modulation alphabet with the largest constellation and thus require a

high SNR.

In conclusion, the average power constrained algorithm performs on average bet-

ter than the peak power constrained algorithm. It has however some drawbacks.

Most importantly, all amplifiers have a peak power rating, and if the transmit am-

plifier must be capable to sometimes transmit with 4-5 times the average output

power, it must be designed to operate with a very large back-off from its saturation

point. This leads to an amplifier design with a very low DC power efficiency. Fur-

thermore, the pdf:s of the subchannel gains must be known in the average power

constrained case, to be able to calculate the Lagrange multiplier µ1. These are

time variant and must be estimated during operation. Hence, the peak power con-

strained algorithm has a simpler implementation but the price is a worse average

BER performance. The transmit amplifiers in the peak power constrained case can

operate with smallest possible back-off, since the maximum output power is know.

For more discussions about back-off in transmit amplifiers, see Chapter 6.

3.6.3 Beamforming

In this section the performance of beamforming in the Rayleigh fading channel

is investigated. Beamforming is by the definition utilization of only one of the m
channel eigenmodes for transmission. From (2.110), observe that the largest eigen-

value λmax to the Wishart matrix W is a factor in the SNR after the maximum ratio

combiner in the receiver. The pdf of λmax is now used to calculate the BER and
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(a) The pdf of allocated subchannel transmission power, γ1, for the

strongest eigenmode channel.
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(b) The pdf of allocated subchannel transmission power, γ2, for the weak-

est eigenmode channel.

Figure 3.28: Comparisons of the transmission power allocation of the i.i.d.

Rayleigh fading MIMO channel when nr = nt = 2, total power PT = 300
and subchannel rates (r1, r2) = (6, 2).
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channel capacity of beamforming. In the case with correlated fading and mutual

coupling, the pdf of λmax is unavailable, so an upper and a lower bound of the BER

is derived. Also the asymptotic case when the number of antennas goes to infinity

is discussed. One must note that we assume that the Rayleigh fading characteristics

of the channels is preserved when beamforming is applied. Beamforming will in

some cases remove the effect of some scatterers and this might change the channel

fading to a Ricean channel. Here it is assumed that the scattering is rich enough to

preserve the Rayleigh amplitude distribution.

Bit error rates in i.i.d. Rayleigh fading channels

The BER for a multiple antenna matched filter receiver system with transmit beam-

forming assuming a coherent BPSK system is now summarized in this theorem.

Theorem 3.4 Assume a i.i.d. Rayleigh fading MIMO channel, according to Def-

inition 3.2 and that the number of antennas nr, nt = 1, 2, 3. Then the average

probability of bit error, PBF , using beamforming with transmit and receive weights

matched to the channel, see Section 2.5, and with coherently detected BPSK mod-

ulation, or Gray coded QPSK modulation, is

PBF =
1

2

(
1 −

m∑

k=1

√
γ̄

γ̄ + k
ϕ

(m,n)
k (γ̄)

)
(3.92)

where γ̄ = PT /σ2
n and ϕ

(m,n)
k (x) is a rational function of two polynomials, shown

in Table 3.2 in Appendix 3.I for n = max(nr, nt) = 1, 2, 3 and m = min(nr, nt) =
1, 2, 3.

Proof: See Appendix 3.G on page 152.

We have not been able to prove Theorem 3.4 for arbitrary nr, nt nor have we found

a way to directly calculate the rational functions ϕ(m,n)(x). The reason is our in-

ability to express a general formula for the pdf of the largest eigenvalue for arbitrary

nr, nt in Corollary 3.1.

Note that in the SISO case, the classical expression for BER of coherently

detected BPSK modulation in a Rayleigh fading channel is obtained:

PSISO =
1

2

(
1 −

√
γ̄

γ̄ + 1

)
(3.93)

Figure 3.29 compares the average BER for different number of transmit and

receive antennas. Note that because of the assumption that the channel is known at

the transmitter, there is no difference in BER for an nt > nr or nt < nr system as
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Figure 3.29: Average bit error rate versus SNR (PT /σ2
n) in decibel for maximum

SNR receiver and coherent detected BPSK modulation.

long as n,m are fixed. It can also be noted that a (m,n)=(3,1) system has a larger

BER than the (m,n)=(2,2) system, although they have the same total number of

antennas. So, balancing the number of antennas between transmitter and receiver

gives an advantage in terms of BER, under the given assumptions. This can be

explained by the fact that a (2,2) system has four independently fading channels

whereas the (3,1) system only have three. Hence, the diversity advantage for the

(2,2) system is larger.

Diversity advantage

To formulate a general theorem for the diversity advantage for arbitrary nr and nt

in a beamforming system is prohibitively difficult. The reason is linked to the fact

that the pdf of the largest eigenvalue in Corollary 3.1 is not explicitly known for

arbitrary nr, nt. For certain values of nr and nt it is however possible to derive

tractable expressions. We illustrate this with a 2 × 2 MIMO and a 4 × 1 MISO

example next.



130 Chapter 3. MIMO system performance

EXAMPLE 3.4

Assume first a 2 × 2 MIMO system in a i.i.d. Rayleigh fading channel, i.e. the

channel is Hw from Definition 3.2. The BER for a beamforming system is then

given by equation (3.92). In the high SNR limit PT /σ2
n ≫ 1, it is possible to

show that the BER in (3.92) is equal to

P
(2×2)
BF =

35

8

(
PT

σ2
n

)−4

+ O

((
PT

σ2
n

)−5
)

. (3.94)

To obtain (3.94), MAPLE 7.0 was used. Hence, a 2 × 2 beamforming system

achieves an diversity advantage of p = 4 according to equation (1.24).

It is interesting to compare this result with the 4×1 MISO system (or equiva-

lently a 1×4 SIMO system). The BER is in this case obtained as, for PT /σ2
n ≫ 1

P
(4×1)
BF =

35

16

(
PT

σ2
n

)−4

+ O

((
PT

σ2
n

)−5
)

. (3.95)

Hence, this MISO system obtains half the BER of the 2× 2 system, although the

diversity advantage is nrnt = 4 in both cases. The reason is that in the MISO

system, the four transmitted signals are combined coherently at the receiver an-

tenna, which leads to maximum combining gain as well as maximum diversity

advantage. For the MIMO system, some combining gain is lost due to the simul-

taneous transmission from the transmitting array to two receiver antennas. Note

however that the MISO system utilizes a total of nr + nt = 5 antenna elements

and the MIMO system nr + nt = 4 antenna elements.

It seems reasonable that a diversity advantage of nm ≡ nrnt is achieved for beam-

forming in a i.i.d. Rayleigh fading nr × nt MIMO channel. Hence, the following

conjecture is stated.

Conjecture 3.2 The diversity advantage for beamforming over an i.i.d. Rayleigh

fading MIMO channel Hw according to Definition 3.2, with dimensions nr × nt,

is nrnt.

The conjecture is supported by the discussion and example above.

Bounds on BER in correlated fading channels

If the channel coefficients are correlated, then the pdf of the largest eigenvalue is

difficult to derive. The joint pdf of the eigenvalues are given by equation (3.20).
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It involves hypergeometric functions of matrix arguments, which must be numer-

ically calculated in the general case. Still, bounds on the BER performance of

beamforming can be found by using the upper and lower bounds on the largest

eigenvalue (3.38). It is thus possible to formulate the following Corollary.

Corollary 3.4 The beamforming BER, stated in Theorem 3.4 is upper bounded

by the orthogonal STBC BER from Theorem 3.3, in a Rayleigh fading channel with

arbitrary correlation and mutual coupling. If the number of receive antennas nr, is

smaller than the number of transmit antennas nt, then beamforming BER is strictly

lower than the orthogonal STBC BER.

Proof: See Appendix 3.H on page 152.

These results were also obtained independently in [116]. Furthermore, these results

can also be obtained by studying the relation between orthogonal STBC SNR and

beamforming SNR in equation (2.113). In conclusion, beamforming is always bet-

ter, in a BER sense, than orthogonal STBC in a Rayleigh fading channel, although

both methods have the diversity advantage nrnt. The beamformer uses CSI to op-

timally combine the transmitted signals at the receiver to maximize the SNR. In

the unitary channel, and when nr ≥ nt, the beamformer and STBC BER coincide.

The unitary channel has no preferred “direction” that the beamformer can utilize,

since all channel eigenvalues are identical.

An asymptotic result

The pdf of λmax for the general nr, nt case is difficult to calculate but in the limit

of nr, nt → ∞ where nr/nt → β ≥ 1, E {λmax} converges to
(√

nr +
√

nt

)2
,

see equation (3.39). By using Jensen’s inequality and the concavity of the log2

function, the ergodic capacity is asymptotically upper bounded by

C =E

{
log2

(
1 +

PT λmax

σ2
n

)}

≤ log2

(
1 +

PT E {λmax}
σ2

n

)

→ log2

(
1 +

Pt

σ2
n

(
√

nr +
√

nt)
2

)
when nr, nt → ∞ .

(3.96)

It is seen that this bound is maximized when nr = nt, i.e. when the distribution

of the number of antennas is balanced. This supports Conjecture (3.2), since this

balancing maximizes the diversity advantage. It shall be noted, as indicated in

Example 3.4 and in [116], that a lower BER is obtained using beamforming, for the

same diversity advantage, if all the antennas are placed on one side of the channel
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(MISO/SIMO). If this is the case, the SIMO system has the advantage over MISO

systems, since it has the capability to suppress interferers at the receiver, using

spatial interference suppression. However, a MISO/SIMO system requires a larger

total number of antennas than the balanced MIMO system, for the same diversity

advantage.

Optimality of beamforming in Rayleigh fading channels

The condition for beamforming to be optimal (all eigenmodes except the principal

one are in the water filling algorithm assigned zero power) in capacity sense, was

given in equation (3.48) in Section 3.4.6. The probability for this to occur was

given in equation (3.49) and Figure 3.30 shows this probability versus the SNR,

PT /σ2
n. When the number of antennas is increased, it becomes less likely that the

beamforming solution is equal to the Shannon capacity of the MIMO channel. The

SNR on the x-axis can be interpreted as the water level. If it is increased, then it

becomes more likely that more than one mode is active. The m = 2, n = 4 system

needs a slightly higher SNR than the m = n = 3 system for beamforming to be

optimal. So if the system is balanced with an equal number of transmit and receive

antennas, then for beamforming to achieve Shannon capacity is less probable than

for an unbalanced system with the same total number of antennas. For practical

systems, it is common that PT /σ2
n > 10dB so only m = 2 systems will have

a probability larger than 0.01 to achieve Shannon capacity using beamforming.

Figure 3.30 shows that at PT /σ2
n = 0 dB, beamforming is optimal in a 2 × 2

MIMO system 75% of the time. From the measurements in Figure 3.14 it can

be seen that there is a negligible difference between the beamforming and full

Shannon capacity for this MIMO system at PT /σ2
n = 0 dB.

3.7 Improving STBC with quantized transmitter CSI

The issue of providing the transmitter with channel state information can be ap-

proached in several ways; a simple way is to design the system to use time-division

duplex (TDD) with a duplex distance smaller that the channel coherence time.

Hence, the uplink channel is valid as an estimate of the downlink channel and

knowledge of the downlink channel is then used to optimize the downlink trans-

mission. If a frequency division duplex (FDD) system is used (or a TDD system

with duplex delay larger than the coherence time). Then the duplex distance is

commonly much larger than the channel coherence bandwidth and the uplink data

cannot be used to optimize the downlink transmission. Then the system must be

designed with a feedback channel, as in the currently developing W-CDMA stan-
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Figure 3.30: The probability that beamforming is the capacity optimal transmit

strategy as a function of PT /σ2.

dard. The feedback signalling provides the transmitter with information which is

used to minimize the bit error rate or maximize the throughput of the transmis-

sion. The feedback channel has a low bandwidth so sometimes only partial CSI

can be used by the transmitter. To decide what information to send on the feedback

channel for best performance is an open issue. The reliability of the CSI depends

on the bit rate of the feedback channel and how fast the channel changes, i.e. the

channel time-frequency product. The time-frequency product is TsfD, where Ts is

the symbol time and fD is the Doppler frequency.

In [117], partial CSI was modelled using a purely statistical approach and it was

shown how a space-time code (the open-loop approach) can be improved when the

transmitter has partial knowledge of the channel.

In this section, the performance of the open loop space-time block codes is

compared with a feedback closed-loop transmit diversity system where the feed-

back bit rate is varied. Comparisons are made with a TDD system as well, which

corresponds to a system with full CSI. It is of interest how the performance of

these systems vary in different radio environments, and how the required bit rate of

the feedback channel varies with the temporal characteristics of the channel. The

effect of a line of sight (LOS) component in the channel and also the effect of a co-

channel interferer (CCI) on the performance is studied. The scattering disc model

described in Section 3.3.1 will be used in all cases.
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3.7.1 The pairwise error probability

Assume that the noise is temporally white and colored in space. The pairwise error

probability (PEP) for a STBC system using the ML-detector derived in Section 2.1

is given by equation (2.32). Begin by assuming that the transmitter has full CSI

and also full knowledge of the noise covariance matrix at the receiver. Using the

Chernoff bound (2.21), write the PEP as

Pr {Ck → Cl|H,Rvv,Hk} ≤ 1

2
exp

(
−‖R−1/2

vv H(Ck − Cl)‖2
F /4

)
(3.97)

where Hk denotes hypothesis k, see Section 2.1. The conditioning on the hypothe-

sis is dropped from the following equations. Now, our aim is to minimize the error

probability and to find the optimal set of codeword matrices that minimizes (3.97),

given Rvv and H. An exhaustive search over all possible codewords Ck,Cl must

then be performed. This is a prohibitively large search that has to be made for each

new channel matrix H and noise covariance matrix Rvv. Instead, the codewords

are fixed to be orthogonal STBC codewords from Section 2.3.28. The Euclidean

distance between two orthogonal STBC codeword matrices is equal for all code-

word matrix pairs. In [117], it was shown that the suboptimal transmitted codeword

matrix C can be linearly transformed by a weighting matrix J,

C̃ = JC (3.98)

to improve the error probability (3.97). When orthogonal STBC is used, the code-

word matrices Ci are proportional to semi-unitary matrices9. Since the differ-

ence between two semi-unitary matrices is a new semi-unitary matrix, Ck − Cl is

also semi-unitary. From (2.70) it can be seen that the proportionality constant is√
PT /nt. Now, as ‖AQ‖2

F = ‖A‖2
F , when Q is unitary or semi-unitary, equation

(3.97) can be rewritten in the case of orthogonal STBC with transmit weighting as

Pr
{
C̃k → C̃l|H,Rvv,J

}
≤ 1

2
exp

(
−PT

nt
‖R−1/2

vv HJ‖2
F /4

)
(3.99)

which is to be minimized by proper choice of J, under the power conservation

constraint ‖J‖2
F = 1. The following lemma is then needed.

Lemma 3.2 If A is a non-negative definite r × r matrix and J is an r × r matrix

with the property ‖J‖2
F =1, then ‖AJ‖2

F is maximized by choosing

J =
[
α1a α2a · · · αra

]
(3.100)

8Remark that the STBC is a suboptimal transmission scheme if H and Rvv are known at the

transmitter
9An nr × nt matrix A is semi-unitary if AA

∗ = I but A∗
A �= I



3.7. Improving STBC with quantized transmitter CSI 135

where a is the principal eigenvector to A and αi are non-negative constants with

the property
∑r

i=1 α2
i = 1.

Proof: Define J =
[
j1 j2 · · · jr

]
where jk is the k:th column of J. Write

‖AJ‖2
F =

r∑

i=1

|Aji|2

=

r∑

i=1

j∗i A
∗Aji

. (3.101)

Since the terms j∗i A
∗Aji are Hermitian forms, they are maximized by choosing

ji proportional to the principal eigenvector, a, to the matrix A∗A. Hence, choose

ji = αia. The maximizing value is λmax(A∗A)α2
i . With this choice, (3.101)

becomes

‖AJ‖2
F = λmax(A∗A)(α2

1 + . . . + α2
r) . (3.102)

The constraint ‖J‖2
F =1 implies that

∑r
i=1 α2

i = 1.

Since e−x is a monotone decreasing function, equation (3.99) is minimized, by the

matrix choice (choosing α1 = 1, αi = 0∀i > 1 for simplicity)

Jo =
[

vmax 0 · · · 0
]

(3.103)

according to Lemma 3.2. Here vmax is an eigenvector corresponding to the largest

eigenvalue of the matrix HHR−1
vv H.

The result (3.103) can be interpreted as beamforming using vmax as the beam-

forming vector [117]. Note that the codeword matrix now reduces to a rank one

matrix and if binary modulation alphabet is used, the PEP and BER becomes equiv-

alent, since only one symbol is transmitted at a time (weighted by vmax). In con-

clusion, when the channel is perfectly known at the transmitter, beamforming is the

optimal transmission strategy that minimizes the upper bound of the PEP (BER).

When there is no knowledge of the channel at the transmitter, the so called open

loop scenario, it was shown in [32] that J = I minimizes (3.99) so the STBC is

used without modifications.

In the example in Section 3.6.2, the BER of a MIMO system was minimized

under a power and a throughput constraint and it was seen that beamforming, i.e.

utilizing only one of the channel eigenmodes did not minimize the BER. Here, the

PEP under a power constraint is minimized but there is no throughput constraints

and no adaptive modulation schemes and we see that under these particular condi-

tions, beamforming will always minimize the PEP when full CSI is available at the

transmitter. Hence, the throughput constraint forces the use of several eigenmodes

and without this constraint, the lowest possible throughput (beamforming) is ob-

tained and the SNR at the receiver os maximized (also obtained by beamforming).
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Feedback of partial CSI

Assume that the feedback channel has a capacity of Rfb bits per second and that the

number of transmit antennas nt = 2. Furthermore, CSI and the covariance matrix

of the noise plus interference are assumed to be perfectly estimated at the receiver.

The receiver then calculates the eigenvector vmax, in (3.103), corresponding to the

largest eigenvalue. Because of limited feedback rate, the exact weight vector vmax

with unlimited precision can not be fed back to the transmitter. Instead,

v′
max(n) =

[
1

ejθ(n)

]
1√
2

(3.104)

is used, where θ(n) is a uniform quantization of the ideal value of the difference in

the arguments of the elements of vmax. Now, only θ(n) is sent to the transmitter

through the feedback channel. This approach is similar to the one used in the

W-CDMA standard. The transmitter averages the received feedback signals over

two consecutive received bits while maintaining the transmitted power in the both

antennas. This can be described as [118]

θ(n) = arg
{

in⋄2sgn (z(n)) + i(n−1)⋄2sgn (z(n − 1))
}

(3.105)

where z(n) is the feedback bit received at time n and n ⋄ 2 is n taken modulus

2. The argument θ(n) has four states similar to QPSK. In [118], a more advanced

method is proposed, where more than the two recent samples are used in updating

θ(n). This is beneficial in environments where the fading is varying slowly so the

channel is approximately constant over a longer time than it takes to receive two

bits in the feedback channel. For optimal performance, the filter length should be

updated adaptively to match the channel coherence time. This will not be investi-

gated further in this thesis.

3.7.2 Simulation results

The following parameters are common for all simulations. The number of transmit

and receive antennas nt = nr = 2, antenna separation transmitter is 2λc and at the

receiver 0.5λc. The transmitter to receiver distance is 600λc and the radius of the

scattering disc is set to 250λc. 30000 samples are collected in each simulation and

Alamouti’s scheme for the STBC described in Section 2.3.2 is used. The carrier

frequency is set to 2.15 GHz.

The effect of feedback bit rate

The effect of feedback bit rate in channels with different coherence time is investi-

gated. As suggested in [118], the system performance could be improved in slowly
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Figure 3.31: BER when bit rate of feedback channel is varied in channels with

different time-frequency products. The TDD and STBC levels are also indicated.

SNR=4 dB. No LOS component (K=0).

varying channels by filtering the feedback bits with a filter which length is adaptive.

The length depends on the doppler frequency of the channel.

The simulations show, for BPSK modulation and a given feedback rate, at

which time-frequency product the BER is higher than the open-loop, or STBC

BER, i.e. when the feedback data should not be taken into consideration. In these

simulations there is no co-channel interferer, hence Rvv = σ2
nI , where σ2

n is

the spatially and temporally white noise variance. Figure 3.31 shows how the

BER decreases when the feedback bit rate increases. For the slowly fading chan-

nel, i.e. TsfD = 0.0001, the performance is better than the open-loop STBC at

a modest feedback rate of 150 bps. When the channel coherence time is reduced,

the feedback rate has to be increased to perform better than the open loop STBC.

In the figure the TDD mode is also shown, where it is assumed that the channel

state information is perfectly known at the transmitter and hence, the beamforming

weights are optimal. It is also noticeable that for low feedback rates, the fast vary-

ing channel (TsfD = 0.0072) shows best performance. An explanation is that the

quantization error of the vector vmax is large, and if the channel is slowly varying,

then these errors will be large for a longer period of time than in the fast varying

channel.

In Figure 3.32, there exists a strong line of sight component between the base-

station and the mobile with Rice factor K = 10000, see (3.10). In this case, a low
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Figure 3.32: BER as a function of SNR per receive antenna. The LOS component

is varied and also the feedback bit rate. Note that in a strong LOS environment,

there is no improvement by increasing the feedback bit rate above 150 bps. In the

figure, TsfD = 0.0036. The arrow points at the curve for the TDD case.

feedback bit rate will be sufficient as the channel has a clear directional property.

Once the direction to the mobile has been accommodated, the transmission can

lock on to the mobile and beam-form in that direction. Hence, there is no need for

a high bit rate feedback channel.

Effects of co-channel interference

Another MS is now added at the location 800λc from the primary base station.

Assume that this MS transmits at the same physical channel as our mobile under

study. This implies that the covariance matrix of the received noise vector Rvv is a

full rank matrix. We want to investigate the effect of taking the non-spatially white

noise into account before transmission, i.e. when calculating J using equation

(3.99). The channel is generated using the same model as above, and the noise

covariance matrix is estimated using the received data.

A semi-analytical approach is used to find the upper bound of the error proba-

bility using (3.99). The resulting BER is compared with the BER calculated using

Rvv = σ2
nI in (3.99), that is, by neglecting the information about the colored

noise. In Figure 3.33 the “instantaneous” BER averaged over 3 seconds is shown

as a function of SNR when SIR is held at 20 dB. The use of the correct covariance

matrix corresponds to an equivalent 2.2 dB gain in SNR at BER=10−3 and the use
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Figure 3.33: BER as a function of SNR with and without the use of the information

about the covariance matrix of the spatially non-white noise

of quantized phase reduces this gain to 1.4 dB, still an improvement.

Discussion

It has been shown how the feedback information (CSI+Rvv) in a transmit diver-

sity system can be utilized to better deal with non-white noise or interferers at the

receiver array. This is a common situation in systems with co-channel interfer-

ence. It was shown that in a spatially colored, but temporally white noise environ-

ment, 2.2 dB could be gained in SNR for a 2 × 2 MIMO system, when a 20 dB

weaker interfering base station is present. A simple feedback scheme, similar to

the scheme in W-CDMA was compared to an open-loop solution, using space time

block codes and it was shown how the required feedback bit rate depends on the

channel time-frequency product. In LOS channels, the demands on the feedback

channel capacity becomes smaller. In future work, the feedback signalling can be

made adaptive, to provide the transmitter with the best possible information, inde-

pendent on the mobility of the mobile user. Further studies should also deal with

more than 2 transmitting antennas, as the demands on the feedback bit rate then

increases.
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3.8 Concluding remarks

This chapter is finalized by a concluding discussion.

Coherence time, CSI and the feedback rate

Full CSI at the transmitter always gives an advantage over open loop transmit di-

versity systems. The advantage increases with an increasing number of transmit

and receive antennas and with decreasing SNR. The advantage is also larger in

LOS channels where a dominating principal channel eigenvalue exists compared

to NLOS channels. However, one must remember that more antennas and lower

SNR requires more and longer pilot sequences to estimate all the parameters of the

channel matrix. Hence, a larger system also requires a channel with longer coher-

ence time, to be able to benefit from CSI at the transmitter, if the bitrate on the

feedback channel is constant.

A channel with short coherence time requires a high rate feedback channel

which would consume a large portion of the available bandwidth. In this scenario,

transmit diversity, which is an open loop method, gives comparable performance to

closed loop methods at no overhead signalling cost, especially in relatively small

systems (2-3 transmit antennas) and in NLOS channels at SNR>10 dB.

In Section 3.7 it was shown that there exists a threshold of the channel time-

frequency product when an open-loop system outperforms the closed loop system,

given a certain feedback rate. This threshold was further explored in [38] where

it was given analytically. In [38] it was concluded that if nt is increased but nr is

fixed, then the gain of closed loop transmission increases over open loop transmis-

sion and alternatively, if nt is fixed and nr is increased, then the gain decreases.

Recently, some interesting methods have been proposed to improve initially open-

loop methods with a partial channel feedback. In [41], the authors use a feedback

channel to switch the transmission between STBC and spatial multiplexing trans-

mission based on the minimum Euclidian distance of the receive constellation. The

gain is however small, about 1 dB in SNR and the spatial multiplexing suffers

from the constraint that nr ≥ nt. In [119], STBC and adaptive modulation are

combined. Since the STBC transforms the MIMO channel to an equivalent SISO

channel, the Frobenius norm of the channel matrix is a sufficient statistic used to

adapt the modulation constellation. However, STBC makes the equivalent SISO

channel “harder”, meaning that the variance in the SNR reduces. This will reduce

the gain of using adaptive modulation.
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Mutual coupling and the robustness of STBC

The mutual coupling between dipole antenna elements has only a small effect on

the outage capacity of the orthogonal STBC MIMO system unless the antenna ele-

ment spacing is reduced below λc/2 or if the angular spread of the received signal

components is small. This shows the extreme robustness to channel conditions of

the orthogonal STBC. The STBC is also of very low decoding complexity since

the ML-detector is linear and also channel estimation is trivial due to the orthog-

onal properties of the space time block code. The penalty is the loss in channel

capacity compared to the optimal open loop capacity. Only in the MISO trans-

mit diversity case, orthogonal STBC does not destroy the possibilities to achieve

the Shannon capacity limit. In a channel which has a strong LOS component, the

channel capacity after using STBC is close to the Shannon limit since the channel

matrix can be well approximated by a rank-one matrix. Again, the robustness of

STBC is demonstrated as it works well over LOS and NLOS channels compared to

spatial multiplexing which require a channel with rich scattering and which gives

low correlation between the different paths.

Validation of the i.i.d. Rayleigh fading assumption

Through measurements it was demonstrated that the assumption of i.i.d. Rayleigh

fading amplitudes and uniformly distributed phases of the channel matrix elements

is valid in a NLOS scenario. The paths had a maximum envelope correlation co-

efficient around 0.5 and the amplitudes fitted to a Nakagami-m distribution with

mf = 1.07 where mf = 1 equals the Rayleigh distribution. Under the above as-

sumption, the joint probability density function of the m eigenvalues to the matrix

W = HH∗ was found in the literature and it was possible to derive the marginal

pdf for the eigenvalues. These pdf:s are useful in deriving the performance of a

beamforming or a eigenmode transmission system.

Performance of closed loop systems

Using the novel expressions for the marginal pdf:s of the eigenvalues to an i.i.d.

Rayleigh fading channel, the performance of the proposed eigenmode transmission

algorithms was explored and compared, both in the average and the peak power

constrained designs. When the average transmitted power is constrained, a smaller

BER can be achieved although higher demands are put on the transmit amplifiers,

since the transmitted power has a larger peak to average ratio. For high SNR, it was

shown in an example that all the subchannels is assigned approximately the same

power, hence a constant-power and variable rate allocation algorithm is expected

to perform well in this region.
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In the spectral efficiency maximization case, eigenmode transmission outper-

forms beamforming, unless the target BER is very low. Then beamforming spec-

tral efficiency becomes comparable or even equal to eigenmode transmission. The

usefulness of beamforming for minimizing BER or maximizing spectral efficiency

should be even more pronounced in a LOS scenario, since beamforming utilizes

only the principal channel eigenmode which dominates in LOS channels.

Co-channel interferers

When co-channel interferers are present in the closed loop scenario, transmitting in

the subspace spanned by the interference can be avoided. This was demonstrated

by the simulations in Section 3.7 and it was seen that a few dB could be gained by

using this method.

Conclusions for MIMO and MISO systems

If the results from Chapter 2 and 3 are summarized, the following comprehensive

list can serve as a guideline when designing MIMO and MISO systems.

No CSI + MISO system

Spatial multiplexing is not possible, since only a single data stream can

be transmitted from the nt antennas. Hence this case corresponds to

beamforming with a random weight vector.

Orthogonal Space Time Block Coding can achieve the Shannon capacity

in the case nt = 2, where full rate codes exists in the complex mod-

ulation alphabet case. If nt > 2 the capacity loss compared to the

Shannon capacity is large, although if the channel is ill-conditioned

(rank-deficient) as is the case in LOS channels, the loss compared to

the Shannon capacity is smaller.

No CSI + MIMO system

Spatial Multiplexing can transmit m = min(nr, nt) independent data streams

from the nt transmitter antennas. This scheme can achieve the Shan-

non capacity. If nr > nt, the extra dimensions at the receiver can be

used for interference suppression and/or to robustify the detector.
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Orthogonal Space Time Block Coding has full diversity advantage nrnt.

The capacity is strictly less than the Shannon capacity and the dif-

ference is nominally large. If the channel is ill-conditioned (rank-

deficient) as is the case in LOS channels, the loss compared to the

Shannon capacity is however reduced. If nr > nt, the extra dimen-

sions at the receiver can be used for interference suppression and/or to

improve the performance through an increased diversity advantage.

CSI + MISO system

Beamforming is optimal in the Shannon capacity sense. The receiver SNR

is maximized and the diversity advantage is nt. Beamforming has array

gain from coherent combining of the signals from the nt transmitter

antennas at the receiver antenna.

CSI + MIMO system

Beamforming can achieve Shannon capacity in “small” systems (2 × 2)

and for low SNR. In LOS channels, the loss to the Shannon capacity

decreases compared to the NLOS case. Beamforming has diversity ad-

vantage nrnt (conjecture). If no constraints are set on the data through-

put, beamforming minimizes the BER and beamforming outperforms

STBC in terms of SNR.

Eigenmode transmission has, for a target BER, a power penalty of 1/Ko

compared to the Shannon capacity limit. The constant Ko depends on

the target BER and the receiver noise variance. If the target BER de-

creases, the power penalty increases. Bit rate maximization is obtained

by assigning the most power to the “strongest” subchannel.

Eigenmode transmission minimizes the BER at a target bit rate by as-

signing more power to weak subchannels (if the subchannels have the

same rate), hence a subchannel gain balancing strategy.
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Appendix 3.A Proof of Corollary 3.1 and a discussion of

Conjecture 3.1

By applying Theorem 3.1 on page 85, p1(λ1) ≡ pλ(λmax) is found as the pdf for

the largest eigenvalue to the Wishart matrix W. The marginal pdf for the largest

eigenvalue is found from the integral

pk(λk) =

∫ λ1

0
dλ2

∫ λ2

0
dλ3 · · ·

∫ λm−1

0
dλmp(λ1, . . . , λm) . (3.106)

The joint pdf of the eigenvalues has the form

p(λ1, . . . , λm) = f11(λ1, . . . , λm)e−λ1−λ2···−λm , (3.107)

where f11(λ1, . . . , λm) is a polynomial in the variables λ1, . . . , λm of order n −
m + 2(m − 1). Now, from [80, Sec. 2.321], the integration formula follows

∫ z

0
xneaxdx

= eaz

(
zn

a
+

n∑

k=1

(−1)k n(n − 1) · · · (n − k + 1)zn−k

ak+1

)
− (−1)nn!

an+1

△
= g(z)eaz + c

(3.108)

where g(z) is a polynomial in z of order n and c is a constant. Hence, it is seen that

the integration of xneax preserve the order n of the variable x in the polynomial in

front of the exponential function, plus an addition of a constant. By using (3.108)

in (3.106), after the first integration, the result has the form

h1(λ1, · · · , λm−1)e
−λm−1 + c (3.109)

where h1(·) is a polynomial in which λ1 has the order n − m + 2(m − 1) (since

the order is preserved) and c is a constant. The integrand for the next integration

has the form

p(λ1, . . . , λm−1) = f21(λ1, . . . , λm−1)e
−λ1−λ2···−2λm−1

+ f22(λ1, . . . , λm−1)e
−λ1−λ2···−λm−1 ,

(3.110)

where f21(λ1, . . . , λm−1) and f22(λ1, . . . , λm−1) are polynomials in the variables

λ1, . . . , λm−1. After m − 1 integrations, the result has the form

pλ(λmax) =

m∑

k=1

φk (λmax) e−kλmax (3.111)
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where φk(x) is a polynomial of maximum degree n−m+2(m−1) = n+m−2 ≡
nr +nt−2. This is found by performing the integrations and saving the monomial

with the highest order in each step. Since this is not formally proven, we state

this as a conjecture. Furthermore, we have not been able to find a way to directly

calculate the polynomials φk(x), given nr and nt. However, by calculating the

largest eigenvalue pdf for nr = 2, 3, 4 and nt = 2, 3, 4 we have found that all the

resulting pdf:s can be described by the formula (3.111) and the polynomials φk(x)
are given in Table 3.1.

Appendix 3.B Proof of Lemma 3.1

Write the Frobenius norm of the channel matrix H as

Υ = ‖H‖2
F =

nr∑

p=1

nt∑

q=1

|Hpq|2 . (3.112)

The pdf pΥ(Υ), of Υ when the elements of the channel matrix are correlated is now

sought. The problem is equivalent to finding the pdf of a maximal ratio combining

diversity system in a correlated Nakagami fading channel [83]. The solution is

obtained by utilizing the principles of characteristic functions of random variables.

Following the method in [83], the characteristic function of the stochastic variable

Υ, denoted Φ is found and it is defined as

Φ(s) = E
[
ejsΥ

]
. (3.113)

Then, the sought pdf, pΥ(Υ), is obtained as the inverse Laplace transform of Φ(s).
In the SISO case, if Z is a Nakagami-m distributed random variable with inte-

ger fading parameter mf , then it can be constructed as

Z =

√√√√
mf∑

i=1

|Xi + jYi|2 =

√√√√
mf∑

i=1

X2
i + Y 2

i (3.114)

where Xi, Yi are independent and real Gaussian random variables with zero mean

and variance 1/2 [83]. Since the |Hpq|:s in (3.112) are Nakagami-m distributed, Υ
can, using the relation (3.114), be rewritten as

Υ =

nr∑

p=1

nt∑

q=1

|Hpq|2 =

nr∑

i=1

nt∑

j=1

mf∑

l=1

X2
ijl + Y 2

ijl (3.115)
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where Xijl, Yijl are real valued Gaussian random variables with zero mean and

variance 1/2. These variables are dependent, but according to definition of a Nakagami-

m random variable in (3.114), the following holds

E {XijlXpqk} = 0 if l = k (3.116)

E {YijlYpqk} = 0 if l = k (3.117)

E {XijlYijk} = 0 ∀l, k . (3.118)

Hence, for a given index l, the real and imaginary parts of the elements in H are

mutually correlated, excepts the real and imaginary part of a specific element in H,

which are independent. The independence between variables with different index

l, implies that (3.115) can be regrouped to

Υ =

mf∑

l=1





nr∑

i=1

nt∑

j=1

X2
ijl + Y 2

ijl



 . (3.119)

Hence, the random variable Υ consists of a sum of 2mfnrnt Gaussian random

variables that can be partitioned into mf independent groups with 2nrnt depen-

dent elements in each group. The characteristic function for the sum of 2nrnt

correlated Gaussian random variables can now be derived and the extension to a

general integer mf is a simple operation of adding mf independent sums.

Proceed by modelling the correlation between the 2nrnt Gaussian distributed

variables. Define the nrnt × 1 vector, for a fixed l,

h(l) = vec(X:,:,l) + jvec(Y:,:,l) (3.120)

where X:,:,l is the matrix that is obtained for a fixed l and i = 1, . . . , nr,j =
1, . . . , nt. Consider the vector, for a fixed l,

Hl =
[
Re(h(l))T Im(h(l))T

]T
l = 1, . . . , mf (3.121)

and assume the cross-correlation coefficients to be given by (the index l is omitted

for clarity)

bpq =E
{
hR

p hR
q

}
= E

{
hI

ph
I
q

}
= bqp (3.122)

βpq =E
{
hR

p hI
q

}
= −E

{
hI

ph
R
q

}
= −βqp (3.123)

where hp = hR
p + jhI

p is the p:th element in the vector h(l). The vector Hl in

(3.121) has a zero-mean multivariate Gaussian pdf with covariance matrix

Σ = E
{
HlHT

l

}
=

[
B C

−CT B

]
(3.124)
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which is assumed the same for each l, and where

B △
=




1 b12 · · · b1,nrnt

b21 1 · · · b2,nrnt

...
...

. . .
...

bnrnt,1 bnrnt,2 · · · 1


 (3.125)

C △
=




0 β12 · · · β1,nrnt

β21 0 · · · β2,nrnt

...
...

. . .
...

βnrnt,1 βnrnt,2 · · · 0


 (3.126)

which completely defines the spatial correlation due to multipath scattering. If the

channels Hpq are independent, then Σ will be the unity matrix, and if channels

emanating from the same transmit antenna are independent, then the matrices B
and C are block-diagonal with blocks of size nr ×nr. This corresponds to the case

when the transmitter antennas are placed much farther apart than the coherence

length of the channel.

To find the pdf of Υ, recall that Hl is a real Gaussian distributed vector with

zero mean and covariance matrix Σ. Next, construct the sum

S =

mf∑

l=1

HlHT
l ∼ W2nrnt(mf , Σ) (3.127)

which has a central Wishart distribution with mf degrees of freedom and with a

covariance matrix Σ [43, p.86]. The characteristic function for S is [43, p.87]

Φ
△
=E [exp(jTr(ST))] = det (I2nrnt − 2jTΣ)−mf /2

(3.128)

where T is an arbitrary symmetric matrix. By setting the non-diagonal elements

of T to zero, the characteristic function of the multivariate Gamma distribution is

obtained as a special case of the Wishart distribution and by setting all the diagonal

tk = t, k = 1, . . . , nrnt we obtain

Φ = E

[
exp

(
jt

nrnt∑

k=1

gk

)]
= E [exp (jtΥ)] (3.129)

where gk = |hk|2. This is the characteristic function of the sum in (3.112) and it

can be evaluated as [83]

Φ(s) = det (Inrnt − sRH)−mf (3.130)
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where s = jt. In obtaining (3.130), the property that Σ is a positive definite matrix

was used, hence it holds that det (I2nrnt + zΣ)−1/2
can be simplified [120] to

det (Inrnt + zRH)−1
where

RH = E {vec(H)vec(H)∗}

=




1 B∗
12 B∗

13 · · · B∗
1,nrnt

B12 1 B∗
23 · · · B∗

2,nrnt

B13 B23 1 · · · B∗
3,nrnt

...
...

...
. . .

...

B1,nrnt B2,nrnt B3,nrnt · · · 1




nrnt×nrnt

.
(3.131)

The elements Bpq = bpq + jβpq = E
(
h̃

(l)
p h̃

(l)∗
q

)
are the complex component cor-

relation coefficients between two pairs of transmit/receive antennas and depends

on the scattering scenario, antenna element positions and separation distance and

polarization. The elements Bpq have no index l, since Σ is the same for all l, see

the discussion prior to Definition 3.1 on page 80.

Conclusively, the characteristic function of the pdf with arbitrary correlation is

given by equation (3.130). The correlation is defined by the covariance matrix RH

in (3.131).

The pdf of Υ is now derived by writing the characteristic function of Φ(s) as

Φ(s) = det (Inrnt − sRH)−mf =

nrnt∏

k=1

(1 − sνk)
−mf (3.132)

where νk are the eigenvalues of RH . Assume that the eigenvalues are distinct and

expand (3.132) in a partial sum

Φ(s) =

nrnt∏

k=1

(1 − sνk)
−mf =

nrnt∑

l=1

mf∑

r=1

cl,r

(1 − sνl)r
(3.133)

where the partial fraction expansion coefficients cl,r are given by [107]

cl,r =




nrnt∏

k=1,k 
=l

(1 − sνk)
−r



∣∣∣∣∣∣
s=1/νl

(3.134)

for r = mf and for 0 < r < mf the coefficients are

cl,r =
1

(mf − r)!(−νl)
mf−r

d(mf−r)

ds(mf−r)




nrnt∏

k=1,k 
=l

(1 − sνk)
−mf



∣∣∣∣∣∣
s=1/νl

.

(3.135)
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The terms in the summation (3.133) is of the form (1 − sνl)
−r which inverse

Laplace transform is the Gamma distributed pdf [107]

p(x; l, r) =
1

νlΓ(r)

(
x

νl

)r−1

e−x/νl . (3.136)

So the inverse Laplace transform of the sum in (3.133) is equal to the sum over the

inverse Laplace transform of each term. This yields finally the pdf of Υ as

pΥ(x) =

nrnt∑

l=1

mf∑

r=1

cl,rp(x; l, r) (3.137)

and the result follows.

Appendix 3.C Proof of Corollary 3.2

First, define Hl as in the proof of Lemma 3.1 in Appendix 3.B. The matrix RH is

defined for the complex Gaussian channel case, that is, when mf = 1, according

to Definition 3.1 on page 80. Hence, we proceed by assuming that mf = 1. The

vector Hl has the covariance matrix Σ. Rewrite the Frobenius norm of the channel

as
∥∥H′∥∥2

F
=|vec(H′)|2

=|vec(CRHCT )|2

=|(CT
T ⊗ CR)vec(H)|2

=|(CT
T ⊗ CR)h(l)|2

△
= |KHl|2
△
= |H′|2

(3.138)

where the identity [43, p.74]

vec(BXC) = (CT ⊗ B)vec(X) (3.139)

and the equations (3.120),(3.121) have been used and where

K =

[
Re
(
CT

T ⊗ CR

)
−Im

(
CT

T ⊗ CR

)

Im
(
CT

T ⊗ CR

)
Re
(
CT

T ⊗ CR

)
]

2nrnt×2nrnt

. (3.140)

The vector H′ is a linear combination of the elements in H. Results from

multivariate probability theory, see e.g. [43, p.6], then gives that H′ will also

be a multivariate, zero mean, Gaussian distributed vector with covariance matrix

Σ′ = KΣKT , and the result follows.
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Appendix 3.D Proof of Theorem 3.2

Start with the mutual information of the equivalent SISO system

I =
ns

N
log2

(
1 +

PT

σ2
nnt

‖H‖2
F

)
(3.141)

symbols per seconds per Hz of bandwidth for complex valued modulation symbols.

The outage probability for a given rate CPo is the probability Po that the mutual

information falls below the given rate CPo , and the outage capacity is the minimum

rate CPo that can be supported by the channel with probability (1−Po). So, recall

that the random variable is Υ = ‖H‖2
F and write

Po =Pr(I < Ro)

=Pr

(
ns

N
log2

(
1 +

PT

σ2
nnt

Υ

)
< CPo

)

=

∫ �
PT

σ2
nnt

�−1

(2CPo
N/ns−1)

0
pΥ(Υ)dΥ .

(3.142)

The pdf pΥ(Υ) is given by Lemma 3.1 on page 107 as a sum of Gamma distribu-

tions. The integral
∫ t

0

1

νlΓ(r)

(
x

νl

)r−1

e−x/νldx (3.143)

can, by doing the substitution y = x/νl be written as

1

Γ(r)

∫ t/νl

0
yr−1e−ydy (3.144)

which is identified as proportional (with proportionality constant 1/Γ(r)) to the

incomplete Gamma function [80, Def. 8.350] Γ(r, t/νl).
To find the outage probability, (3.54) is used in (3.142) and the integrations are

carried out using (3.143),(3.144), and this results in

Po = Pr(I < Ro) =

nrnt∑

l=1

mf∑

r=1

cl,r

Γ(r)
Γ

(
r,

σ2
nnt

PT νl
(2CPoN/ns − 1)

)
(3.145)

which is the result.
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Appendix 3.E Proof of Theorem 3.3

For coherently detected BPSK and Gray coded QPSK modulation alphabet, the

BER is given by [15]

Pb (x) = Q
(√

2x
)

(3.146)

where x is the SNR. The BER is then obtained by averaging (3.146) over the SNR

distribution for the equivalent SISO system,

PSTBC =

∫ ∞

0
Pb

(
PT Υ

ntσ2
n

)
pΥ(Υ)dΥ (3.147)

where the equivalent SNR for a STBC system is PT Υ/(ntσ
2
n), see Section 3.5.1.

If the integrations are carried out, using [80], then the following result follows

PSTBC =

nrnt∑

l=1

mf∑

r=1

cl,r

[
1

2
−
√

PT νl

ntσ2
nπ

Γ(r + 1/2)

Γ(r)
F

(
1

2
,
1

2
+ r;

3

2
;− PT

ntσ2
n

νl

)]

(3.148)

where F (·) is the hypergeometric function.

Appendix 3.F Proof of Corollary 3.3

If no mutual coupling is present, and RH = I, then this corresponds to a covariance

matrix Σ = I2nrnt (refer to the proof of Lemma 3.1 in Appendix 3.B) and the

characteristic function (3.130) can thus be written as

Φ(s) = (1 − s)−mf nrnt (3.149)

and hence, the pdf of Υ = ‖H‖2
F becomes, by calculating the inverse Laplace

transform of (3.149)

pΥ(x) =
xmf nrnt−1

Γ(mfnrnt)
e−x (3.150)

which is the gamma distribution with 2mfnrnt degrees of freedom.

The expressions for the outage capacity and BER follows by applying the same

calculations as in equation (3.142) and (3.147) but using the distribution (3.150)

instead.



152 Chapter 3. MIMO system performance

Appendix 3.G Proof of Theorem 3.4.

The SNR for beamforming is from Section 2.5 given by PT λmax/σ2
n and the BER

for coherently detected BPSK or coherently detected Gray coded QPSK in an ad-

ditive white Gaussian channel is given by [15]

Pb(x) = Q
(√

2x
)

(3.151)

where x is the SNR. The average probability of bit error, PBF , is then given by av-

eraging (3.151) over the pdf of the principal eigenvalue, which is given in Corollary

3.1 on page 87:

PBF =

∫ ∞

0
Q

(√
2PT

σ2
n

λmax

)
pλ(λmax)dλmax (3.152)

Since the pdf pλ(λmax) consists of terms xpe−kx, according to (3.37), we obtain

by using the symbolic integration software package MAPLE 7.0

∫ ∞

0
xpQ(

√
αx)e−kxdx =

=

√
α

2π

1

kp+3/2
F

(
1

2
,
3

2
+ p;

3

2
,− α

2k

)
Γ

(
3

2
+ p

)
+

Γ (1 + p)

k1+p
. (3.153)

Hence, the integral in (3.152) is solved, term by term, by using (3.153). The sim-

plifying formula for this particular hypergeometric function, expressed in (3.64) is

the used, and after some lengthy calculations, the result (3.92) follows.

Appendix 3.H Proof of Corollary 3.4.

The pdf of the trace of the matrix W is given by (3.54), since ‖H‖2
F = Tr(HH∗) =

Tr(W). So, the following holds:

1

m
Tr(W) ≤ λmax ≤ Tr(W) (3.154)

where m = min(nr, nt). From the correlated Nakagami-m fading channel with

the parameter mf set to mf = 1, the upper bounded pdf in the Rayleigh fading

case is equal to the pdf for ‖H‖2
F , obtained in the analysis of STBC. Hence, from

(3.54) and (3.55) we get the pdf as

pUpper
λmax

(λmax) =

nrnt∑

l=1

cl

νl
e−λmax/νl . (3.155)
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To find the pdf for ‖H‖2
F /m, we make the variable substitution λ = λmax/m in

(3.155). A result in [121] states that if px(x) is a pdf of x, then y
△
= ax has the pdf

py(y) = px(y/a)/|a|. Using this and (3.154) we get

pLower
λmax

(λmax) =

nrnt∑

l=1

mcl

νl
e−mλmax/νl . (3.156)

The eigenvalue λmax attains the lower bound in an unitary channel where all eigen-

values νl to the channel covariance matrix RH are equal. The upper bound is at-

tained in a rank-1 channel where only one eigenvalue is non-zero. If the BER is

calculated, using (3.152), then the following expression is obtained using the lower

bound for the largest eigenvalue pdf,

PBF =

nrnt∑

l=1

cl

2

[
1 −

√
νl

mσ2
n/PT + νl

]
(3.157)

which should be compared with (3.66), the BER of STBC in a correlated Rayleigh

fading channel. The only difference is in the scaling factor m and nt respectively,

of the SNR (PT /σ2
n). If m = min(nr, nt) ≡ nt then the upper bound of beam-

forming BER is identical to the BER of STBC in a correlated Rayleigh fading

channel. That is, the number of receive antennas is equal to or larger than the num-

ber of transmit antennas. If nt > nr, then m = nr < nt and the STBC BER

expression (3.66) has a larger SNR penalty then the upper bound of the beamform-

ing BER in expression (3.157). Hence, for nr < nt, beamforming BER is strictly

lower than orthogonal STBC BER.

Appendix 3.I Table 3.2 in Theorem 3.4.

The table is given on the next page.
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Chapter 4
Measurements and analysis of a

SIMO system

THIS chapter presents measurement results from an adaptive array antenna

testbed for the GSM-1800 system developed at Uppsala University. The

testbed is used in laboratory measurements and in outdoor field trials in both LOS

and NLOS environments. The testbed is able to suppress an interfering signal by

31 dB using null steering and simultaneously have a 2 dB array gain towards a

desired user. This give a sufficient improvement to allow two users to share a time-

frequency channel served by a basestation and still maintain a low BER for both

users. A qualitative demonstration where two simultaneous and channel sharing

phone calls were handled by the testbed is presented. Furthermore, the issue of

regularization of the SMI algorithm is discussed and demonstrated in this chapter.

4.1 Introduction

Using a multiple antenna array at the basestation in a cellular system gives a num-

ber of benefits, see Chapter 1. This chapter deals with the uplink of a cellular

system, hence a SIMO configuration in an interference limitied environment. Con-

trary to the previous chapter, the multiple antennas are primarily not used to provide

diversity to combat fading, but to provide additional degrees of freedom to supress

interferers. Note also that a narrower beamwidth will suppress delayed signals and

a reduction in the delay spread is expected. The interferer suppression is possible

since the array gives the receiver an ability to discriminate in space or angle. The

ability of the receiver to suppress interferers can directly be related to an increase

in the spectral efficiency of a cellular system, measured in the number of users per

155
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unit area and per bandwidth [2]. Hence, it is important to quantify the amount of

interference suppression that is possible and how it is related to the physical design

of the basestation.

To investigate these capabilities of a SIMO system in the uplink of an cellular

system, an adaptive antenna testbed was designed and realized at Signals and Sys-

tems Group, Uppsala University. The adaptive antenna testbed project commenced

1994 at Uppsala University in a cooperation with Ericsson Radio Access AB. The

aim was to develop and evaluate adaptive antenna technologies for mobile commu-

nication systems and to obtain experience of using this technology in base stations.

Due to limited resources, only the uplink was implemented. Furthermore, receive

beamforming was used, see Section 2.5.1 and the weighting was implemented in

hardware using digitally controlled phase shifters and attenuators. This is some-

times called an analog beamformer (ABF) [69]. The benefits with the ABF is that

it can be used as an add-on system on existing base station receivers, where the

output from the ABF is connected to the ordinary base station receiver. In [3], field

trial results showed that by upgrading 5% of the basestations to adaptive antennas

yielded a 25% network capacity increase. Hence, basestations in traffic “hot-spots”

can be upgraded with array antennas and thereby boost the capacity significantly.

Another implementation option is the fully digital beamformer (DBF) [71],

where both the adaptive algorithm and the weighting and summation of the signals

is performed in DSP software. The DBF is flexible and allows for system upgrades

by changing the DSP software, but requires completly new BS equipment. How-

ever, for broadband systems, the limitations on the maximum speed of the I/O bus

in the DSP reduces the ability to sample and process data from many antennas, as

is required in the DBF configuration. In [122], it was reported that the maximum

data throughput to the DSP is currently around 10 Mbit/s. Hence, congestion in the

I/O bus occurs for an nr = 4 element antenna system at about 2.5 Mbit/s through-

put. If higher data speeds are desired, ABF becomes an interesting choice, since

then, the beamforming takes place in hardware which is throughput insensitive. To

calculate the beamformer weights, the received signals are sampled at a speed that

is chosen based on the coherence time for the channel (as compared to the symbol

time in DBF applications). Hence, the system is separated into a throughput exten-

sive part and a computation intensive part [122]. This further motivates the study

of ABF systems.

This chapter contains only a brief description of the hardware of the testbed

since a more detailed description can be found in the Licentiate thesis of Anders-

son and Landing [123]. Some other testbed projects for GSM/DCS 1800 have also

been reported by Ericsson [7], the TSUNAMI project [11] and others, see [124]

for an overview of adaptive antenna testbeds. This chapter also contains measure-

ment results from the conducted field trials. In Chapter 5, these measurements are
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analyzed in more detail and the performance bottlenecks are identified.

This chapter is organized as follows. It starts with a description of the adaptive

antenna architecture in Section 4.2 followed by an analysis of the performance

in the ideal case in Section 4.3. Section 4.4 presents results from measurements

performed with the testbed in a laboratory, where a Butler matrix was used to

emulate the front end. Section 4.5 describes measurements performed at an outdoor

antenna measurement range and Section 4.6 describes a demonstration with voice

transmission using the testbed. Finally, this chapter ends with some conclusions in

Section 4.7.

4.2 Adaptive antenna architecture

The receiver antenna array is designed for integration with an existing base station,

using the GSM-1800 standards, thus the radio interface frequency is 1.7-1.8 GHz.

A photo of the antenna is shown in Figure 4.1 and in Figure 4.2 a schematic outline

of the system is shown. The front-end consists of ten antenna elements, mounted in

a circular array configuration. The antennas are connected to directional couplers to

allow injection of a calibration signal. The front end also contains, for each antenna

element, cavity filters to remove out of operating band interference and a low noise

amplifier. In the receiver rack, each of the ten signals from the front-end are split

in three replicas where one is connected to a sampling receiver and the two other

to two independent beamformers. Hence, it is possible to simultaneously weight

and sum the ten antenna signals in two independent ways. The two beamformers

enable trials with the SDMA (Spatial Division Multiple Access) method. The two

signal sources (e.g. mobiles) are separated by the receiver algorithm by assigning

them different training sequences (pilots).

A summary of some characteristics of the adaptive array system is shown in

Table 4.1. The beam-forming is performed on the received RF signals at 1.721 GHz

and the received vector signal is reduced to a scalar signal, on the RF frequency.

This enable the use of an ordinary base station as a receiver. The weights are

calculated using the algorithm in the digital signal processor (DSP) and this type

of weighting is denoted a hybrid-analog beamformer in [69] due to the use of both

digital and analog signal processing.

The basestation is a support system used in the measurements to demodulate

the signals and provide the adaptive antenna with synchronization signals for cor-

rect timing of the sampling. Furthermore, the transmitted data is generated by the

basestation which contains software to compare the transmitted data bits with the

received data, for bit error rate (BER) calculations and for estimation of other pa-

rameters that characterize the transmission. The basestation has many features but
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Figure 4.1: The adaptive antenna, to the left the front end and to the right the rack

with receivers, DSP-system, and weighting units.

in these measurements it runs in a limited mode and only traffic channel frames are

transmitted.

The sampling receivers (SRX) down-convert the RF signal to the baseband and

separate it into I and Q channels using double-down-conversion receivers. The

sampling in the analog to digital converters (ADC:s) is performed at 270 kbit/s

which is equal to the symbol rate in the GSM standard [125]. The receiver gain is

set so the quantization noise is equal to the thermal noise for maximal use of the re-

ceiver dynamic range. The ADC:s use 8 bits and the DSPLINK2 bus that connects

to the DSP is a 32 bit bus. Thus four channels can be read from the ADC:s to the

DSP simultaneously. The possible increase in performance by using ADC:s with

more bits is investigated in Section 5.4.3. The DSP consists of seven TMS320C40

signal processors which can be programmed to run a number of different weight

calculation algorithms. In the measurements presented here, the sample matrix in-

version (SMI) algorithm [126] is used, see further Section 5.3.2. SMI was chosen

for its rapid convergence compared to other algorithms [127], and to avoid the need

for calibration of the hardware channel between the antennas and the SRX. Many

existing algorithms rely on direction of arrival (DOA) estimates of the signals and

thus require a calibrated front end. This is avoided using SMI, but calibration of

the weights is still needed, since hardware weights are used. The SMI algorithm,
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Item Specification

Front end and radio parameters

Center Frequency 1721 MHz

Modulation GMSK (BTs=0.3)

Number of antenna elements 10

Antenna configuration Circular

Antenna element spacing 0.56λc @ 1721 MHz

Antenna polarization Vertical

Antenna element beam-width 80◦

Receiver and DSP system

DSP Processors Seven TMS320C40

Sampling frequency per I- and Q-channel 270 kHz

ADC resolution 8 bit

ADC dynamic range -32 dBm to -80 dBm

Algorithm for weight calculation SMI

Measured noise figure for receiver 11 dB

Receiver maximum voltage gain 75 dB

Input IP3 +2 dBm

IQ isolation 75 dB

Weighting units

Class Analog

Phase shift resolution 1◦

Amplitude attenuation resolution 1 dB

Dynamic range for weight setting 50 dB

Noise figure 6 dB

IP3 +6dBm

Phase stability 1◦/hour

Amplitude stability 0.1 dB/hour

Calibration

Phase accuracy 1◦

Amplitude accuracy 0.75 dB

Table 4.1: Characteristic parameters of the adaptive antenna testbed

which is a reference signal type of algorithm, see Section 2.5.1, use the training

sequence of 26 bits in the mid-amble of each GSM-1800 traffic channel burst as a

reference signal to separate users. For a survey of adaptive antenna algorithms, see

[128, 129].

Although SMI does not require a calibration of the front end, the signals that

are used in the DSP to calculate the weights are not exactly the same as the signals
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Figure 4.2: Adaptive antenna architecture. To the left the front end, to the right the

DSP system consisting of seven digital signal processors. The basestation (bottom

right) provides the system with synchronization signals and transmits and receives

data bits for BER calculations. BP= Bandpass Filter, LNA= Low Noise Amplifier,

LO= Local Oscillator, PS= Power Splitter.

used in the beam-formers (the hardware weighting units). Rather they are a phase

shifted and attenuated replica of them, so there is a need for calibration of these

weighting units. The phase shift and attenuation is dependent on the length of the

cables, their losses, and also the characteristics of the weighting units. They are

built from active components, as phase shifters, attenuators and amplifiers, which

suffer from temperature drift. This will soon make a calibration invalid and it is

therefore necessary to recalibrate often. Calibration algorithms are presented in

Sections 5.2.1 and 5.5.

A feedback receiver is used to down-convert and sample the summed beam-

former output signal which is then utilized by the calibration algorithms. The

calibration takes place off-line, when the adaptive antenna is not adapting to any
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external signal sources, since the calibration algorithm needs full access to the

weight controller. The calibration requires a CW (continuous wave) signal injected

through directional couplers as close to the antenna elements as possible. The data

from the calibration is then stored as a look-up table in the DSP:s memory. Off-

line calibration implies that the base-station must be taken out of service but can

be avoided by more advanced calibration methods. Two proposals for on-line cal-

ibration methods that are transparent to normal operation are presented in Chapter

5.5.

4.3 Performance in a LOS channel

In this section, the expression for the carrier to interference plus noise ratio (CINR)1

in the output signal of the beamformer is derived. The channel model is a LOS

channel with no angular spread, to make the derivation simple and yield an an-

alytical result that lends itself to interpretation. Furhtermore, the measurements

are made in a LOS channel and the derived CINR can thus be compared with the

measured results.

In Chapter 2, the flat fading SIMO channel was described by the column vector

h. If the channel is LOS and with negligible angular spread, then the channel vec-

tor h can be parameterized using the direction of arrival (DOA) θ of the impinging

signal. This is denoted a(θ) and is commonly called the array response vector.

Define the vectors ai(θi), ad(θd) as the array response vectors towards the inter-

fering and the desired2 mobile respectively. Furthermore, assume that the array

response vectors are normalized, i.e. a∗d(θd)ad(θd) = 1. If the training sequence is

assumed to have infinite length, then effects from finite sample estimation such as

unconverged covariance matrices and cross-correlation estimates can be neglected,

and estimated covariances can be replaced by their true values. The Wiener-Hopf

solution for the receive weight vector wR can then be expressed as, from (2.117)

wR = R−1
yyryd . (4.1)

Here Ryy is the covariance matrix of the received signal y(n) and ryd is the cross-

correlation between the received signal and the training sequence d(n). The co-

variance matrix of the received signal vector is, in the LOS with no angular spread

case given by

Ryy = σ2
dad(θd)a

∗
d(θd) + σ2

i ai(θi)a
∗
i (θi) + σ2

nI (4.2)

1Also known as the signal to intereference plus noise ratio (SINR). Carrier and signal will be

used interchangeably in this thesis
2The MS which data we want to receive.
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where σ2
i , σ

2
d and σ2

n is the interferer, the desired signal and the noise power re-

spectively, as measured by a virtual unit gain omnidirectional antenna at the base-

station3.

By applying the matrix inversion lemma [130] twice in equation (4.2) and sep-

arating the interferer, the desired signal and the noise parts of the output signal, it

is possible to show that the beamformer output carrier to interferer plus noise ratio

can be written [130, 131] as

CINR =
nrσ

2
d

σ2
n

(
1 − σ2

i |ρ|2
(σ2

n + nrσ2
i )nr

)
(4.3)

where

ρ = a∗i (θi)ad(θd) (4.4)

is the spatial correlation coefficient between the interfering and desired signal’s

array response vectors. When the interferer to noise power (INR) is high and the

spatial correlation is low, σ2
n/σ2

i ≪ nr(1 − |ρ|2), we have

CINR ≃ nrσ
2
d

σ2
n

(
1 − |ρ|2

)
. (4.5)

Equation (4.5) shows how the CINR at the output of the adaptive array with Wiener-

Hopf weights is the input signal to noise ratio (σ2
d/σ2

n), amplified nr times by the

array, as in the absence of an interferer, and then reduced by the factor (1 − |ρ|2).
The loss in CINR, 1 − |ρ|2, is due to the pattern distortion when forming a null in

the interference direction. Note that the interferer power is not present in the ex-

pression (4.5). The interfering signal is successfully suppressed to the noise floor,

independent of its power in this idealized model.

If the desired signal and interferer are very close in azimuth angle θ, then the

spatial correlation is |ρ| ≃ 1. In this case the noise appears to be “amplified” by

the spatial correlation and σ2
n/σ2

i ≫ nr(1 − |ρ|2) holds. This will lead to the

asymptotic CINR

CINR ≃ nrσ
2
d

σ2
n + nrσ2

i

(4.6)

which is the signal to interferer plus noise ratio of an nr element omnidirectional

receiver with maximum ratio combining of the desired signal. Thus, the improve-

ment by using the array antenna is in this case only due to a reduction of 1/nr

of the noise power. A more thorough derivation of the output CINR for the min-

imum variance beamformer is presented by Wax and Anu [132] which takes the

finite sample size effect when estimating the covariances and also the correlation

between the desired and the interfering signal into account.

3The desired signal power σ2
d corresponds to the transmitted power PT times the path loss through

the channel.
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4.4 Laboratory measurements

To verify the adaptive antenna performance, laboratory measurements were perf-

prmed, using a flat fading LOS channel with no angular spread. This was accom-

plished by replacing the front end by a 8×8 Butler matrix. See Appendix A for

a description of the Butler matrix. Two signal generators were connected to two

different input ports of the Butler matrix to emulate a scenario corresponding to

a 8-element linear array of isotropic antenna elements spaced λc/2 with two im-

pinging signals with DOA:s -14.5◦ and 14.5◦ respectively, relative to broadside.

The 8 outputs of the Butler matrix are then connected to the adaptive antenna. Ide-

ally, the array response vectors from the signals generated by a Butler matrix are

orthogonal, i.e. a(θk)
∗a(θl) = δkl, where k and l represents ports of the Butler

matrix, generating signals from direction θk and θl. If k �= l, then the spatial cor-

relation coefficient will be |ρ| = 0, due to the structure of a Butler matrix, and the

performance of the interferer suppression will be excellent, see (4.5). However,

imperfections in the manufacturing of the Butler matrix makes the array response

vectors non-orthogonal, which corresponds to a more realistic signal environment.

The manufacturer gives the maximum errors as 8.5◦ in phase and 0.8 dB in magni-

tude.

The performance of the adaptive antenna was examined by measuring the out-

put BER and output power (after the beamformer) of the desired signal, called

the carrier (Cout) and output interferer signal (Iout) for different settings of input

power (Cin, Iin). The input power of the two signals were measured at the input

of the Butler matrix. With this setup, it is possible to measure and distinguish the

suppression of the interferer and the gain of the desired signal.

The desired signal is GMSK-modulated with GSM-1800 traffic channel data

containing a 26 bit training sequence in the middle of each time slot. The interferer

is also a GMSK-modulated signal transmitting pseudo random (PRBS) data or

traffic data with another training sequence, depending on if both beamformers are

used simultaneously. Ten measurements series were performed and the diagrams

presented show the mean of these series, see Figure 4.3, 4.4 and Figure 4.6.

Figure 4.3 shows the average suppression of the interferer by the adaptive an-

tenna system. The standard deviation in the measurements is 7 dB. The large

standard deviation is due to the randomness in the estimate of the steering vec-

tor ryd which is calculated as the correlation between the training sequence and

the received data. Due to the short training sequence, the correlation between the

training sequence and the PRBS data transmitted by the interferer will be nonzero

and vary randomly. If the correlation is small, then the interferer suppression will

be excellent but a large correlation will result in a poor suppression. This variation

is the reason of the large standard deviation in the measurements. This effect was
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Figure 4.3: Suppression of interfering signal, in dB. Measurements performed in

lab, on an 8 element array antenna, mean values over 10 measurements.

also observed in the adaptive antenna testbed in the TSUNAMI project [133]. The

adaptive antenna is able to suppress the interfering signal when the power of the in-

terferer and the desired signal is in the dynamic range of the ADC:s. The ADC use

8 bits for conversion and this gives a dynamic range of approximately 48 dB. The

receiver gain was adjusted so the quantization noise power and the thermal noise

power was approximately equal. The noise floor in the receiver was -80 dBm. An

interferer is suppressed to the quantization noise floor if the signal sources are suf-

ficiently separated in angle, or if the spatial correlation is sufficiently low, which

can be assumed in the Butler matrix measurements. Compare with equation (4.5)

which expresses the output CINR for the optimal antenna which is independent of

the interferer power. Thus, the interferer suppression in Figure 4.3 and 4.4 should

be proportional to Iin. The dashed line surrounding the brightest area in Figure 4.3

is the 20 dB iso-suppression line, and the maximum suppression is about 30 dB.

If the ratio of the output carrier to interference ratio (CIRout) to the input CIR

(CIRin) is plotted, then we obtain the CIR improvement, presented in Figure 4.4

and 4.5. The CIRin was measured using one of the antennas in the array so the

improvement will be referred to a single antenna. The main contribution to the

CIR improvement is from the interferer suppression. The gain of the desired signal
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Figure 4.4: Improvement in CIR, in dB relative to one element antenna. Mea-

surements performed in lab, on an 8 element array antenna, mean values over 10

measurements.

was approximately constant at about 2-6 dB for all carrier and interferer powers

in the ADC dynamic range. With an interferer power at -40 dBm and the desired

input signal power between -70 dBm and -40 dBm (CIRin ≤0 dB), the adaptive

antenna is improving the CIR more than 30 dB. When either of the signal levels

(Iin,Cin) exceeds the ADC dynamic range the CIR improvement drops abruptly to

0 dB or less. The reason is that with saturated receivers, the calculation of correct

weights is not successful, and the beamforming is not performed correctly.

Figure 4.5 shows a vertical cut of the plot in Figure 4.4 at Cin=-73 dBm. The

carrier to interference improvement increases linearly (on dB scale) between in-

terferer power between -90 and -70 dBm in accordance with equation (4.5). At

an interference level above -70 dBm the improvement saturates and levels out be-

tween 25 and 30 dB. The reason for this is the hardware limitations, which will be

furhter investigated in Chapter 5.

BER improvement

Another illustrative way of presenting the measurements is to plot the improvement

of the BER for different settings of Cin and Iin, see Figure 4.6. The presented data
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Figure 4.5: Improvement in CIR at carrier power -73 dBm. Note how the im-

provement levels out for high interferer powers and when the power is below the

noise floor

is post-FEC (forward error correction) decoding of class Ib data bits in the base

station. The improvement in BER is measured relative to one of the Butler matrix

outputs, i.e. using a single antenna element compared to the 8 element adaptive

antenna array. Hence, if BER is measured in %, the BER improvement is defined

as

BERimprovement = BERone antenna − BERadaptive antenna [% units] .
(4.7)

The BER improvement is zero for CIRin ≥9 dB because the BER is 0% for

the single antenna base station receiver in this region. This is the threshold level in

GSM-1800 for 0 % BER. Above the lower right triangular area in Figure 4.6, is the

region where there are benefits from using the adaptive antenna compared to using

an ordinary single element base station antenna. Here the BER improvement is

50 percentage units, giving a BER out from the adaptive antenna of 0%. A CIRin

above -20 dB is thus necessary to give a BER of 0% at this setup, using the Butler

matrix. Clearly, the separation of the signal sources affects the minimum CIRin

to still maintain 0% BER at the beamformer output. This is further investigated in
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Figure 4.6: Improvement in BER using the adaptive antenna, in percentage units

relative to one element antenna. Measurements performed in lab, on an 8 element

array antenna, mean values over 10 measurements.

Section 4.5.3.

A deeper theoretical insight into what limits the suppression of the interfering

signals is given in Chapter 5. There, it is shown that the weight quantization,

both in the phase and the magnitude, limits the maximum achievable interferer

suppression. For this particular testbed, it is the 1 dB step size in weight magnitude

that dominates the performance degradation. The quantization in the weights also

limits the calibration accuracy which have an impact on the performance. The

number of bits of the ADC limits the range of received signal power where an

improvement with the adaptive antenna is possible.

4.5 Outdoor measurements

4.5.1 The measurement range setup

The purpose of the outdoor field trial was first to characterize the system and its

performance in a controlled flat fading environment with few variable parameters.

In the next stage, measurements in a more complicated signal environment with

the additional complexity of multipath propagation, frequency selective fading,
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Figure 4.7: Antenna range setup. The front-end is placed on a turntable and is

illuminated by two horn antennas. Below the turntable, a small room for the signal

processing equipment.

Doppler spread etc. were to be performed. The first stage was performed at the

outdoor antenna measurement range at FFV Aerotech in Arboga, Sweden.

The front-end was mounted on a turntable enabling 360 degrees azimuth ro-

tation, see Figure 4.7. The circular array was then approximately three meters

above the ground level. A five meter horizontal bar was mounted on the rotational

turntable on which a horn antenna was placed. A second horn antenna was placed

30 cm above ground, 20 meters away from the turntable. The two horns were used

as “mobiles” and illuminated the antenna from two directions. The separation is

then adjustable by rotating the turntable. All equipment was stored in a room be-

low the turntable. The distance to the closest obstacles (trees) is about 500 meters

providing a rather echo free environment and a LOS channel. All experiments were

made at the frequency of 1721 MHz.

4.5.2 Measurement of radiation patterns

Two signals with GSM standard GMSK modulation were generated and connected

to their respective horn antennas. The separation angle between the interfering and

desired signal was set by rotating the turntable. The adaptive antenna was then

allowed to adapt on the signal environment. The adaption was then stopped and

the weights were held constant. The two modulated signal sources were turned off
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Figure 4.8: Adaptive antenna radiation pattern. Desired and interfering signals of

equal strength with DOAs of 270◦ and 0◦ respectively. The interfering signal is

suppressed 25 dB.

and a CW signal at 1721 MHz was connected to the field antenna.

During a complete rotation of the turntable, the output power from the adaptive

antenna was measured at angles from 0 to 360 degrees in steps of half a degree, us-

ing a spectrum analyzer. This gives the receive “radiation” pattern4 of the adapted

beamformer. This measurement was then repeated for different angle separations

and different power levels of the desired and interfering signals. Figure 4.8 shows

the adapted radiation pattern of one of the beamformers, where θd = 270◦ and

θi = 0◦. The separation angle between the desired and interfering mobile is thus

90 degrees and the power levels were set to Cin=Iin, thus CIRin=0 dB. The SMI

algorithm calculates a weight vector wR the creates a null towards the interfering

signal. The interfering signal is suppressed 25 dB relative to the desired signal.

Diagonal loading

As seen in Figure 4.8, there is no well defined main-lobe against the desired signal.

This is due to the short data sequence used to estimate the covariance matrix and

the steering vector. The covariance matrix Ryy and steering vector ryd in (4.1)

are estimated based on the 26 samples in the training sequence. A study on how

the number of samples affects the performance of the SMI algorithm can be found

4The term “radiation pattern” is used for both transmitting and receiving arrays.
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Figure 4.9: Effect of diagonal loading. The covariance matrix is regularized and

the radiation patterns show lower sidelobes and a more stable radiation pattern

between different noise realizations.

in [134]. With the desired signal present in the received signal, as is the case in

a communication systems, the SMI algorithm converges slower than without its

presence. One way of dealing with the slow convergence problem is to use the

technique of diagonal loading, i.e. the adding of a small number to the diagonal

elements of the covariance matrix. Another is to use bootstrapping [16], where the

covariance matrix and steering vector is first estimated using the training sequence,

and then the symbols in the whole time slot are detected. Then the symbols of the

whole time slot is used as a “training sequence”to re-estimate Ryy and ryd.

If we assume that the noise is spatially white, then the perfectly estimated (con-

verged) covariance matrix would have all noise eigenvalues identical and equal to

the noise variance σ2
n. An unconverged estimate gives non-identical noise eigen-

values resulting in a radiation pattern with high side-lobes and the shape of the

pattern changing between each batch of 26 samples, although the signal environ-

ment is stationary. By choosing the loading value larger than the noise eigenvalues

but smaller than the eigenvalues of the desired and interfering signal acts as adding

artifical noise and the overall equivalent noise level is increased. This results in al-

most identical noise eigenvalues [135]. The loading value L0 was therefore chosen

so that L0/σ2
n ∼ 100, where σ2

n is the noise power.

The diagonal loading will decrease the CIRout somewhat, but increase the car-

rier to noise ratio CNRout because of the decrease in side-lobe levels [134]. Figure

4.9 shows the measured radiation pattern where the signal environment is the same
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Figure 4.10: Weights in the complex plane. No diagonal loading and ten succes-

sive measurements on the same signal environment. Weights corresponding to the

same channel is marked using the same symbol. Note how the solution changes

completely between different batches of 26 training sequence symbols, due to the

short sequence.

as in Figure 4.8 but with a diagonally loaded covariance matrix. The radiation pat-

tern retains its null in the direction of the interfering signal, but now the main lobe

points towards the desired signal with an estimated 3dB beamwidth of 30◦ and the

side-lobe level is less than -10 dB.

In Figure 4.10 and Figure 4.11, the corresponding weights for ten successive

adaptions are presented and can be compared, and in Figure 4.12, the effect on the

radiation pattern is shown. It can be seen that almost the same weights makes suc-

cessive radiation patterns very similar, hence the robustifying property of diagonal

loading has been verified.

The dependence on the DOA separation

Figure 4.13(a) and 4.13(b) show radiation patterns of the two beam-formers where

the desired signal and interferer are separated 2.5◦. Note that the two signals im-

pinging on the array play opposite roles in the two beam-formers. Despite the small

angle separation, the interfering signal is suppressed more than 20 dB relative to

the desired signal in both plots. Note also the similarity of the two radiation pat-

terns. This indicates that apart from the opposite treatment of the two signals the

beam-formers experience approximately the same noise environment.
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Figure 4.11: Weights in the complex plane when diagonal loading is used. Ten

successive measurements are presented. Almost a similar weight solution arise

every time, up to a constant phase shift on all weights, which has been removed in

the figure.
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Figure 4.12: Three successive radiation patterns when diagonal loading is intro-

duced. The DOAs and signal levels are identical for all three cases. Desired signal

from θd = −48◦ and interferer from θi = 0◦.
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Figure 4.13: Desired and interfering signals of equal strength with DOA:s of

182.5◦ and 180◦, respectively

For every measured radiation pattern, the suppression of the interferer and the

amplification of the desired signal was estimated. The results for CIRin=-20 dB is

presented in Table 4.2. It can be seen that the suppression of the interferer is, within

the error margin, independent of the DOA separation whereas the amplification of

the desired signal decreases with a decreasing DOA separation. This is a natural

consequence of the limited beam-width of the array, i.e. the most narrow beam

possible with the actual array configuration is not narrow enough to provide the

main-lobe peak towards the desired signal when a null is directed in the DOA of

the interferer. The results of Table 4.2 is in agreement with equation (4.5) and

(4.6). When the DOA separation is large, the spatial correlation |ρ| is small and

the output CINR (CIR) is approximately constant, as is the improvement in CIR.

When the DOA separation angle becomes small, the spatial correlation approaches

one and the performance degrades.

4.5.3 BER from outdoor measurements

The BER was logged from the supporting base station system while the antenna

array was rotated. This gave the BER as a function of DOA separation between

interfering and desired signal sources. The measurements were made for different

settings of CIRin. Figure 4.14 shows the BER after the decoding of class Ib bits by

the forward error correcting (FEC) code. The class Ib bits are coded with a rate 1/2
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DOA Interferer Carrier Improvement

separation suppression gain in CIR

180◦ 31 dB 2 dB 32 dB

135◦ 30 dB 4 dB 34 dB

90◦ 30 dB 4 dB 34 dB

45◦ 32 dB 2 dB 34 dB

10◦ 29 dB 2 dB 31 dB

5◦ 27 dB -10 dB 17 dB

2.5◦ 26 dB -8 dB 18 dB

Table 4.2: CIRout improvement in dB for different DOA separation. CIRin=-20

dB. The improvement in CIR is maintained above 30 dB until the DOA separation

angle is smaller than 10◦.
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Figure 4.14: BER (after FEC decoding of class Ib data) as a function of interferer

and desired signal DOA separation in the horizontal plane. CIRin=-25 dB(curve

1), -20 dB(2), -15 dB(3), -10 dB(4) and 0 dB(5)

convolutional code and class II bits have no error correcting coding. Figure 4.15

presents the BER of unprotected, class II data. The transition between a BER of

0% and BER of 50% is very sharp when the CIR drops below a threshold value

as is characteristic for a digital communication system. For CIRin=-10 dB, the

minimum angle separation for 0% BER in class Ib bits is less than 4 degrees and for

decreasing CIRin this minimum angle increases. The FEC improves the adaptive

array antenna ability to separate users in the spatial dimension.
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Figure 4.15: BER (Class II unprotected data) as a function of interferer and desired

signal DOA separation in the horizontal plane. CIRin=-25 dB(curve 1), -20 dB(2),

-15 dB(3), -10 dB(4) and 0 dB(5)

For a CIRin=0 dB a BER of 0% was measured although the plane waves im-

pinging on the array only differed in elevation angle (same azimuth angle). This

can be explained by the vertical beamforming of the circular array, i.e. plane waves

with the same azimuth angle but with different elevation angles give rise to differ-

ent spatial signatures or array response vectors, which makes it possible to separate

them.

For practical reasons the two illuminating antennas were positioned at different

heights as can be seen in Figure 4.7, giving a separation in the elevation plane of

approximately eight degrees. Different spatial signatures and low correlation be-

tween the training sequences of the two signal sources are enough for the adapta-

tion algorithm to separate the signals, and thus provide a beamforming property in

elevation angle as well. This is a property that could be exploited in urban environ-

ments by designing arrays with volume extent, to separate users and interference

in both azimuthal and horizontal angle.

4.6 Qualitative test in a multipath environment

The testbed has also been used in a multipath environment. The venue was a

demonstration of the adaptive antenna using speech data transmission with “real”

GSM-1800 cellular phones. The place was in central Kista outside of Stockholm
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and the occasion was a demonstration of the project in cooperation with Ericsson

Radio Access AB. The location can be classified as “typical urban”. The demon-

stration gave qualitative results of the performance although no quantitative mea-

surements was conducted.

In the demonstration, the adaptive antenna array was placed on the ground in a

yard with high building surrounding it, thus a signal environment with severe mul-

tipath components due to many wall reflections. We successfully managed to con-

nect two GSM-1800 cellular phones transmitting on the same frequency channel

and timeslot using the testbed array antenna as a receiver. The voice transmission

using the two cellular phones progressed perfectly although the physical separa-

tion between the two users was reduced to only 0.2 meters. This small separation

distance corresponded to an angle separation at the basestation site of less than 1◦,

which is too small for bit error free transmission in the line of sight scenario.

Conclusively, the demonstration showed that with an array antenna, a multipath

channel between the mobiles and the basestation actually helps the basestation to

separate the users. The time delay spread for the multipath components must be

considered small as the extent of the yard was less than 75×75 meters, so the

channel can be approximated by a frequency flat channel5. The received signal

vector was first space processed by the beamformer to a scalar signal which then

was feed to the Viterbi detector in the base-station. Lindskog [16], presented a

similar reduced rank MLSE equalizer that consisted of a beamformer followed by

a temporal detector. Applied to measurement data, the performance degradation

compared to a full rank vector MLSE equalizer was shown in [16] to be very small.

4.7 Conclusions

The laboratory tests show that the adaptive antenna presented here is capable of

improving the CIR ratio more than 30 dB when the desired signal is weak and

in the presence of a strong interferer. When the angle between the desired and

the interfering signal is decreased the CIR improvement is reduced, mainly due to

a loss in carrier gain. With a CIR=-20 dB the minimum separation between the

desired and the interfering mobile for an bit-error-free transmission is 10 degrees.

By adding forward error correction (FEC) to the transmitted symbols, the ability

for the adaptive antenna array to separate users in the spatial dimension was shown

to improve. This is due to the less susceptibility of a FEC coded data stream to

interference, thereby the adaptive antenna interference suppression and the FEC

combined leads to a system that is more robust against interference.

Furthermore, it was verified that diagonal loading is a way to improve the es-

5The equivalent length of a GSM symbol is approximately 1100 meters.
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timation of the covariance matrix, giving lower sidelobes and a distinct main-lobe

towards the desired signal. This is a method that also should be used in applications

where the DOA to the transmitting signal is to be estimated using the covariance

matrix of the received data.

This chapter demonstrated the feasibility of using adaptive antennas at base

stations for mobile communication networks. Although the quantitative measure-

ments were conducted in the simplest signal scenario with line of sight commu-

nication between the mobile transmitters and the base station array antenna, the

results are not optimal in the sense that the interferer is not fully suppressed to

the noise floor for all interferer power levels. This was expected by the theory for

received power levels well inside the dynamic range of the receivers. The reason

is due to the limited accuracy in the weights of the analog beamformer and the

calibration errors. This is more thoroughly studied in Chapter 5.

A demonstration of the testbed in a multipath scenario showed that the weight

updating frequency was sufficient to track the changes in the multipath channel.

Although no qualitative measurements were performed, the voice quality test was

satisfactory. Hence, the SMI algorithm is useful in this environment with multipath

with short time delay spread. In [16] it was demonstrated that this type of a reduced

rank equalizer has performance similar to the full rank space-time equalizer.
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Chapter 5
Finite Weight Resolution and

Calibration Issues

HARDWARE imperfections and related limitations on the interference sup-

pression performance on a basestation array antenna are investigated in this

chapter. It is shown how the phase and magnitude accuracy of the analog beam-

forming weights can be balanced for best performance and also which requirements

lie on the accuracy of the calibration algorithm. Furthermore, two calibration al-

gorithms are proposed that calibrate the antenna array simultaneously and without

disturbing the normal antenna operation. The performance of the calibration algo-

rithms are compared and it is concluded that they both can mitigate the temperature

drift in antenna array hardware components.

5.1 Introduction

To be able to analyze the limitations of the testbed presented in the previous chap-

ter, a theoretical model of the hardware channel is derived. The model can be used

by future ABF designers to balance the resolution in phase and magnitude of the

weighting units and to find the requirements on the calibration accuracy. Further-

more, the effects of finite word length in the DSP and the sampling receivers (SRX)

that introduces quantization errors and limits the dynamic range of the receiver are

also handled in this chapter. Due to the nonlinear nature of dynamic range lim-

iting, it is not included in the derived theoretical hardware channel model, hence

this chapter’s aim of completely describe the hardware in the array antenna is only

partly accomplished.

However, to extend the simplified (linear) model, both computer simulations

179
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and practical measurements using the adaptive antenna testbed was performed. The

testbed measurement results are used to validate the theoretical model and find in

which ranges of operation the linear model is applicable. For a description of the

testbed, see Section 4.2. The simulation model includes the saturation effects from

the limited dynamic range of the SRX:s, to give a more accurate prediction of

the adaptive antenna performance, especially at high input signal levels, where the

SRX:s are close to saturation.

Implementation errors on adaptive antenna arrays has previously been studied

by several authors. The previous work can be separated into the following four

categories, which also serves as a division of the modeling problem into sub-areas:

Sampling receivers

If the received signal amplitude exceeds the maximum allowed amplitude level of

the analog-to-digital converter (ADC) in the SRX, then nonlinear signal distortion

will occur, and performance will quickly degrade. Due to the finite word length,

the ADC will generate quantization noise which defines the lower limit of the SRX

dynamic range. Previous studies by Hudson [136] and Takahashi et al. [137] inves-

tigated the necessary number of ADC bits to achieve a certain level of interference

suppression. Hudson studied the quantization of received signals and concluded

that eight bits in the ADC was necessary to give 40 dB interference suppression

with a ten element array. The number of ADC bits must be chosen to cover the

whole dynamic range of the received signals, which can be substantial due to the

near-far ratio and the fading in the radio channel.

DSP

The finite word length in the digital signal processor affects the numerical stability

and accuracy of matrix inversions used by many algorithms. Nitzberg studied the

required word-length to achieve desirable performance [138]. It was showed that

the spread of required precision is large and depends on the signal environment and

as an example, the case with a single interference source requires the highest preci-

sion in the DSP (the largest DSP word-length). Performance limiting errors in the

DSP depends also on the choice of algorithm. For instance, many algorithms use

the covariance matrix to estimate the beamformer weights. Due to the time variant

mobile channel the weights have to be updated frequently, and only the most recent

samples are reliable for estimating the covariance matrix. The number of samples

used in the estimation is an important parameter for the performance. Reed, Mallet

and Brennan studied this [139], and showed how the carrier to interference ratio

on the adaptive antenna output depends on the number of used samples and the
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number of antennas (size of covariance matrix).

Weighting units

The weighting units have finite accuracy determined by the type of weight used,

and the number of control bits from the DSP. Analog weights can be implemented

in various ways, as two phase shifters in parallel, as two multipliers on the in-phase

and quadrature branch respectively or as a phase shifter and a multiplier in series

connection [140]. The effect of quantization of weights have previously been stud-

ied in [141, 142] and for phase weights only in [143] where it was concluded that

the interference suppression capability was inversely proportional to the product of

impinging signal power and weight error variance.

Calibration

A calibration must be performed to match the phase and amplitude of the different

hardware channels. The calibration must track the variations in time due to tem-

perature, humidity, etc and also be transparent and have no or a small effect on

the normal operation of the adaptive array antenna [144]. Depending on the cal-

ibration method used, there will be a limited resolution in the calibration process

and the residual calibration error will degrade the performance. Calibration errors

was studied by Tsoulos et al. [12, 145], where measurements on an adaptive array

using a calibration algorithm was presented. In Section 5.5, two on-line calibration

algorithms that are transparent to main antenna operation are presented that con-

tinuously tracks the changes in antenna channels. The algorithms use a feedback

of the output RF signal, and thus allows the use of e.g. the LMS algorithm for

updating the weights to minimize the error between the desired and actual output.

The derivations in this chapter does not depend on the actual implementation

of the weighting units or the choice of the algorithm for calibrating the ABF. A

generic error model is assumed and the differences in weighting units enter through

the variance of the weight errors and maximum value of the calibration error in

phase and amplitude. The obtained results can be used to find the effects of dif-

ferent implementation techniques on the total performance of an adaptive antenna

array of the ABF type in use in a mobile communication system. The performance

bottle-necks are identified to help the designer to achieve a balanced dimensioning

of the adaptive array antenna.

The chapter is organized as follows, in Section 5.2 the hardware channel model

is derived, Section 5.3 describes the adaptive antenna testbed and Section 5.4 the

results from measurements and simulations. Two on-line calibration algorithms for

the ABF is presented in Section 5.5 and finally, the chapter ends with a discussion
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in Section 5.6.

5.2 The hardware channel model

In this section, the hardware channel model is derived. Figure 5.1 shows the ABF

with the analog weighting path and the digital path which connects the antenna

elements with the sampling receivers. It is assumed that all signals are represented

by their complex baseband equivalents. The noise generated by the low noise am-

plifiers in the receiver front-end and the noise received by the nr antennas are

modelled as an equivalent nr × 1 noise vector, nT (t), which is assumed to be spa-

tially and temporally white1. Hence, nT (t) is a vector with zero mean variables

and covariance matrix RnT = σ2
nI.

To isolate the performance evaluation to the hardware channel, the simplest

possible radio propagation channel is assumed; two narrowband signals impinge

on an uniform linear array (ULA) antenna from two distinct azimuthal directions

θd and θi. Hence the channel is LOS and with zero angular spread. The channel

vector h can the be replaced by array response vectors, see the discussion in Section

4.3.

The continous time signal received by the nr antennas is then described by the

nr × 1 vector y(t) as

y(t) =yd(t) + yi(t) + nT (t) =

=a(θd)sd(t) + a(θi)si(t) + nT (t)
(5.1)

where a(θd) and a(θi) is the complex valued array response vector in azimuth di-

rection θd and θi respectively, including antenna element gain and polarization.

The baseband signals sd(t) and si(t) denote the desired and interferer signal re-

spectively.

In the model, the sampling receivers (SRX) are replaced by limiters and a noise

source nr(t). This noise represents the internal noise generated in the receivers and

the quantization noise generated in the sampling process. The corresponding signal

vector in the DSP can thus be written as

y′(tk) = sat [a(θd)sd(tk) + a(θi)si(tk) + n(tk)] (5.2)

where tk represents the sampling instants and n(tk) is the sum of front end thermal

noise nT (t)t=tk , quantization noise and receiver noise nr(t)t=tk :

n(tk) = nT (tk) + nr(tk) . (5.3)

1This assumption means that no other interference sources are present which have a directional

property. Furthermore, the white noise generated in each antenna branch in the front end are assumed

mutually independent. Thus the noise is both temporally and spatially white.
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Figure 5.1: Block diagram of the adaptive antenna. Showing only one set of the

beamformer weights, ŵ(p − 1), and u(t) is the corresponding output signal from

the adaptive antenna.

The saturation operator, sat[·], hard-limits the quadrature signals above a certain

amplitude level. The maximum amplitude level in each quadrature branch before

saturation is dependent on the automatic gain control (AGC) setting of the receivers

and the dynamic range of the ADC. If the signal voltage amplitude for any of the

quadrature branches exceeds the maximal allowed amplitude, then the linear model

does not apply and the signal is distorted. From here on, the nonlinear effects from

signal saturation are not considered, to make the analysis analytically tractable.
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5.2.1 Off-line Calibration

The aim of the calibration is to estimate the transfer function of the hardware chan-

nel between the SRX (point A in Figure 5.1) and the summation point after the

weighting units (point B). The estimated transfer functions for each hardware

channel is used to compensate the corresponding weight in software before it is

multiplied with the signal. This compensation is important because the weights

are calculated based on the signals from the SRX but applied to the signals en-

tering the weighting units. Assume that the channel between the SRX and the

weighting units is wideband compared to the received narrowband signals and that

the transfer function is frequency flat over the passband of interest. This implies

that the transfer function can be represented by a complex number representing

the gain/attenuation and the phase shift of the channel. Note that this assumption

might not be valid in a wideband system such as W-CDMA, if the transfer function

cannot be assumed to be flat over the whole system bandwidth.

By introducing the complex matrix D = diag [d1, . . . , dnr ], the relation of the

signal at the weighting units, y′′(t), and the SRX, y(t), can be expressed as

y′′(t) = Dy(t) . (5.4)

The off-diagonal elements in D, which here are assumed negligible, represent the

mutual coupling between the channels in the beamformer. Assume that the algo-

rithm calculates the weight vector w0, based on the received signals y′(tk). To com-

pensate for the differences in the receiving channels, the weights are pre-adjusted

to

w = (D−1)∗w0 . (5.5)

The analog beamformer output signal u(t) will then be

u(t) = w∗y′′(t) = w∗
0D−1Dy(t) = w∗

0y(t) . (5.6)

Thus the undesired effect of the transfer function D is cancelled.

When the calibration is performed, the weights are adjusted to measure the

transfer function for different weight settings. This implies that the accuracy in the

weight settings will also have an impact on the accuracy of the calibration. Also,

due to temperature drift, humidity variations and component aging, the calibration

correction matrix has a time variant residual error.

Assume that the array has been calibrated by some arbitrary method and let the

matrix D̂ be the estimated calibration correction matrix that is stored in the DSP. If

the calibration is error-free, then D̂ = D. Now, write D̂
−1

D = I+δD, where δD is a

diagonal matrix with complex elements, representing the relative calibration errors.

Writing the diagonal elements of δD as δdl = ale
jφl , the relative calibration errors
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are separated into an amplitude error al and a phase error φl. The amplitude al is

assumed to be bounded in the range [±ǫa] and the phase error φl is assumed to be

in the range [±ǫφ]. As the phase and magnitude errors are orthogonal, see Figure

ǫa

ǫφ

dmax

1
+

δd
l

Figure 5.2: The squared calibration error is bounded by d2
max = ǫ2a + ǫ2φ

5.2, the maximum calibration error squared, d2
max is given as

d2
max = ǫ2a + ǫ2

φ . (5.7)

5.2.2 The output signal power

As a performance measure for the adaptive antenna, the carrier to interference plus

noise ratio (CINR) in the beamformer output signal is used. An expression for

the output power is derived and the different terms are identified as the desired

(carrier) terms and the interferer and noise terms. These are then used to calculate

the CINR. Some simplifying assumptions are made to make the analysis possible.

The saturating effect of the SRX (5.2), is not taken into consideration, and the

sources of the two signals, sd(t) and si(t), are assumed to be sufficiently separated

in azimuth to make the spatial correlation close to zero. Due to the finite step size in

the hardware weighting units, the weights w will be quantized and an error vector

δw is introduced. The total weight error covariance matrix is E {δwδ∗w} = σ2
wI.

An example of how σ2
w can be derived for a specific type of weighting units is

presented in Section 5.3.3. The signal on the beamformer output can be written as

u(t) = (w + δw)∗D̂
−1

Dy(t) = (w + δw)∗(I + δD)y(t) =

= w∗y(t) + error terms
(5.8)

and the power of the beamformer output signal is then written as

E
{
|u(t)|2

}
= E

{[
(w + δw)∗D̂

−1
Dy(t)

] [
(w + δw)∗D̂

−1
Dy(t)

]∗}
. (5.9)
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Using equation (5.8) and assuming that the elements of the stochastic vectors δw

and the matrix δD are mutually uncorrelated, and also independent of the received

vector y(t), equation (5.9) is simplified to

E
{
|u(t)|2

}
= w∗E {y(t)y∗(t)}w + E {δ∗wy(t)y∗(t)δw}+

+ w∗E {δDy(t)y∗(t)δD∗}w + E {δ∗wδDy(t)y∗(t)δD∗δw} .
(5.10)

If the SRX:s are saturated, then elements of the weight error vector δw will become

mutually correlated and also the independence assumption between the weight er-

rors δw and the signal y(t) becomes invalid. Note that y(t) is the analog RF signal

(5.1) which is not saturated.

The terms in (5.10) can be identified as the ideal output term, the weight error

term, the calibration error term and the combined weight-calibration error term

respectively. The combined weight-calibration error term contains the product of

the two error variables and is neglected in the following. The weight and calibration

error term are quadratic forms with the error terms δw and δD and are assumed to

be sources of interference. This is a pessimistic assumption, because these terms

also include some signal which are correlated with the desired signal and might

add coherently to the output desired power.

The ideal output term

The first term in (5.10) is the output signal from a beamformer without calibration

or weight quantization errors. This term is dominant in the DBF type of antenna,

where weighting of the signals is performed in the DSP itself, so weight errors are

negligible and calibration errors of the type considered here is not at all present.

The performance of the error-free beamformer is dependent on the algorithm

used for calculating the weights w. In a temporal reference algorithm or a direction

finding algorithm, the number of samples NS used in the estimation of the covari-

ance matrix compared to the number of antennas is an important factor [139]. Due

to the finite length of the training sequence, the temporal correlation between the

two signal sources, sd(t) and si(t), will be nonzero. Also the azimuthal separa-

tion angle between the two sources, quantified as the spatial correlation, will have

impact on the performance of the algorithms, c.f. Chapter 4.

For the analog signal y(t), the following holds under the LOS assumption

Ryy = E {y(t)y∗(t)} = σ2
da(θd)a

∗(θd) + σ2
i a(θi)a

∗(θi) + σ2
nI =

= Rd + Ri + σ2
nI

(5.11)

where Rd and Ri are the desired and interfering signal’s spatial covariance matrix

respectively. Also, σ2
d and σ2

i is the desired and interfering signal power, respec-
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tively. The ideal term in (5.10) can now be written and upper bounded as

w∗E {y(t)y∗(t)}w = w∗Rdw + w∗Riw + σ2
n |w|2

≤ w∗Rdw + w∗Riw + nrσ
2
nw2

max

(5.12)

where wmax is the maximum allowed weight magnitude, determined by the hard-

ware and σ2
n is the thermal noise variance. The first term in equation (5.12) repre-

sents the power in the desired, or useful signal. The second term is the interference

output power, which also is dependent on the beamformer weights w. Clearly, the

adaptive beamformer tries to calculate the weight w so that the Hermitian form

w∗Riw is small, to suppress the interferer. This term will be nonzero if the al-

gorithm has not converged, which can be the case for recursive algorithms in a

time variant radio channel or for block algorithms if a finite number of samples are

used in the weight estimation. Note that the weight error δw is due to the use of

hardware weighting units, and will be present even if the exact, interference can-

cellation weight w has been estimated. To mitigate this residual error, a feedback

of the beamformer output signal u(t) could be used to iteratively tune the weights

so the weight and calibration errors decreases. A method for this is presented in

section 5.5.

The third term in (5.12) represents the sum of noise power from nr uncorrelated

noise sources with same power w2
maxσ2

n.

The weight-error term

The second term in (5.10) is due to weight quantization and is expanded as

Ey,δw
{δ∗wy(t)y∗(t)δw} = Ey,δw

{Tr {y(t)y∗(t)δwδ∗w}}
= Tr {Ey {y(t)y∗(t)}Eδw

{δwδ∗w}}
= σ2

wTr {Ryy}
= σ2

w(σ2
d|a(θd)|2 + σ2

i |a(θi)|2 + nrσ
2
n) .

(5.13)

The property that the trace of the covariance matrix is equal to the sum of the

received signal power and that the signal and the weight errors are mutually inde-

pendent was used.

Note that this only is valid under the assumption of non-saturated SRX:s since

otherwise, δw and y(t) are dependent. The weight errors, δw, causes signal power

to leak through the beamformer, with a power proportional to the total impinging

power. The amount of “leaking” power is determined by weight error variance σ2
w.
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The calibration-error term

The third term in (5.10) includes the diagonal matrix δD that models the calibration

errors. The structure is a Hermitian form and the upper bound is found as

w∗Ey {δDy(t)y∗(t)δD∗}w = w∗δDRyyδD∗w

≤ λmax|w∗δD|2

≤ Tr {Ryy} |w∗δD|2
(5.14)

where λmax is the largest eigenvalue of the Hermitian matrix Ryy. The bound

cannot be tighter, since the bound is attained when the error vector w∗δD is co-

linear with the eigenvector to Ryy associated with the largest eigenvalue. The

largest eigenvalue has to be found on a case-by-case basis so the worst possible

case is examined. Since Ryy is Hermitian positive definite, all eigenvalues are real

and positive and the largest eigenvalue is always less or equal to the trace of Ryy.

Furthermore, the vector norm expression (5.14) cannot be evaluated, because

it depends on the magnitude of the weights and the calibration errors. An up-

per bound can be found by assuming that all weight magnitudes are smaller than

wmax, which is the maximum possible weight that can be steered out by the hard-

ware weighting units. Similarly, the upper bound of the calibration errors dmax is

defined. Thus by setting |wl|2 = w2
max for all weights and |dl|2 = d2

max for all

calibration paths, the vector norm in expression (5.14) can be written as

|w∗δD|2 = |w∗
1d1|2 + · · · + |w∗

nr
dnr |2 ≤ |w1|2|d1|2 + · · · + |wnr |2|dnr |2 ≤

≤ nrw
2
maxd2

max

(5.15)

where the Cauchy-Schwartz inequality was used. Now, use that the trace of Ryy is

equal to the total impinging power on the array and rewrite (5.14) as

w∗Ey {δDy(t)y∗(t)δD∗}w ≤ nrw
2
maxd2

max(σ2
d|a(θd)|2 + σ2

i |a(θi)|2 + nrσ
2
n).

(5.16)

Similar to the weight error term (5.13), the total impinging power, described by the

trace of Ryy is weighted by a proportionality constant. The constant in this case

depends on the maximum calibration error dmax and is bounded by the squared

root of the sum of the squared magnitude and phase errors (5.7).

The output CINR

Using the equations above, the expression for the beamformer output CINR can

now be formulated. The power of the desired, or useful signal in the beamformer
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output is described by the first term in equation (5.12). The two other terms in

equation (5.12) and the equations (5.13) and (5.16) are assumed to be interferer

and noise power terms. Thus, the beamformer output CINR lower bound (worst

case) can be expressed as:

CINR ≥ (w∗Rdw) /
(
w∗Riw + nrσ

2
nw2

max + (σ2
w + nrd

2
maxw2

max)(σ2
d|a(θd)|2 + σ2

i |a(θi)|2 + nrσ
2
n)
)
.

(5.17)

To maximize this expression, the weight calculation algorithm should make w∗Riw

as small as possible to yield an antenna radiation pattern with “nulls” in the direc-

tion of the interfering sources.

The expression (5.17) was derived using several simplifications, but it illus-

trates how the desired and interfering signal power “leaks” through the beam-

former, due to calibration errors and weight quantization. The system designer

should choose the implementation of the weighting units so that the weight error

variance σ2
w has the same order of magnitude as the term nrd

2
maxw2

max that rep-

resents the calibration errors. In the limit when calibration errors and the weight

quantization errors approaches zero, i.e. dmax → 0 and σ2
w → 0, the CINR ap-

proaches the well known expression for CINR of a digital beamformer,

CINRDBF ≃ w∗Rdw

w∗Riw + nrσ2
nw2

max

. (5.18)

How the different terms in the denominator of (5.17) dominates in different cases

is investigated by the simulations and the measurements presented in Section 5.4.

5.3 The adaptive antenna testbed

To validate the theoretical expression for the CINR (5.17), measurements using

the adaptive antenna testbed described in Section 4.2 were performed. The weight

error variance for the testbed specific type of weighting units is derived, followed

by a discussion of the measurement setup.

5.3.1 Hardware

The main parameters of the testbed hardware can be found in Table 4.1. The testbed

has two independent sets of weights with ten weighting units per set. Each digi-

tally controlled weighting units consists of two 180◦ phase-shifters and a 50 dB

logarithmic attenuator connected in series. The reason for choosing logarithmic at-

tenuators, was that in the design process, it was believed that a high dynamic range
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of the weights were beneficial. The logarithmic attenuator was thus chosen in favor

of the linear one. The logarithmic attenuator has a range of attenuation of 50 dB

but it was later discovered that a 50 dB range is over-abundant. During operation it

was observed that the beamformer seldom uses weight magnitudes below -15 dB.

The weighting units have a calculated noise figure of 6 dB and a measured third

order intercept point of +6 dBm. The temperature drift was measured to 0.1 dB

and 1◦ per weighting unit and hour of operation. Hence, frequent re-calibration or

on-line calibration is necessary to maintain the highest level of performance.

Calibration of the antenna array is performed prior to normal operation of the

testbed. A continuous wave (CW) signal is injected at one antenna element at a

time by directional couplers. The received signal is compared to the beamformer

output signal and the phase and magnitude of the transfer functions ale
jφl can be

measured. The calibration has an accuracy of 1◦ in phase and 0.75 dB in magnitude

[123]. Using equation (5.7), the relative calibration error constant d2
max can be

calculated as d2
max = 8.4 · 10−3.

5.3.2 The SMI algorithm

The DSP calculates the weights by using the sample matrix inverse (SMI) algo-

rithm [127]. As a reference signal, the 26 bit training sequence in the mid-amble

of a GSM-1800 timeslot is used. The covariance matrix of the received signals and

the cross-correlation between the received signal vector y(tk) and the reference

signal d(tk) is estimated using N = 26 samples. The signal covariance matrix

estimate is then

R̂yy =
1

NS

NS∑

k=1

y′(tk)y
′∗(tk) . (5.19)

The cross-correlation is estimated as

r̂yd =
1

NS

NS∑

k=1

y′(tk)d
∗(tk) . (5.20)

The reference signal, d(tk), is a modulated, pre-recorded copy of the training se-

quence of the desired signal, stored in the DSP memory.

The mean square optimal receive weight vector is obtained by solving the

Wiener-Hopf equations, see Section 2.5.1

ŵ0 = αR̂
−1
yy r̂yd (5.21)

where the factor α scales the weights for full utilization of the dynamic range of

the hardware weights. The weight vector is adjusted by the estimated calibration

matrix D̂ and applied to the RF signals y′′(t), see Figure 5.1.
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The SMI algorithm has a fast convergence rate as compared to other known

algorithms, e.g. the LMS algorithm. Approximately 2nr samples in the block are

required to obtain weights that give a CINR within 3 dB of the optimum achievable

CINR [139]. Here, nr=8 antennas is used, so NS = 26 > 2nr = 16.

5.3.3 The weight error variance

Given the phase and magnitude resolution of these hardware parts, the weight error

variance is derived for logarithmic amplitude and linear phase weights. Weight

error variances for other weight implementations can be found in the paper by

Davis and Sher [140], especially for the linear amplitude weighting technique.

An arbitrary weight with magnitude A and phase θ with magnitude accuracy

±ǫA and phase accuracy ±ǫθ can be written as

w = Aejθ . (5.22)

Assuming that the magnitude and phase errors are small, and by differentiation of

both sides of (5.22) and collecting terms gives

|dw|2 = dA2 + A2dθ2 (5.23)

where dA is the magnitude error and dθ is the phase error. Assume that dA and dθ
are independent random variables and that dA is uniformly distributed in the inter-

val ±ǫA and dθ uniformly distributed in the interval ±ǫθ. Taking the expectation

value of (5.23) then gives

σ2
w = σ2

A + A2σ2
θ (5.24)

where σ2
A = ǫ2

A/3 and σ2
θ = ǫ2

θ/3.

The total error variance (5.24) is thus dependent on the weight magnitude A.

An upper bound on the weight error variance is given by replacing A with the

maximum weight magnitude wmax, thus

σ2
w ≤ σ2

A + w2
maxσ2

θ =
1

3

(
ǫ2
A + w2

maxǫ2
θ

)
. (5.25)

The contribution from the phase error to the sum in equation (5.25) is thus depen-

dent on the maximal weight magnitude. Note for large attenuator settings, say -15

dB, the difference to the next weight setting of -16 dB is very small if measured on

a linear scale. Hence small values of the weight amplitudes makes the phase error

part of the weight quantisation noise small. The largest error variance occurs when

the weight amplitude is set at its maximum value.

The weighting units in the testbed has a phase resolution of 1◦ and uses loga-

rithmic attenuators with 1 dB magnitude step size and a 50 dB range between [-2
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dB,-52 dB]. Thus, the constant wmax=-2 dB. The weight magnitude variance is

then calculated using (5.25) as

σ2
A =

(0.5 · (10
1
20 − 1))2

3
= 1.24 · 10−3

σ2
θ =

(0.5·π
180 )2

3
= 0.025 · 10−3

w2
max = 10−

2
10

⇒ σ2
w ≤ 1.25 · 10−3

(5.26)

where a conversion from dB scale to the linear scale is performed. This implies

that the proportionality constant nrd
2
maxw2

max in equation (5.17) is an order of

magnitude larger than the weight error constant σ2
w. Thus, the calibration errors

limits the performance for the testbed, which is also observed in the simulation re-

sults. It should also be noted that the main contribution to the weight error variance

of the testbed arise from magnitude errors (the step attenuators). The phase error

contribution is two orders of magnitude smaller than the magnitude error contribu-

tion. Noticeable is that the weight magnitude variance is calculated for the worst

case using logarithmic weighting units, i.e. at minimum attenuation. When the

weight magnitude is smaller the steps are smaller, due to the logarithmic nature of

the weights. A simple calculation yields that at a weight magnitude of -16dB, the

phase error variance and the magnitude error variance are equal.

5.3.4 Comparison of measurements and theory

Some modifications to the theory presented in Section 5.2.2 must be made to be

able to compare with measurements. This is due to the procedure used when mea-

suring the output CIR. Measurements were performed in a laboratory by replacing

the front end by an 8 × 8 Butler matrix as previously was described in Section

4.4. Two signal generators were connected to the Butler matrix to emulate signals

impinging ideally from −61◦ and −7.2◦. In practice, the CINR in equation (5.17)

cannot be measured, due to the inability to separate the desired signal from the

interfering and noise signal. Instead, a modified carrier to interference ratio on the

adaptive antenna output was measured, denoted CIRout. In fact, the carrier plus

noise to interferer plus noise ratio, where “noise” includes the thermal noise, cali-

bration error noise and the weight quantization noise was the measured quantity.

The measurement procedure were as follows; the levels of the two signals

where set and the adaption of the beamformer weights was started. To measure

CIRout for an arbitrary weight realization, the adaption was stopped at an arbitrary

time instant. When the adaption was stopped, the weight update also stopped and
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the CIR in the beamformer output could be measured. This was made in a two step

procedure where the interferer power and the desired signal power was measured

separately. The signal generator emulating the desired signal was turned off and

the ABF interferer plus noise output power was measured using a spectrum ana-

lyzer. Then the desired signal’s generator was turned on and the interfering signal’s

generator was turned off and the ABF desired signal plus noise output power was

measured. By assuming that the system is linear and the superposition principle

holds, the measured CIRout can be expressed by the use of the theory in Section

5.2.2 as

CIRout ≤
w∗Rdw + nrσ

2
nw2

max + (σ2
w + nrd

2
maxw2

max)(σ2
d|a(θd)|2 + nrσ

2
n)

w∗Riw + nrσ2
nw2

max + (σ2
w + nrd2

maxw2
max)(σ2

i |a(θi)|2 + nrσ2
n)

.

(5.27)

The second and third term in the numerator of equation (5.27) makes the mea-

sured CIRout estimate of the true beamformer CIRout too optimistic. Therefore the

expression (5.27) is larger or equal to the actual CIRout. The term w∗Riw is the

interferer signal power that leaks through the correct beamformer weights, and is

usually very small, if the DOA separation is large enough, which is the case in our

measurements. It will therefore be neglected in the following. The term w∗Rdw

expresses the received power from the desired signal. If the DOA separation is

large enough, then it can be approximated as a constant κ multiplied with the de-

sired signal power, σ2
d, where κ is the array gain, including amplifiers in the front

end and in the weighting units, degraded by the spatial and temporal correlation of

the two signals. By making these simplifications, equation (5.27) can be rewritten

as

CIRout ≤
κσ2

d + nrσ
2
nw2

max + (σ2
w + nrd

2
maxw2

max)(σ2
d|a(θd)|2 + nrσ

2
n)

nrσ2
nw2

max + (σ2
w + nrd2

maxw2
max)(σ2

i |a(θi)|2 + nrσ2
n)

.

(5.28)

Clearly, if the desired signal power σ2
d is large compared to the interfering signal

power σ2
i and noise power σ2

n, then the CIRout in equation (5.28) will differ from

the CINRout, due to the large term in the numerator. If the interferer to carrier

ratio is high, say 20 dB, then equation (5.28) will resemble equation (5.17) well.

Conclusively, the theory and the measurements are expected to correspond well for

high interference to noise power ratios.
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5.4 Simulation and measurement results

5.4.1 Simulation setup

The simulation model was intended to imitate the testbed as much as possible.

The simulation model is shown in Figure 5.1. Two Gaussian minimum shift key-

ing (GMSK) modulated signals were generated with 8 samples per symbol. The

Gaussian filter had an impulse response length of 6 symbols and the normalized

bandwidth was 0.3. As training sequences, the training sequences 0 and 4 given

by the GSM-1800 standard were used. The received signal was quantized and the

calculated weights were used with finite accuracy. Furthermore, calibration errors

were introduced, to emulate the testbed.

The ADCs used the sampling frequency of 270 kHz, the same as in the adaptive

antenna testbed. The covariance matrix (5.19) and the cross-correlation vector

(5.20) were estimated using the NS = 26 complex samples. The direction of

arrivals (DOA) for the two signals were equal to the DOA:s in the measurements,

described in Section 5.3. The array response vectors were slightly distorted to

emulate the 0.8 dB magnitude errors and 8.5◦ phase errors in the Butler matrix and

to make the spatial correlation nonzero.

The weight vector was calculated and normalized using (5.21) and the calcu-

lated weight vector was quantized to the desired accuracy in magnitude and phase

and applied to the signals at the weighting units after multiplication with the matrix

(D̂−1)∗ as described by equation (5.5).

5.4.2 Validation of simulation model

After adaption, the procedure to measure CIRout as described in Section 5.3.4 for

the measurements was used to measure the CIRout in the simulations, to make the

comparisons fair. A GMSK modulated PRBS signal using LS = 200 symbols was

used to estimate the CIRout. To verify the theoretical model and the simulation

results, a comparison is made in Figure 5.3. The simulation parameters are set

equal to the parameters used in the adaptive antenna testbed, e.g. 8 bit ADCs and

1◦ and 1 dB weight accuracy. Figure 5.3 shows the measured output CIR, denoted

CIRout as a function of interfering signal power, when the desired signal power

was held constant at two different levels, -44 dBm and -54 dBm respectively. The

figure also shows the corresponding simulation results and the theoretical curve,

described by equation (5.28). The measured curves constitute mean values over ten

measurements and the simulated are averaged over 100 simulations. The standard

deviation is 7 dB and 0.8 dB in measurements and simulations respectively. The

theoretical expression does not consider the limited dynamic range of the ADC, so
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Figure 5.3: CIRout as a function of interferer power. Comparisons between mea-

surements, simulation and theory (equation (5.28)). Carrier power constant at -44

dBm and -54 dBm respectively. Noise level at -76 dBm.

the theoretical CIRout is larger than the measured and simulated CIRout when the

interfering signal saturates the ADC.

The theory, equation (5.28), predicts the CIRout to reach a constant level when

the interferer is decreased below the thermal noise level, i.e. when the dominating

term in the denominator of equation (5.28) is the noise term nrσ
2
nw2

max. This is

verified by the measurements and the level is determined by the desired signal

power and the weight and quantization error variances. The simulated curve does

not fit into this level at the low interference situation. An attempt to explain this

is that the noise level was not correctly set in the simulations, so the noise term

nrσ
2
nw2

max does not dominate over the interference power σ2
i even for the lowest

interference power.

Noticeable is however the agreement of theory and measurements for high car-

rier to noise ratios. It was in this region were the CIRout approximation, equation

(5.28), was less accurate.

5.4.3 Number of ADC bits

By increasing the number of bits used in the ADC, the dynamic range of the SRX is

increased, as shown in the simulation results of Figure 5.4. Here the same calibra-

tion errors and weight errors as in the testbed is used. With a larger dynamic range,



196 Chapter 5. Finite Weight Resolution and Calibration Issues

−80 −70 −60 −50 −40 −30 −20
−20

−10

0

10

20

30

40

50

Interfering signal power [dBm]

C
IR

 o
n
 a

d
a
p
tiv

e
 a

n
te

n
n
a
 o

u
tp

u
t 

[d
B

]

6 bit
8 bit
10 bit
12 bit

Figure 5.4: Simulated CIRout [dB] when the number of ADC bits is varied as a

function of CIR. Carrier constant at CNR=42 dB and interferer power varied.

the SRX can receive a signal with higher power without saturating. Increasing the

number of bits from 10 to 12 will not improve the output CIR in this scenario, be-

cause the SRX is not saturated for these input levels. The limiting factor in the 10

and 12 bit case is the weight and calibration errors.

5.4.4 Weight accuracy

To solely investigate the impact of weight accuracy on the performance of the adap-

tive antenna array, a perfect calibration is assumed, i.e. D̂−1D = I. Also, an 8 bit

ADC was used to make comparisons with the adaptive antenna testbed possible.

The CIRout was measured for different settings of the range of the relative weight

errors ǫA and ǫθ.

The CIRin that a single virtual omnidirectional antenna would measure was

set to -15 dB and the carrier to noise ratio (CNR) was 42 dB. The CIRout on the

adaptive antenna output was estimated and the results are presented in Figure 5.5.

Figure 5.5 shows that a 30 dB CIRout can be achieved if the phase and mag-

nitude quantization steps are less than 1◦ and 0.3 dB. Thus, the maximal CIR im-

provement in this scenario is 45 dB and decreasing the weight quantisation steps

further will not improve the antenna performance for this particular DOA and sig-

nal levels. To achieve a larger improvement, more antennas can be used, which will
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Figure 5.5: Simulated CIRout [dB] as a function of quantization of phase and

magnitude of weights, CIRin=-15 dB, CNR=42 dB. The shades refer to different

CIRout levels with white and black being the largest and smallest respectively.

make the spatial correlation smaller and the ability to suppress interferers larger.

5.4.5 Calibration errors

Finally, it is investigated how the calibration accuracy affects the CIRout, see the

results in Figure 5.6. This figure displays CIRout as a function of the weight error

variance, for four different calibration accuracies. A weight error variance less

than 10−5 will not further improve the CIR because the calibration errors limit the

maximum achievable CIR2. To compare with the testbed, with a weight variance

of 1.25·10−3 the maximum achievable CIRout in Figure 5.6 is approximately 24

dB if the calibration is performed without errors. This should be compared to the

measured 18 dB from the testbed in the same conditions. Thus, to improve the

testbed performance, effort should be put to improve the calibration algorithm, in

favor for improving the weight accuracy. Improving weight accuracy will raise

CIRout only a few dB.

When the weight errors are negligible, an amplitude calibration error of 1%
gives a CIRout degradation of 7-8 dB from the ideal case, with no errors. This is a

2This weight error variance could for example be achieved with 1◦ phase step size and 0.1 dB

weight amplitude step size.
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Figure 5.6: CIRout as a function of the weight quantization error for different

calibration errors, CIRin=-15 dB, CNR=42 dB.

severe degradation and the conclusion is that the calibration must have a high accu-

racy and also be performed frequently to maintain the adaptive antenna’s interferer

suppression performance over a long time of operation.

The effect of calibration errors when the CIRin is varied by varying the inter-

ference to noise ratio (INR) is presented in Figure 5.7. The carrier to noise ratio

(CNR) was held constant at 22dB. A comparison with the adaptive antenna testbed

was made, and the CIRout was measured for different calibration errors and differ-

ent CIRin. The weight quantization steps were set to 1 dB and 1◦. The measured

curve fits the curve with calibration error of 1% in relative magnitude and 1◦ in

phase. Furthermore, when INR < 22 dB, i.e. when CIR> 0dB, the calibration

errors have an negligible effect on the antenna performance. When the interferer

power gets large, the output noise, described in equation (5.13) and (5.14), is in-

creasing and the CIR decreases. When the total input power saturates the ADC, the

CIR decreases abruptly and the antenna cannot maintain a CIR above 0 dB on the

output. Note that the RF analog signal on the output from the adaptive antenna is

not saturated. But the signal used in the DSP to calculate the weights is saturated

and the CIRout drops.
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5.5 Two Auto-Calibration Algorithms

In this section, an important issue in multiple antenna technology is addressed,

namely the calibration of the antenna array. The results from the previous sections

showed that the performance degradation of the adaptive antenna can be severe if

the calibration is inaccurate. Furthermore, it is desirable to calibrate the antenna

array during normal operation, to avoid having the basestation taken out of ser-

vice. Two algorithms are proposed in this section, that calibrates an array antenna,

on-line, during normal operation. Calibration of antenna arrays for mobile commu-

nication systems has earlier been presented in [12] where the sensitivity of a digital

beamforming system to calibration errors were studied and a method to calibrate

the array prior to operation was presented. In [10] an auto-calibration algorithm

for the transmitter part of a digital beamformer was presented.

In this section, the uplink, or receiving part of the array antenna in a TDMA

system, as for example GSM, is considered. It is also assumed that an analog

beamformer (ABF) is used, where the beamformer weights are calculated in a dig-

ital signal processor (DSP), but the weighting is performed by hardware weighting

units on the RF signals.

As discussed in Section 5.2.1, when using the ABF, it is important to know the

transfer function between the input sampling receivers and the point in the signal

path where the weights are applied to the signals, to be able to compensate for this

difference. Prior to start-up, this transfer function is measured using an off-line

calibration algorithm. However, there are active components in the weighting units

and the receivers, which are sensitive to temperature variations and which charac-

teristic also will change due to aging. This will soon make the off-line calibration

data invalid.

In Figure 5.8, measurements of the temperature drift in amplitude and phase

for the hardware weighting unit used in an ABF testbed described in this thesis is

presented. The measurements were performed over a period of ten hours after a

cold start-up. It can be seen that the drift is approximately 0.1 dB and 1◦ per hour

of operation and it demonstrates the need for frequent re-calibrations according to

the theory in the previous section. It is therefore desirable if the calibration can be

performed simultaneous with normal antenna operation.

Two auto-calibration, or on-line calibration algorithms are presented in this

section. They are transparent to normal antenna operation and have low complex-

ity. The first algorithm is derived from the least mean square (LMS) algorithm

and is a non-parametric solution. The second algorithm is derived using a para-

metric approach, where the transfer function is identified and the temperature drift

is tracked. To study the performance of the proposed algorithms, a simulation

was performed, modelling a simple signal environment with two signal sources
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Figure 5.8: Temperature drift of hardware weight. The drift is 1◦ and 1 dB per

hour of operation.

(mobiles) and no multipath propagation. The time variations in the hardware was

simulated by using a parameter drift similar to the measured one. Both algorithms

succeed to maintain the output signal to interference ratio (SIR) at the same level as

with perfect knowledge of the transfer functions. The LMS-like algorithm requires

a slowly or non-varying signal environment, while the second algorithm actually

benefits from a rapidly varying signal environment, which is characteristic for fad-

ing in a multipath scenario.

5.5.1 Problem formulation

The block diagram of the adaptive antenna is shown in Figure 5.1, where the feed-

back channel signal û(k) now will be utilized. The signals arriving at the nr an-

tennas are described by the nr × 1 column vector ya(t). The noise generation in

the front end is modelled as a zero mean white Gaussian noise vector, nT (t), with

covariance matrix σ2
nI. The noise in the input down-converting and sampling re-

ceivers, nr(t) is also modelled as a zero mean white Gaussian noise vector, but with

covariance matrix σ2
r I. The signals from the antennas are split into a digital path

and an analog path. The analog path consists of cables and the hardware weighting

units. The digital part consists of digital signal processing for weight computation

and calibration.

Assuming all weights are set to unity, the transfer function measured between

the input sampling receiver at point A in Figure 5.1 and the beamformer weighting
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units, point B, is described by the complex diagonal matrix D = diag [d1, . . . , dnr ].
The signals at the beamformer is denoted y′′(t) and is defined as y′′(t) = Dy(t).
Each factor dl describes the attenuation and the phase shift of the analog path l
relative to the corresponding digital path, except for the noise nr(t).

The factors dl will in general be nonlinear functions of the calculated weights,

w, due to coupling between the phase shifters and the attenuators. The matrix D

will thus in general be a nonlinear function of w, i.e. D = D(w). The elements in D

are assumed to be constant over the receiver passband, but they will change during

operation due to temperature drift in the weighting units, as seen experimentally in

Figure 5.8.

The output from the beamformer is down-converted to the baseband and sam-

pled giving û(k) = u(k) + nf (k) where u(k) denote the time continuous signal

sampled at the time instant t = tk. The term nf (t) is the noise added by the feed-

back receiver, assumed to be zero mean and complex Gaussian distributed with

variance σ2
f . The signal û(k) will be used in the calibration algorithms, to be pre-

sented below.

The example antenna presented here uses the Sample Matrix Inversion (SMI)-

algorithm to calculate the adaptive antenna weights, see Section 5.3. The mean

square optimal receive weight vector is given by (5.21)

ŵ0 = R̂−1
yy r̂yd (5.29)

where the sample-mean covariance matrix and cross-correlation vector are given

by (5.19) and (5.20).

Calibration

Compensation of phase and magnitude differences between the digital path and

analog path must be performed for each antenna element, since the adaptive an-

tenna weights are calculated based on the sampled signals of the digital paths,

y′(k), whereas the beamforming is performed on the RF-signals of the analog paths

y′′(t).
Prior to operation, the matrix D is computed by performing a calibration. This

calibration step is called an off-line calibration and we denote the corresponding

matrix as D0. A continuous wave (CW) signal at the carrier frequency is injected

at one antenna element at a time by directional couplers. The attenuation and

the relative phase of that specific analog path compared to the digital path can be

measured by using the signal û(k). The calibration process is then repeated for all

nr antenna branches.

If the magnitude of a weight is adjusted, then the weight phase will also change,

and vice versa, due to non-ideal isolation between the phase shifter and the attenua-
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Figure 5.9: Block diagram of the direct approach. FSRX=Feedback Sampling

Receiver, ISRX=Input Sampling Receiver. T represents one frame delay

tor in the hardware weights. The relation between the desired and the actual weight

used for weight control is stored in a look-up table with all possible weight settings

as entries. Since full access to the control of the weighting units is required in the

calibration, the off-line calibration can only be performed prior to operation of the

adaptive antenna.

The requirement on the calibration algorithm is a low complexity and yet accu-

rate enough to maintain a good performance of the adaptive antenna. Furthermore,

the calibration should not interfere with the main operation of the antenna.

5.5.2 The algorithms

The direct approach

This section outlines the auto-calibration algorithm using an LMS-approach and

presents the assumptions made concerning the off-line calibration and the thermal

drift of the involved hardware.

A signal-flow graph of the proposed algorithm is shown in Figure 5.9. The

signals at the weighting units, y′′(t), are multiplied with the weight-vector ŵ∗(p−
1), based on the calculations in the previous frame p−1, where p is the frame index,

i.e. u(t) = ŵ∗(p− 1)y′′(t). Since adaptive arrays utilizing analog beamforming is

studied, the weights are assumed to be applied to the data of the next TDMA frame.

This is necessary since otherwise the weights have to be calculated and steered out

during a time period that is much shorter than a frame. This also implies that the

time step in the algorithm is one TDMA frame.

The sampled beamformer output signal, û(k), is compared with the corre-

sponding beamformer output signal in the DSP, u0(k), and the error signal e(k) =
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u0(k) − û(k) is formed. The signal u0(k) is calculated by using the SMI-weights

from the previous frame as u0(k) = ŵ∗
0(p − 1)y′(k) However, only one sample k

is used and it can be taken arbitrarily from the whole frame p.

For calculation of the necessary adjustments an LMS-like (least mean square)

algorithm is proposed. The aim of the algorithm is to minimize the mean squared

magnitude of the error signal e(k).
Assume that the signal vector y′′(tk) relates to y′(k) according to

y′′(tk) = Dy(tk) = D
{
y′(k) − nr(k)

}
. (5.30)

The relationship between Dy(tk) and y′(k) in (5.30) is an approximation, since

D = D(w) and w in turn depends on y′(k). It is thus assumed here that the matrix

D is independent of the weights. It is possible to accomplish this by designing the

hardware weights with high isolation between the phase shifter and the attenuator.

To adjust the weights to compensate for the temperature drift, the well known

LMS-approach would use y′′(tk) and e(k) to update the weight vector as:

Desired algorithm: (p≥1)

u0(k) = ŵ∗
0(p − 1)y′(k)

e(k) = u0(k) − u(tk)

ŵ(p) = ŵ(p − 1) + µy′′(tk)e
∗(k)

(5.31)

where the initialization of the algorithm has been omitted.

The constant µ is the step-size parameter in the algorithm and u(t) is the output

of the analog beamformer. The algorithm (5.31) cannot be used since y′′(tk) is not

measurable and only a noisy estimate of u(tk) is available. The approach used

here is therefore to use y′(k), i.e. the noisy measurement of y(k), and the matrix

D0 obtained from the off-line calibration process to estimate y′′(tk), using (5.30).

The proposed algorithm can then be stated as follows:

Proposed algorithm:

Initialization: (p=0)

ŵ(0) = (D−1
0 )∗ŵ0(0) (5.32)

Algorithm: (p≥1)

u0(k) = ŵ∗
0(p − 1)y′(k)

ê(k) = u0(k) − û(k)

y′′(k) = D0y′(k)

ŵ(p) = ŵ(p − 1) + µy′′(k)ê∗(k) .

(5.33)
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The fact that the calibration data from the off-line calibration is used will only

slightly affect the performance of the gradient method since the LMS-approximation

of the gradient is in itself very crude. The correct instantaneous gradient direction

is given by y′′(tk)e∗(k) but here the approximation D0y
′(k)ê∗(k) is used instead.

An exact analysis of the influence of the properties of this error in gradient estimate

on the convergence of the algorithm remains to be investigated. Simulation studies

presented in Section 5.5.3 show that the performance of the proposed algorithm

will be satisfactory in a relatively stationary signal environment, i.e. with a slowly

varying SMI-weight vector. When the signal environment is non stationary, the

long convergence time inherent in LMS-like algorithms can be expected to create

problems. The error term ê(k) will be large if the SMI-weight vector w0 is not

changing slowly. The performance will then be degraded.

The indirect approach

An alternative on-line calibration method is to track the temperature drift of the

transfer functions dl, l = 1, . . . , nr, to form the estimated row-vector d̂(p) =[
d̂1(p)d̂2(p) · · · d̂n(p)

]
. The idea is to consider the output signal u(tk) as a linear

combination of the signals z(tk), after the weights, ŵ, as in Figure 5.10. Note that

the order of the weights and the transfer function coefficients dl has been switched.

However, only y′(k) and û(k) can be measured, and not z(tk) and u(tk). By using

the known weights and the identified transfer function vector from the previous

frame, d̂(p − 1), it is possible to estimate z(tk). The estimate is denoted by z(k)
and element l in the column vector z(k) is defined as:

zl(k) =y′l(k)ŵ∗
l (p − 1)

=y′l(k)
ŵ∗

0,l(p − 1)

d̂l(p − 1)
.

(5.34)

This regressor vector is now used in the identification of d by forming a least-

squares identification problem utilizing the sampled output û(k). This approach is

possible since the system is assumed linear. The output u(tk) is a linear combina-

tion of the regressor vector z(tk):

u(tk) = d(p)z(tk) . (5.35)

By multiplying with z∗(tk) and applying the expectation operator

ruz = d(p)Rzz . (5.36)

Now, estimate the least-squares estimated temperature drift in frame p by using
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d1

d2

dnr

∑

nf (tk)

∑

û(k)u(tk)

z1(tk)

znr(tk)

y1(tk)

y2(tk)

ynr(tk)

z2(tk)

ŵ(p − 1)

Figure 5.10: Identification model

the estimated covariance and cross-correlation matrices

R̂zz =
1

NS

NS∑

k=1

z(k)z∗(k)

r̂ûz =
1

NS

NS∑

k=1

û(k)z∗(k)

(5.37)

and calculate the diagonal elements of D̂(p) as

d̂(p) = r̂ûzR̂
−1
zz . (5.38)

Note that the samples used in (5.37) are not necessarily from the same frame p.

The performance will be improved if samples from several frames are used, as

discussed below.

The elements in d̂(p) are low-pass filtered in order to introduce a memory in the

algorithm. A first order filter with a pole at 0.9 is used. This will reduce the vari-

ance of the regressor vector and therefore improve the tracking of d. Experiences

from the simulations show that this improves the tracking ability. When using this

indirect approach instead of the direct method described in Section 5.5.2, samples

from the whole frame is used in the identification process, instead of the utilization

of only one sample as in the LMS-approach. Furthermore, mobile communication

systems are interference limited and not noise limited. Thus the noise level in y(t)
(and also in z(k)) will be low compared to the signal levels. Therefore R̂zz will be ill

conditioned if the number of incoherent rays impinging on the array is less than nr.

The calculation of the inverse R̂
−1
zz will create problems when computing d̂(p) in

(5.38) and the tracking of the temperature drift may not succeed. This can however

be mitigated by using a few number of samples from several frames to estimate the

covariance matrices. This will in general make R̂zz better conditioned. The idea is
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that the fading will cause the signal components in z(k) to vary over the frames,

creating a sequence that is persistently exciting with a well conditioned covariance

matrix R̂zz. This approach will thus benefit from a rapidly time-varying signal en-

vironment and as opposed to the LMS-approach presented in Section 5.5.2, which

requires a stationary or slowly time-varying signal environment. The reason for

this is that only D is tracked which varies more slowly than the weight vector w.

5.5.3 Simulation study

The aim of the simulation is to study the performance of the two auto-calibration

algorithms presented above. A simple signal environment with two mobiles trans-

mitting binary phase shift keying (BPSK) modulated signals of equal power but

with different training sequences was used. The two signals were transmitting on

the same frequency and the wavelength was λc. The desired and the interfering

signals are assumed to impinge on an eight element uniform linear array (ULA)

from distinct directions θd and θi respectively. No multipath propagation or fading

is assumed. The antenna array inter-element spacing was λc/2. The length of the

training sequence was 26 symbols to comply with the GSM-1800 standard.

The received signal can be expressed as

ya(t) = a(θd)sd(t) + a(θi)si(t) (5.39)

where a(θd) and a(θi) are the array response vectors in direction θd and θi and

sd(t), si(t) are the desired and interfering signals respectively and the noise is ne-

glected.

In the simulations the temperature drift in magnitude and phase was generated

as independent integrated random-walk processes to obtain a “smooth” drift. The

elements of the diagonal matrix D can be written as

dl = Ale
jϕl l = 1, . . . , nr (5.40)

where Al and ϕl are generated as integrated random walk processes:

Al(p + 1) = Al(p) +
1

1 − q−1
vA,l(p)

ϕl(p + 1) = ϕl(p) +
1

1 − q−1
vϕ,l(p)

(5.41)

with vA,l(p) and vϕ,l(p) being white noise sequences of appropriate variance. Al

and ϕl are initialized by the values from the off-calibration. This gives a tempera-

ture drift with statistical properties similar to the measurements presented in Figure

5.8.
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To reduce the conditional number (or eigenvalue spread) of the covariance ma-

trix R̂yy, regularization is employed to obtain a condition number approximately

equal to 102. More details of this regularization method can be found in [146].

The covariance matrix can therefore be inverted without numerical problems, and

the weight vector calculated by the SMI-algorithm will be approximately the same

from frame to frame, under steady state conditions. This will support the one frame

delay in the weight settings. Since the LMS-algorithm proposed in Section 5.5.2

is a closed loop algorithm, it is not possible to update the weights more frequently

than once per frame; the “response” of the old weights is used to calculate the new

weights. This means that the time step of the algorithm is one TDMA frame (or

4.615 ms in GSM/DCS-1800).

The noise variances of the integrated random walk processes (5.41), that model

the temperature drift of the magnitude and the phase, sets the time scale of the

simulation and can be increased to reduce the simulation time. It is therefore not

necessary to simulate more than 500 frames corresponding to 2.3 seconds in GSM-

1800.

To measure the performance of the adaptive antenna, the SIR on the beam-

former output was estimated as

ŜIR =
E(|ŵ∗a(θd)sd(t)|2)
E(|ŵ∗a(θi)si(t)|2)

=
|ŵ∗a(θd)|2
|ŵ∗a(θi)|2

. (5.42)

Here, the noise levels are assumed to be well below the signal levels.

The SIR of the adaptive array utilizing the auto-calibration algorithm presented

in Section 5.5.2 is plotted as a function of frame number in Figure 5.11. In this

particular simulation the angles of the two mobiles have been chosen to θd = 15◦

and θi = 43◦ relative to the broadside direction of the ULA. The step size µ used in

the LMS-like algorithm was 0.005. The variances of the noise sources σ2
n,σ2

r and

σ2
f were chosen 20 dB, 40 dB and 30 dB below the signal level, respectively. The

SIR of the adaptive array only utilizing the off-line calibration is also plotted in

Figure 5.11 for comparison. It is evident that the auto-calibration algorithm is able

to maintain the SIR on a high level, whereas the performance of the traditional SMI

adaptive array is severely degraded as the drift in the magnitude and phase of the

weights is introduced. The variations of the SIR is also lower for the LMS-method.

This is due to the recursion involved in the algorithm that smoothes the SIR.

Figure 5.12 shows the SIR when using the identification approach presented

in Section 5.5.2, compared to the SMI algorithm with the off-line calibration data

only. All simulation parameters are identical to those in the LMS-study. Also in

this case the SIR of the auto-calibration algorithm is maintained on a high level.

However, the variations of the SIR is higher in this case compared to the LMS-

approach, and more similar to the SMI without drift compensation. This can be
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explained by the batch oriented approach in the tracking as opposed to the LMS

method where the feedback signal smoothes the weight adjustments and the vari-

ation of CIR is slower. In the identification approach it is also possible to study

the tracking ability of the algorithm. The tracking of the temperature drift for the

fifth antenna path is presented in Figure 5.13, and it can be seen that the tracking

of both magnitude and phase is successful.
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Figure 5.11: SIR as a function of frame number. Dash-dotted: auto-calibration

using LMS, solid: SMI with off-line calibration data only
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Figure 5.12: SIR as a function of frame number. Dashed: auto-calibration using

the identification approach, solid: SMI with off-line calibration data only
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Figure 5.13: Tracking of variations in magnitude and phase for the fifth antenna

path obtained from the identification method. Dashed: tracked drift, solid: true

drift
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5.6 Conclusions

To study the performance degradation when implementing an adaptive antenna

array algorithm in hardware, using an ABF type of beamformer, an expression for

the output CINR was derived. Due to the complexity of the problem, involving

nonlinear saturation effects, the derivation was only partly accomplished and some

simplifications were made. The study showed how the weight quantization errors

and calibration errors increase the output noise power, thus decreasing the output

CINR. An important observation is that the decrease in CINR is proportional to the

total impinging power on the array.

The theoretical results were verified and extended using an ABF type adaptive

antenna testbed with ten array elements, working in the receive mode and designed

to partly follow the GSM-1800 standard. To extend the testbed to support the GSM-

1800 standard, protocol issues and random access channels must be handled for

call set-up and handover situations [6]. Also, synchronization of sampling instants

must be automatically handled, an algorithm for this is described in [147]. The fact

that the GSM-1800 standard is not fully implemented does not affect the results

in this chapter as long as the received signals are within the dynamic range of the

ADC:s, which for the testbed is not sufficiently large to comprise an actual GSM-

1800 radio channel with fading variations and large near far ratios. The weight

resolution and calibration accuracy have an impact on the interference suppression

capability of the adaptive antenna which affects the link budget only. Hence, the

conclusions in this chapter can be applicable to an ABF basestation antenna and

especially a GSM-1800 standard system with the reservation of the number of ADC

bits.

The theoretical expressions were also verified using a simulation model of the

hardware channel and allowed for an extension of the analytical model. The bal-

ance between weight accuracy and calibration accuracy showed that with a certain

calibration accuracy, the output CINR could not improve above a certain limit, re-

gardless of weight accuracy. Thus, the system designer should balance these two

sources of error. For the testbed, it can be concluded that improving the calibra-

tion accuracy would gain more in output CIR as compared to improving the weight

accuracy, the magnitude steps in the weighting units (1 dB) were too coarse, as

compared to the phase accuracy (1◦). Thus the bottleneck in the testbed is iden-

tified as the coarse magnitude steps. The system designer should put effort into

making the phase and magnitude error variances equal to minimize a large over-

head in either the phase-shifter or attenuator accuracy. Note that it was assumed

that the number of bits in the ADC:s is sufficiently large, i.e. chosen so that the

dynamic range is not a limitation of the system performance.

The extension of these results to other wireless standards depends on the com-
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plexity of the receivers. Using the ABF in a W-CDMA system is not feasible,

even if the beamforming is carried out prior to the code correlator as in the multi-

dimensional RAKE receiver [148]. Usually the channel model (5.1) is too simple

to model a CDMA channel, although Naguib, Paulraj and Kailath used it in one

of their early derivations of the capacity improvement in using antenna arrays in

CDMA systems [149]. In the multidimensional RAKE receiver, a set of weighting

units for each RAKE finger and each user is required and the number of weighting

units becomes very large, which is unpractical if they are implemented in hard-

ware. Also, using a spread spectrum standard, the system bandwidth is increased

and the transfer function of the hardware channel, defined as the matrix D, could

become frequency dependent. This makes the calibration more difficult, and the

complexity of the compensation algorithm increases.

Two algorithms are proposed in this chapter for mitigating the temperature

drift in adaptive antenna arrays using hardware weights. The two methods utilize

a feedback signal from the summed beamformer output. The first method used the

initially calculated weights to create a reference signal in the DSP. An LMS-like

algorithm then adjusts the hardware weights to make the feedback signal follow the

reference. The second method attempts to track the drift in the transfer functions,

and use this tracking information to adjust the weights calculated in the DSP. Sim-

ulations shows that the output SIR is unaffected for both methods when a realistic

temperature drift generated as an integrated random walk process is introduced.

The SMI-algorithm without compensation for the temperature drift however suf-

fers a considerable performance degradation. The variance of output SIR of the

LMS-approach is lower due to the smoothing effect introduced by the recursive

algorithm. The LMS-approach requires a slowly time-varying signal environment.

Otherwise the algorithm will lose track of the weight-vector w. The tracking ap-

proach does not demand a slowly varying or quasi-static signal environment as the

LMS-approach. It actually benefits from rapid time variations as in a multipath

environment. Such variations in the signal environment will tend to make the input

signal to the algorithm persistently exciting. As long as the problem of a persis-

tently exciting input signal can be handled, it will therefore be the more attractive

approach. It is however more computationally complex.

Conclusively, the results in the chapter applies to systems where ABF is pos-

sible to implement, such as in the demonstrated narrowband GSM-1800 system

and in systems where the spatial beamforming and the temporal equalization are

separated. The results from the theoretical model affects the link budget only, in

terms of the received CINR at the BS, as long as the received signals are within the

dynamic range of the receivers. The results are also independent of the choice of

weight calculation algorithm.



Chapter 6
Nonlinearities in transmit amplifiers

for MISO systems

NONLINEAR distortion generated by non-ideally linearized multicarrier am-

plifiers in the transmit chain of a basestation operating over a MISO channel,

is investigated in this chapter. It is shown, both experimentally and analytically,

that it is possible to reduce the effective intermodulation distortion (IMD) by a

proper allocation of users to new frequencies in a cell. Finally, an analytical ex-

pression for the blocking probability in a SISO system with IMD is derived which

has application in indoor WLAN systems. Although we have assumed that the re-

ceiver has a single receiver antenna, some results in this chapter are applicable to

MIMO systems as well, especially the eigenmode algorithms developed in Section

2.4.

6.1 Introduction

Introducing multiple antennas at the basestation in a cellular system increases the

size and complexity of the basestations due to additional radio transceivers, ampli-

fiers, filter combiners and so forth. If a basestation is operating on Mf frequency

channels, then it needs Mf transceivers and Mf amplifiers if the conventional sin-

gle carrier power amplifier (SCPA) technology is applied. By introducing an nt

element array antenna, the number of SCPA transmit amplifiers increases to ntMf

which will consume more power and space at the basestation site. Thus, if it is

possible, it is highly desirable to integrate the base station hardware these factors.

One proposed solution, applicable on the transmitting link, is to sum the sig-

nals prior to amplification and co-amplify them in a multicarrier amplifier (MCPA)

213
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[12]. This eliminates the need for combining signals of high power using bulky

cavity filters combiners. With this technology, every group of Mf SCPA:s in a

conventional basestation site is replaced by a single MCPA. The number of am-

plifiers is then reduced from ntMf to nt, which is a considerable reduction if the

number of frequency channels Mf is large. Another benefit of using MCPA:s is

the possibility to move the summation of the Mf signals to the digital domain.

This reduces the size of the basestation even further, but requires high dynamic

range and wideband ADC:s. The trend is to move more and more functionality

into the digital domain to ultimately approach the full software radio architecture

(SWR) [150]. The combination of MCPA and array antennas is not new, for satel-

lite systems where small equipment size and low power consumption is of high

importance, it has been utilized for a long time [151–153].

Unfortunately, using MCPA:s has a major drawback in terms of power added

efficiency (PAE). The reason is that when several constant-envelope signals are

combined in an MCPA, the envelope of the composite signal becomes non-constant

and have a large peak to mean ratio. Hence, to avoid amplifier saturation, a large

margin must be introduced and then the amplifier cannot be operated in the highly-

efficient nonlinear region since this would introduce too much intermodulation dis-

tortion (IMD). So, to improve the PAE, the margin must be reduced by moving the

amplifier operating point closer to the 1-dB compression point of the amplifier,

which will require linearization. MCPA linearization has been the subject of con-

siderable research effort using for example feed-forward [154] and pre-distortion

[155] techniques. These results are promising and increase the amplifier efficiency

although still the PAE is limited to 15% for MCPA amplifiers as opposed to SCPA:s

which have a PAE above 40% [156].

The generated IMD is a source of interference and must be kept low for proper

system operation. Intermodulation products are commonly referred to as second-,

third-, fourth-, ... , nth-order products depending on the nonlinearity that give rise

to the products. The most general form of third-order interference occurs when

channels at frequencies ωi, ωj , ωk intermodulate in such fashion as to produce in-

terference on a channel operating at frequency ωl. In this case

ωi + ωj − ωk = ωl . (6.1)

If ωl belongs to the set of used frequencies in the system, then the generated IMD

may act as a serious source of impairment. Another form of third-order interference

is of the type

2ωi − ωj = ωl . (6.2)

These two types of third order IMD are commonly denoted as type B and type A

respectively.
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Even if it is possible to construct an MCPA which meets the stringent linearity

requirements in terms of IMD, its peak power requirement is much greater than the

individual power of the Mf carriers. For example, a Mf = 16 channel basestation

requiring 10 Watts per channel, would require a peak power in the MCPA as high

as 2.56 kW [157]. This amplifier has to be biased with a very large back-off from

the saturating point to avoid that the peak power rating of the MCPA is exceeded

resulting in a low PAE. On the other hand, it has been shown that it is possible to

limit the peak-to-mean ratio of the input signal (in software or hardware) without

introducing too much intermodulation distortion that violates the overall system

specifications. The signal is simply limited in amplitude prior to amplification and

a reduction in peak power rating of the MCPA [157] is thereby allowed. The level

of the amplitude limiter for a specific bit error rate is dependent on peak to mean

ratio of the used modulation scheme. This was investigated in [158].

Some definitions are required for the following analysis. The back-off is de-

fined by either the input back-off (IBO) or the output back-off (OBO), measured

as

IBO = 10 log10

(
Psat,in

Pavg,in

)
[dB] (6.3)

OBO = 10 log10

(
Psat,out

Pavg,out

)
[dB] (6.4)

where Pavg,in, Pavg,out is the average input/output power and Psat,in is the input

power when the output power reaches saturation and Psat,out is the corresponding

output power. A smaller OBO/IBO implies a higher amplifier PAE.

However, reducing the OBO/IBO increases the amount of generated intermod-

ulation interference and the signal to intermodulation interference ratio of the wire-

less link decreases. Thus, there is a trade-off between amplifier efficiency and link

quality which will be studied in this chapter for the case of a combination of non-

linear MCPA:s with multiple element antenna arrays, i.e. MISO systems. This

combination gives some peculiar results which will be presented and analyzed.

Previous and related work

The radiation pattern provided by the beam-forming network will generate IMD

that, in general, are radiated in directions different from the principal beam di-

rections as was discussed in [159–163]. These IMD lobes have also been called

“phantom lobes” [71, Chapt.4] as they are not generated purposely, but are cre-

ated by the nonlinearity. The array antenna spatially filters the IMD and this effect

can in some circumstances be used to reduce the signal to intermodulation ratio

of the mobiles in the system, as was previously shown in [152] for a satellite sys-
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tem. The required circumstances to achieve this advantageous property in a mobile

communication system will be investigated in this chapter.

Linearity considerations for adaptive antennas in mobile communications has

previously been studied by Beach et.al. [164] who showed that the intermodulation

distortion (IMD) created in the nonlinear amplifier was shown to degrade the null

depth and increase the side-lobe levels of the antenna radiation pattern. Another

study by Litva and Lo [71, Chapt.4], investigates the receive radiation patterns

from a digital beamforming (DBF) array under nonlinear distortion. Fixed and

adaptive beamforming was compared and it was shown that adaptive beamforming

in the uplink can reduce the effect of nonlinearities, by suppressing the phantom

interferers created by the nonlinearity.

Modelling nonlinearities

Nonlinearities in communication systems are commonly characterized by the am-

plitude to amplitude modulation (AM/AM) distortion characteristics and amplitude

to phase modulation (AM/PM) distortion characteristics, which is the input ampli-

tude dependent gain and phase conversion of the amplifier.

When simulating multicarrier communication systems operating over nonlin-

ear channels, the required sampling rate for a correct representation of the IMD

in the output signal contributes significantly to long execution times. If the band-

width of the input signal is W , then the sampling theorem says that to accurately

reproduce a continuous signal faithfully, the sampling frequency must be at least

twice the bandwidth, i.e. fs ≥ 2W [165] to avoid aliasing distortion. However,

the output of a nonlinear device contains energy at frequencies that does not have

energy in the input signal. For a power series nonlinearity

y(t) =

Np∑

k=0

akc
k(t) (6.5)

it is easy to show that the k:th component is bandlimited to kW since the Fourier

transform of ck(t) is the k-fold convolution of C(f), where C(f) is the frequency

spectrum of c(t). So the sampling rate of the simulation of this system must be

fs ≥ 2NpW , which can be prohibitively high and lead to very long simulation

times. There are ways to reduce the simulation time by performing some approx-

imations. This is possible since the magnitude spectrum of y(t) is not uniformly

distributed over the bandwidth 2NpW , rather decreasing toward zero at the band

edges. So by choosing a sampling frequency less than 2NpW , only the relatively

low valued tails of the spectrum are aliased, and this contribution is small.

Furthermore, if the input signal is bandpass around some center frequency
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±ω0, output signals around ±ω0 are of greatest interest since output signal com-

ponents around ±nω0 for n > 1 can easily be filtered out. This partial signal

(around ±ω0) is called the first-zone output. It can easily be shown that only odd-

order terms in (6.5) contribute to the first zone output so it is common to model an

amplifier using only odd order terms in (6.5) (a0 = a2 = a4 = . . . = 0).

A circumstance that can dramatically reduce the simulation times of a nonlinear

system is if the input signal is a multicarrier signal with constant envelope sub-

carriers and the number of carriers Mf is large, as is common in OFDM systems.

The intermodulation distortion can then be modelled by an additive Gaussian noise

source [166]. This simplifications is not possible in multiple element antennas

basestations, since the signals that enter the MCPA are few, and have a time varying

envelope due to the near far ratio and the transmit weight adaption. The situation

was improved by the work of Schneider et.al. [166] who presented a method to

simulate a multicarrier digital communication system over a band limited channel

with a nonlinear device. The method is based on the work by Shimbo [167] and

reduces the simulation time significantly. The idea is to use Shimbo’s analytical

expression for the amplitudes of the intermodulation products that falls in the first

zone output. Shimbo’s notation is used in this chapter to describe the output from

a non-linear amplifier as a sum over all the intermodulation products. This allows

us to calculate the radiation pattern for each individual intermodulation product.

Effects of nonlinearities in array antenna systems

By introducing MCPA:s in MISO systems and assuming that they are not perfectly

linearized and have finite peak power ratings, three effects can be observed:

1. Signal power from intermodulation distortion will be emitted from the an-

tenna array. As opposed to a conventional basestation with one antenna,

the array makes the radiated intermodulation distortion dependent on the az-

imuthal angle. Thus in some direction the intermodulation products from

all nt antennas adds coherently and a mobile on that frequency and in that

particular direction will experience a maximal interference from IMD.

2. The dependence of the gain and phase shift of the MCPA on the input signal

envelope will make the transmitting antenna branches unmatched. An in-

tended “null” in the radiation pattern towards a known co-channel user will

be shifted, and the interference for that particular user will increase. For a

two element array and a phase error of 1◦ and an amplitude error of 0.1 dB,

the maximum null depth is limited to 30 dB for interference cancellation

[12]. Using MCPA:s the situation gets more complicated, since the phase
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and amplitude shifts are then a function of the power of every signal enter-

ing the MCPA, due to the interaction between the input signals.

3. Due to the large signal envelope variations of the combined signal on the

input of the MCPA, the peak-to-average ratio of the input signal is often

limited prior to amplification, allowing for a reduction in the peak power

rating of the amplifier. The limiting is often performed in software, prior to

D/A conversion. This leads to considerable benefits in terms of power and

cost savings in the design of the MCPA, on the other hand, the limiter will

also generate intermodulation distortion that, unfortunately, will decrease the

signal to interference ratio for the mobiles.

Although excellent linearization techniques have been proposed, there is a

trade-off between linearity and cost, and if many basestations are to be equipped

with array antennas, it is important that the employed linearization technique is

inexpensive. Thus, a certain degree of nonlinearity must be tolerated. The required

degree of linearity is investigated in this chapter and how it affects the perfor-

mance of a cellular system. In Section 6.2 the signal and amplifier models are

defined. Section 6.3 investigates how the transmitted IMD depends on the number

of carriers Mf and number of transmit antennas nt for a switched beam basesta-

tion antenna. A novel frequency allocation algorithm is proposed that reduces the

effect IMD and thereby allows for an increase of the amplifier PAE. Finally, the

SISO case is studied in 6.4 which has applications in WLAN systems and then the

chapter is concluded in Section 6.5.

6.2 Signal and amplifier models

The models defined in Section 1.1 are now extended to the multicarrier case and the

non-linear amplifier model is introduced. Note that continuous time representation

of signals are used to be able to accurately describe the effects of the nonlinearities.

Signal Model

Assume a basestation (BS) that provides service in one sector in a tri-sector cellular

communication system. An nt element uniformly spaced linear antenna array is

used for reception and transmission of data to the users, although the study here

considers the downlink transmission only. Furthermore, assume that Mf FDMA

frequency channels are used in the particular sector, each with a bandwidth of W
Hz and equally separated by ∆ω, see Figure 6.1.

Prior to, or integrated with each antenna, is an MCPA, see Figure 6.5. It pro-

vides the signals with necessary gain to overcome the path loss and the fading in
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Figure 6.1: Input signal spectrum to the multicarrier amplifier. The sub-carriers of

width W Hz are separated ∆ω Hz.

the radio channel. The signal that enters MCPA l (at antenna l) can be written in

the form [69]

cl(t) =

Mf∑

m=1

√
Pmsm(t)wml cos [(ωc + ωm) t + φm(t) + θml] (6.6)

where ωc is the RF channel frequency reference and ωm is the m:th sub-carrier

frequency offset from this reference where ωc ≫ ωm. Assume that the subcarrier’s

center frequencies, ωm are equally spaced, as is common in FDMA systems

ωm = (m − 1)∆ω + ω1 . (6.7)

Furthermore, sm(t) is the m:th sub-carrier envelope, after modulation and pulse

shape filtering, Pm is the corresponding scaling to set the correct average transmit-

ted power for sub-carrier m and φm(t) is the m:th sub-carrier phase. The transmit-

ted information is contained in φm(t) for the phase modulation of the signal and

in sm(t) for the amplitude modulation. Furthermore, wml is the amplitude weight

and θml is the phase of the beamforming weight for sub-carrier m and antenna l. In

some implementations the amplitude weight wml is independent of the sub-carrier

and only phase adjustment is performed to shape the beam for a particular user

signal sm(t). The antenna aperture can still be amplitude tapered using wl to get

the desired side lobe levels (SLL) or beamwidth (BW) of the main-beam [168].

Using complex baseband signal notation, (6.6) can be expressed as

cl(t) = Re
{
c̆l(t) · ejωct

}
(6.8)

provided that the bandwidth W is much less than the carrier frequency ωc; c̆l(t)
is the complex envelope of cl(t) and is a low-pass baseband signal. The complex

envelope can be written as

c̆l(t) =

Mf∑

m=1

√
Pmsm(t)wmle

j(ωmt+φm(t)+θml) . (6.9)
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Multicarrier Power Amplifier Model

Assume that the amplifier is memoryless, i.e. the AM/PM and AM/AM conversion

characteristics are not functions of frequency. Stated differently, the total band-

width of the amplified signal is much less than the inherent bandwidth of the am-

plifier. The memoryless baseband nonlinearity has a simple functional relationship

between the input and output signal as

y(t) = F [c(t)] (6.10)

where F (·) is the instantaneous transfer function. Using (6.10) directly leads to

long simulation times as was discussed in the introduction 6.1. The use of complex

low-pass equivalents in simulating communication systems makes the simulation

more computationally efficient. Thus, the complex low-pass equivalent of the non-

linearity is required which is related to the instantaneous transfer function F (·) as

follows. Consider a bandpass input

c(t) = A(t) cos {2πf0t + φ(t)} (6.11)

and make the substitution α = 2πf0t + φ(t). Now, write (6.10) as

y(t) = F [A cos α] (6.12)

and expand it in a Fourier series

y(t) = a0 +
∞∑

k=1

(ak cos kα + bk sin kα) . (6.13)

Now, the output contains terms at many different frequencies, of which only the

first-zone is of interest, since these will be centered at f0, the center frequency of

the input signal. This means that k = 1 in (6.13) and the DC-term is removed by

setting a0 = 0. The output is then

y(t) = a1 cos {2πf0t + φ(t)} + b1 sin {2πf0t + φ(t)} . (6.14)

The function a1 ≡ f1(·) is known as the (first-order) Chebychev transform [165]

of F (x)

a1 ≡ f1(A) =
1

π

∫ 2π

0
F (A cos α) cos αdα (6.15)

and the function f2(·) is a similar integral calculated as

b1 ≡ f2(A) =
1

π

∫ 2π

0
F (A cos α) sin αdα . (6.16)



6.2. Signal and amplifier models 221

These integrals are by necessity, often calculated by using numerical methods and

the function (f1(A) + jf2(A))/A) is known in control theory literature as the de-

scribing function [169] of the nonlinearity. We now are ready to make the following

definition:

Definition 6.1 The function defined as

g(A)
△
=
√

f1(A)2 + f2(A)2 (6.17)

is the AM/AM conversion characteristic of the amplifier and

f(A)
△
= arctan

{
f2(A)

f1(A)

}
(6.18)

is the AM/PM conversion characteristic1. The functions f1(A) and f2(A) are given

in (6.15) and (6.16) respectively and where F (·) is the instantaneous transfer func-

tion of the nonlinearity.

Now, using (6.9), note that the amplitude is A(t)
△
= |c̆(t)|. Using these relation-

ships, the analytic signal input/output relation for the MCPA at antenna l can now

be written as

y̆l(t) = g (|c̆l(t)|) exp [jφcl
(t) + jf(|c̆l(t)|)] (6.19)

where φcl
(t) is the phase of the input signal c̆l(t).

To model the amplifier nonlinearity, the memoryless envelope limiter model,

proposed by Cann [170] is often used. It is described by the baseband transfer

characteristic

y(t) =
Dsgn(c(t))

[
1 +

(
l

|c(t)|

)s]1/s
= F (c(t)) (6.20)

where y(t) is the instantaneous output, c(t) the instantaneous input, D the asymp-

totic output level as the input amplitude |c(t)| → ∞, sgn(c(t)) the signum func-

tion, l the input limit level and s is the “knee sharpness”. Cann’s model is used

for its parametric form as opposed to polynomial amplifier models (6.5) which are

better suited when fitting experimental data to a model. In Cann’s model the degree

of linearity is easily adjusted by varying the parameter s. Note that (6.20) must be

converted to a low-pass equivalent of the first-zone output using (6.15) if it is to be

used in efficient simulations. Recently, Loyka [171] showed that the use of Cann’s

model to predict levels of intermodulation products should be used with extreme

care. The reason is that the derivatives of Cann’s model (6.20) does not exist at

1Laboratory measurements of nonlinear amplifiers give the g(A) and f(A) functions directly, so

by working with measured amplifier characteristics, the integrals (6.15),(6.16) need not be evaluated.
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c(t) = 0 for many choices of the parameter s. Since the work on non-linearities

in this thesis are of qualitative type and not quantitative, the drawn conclusions in

this chapter are not affected by this late discovery. However, the actual IMD levels

from simulations should be handled with caution.

The nonlinear amplifier model is the used in the simulation at a certain IBO or

OBO from (6.3) or (6.4). As the input signal is a multicarrier signal, the average

input power Pavg,in is estimated in the simulations during a pre-run phase and then

the desired IBO/OBO for the amplifier is set by scaling the amplitude of the input

signals.

A rewriting of the MCPA output signal

The multicarrier input signal (6.9) to the MCPA generates a large number of in-

termodulation products (IMP)2 in the output signal and a combinatorial problem

follows to determine the frequency and relative phase of each of the IMP:s. Adding

the complexity of an array antenna, the spatial dispersion of the IMP:s must also

be considered. Each IMP will have a certain radiation pattern and it is possible to

calculate the direction of the maximum of each of these IMP:s by first rewriting

equation (6.19) for the output of MCPA l as

y̆l(t) =
∑

K
S [K,A(t)] exp


j

Mf∑

m=1

km (ωmt + φm(t) + θml)


 (6.21)

where A(t) =
[
A1(t), A2(t), · · · , AMf

(t)
]

are the envelopes of the transmitted

signals and K is the following set of integer indices

K =




{
k1, k2, . . . , kMf

}
:

Mf∑

m=1

kmωm = ωp



 (6.22)

to consider the output in the frequency channel with center frequency ωp only. If

ωp is one of the sub-carriers center frequencies (ω1, . . . , ωMf
), then the summation

in (6.21) will be restricted to terms that lie in the zone of the first harmonic (funda-

mental) of the output signal. To study the fundamental and third order IMP solely,

K in (6.21) is easily exchanged for the subset K1,3, defined as

K1,3 = K ∩




{
k1, k2, . . . , kMf

}
:

Mf∑

m=1

|km| = 1, 3



 . (6.23)

2A note on the nomenclature: Intermodulation distortion (IMD) is the total output power gen-

erated from the non-linearity, whereas intermodulation products (IMP) is defined as the particular

intermodulation distortion product generated by the intermodulation between two tones on distinct

frequencies on the input of the non-linearity. Hence, the union of all output IMP:s is denoted IMD.
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Furthermore, in equation (6.21), Am(t) =
√

Pmsm(t) is the sub-carrier m:s en-

velope and unity amplitude weights wml = 1 has been assumed. The complex

valued function S[·] is known as the Shimbo amplitude function (SAF)[166, 167],

and gives the amplitude and relative phases of the output intermodulation products

with indices {ki}Mf

i=1. Shimbo’s approach is described below and we start with the

following definition.

Definition 6.2 The function S [K,A(t)], called the Shimbo Amplitude Function

(SAF), is defined as

S [K,A(t)]
△
=

∫ ∞

0
r

Mf∏

m=1

Jkm [Am(t)r]

∫ ∞

0
ρg(ρ)ejf(ρ)J1(rρ) dρ dr (6.24)

where Am(t) is the envelope of the m:th input signal component, Jp(x) is the pth

order Bessel function of the first kind and f(A), g(A) are given by Definition 6.1.

The SAF is a complex valued function and it gives the complex baseband amplitude

of the signal component in the output signal corresponding to the set of indices

{km}Mf

m=1. The calculation of SAF involves the amplifier characteristics f(·), g(·)
and the envelope of the sub-carriers in the multicarrier input signal. Note that the

SAF depends on the envelopes and not the phases of the input sub-carrier signals

and if the amplifier does not exhibit any AM/PM conversion (f(A) = const.), the

SAF will be real. In general, the calculation of (6.24) is not simple, but Shimbo

found that the Bessel function series expansion of the nonlinearity g(A)ejf(A),

yields a simple and useful expression for the SAF [172]. With this approach it is

possible to find an analytical expression for the amplitude and phase of the desired

signals and each of the IMP:s in the output of a nonlinear amplifier with a multi-

tone input.

If g(A) and f(A) are the AM/AM and AM/PM characteristics of the amplifier,

then the coefficients α, βs in a Bessel series expansion are found by solving

{α, β1, . . . , βMS
} = arg min

α,β1,...,βMS





∣∣∣∣∣g(x)ejf(x) −
MS∑

s=1

βpJ1(αsx)

∣∣∣∣∣

2


 (6.25)

for all amplitudes x in the input amplitude interval. Here J1 is the 1st order Bessel

function of the first kind and note that the coefficients βs are complex. Using the

coefficients from the least square fit in equation (6.25), the complex voltage gain

for the p:th component in the output at frequency ωp can be approximately written

as [167]

S [K,A(t)] ≈
MS∑

s=1

βs

Mf∏

m=1

Jkm (αsAm(t)) (6.26)
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where Jkm is the Bessel function of order km. Note that the output amplitude of

the desired, linearly amplified carrier at frequency ωp is given by S [K,A(t)] with

K = {. . . , 0, 1
p:th

, 0, . . .}.

6.2.1 The far field radiation pattern

Assume that the angle Θ is measured from broadside of the array. The complex

envelope of the received signal z(t,Θ) at a hypothetical user in the far field and in

direction Θ on frequency ωp is represented by a discrete complex sequence z(n, Θ)
[108]

z (n, Θ) = GT (Θ)

nt∑

l=1

y̆l(n)e−jδTXωp(l−1) sin(Θ)/c (6.27)

where δTX is the array inter-element spacing of an assumed uniform linear array, c
the speed of light and GT (Θ) is the individual antenna element gain in direction Θ
which is assumed equal for all nt antenna elements. The far field effective isotropic

radiated power (EIRP) in direction Θ from broadside direction is

EIRP (Θ) =

∣∣∣∣
z(n,Θ)

nt

∣∣∣∣
2

=

∣∣∣∣∣
GT (Θ)

nt

nt∑

l=1

y̆l(n)e−jδTXωp(l−1) sin(Θ)/c

∣∣∣∣∣

2

. (6.28)

By inserting (6.21) into equation (6.28) one finds that for a particular set of indices,

{km}Mf

m=1, which uniquely labels any IMP, the far field radiation pattern as

EIRP (Θ,K) =
∣∣∣∣∣∣
GT (Θ)

nt
S [K,A(t)]

nt∑

l=1

Mf∏

m=1

ejkm(ωmt+φm(t)+θml)−jδTXωp(l−1) sin(Θ)/c

∣∣∣∣∣∣

2

(6.29)

where it was assumed that the amplitudes of the Mf subcarriers does not depend on

the antenna number. This is the case of phase only beamforming without amplitude

tapering. If amplitude weights or tapering is used, then A(t) will be different for

different antennas and the SAF will depend on n well. In this case, the SAF cannot

be moved outside the summation in equation (6.29).

Switched Multibeam Antenna Arrays

An important sub-class of beamforming methods is now introduced which fur-

ther simplify the expression for the far field radiation pattern (6.29), namely the

switched multibeam antenna array, see Section 2.5.2. This beamforming method is
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often used for the downlink beamforming in FDD systems, where full knowledge

of the downlink channel state information (CSI) is unknown. From the uplink data,

some partial CSI can be extracted such as the average angle of arrival (AOA) of the

signals. It was shown in [173] that in a NLOS environment the AOA change at the

BS for the strongest path was less than 3◦ for a mobile movement of 2λc. So, one

choice for the downlink beamformer is to form a beam with low side-lobes and

transmit in the direction where the largest average power was received from the

particular user in the uplink direction. The low side-lobes of the radiation pattern

decreases the co-channel interference to users in neighboring cells. A linear array

antenna with nt antenna elements can generate nt beams with distinct spatial ori-

entations in the horizontal plane, by use of a beam forming network (BFN), often

implemented using a Butler matrix [20, 78], see Appendix A. It has the property

of a constant phase gradient ∆θm over the antenna array aperture so for antenna l
and signal m, the phase of the beamformer weight is

θml = (l − 1)∆θm (6.30)

for l = 1, . . . , nt. The phase gradient, ∆θm belongs to the set ΩS of nt different

phase gradients, unique for each beam the BFN can generate,

ΩS
△
=

{
2πp

nt

}nt−1

p=0

. (6.31)

The set of phases, ΩS in (6.31) is a closed group under addition, subtraction and

integer multiplication, following modulo-2π algebra, due to the phase angle am-

biguity of 2π. This property implies that the main-lobe direction of the desired

signals are also main-lobe directions for the IMD, as will be shown below.

By using (6.30) for the FFT based BFN, in equation (6.29), it can be simplified

as

EIRP (Θ,K) =

∣∣∣∣
GT (Θ)

nt
S [K,A(t)]

∣∣∣∣
2 sin2 [ntξ(Θ)]

sin2 [ξ(Θ)]
(6.32)

where

ξ(Θ) =
1

2

Mf∑

m=1

(km∆θm − δTXωp sin(Θ)/c) . (6.33)

Note that the EIRP in (6.32) is maximized when ξ(Θ) = 0. Hence the ra-

diation pattern for the linearly amplified signal s1(t) is given by setting K =
{1, 0, 0, . . . , 0} and thus ωp = ω1 from (6.22). Hence the maximum power is

radiated in direction Θmax, where, from (6.33):

∆θ1 − δTXωp sin(Θmax)/c = 0 . (6.34)
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Solving for Θ yields

Θmax = arcsin

(
∆θ1

π

)
(6.35)

where ∆θ1 is the phase gradient for user 1 and where it was assumed that the

elements are spaced δTX = λc/2. Furthermore, the direction of the maximum

radiated IMP for a third order intermodulation product at frequency ωp = 2ωj−ωk

can be found, if δTX = cπ/ωp (half a wavelength spaced antenna elements) as

Θmax,IMP = arcsin

(
2∆θj − ∆θk

π

)
. (6.36)

It is easily verified that (6.36) maximizes (6.32) for the 2ωj − ωk intermodulation

product.

Equation (6.32) allows for introducing an equivalent phase gradient for the

particular IMP. It is calculated as

∆θeq =

Mf∑

m=1

km∆θm (6.37)

which will maximize the PEIRP in a direction given by the angle

Θ = arcsin

(
c∆θeq

δTXωp

)
. (6.38)

Since ΩS is closed under integer multiplication and addition, ∆θeq will also belong

to ΩS and this implies that the IMP directions will coincide with the directions of

the linearly amplified signals. We illustrate this with an example:

EXAMPLE 6.1

Assume that two signals for two users, c̆1(t) and c̆2(t), separated in frequency

according to (6.7) are transmitted in the same beam. They will then use equal

phase gradients (∆θ1 = ∆θ2) and from (6.37) they will generate third order IMP

(k1 = 2, k2 = −1 and vice versa) with equal phase gradients ∆θeq = ∆θ1 =
∆θ2, i.e. IMP at the frequencies ω3 = 2ω2 −ω1 and ω0 = 2ω1 −ω2 are radiated

in the same beam directions as the amplified original signals c̆1(t) and c̆2(t).

If, however, the two signals are transmitted in distinct beams, ∆θ1 �= ∆θ2,

then the third order IMP are radiated with phase gradients ∆θeq = 2∆θ2 − ∆θ1

and ∆θeq = 2∆θ1 −∆θ2 at the frequencies ω3 = 2ω2 − ω1 and ω0 = 2ω1 − ω2

respectively. Note that ω0 is outside the defined transmitter band (since ω0 < ω1
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Figure 6.2: Measurement setup in the anechoic chamber for intermodulation mea-

surements. A four element antenna array was used and a BMT for the beamform-

ing.

and ω1 is the lowest used frequency of the system), and can thus be removed

by the transmit filter. The structure of the FFT beamformer implies that the

equivalent phase gradients of the IMP, ∆θeq belongs to the set ΩS as well.

6.2.2 Measurements of the far field radiation pattern

To verify the results of the previous Section 6.2.1, measurements on a switched

beam array antenna was performed in an anechoic chamber using a 4-element

linear antenna array and an 8-by-8 analog Butler matrix. See Appendix A for a

overview of the Butler matrix. Four standard microwave amplifiers were used,

and they were biased in the nonlinear region to generate IMD. The setup is shown

in Figure 6.2. The Butler matrix was connected to two GSM signals with center

frequencies 1.8000 GHz and 1.8004 GHz in two different input ports. The input

power of the two signals were adjusted to the appropriate input back-off and the

radiation pattern was measured using the anechoic chamber with a turntable as

shown in Figure 6.2. The angle was swept in 1◦ steps and for each angle the power

density spectrum was measured with a spectrum analyzer.

Frequency-angle power spectral density measurements

The measurements give an intuitive picture of the spatial distribution of the inter-

modulation distortion. Input port number 6 was used for the f1=1.8000 GHz signal

and port number 4 was used for the f2=1.8004 GHz signal. According to the theory

in the previous section, the main-lobes will in this case be in the directions 22.0◦

and −7.2◦ respectively, while the third order intermodulation beams are in direc-

tion 61◦ for the 2f1 − f2 product at 1.7996 GHz and 2f2 − f1 product at 1.8008
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Figure 6.3: Frequency-angle plot in decibel of the power spectral density with

large back off. The gray-scale shows different power levels, normalized so that

maximum received power is 0 dB. The two beam-formed signals has main-lobes

in 22◦ and −7◦ respectively. The intermodulation products are weakly visible at

-39◦ and 1.8004 GHz.

GHz in −39◦. This is easily verified by studying Figure 6.3 and Figure 6.4 for a

large and small IBO respectively. These figures are normalized to 0dB maximum.

In the small IBO case, see Figure 6.4, the fifth-order intermodulation product (e.g.

k1 = 3, k2 = −2) is weakly visible at the DOA angles 61◦ and −39◦. Noteworthy

is also the orthogonal array response vector properties of the beams from the Butler

matrix. In direction −7.2◦, where beam 2 has its maxima, the other beams have

nulls, giving a high level of isolation. This includes the intermodulation, which

also has a null in that direction. So, by using a Butler matrix, the spatial dimension

can be used to reduce the intermodulation distortion at the mobile user. However,

the third order nonlinearity adds up coherently in another beam which increases

the interference level of a potential co-channel user located in that direction. This

property of spatial intermodulation distortion filtering by the array antenna has ear-

lier been described in [159] for satellite mounted array antennas and also in a recent

paper by Hemmi [161].

The analog Butler matrix used in this experiment have a manufacturing error

of 0.8dB and 8.5◦ which destroys the orthogonality properties of the Butler matrix

array response vectors. These errors degrades the isolation and explains the not

perfect positioned nulls in the measurements. This also demonstrate the need for

calibration.
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Figure 6.4: Frequency-angle plot in decibel of the power spectral density with

saturated amplifiers (back-off decreased 8 dB compared to Figure 6.3). The gray-

scale shows different power levels, normalized so that maximum received power is

0 dB. The third order intermodulation products are visible and also the fifth order

intermodulation products are weakly visible.

6.3 Nonlinear Distortion in Switched Multibeam FDMA

Systems

The results in the previous section showed that the IMD power level is dependent

on the azimuthal angle from the basestation antenna array. This encourages the idea

of a smart frequency allocation method for the users in the served cell to reduce

the carrier to intermodulation distortion ratio (CIMR). A novel frequency planning

strategy is proposed in this section which reduces the effective interference from

the third order IMP. Figure 6.5 shows an overview of the assumed transmitter archi-

tecture using fixed multibeam beamforming. The motivation for using multibeam

antennas was discussed in Section 2.5.2.

In some systems, the IMD is a substantial source of interference and must be

included in the interference budget, although it has been shown that the IMD can be

reduced by different linearization techniques [164]. Some residual IMD power will

however still be emitted by the antennas, and it is important to be able to predict

this level to assure an acceptable system performance and system designers should

be aware of how the array can amplify the IMD.

Not all IMD are harmful however, since some parts of the distortion power

can easily be removed by filtering. If
{
ω1, . . . , ωMf

}
is the set of Mf center fre-
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quencies of the modulated carriers that enters the MCPA, then it was shown in the

previous section that some third order intermodulation products (IMP) in the out-

put signal fall onto other frequency channels that are used in the FDMA system and

thereby cannot be removed by filtering. In this section, only the third order IMP

are considered since the amplifiers operate well below the 1 dB compression point

and in this region, the third order IMP dominates over higher order IMP so the

distortion power from higher order IMP can safely be neglected. This is a common

assumption when studying effects of nonlinearities in communications systems.

The degree of a non-linearity is often measured by a two tone test, where two

continuous wave (CW) tones with distinct frequencies are combined and connected

to the input of the amplifier. The power of the IMP are measured in the output

signal and the ratio to the power of the desired signal is calculated as a measure

of the non-linearity. In the third generation Universal Mobile Telephony Systems

(UMTS), the input signal has a 5 MHz bandwidth and a nonlinear amplifier will

then introduce spectrum regrowth. The CW characterization method will then fail

to give an accurate measure of the effects of the nonlinearity, instead, the Adjacent

Channel Leakage power Ratio (ACLR) is defined as the ratio of the transmitted

power to the power measured after a receiver filter in the adjacent channels [174].

The receiver filter has a -3 dB bandwidth equal to the chip rate (3.84 MHz) in the

3GPP-standard of UMTS.

In a cellular system, the dominant IMD will come from the MCPA in the same

cell, if the generated IMD falls onto other frequency channels used in that cell.

Other examples of problems related to MCPA generated IMD are in multi-layer

cellular network structures, where IMD from an MCPA-equipped micro-cell inter-

fere with a macro-cell connected mobile [175], or as was investigated in [176], the

mutual interference between an AMPS system BS using MCPA:s and a CDMA

system mobile.

The aim of this section is to show how the use of multibeam antennas reduces

the downlink IMD for the mobiles in one cell and in the next section the effect on

the system level outage probability is investigated by considering more than one

basestation equipped with switched multibeam arrays. Furthermore, the spatially

filtering of IMP:s can be utilized by the frequency channel allocation algorithm

in the BS that assigns new mobiles to one of the empty frequency channels in the

particular cell sector. If a non-frequency hopping system is assumed, then each new

mobile can be allocated to the frequency channel that generates least IMD to other

mobile users in the same sector. This was briefly mentioned by Sandrin [159], and

here an algorithm for this allocation procedure is proposed, and the performance

is compared to the random frequency channel allocation algorithm. The solution

is related to the recently proposed techniques for reducing IMD in a conventional

one-antenna BS [177, 178] by spacing the used frequency channel unequally, to
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Figure 6.5: Switched multibeam array architecture. The beam/frequency channel-

izer directs the input signals to their respective FDMA frequency slots and selects

the “best” downlink beam using information from the uplink.
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make the IMP fall onto unused frequency channels in between.

6.3.1 Utilizing the Combined Beam-Frequency Scheme

In Section 6.2.1, an expression for the far field radiation pattern of the array an-

tenna was derived. The result included both the radiation patterns for the desired

signals and the intermodulation products. Assume that the frequency channels are

equally spaced with frequency channel m having a center frequency ωm, according

to (6.7). It is then possible drop the actual frequency and proceed in terms of fre-

quency channel numbers. The frequency channel with center frequency ωk has by

definition the frequency channel number k. Hence, the frequency channel numbers

of the third order in-band IMP generated by mixing the channels with number j
and l respectively are given as

kIMP1 = 2j − l (6.39)

kIMP2 = 2l − j (6.40)

which then corresponds to the frequency channels with center frequencies ωkIMP1

and ωkIMP2
respectively. Note that these generated frequencies might fall outside

the frequency band of interest, if for example ωkIMP1
< ω1. They can then easily

be removed by the transmit filters and will thus not act as a source of interference

in the system.

The number of IM products

The number of generated IMP in the output signal is required to calculate the total

IMD emitted from the array antenna. We now define the two types of third order

IMP.

Definition 6.3 Assume that Mf equally spaced sub-carriers at frequencies {ωi}Mf

i=1

are co-amplified in an MCPA. The third order IMP in the output are categorized

into two different groups. Type A IMP is defined as the cross-modulation term

2ωi − ωj and type B IMP as the composite triple-beat terms ωi + ωj − ωk.

The following analysis is thus restricted to third order IMP but an extension to

higher order IMP is straightforward but tedious.

Type B IMP becomes more deleterious when the total bandwidth is less than

an octave because most of the type A IMP falls fall outside the band of interest.

The center frequency channel in the transmit band, receives the highest number of

IMP, and we denote the number of IMP that falls on this center channel as νc. It is

shown in [177] that if all subchannels are active, this number is

νc =
3

8

(
M2

f − 2Mf + 1
)

. (6.41)
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The νc IMP in the center channel can be divided into MA type A as [178]

MA =

{
(q − 1) if Mf =2q

2⌊q/2⌋ if Mf =2q+1
(6.42)

and the number of type B IMP is

MB = νc − MA . (6.43)

If the center channel is left empty, as common in noise power ratio (NPR)

measurements, then all IMP involving the carrier in the center channel most be

subtracted from (6.41). This gives, after some calculations, the number of IMP in

the center channel if the center channel is empty, denoted as νe
c

νe
c =

1

8

(
3M2

f − 10Mf + 7
)

(6.44)

where it is assumed that Mf is an odd number.

Beam-frequency scheme

Using the above definitions, given a set of Mf equally spaced frequency channels,

and a set of nt beams, the beam-frequency scheme can be defined, which can be

used to reduce the IMP levels in the system. We now define the concept of beam-

frequency slots.

Definition 6.4 Assume that transmission takes place from a switched multibeam

array using one out of the nt beams. Denote its number Bk, where k ∈ {1, . . . , nt}.

The transmission takes place on a frequency channel with center frequency ωl and

thus the frequency channel number is l ∈ {1, . . . , Mf}. Then the transmission is

said to take place on beam-frequency slot (Bk,Fl).

Main beam IMP is defined as the direction of the maximum radiation intensity of

the particular IMP. Certainly, IMP will be radiated in all directions, but suppressed

by the side-lobe of the array radiation pattern in other directions than the main

beam direction.

Furthermore, the FFT based BFN is used, so the properties of closeness and

finiteness of the modulo 2π addition and integer multiplication of the phase gradi-

ents (6.37) makes the main beam direction of the IMP coincide with the set of main

beam directions for the desired (linearly amplified) signals. Figure 6.6 shows an

example of the beam-frequency slot scheme where three users have been randomly

assigned (in frequency) to three slots. The figure shows the slots where main beams

of type A and type B IMP will appear (type B IMP312, and two type A IMP23,



234 Chapter 6. Nonlinearities in transmit amplifiers for MISO systems

F1 F2 F3 F4 F5 F6

F1 F2 F3 F4 F5 F6

IMP
23

IMP

312

IMP
21

B 1

B 2

B 3

B 4

U1

(a)

(b)

U2 U3

U1 U2 U3

23 312 21
IMP IMP IMP

Figure 6.6: Beam-frequency scheme for (a) nt=4, (b) nt=1, where Mf =6. The

figure shows three active users (U1,U2,U3) occupying three FDMA slots. Only

third order IMP that falls in the frequency channels of interest (F1-F6) are con-

sidered. Type A IMP is denoted “IMP ab” when user a and b generates the IMP.

User 1,2,3 generates type B IMP denoted “IMP abc”.

IMP21). The nt=4 element antenna array will certainly reduce the amount of IM

distortion at the mobile as compared to the reference nt=1 antenna BS in Figure

6.6(b) because main beam IMP falls onto other beam slots, or stated differently, in

other directions than the user main beams. Hence, the IMP will be suppressed by

the side-lobes of the antenna array radiation pattern.

Reducing the IMD by using an antenna array

To calculate the reduction in IMD due to the use of a multibeam antenna, statistical

methods must be used, as the activity of the users as well as their angle Θ seen
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from the BS, are stochastic processes. We now state the following:

Theorem 6.1 Assume a fully loaded system (all Mf frequency channels are oc-

cupied) and that Mf is an odd number. The position in angle of the mobiles in

the served sector are assumed independent and uniformly distributed in the range

[−π/3, π/3] and the number of beams is nt, which are assumed to have equal

beam-widths. The number of type A and type B intermodulation products, denoted

νA and νB , with the main beam pointing at the mobile that is active on the center

channel, that is, the frequency channel number q, where Mf = 2q+1, is binomially

distributed Bin(Mx,1/nt):

PMx(νx) =

(
Mx

νx

)(
1

nt

)νx
(

1 − 1

nt

)Mx−νx

(6.45)

where x = A,B and MA,MB are given in (6.42) and (6.43).

Proof: We want to derive the distribution of the number of type x IMP,

denoted νx, that point its main beam on the mobile that is active on the center

channel. The total number of IMP falling on this channel is given by MA and MB

from (6.42). Since the positions of the mobiles on other frequency channels than

the center one, are assumed to be uniformly distributed, the IMP that falls on the

center frequency channel will have its main beams pointing in directions uniformly

distributed over the nt beam directions. Assume that the mobile under study is lo-

cated in a specific beam direction Bk. The probability that a certain IMP falling on

the center frequency channel has it main beam pointing in the direction Bk is 1/nt.

Since there are Mx independent IMP:s falling on the center frequency channel and

each has a probability 1/nt to interfere with the main beam pointing towards the

mobile under study, the number ν is binomially distributed Bin(Mx,1/nt).

Remark that we study the mobile in the center frequency channel, since it receives

the largest amount of IMP, hence this is a worst case analysis. The expectation

value of (6.45) is MA/nt and MB/nt for type A and B IMP respectively and the

variance is MA(nt−1)/n2
t and MB(nt−1)/n2

t respectively. If the number of IMP

in a specific beam slot is less than the mean value of (6.45), then the IMD power

in this direction is less than average. If the number of frequency channels Mf is

increased, and keeping the number of beam directions nt fixed, then the quotient

of the number of IMP in a beam compared to any of the nt − 1 other beams is on

average approaching unity. By defining the normalized variance, or variability, υx,

of the distribution (6.45), as

υx =
E
{
ν2

x

}

E {νx}2 =
nt − 1

Mx
(6.46)
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for x = A,B, it is possible to study this. The variability indicates that when the

number of IMP of type x, Mx, is increased, as when the number of frequency

channels Mf is increased, the IMP are evenly distributed over all beams, and the

total IMP radiation pattern, which is the sum of all IMPs, is approaching the radi-

ation pattern of a single antenna element. Note that the individual IMP maintain

their ideal array pattern, but their sum has a “smoothing” effect on the radiated IM

power. This was also observed in [153]. By increasing the number of antennas nt,

the variability (6.46) is increased, and the total IMP radiation pattern directivity

is increased, i.e. lobes are formed is some directions. For higher order IMPs, the

number of IMPs, Mx, is a large number compared to nt and the small variability

leads to a radiation pattern close to the single antenna element pattern.

Hence, it is expected that by using an nt beam array antenna, the IM power

experienced by the users, compared to a reference nt = 1 conventional BS, are on

average reduced 10 log10(nt) dB, as the number of main beam IMP towards the

mobile are on average reduced by the factor 1/nt. Note also that the transmitted

power from each antenna is reduced by 20 log10(nt) dB compared to the nt=1

antenna case, to yield the same received power at the mobile.

If the number of active frequency channels is less than Mf , which is the normal

case3, then it is shown below how it is possible to reduce the amount of IMD

further, by utilizing the extra degree of freedom the nt beams provide.

IM-reducing frequency channel allocation

Assume in the following a non-frequency hopping system, or a system with deter-

ministic frequency hopping. In the example of Figure6.6, a new user can be placed

in any of the empty frequency channels F2,F4 or F6. Depending of the beam

allocation for the new user (which is out of the basestations control, it depends on

the spatial position of the new user), the basestation should allocate the new user

to a frequency channel that produces the lowest number of “collisions”, where a

collision has taken place when the generated main beam IMP falls into a slot that

is occupied by a user. The basestation performs a search over all free slots and cal-

culates the number of collisions in the Mf × nt beam-frequency scheme for each

case. When a call is dropped, a new frequency channel is available and added to

the set of searched slots for the next new user.

To compare the proposed algorithm, the expected value of the number of col-

lisions is calculated and compared with the random frequency channel allocation

algorithm. The number of slot collisions depends on the number of available beams

and on the number of active users in the particular sector. Define the probability

3Mf active frequency channels corresponds to a blocking probability of one for a new user, and

is a rare case if the system is properly planned.
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pch as the probability that a given frequency channel is in use in a cell, which is a

function of the offered traffic Ao (in Erlang), the blocking probability PB and the

number of frequency channels Mf in the sector [73],

pch =
Ao

Mf
(1 − PB) . (6.47)

The number of active users in the sector is a random variable varying from zero to

Mf and has a binomial distribution Pa(m) ∼Bin(Mf , pch) [73]. If blocked calls

are cleared (calls arriving when all the channels are found to be busy are lost), then

the blocking probability is given by the Erlang-B formula

PB =
A

Mf
o /Mf !

∑Mf

k=0 Ak
o/k!

. (6.48)

To derive the expected number of collisions Co, the conditional expectation

E {Co} =

Mf∑

mu=0

E {Co|mu}Pa(mu) (6.49)

is used, where E is the expectation operator. The conditional expectation value

E {Co|mu} of Co collisions conditioned on mu active users involves summation

over all possible beam-frequency slot allocations and its calculation is a formidable

task. It depends on the chosen frequency channel allocation algorithm, the number

of beams nt, the number of frequency channels Mf and on the blocking probability

PB . To illustrate how the algorithms performs, an example is presented, where a

Monte Carlo simulation method is used to estimate E {Co|mu} which then is used

to calculate the expected value of Co.

The system is simulated with Mf =9 frequency channels and blocking proba-

bility PB = 2%. This gives, by using (6.48), the offered traffic Ao=4.34 Erlang

per sector and hence a channel activity pch of 47.3%. The simulation is performed

as follows. In each simulation step, a mobile is activated in a random direction or a

random mobile drops its call. This is simulated by using a generalized birth-death

process with Mf + 1 states [179]. For each new mobile, all unoccupied frequency

channels are searched and the number of collisions are counted. The slot alloca-

tion that gives the fewest collisions is chosen for the new user. If two or more slots

give the same number of collisions, then the total number of generated IMP in the

nt×Mf beam-frequency scheme is calculated for the slots that gave the same num-

ber of collisions, and the algorithm choose the slot that generates the fewest IMP.

10 000 steps were performed to estimate E {Co|mu} for each case of nt=8,4,2 and

also nt=1 for comparison. Table 6.1 shows the reduction in number of collisions
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Antennas Channel Estimated

nt Allocation E {Co}
8 Best 0.41

8 Random 2.15

4 Best 1.42

4 Random 4.02

2 Best 4.24

2 Random 8.12

1 Best 10.70

1 Random 16.19

Table 6.1: Estimated number of collisions when using proposed algorithm for

frequency channel allocation compared to random allocation.

when the proposed algorithm is used as compared to random frequency channel al-

location. It is interesting to see that four beams and using the proposed algorithm,

has on average fewer collisions than an eight beam system using a random fre-

quency channel allocation. This can also be seen in Figure 6.7 where random/nt=8

have a higher collision count than the best/nt=4 algorithm, when the number of

active users are less than seven.

When the number of beams (antennas) is increased, the beam-width of the main

beam is narrower and the IMP is also concentrated into narrower beams. Hence,

it is less likely that a user collides with the main beam of an IMP, and as seen in

Table 6.1, the number of collisions is reduced.

6.3.2 Computer Generated Results

Due to the random positions of the users and the stochastic nature of the number

of active users, the IMD power as experienced by a mobile user in the system will

be a random variable. Hence, to study the improvement in carrier to intermodula-

tion ratio by using a multibeam antenna, as discussed in the previous sections, the

probability distribution function (pdf) of the IMD power at the mobile is estimated

using simulations. A channel separation and modulation that resemble the GSM

system is assumed. The variation of the shape and position of the pdf with the

parameters nt and Mf are discussed and conclusions is drawn.

Modulation and Sampling Rates

Assume that each sub-carrier is GMSK modulated with a bit rate Tb=271 kbit/s, to-

gether with a Gaussian low pass pulse-shaping filter with a normalized bandwidth

WTb=0.3 and filter length of six bits. A minimum sampling frequency of 50 sam-
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mobiles.

ples per symbol is used in the simulations for the sub-carrier with largest ωm to

ensure an accurate representation of the generated intermodulation distortion. Us-

ing Mf =9 channels, this yields a multichannel sampling rate of 67.75 MHz. The

length of a data burst is 156 bits and consists of randomly generated data for each

user.

Adjacent Channel Distortion Simulation

A common method to measure the effect of nonlinearities in multicarrier communi-

cation systems, is to use a measurement channel, centered in the frequency channel

plan. This unoccupied center channel will, on the MCPA output contain IMP, and

the effect of distorting the input signal can directly be related to the output power

in the unoccupied channel [158]. To measure the distortion introduced by the non-

linearities in the MCPA and the effect of beamforming for the spatial distribution

of this distortion, a simulation, illustrated in schematic form in Figure6.8 is per-
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formed. The method measures the interference in an unoccupied center channel of

the transmitted frequency band. Hence, the input frequency channels centered at

ω1, ω2, . . . , ωq−1, ωq+1, . . . , ωMf
are occupied, while the center channel at ωq is

unoccupied.

Since most communication systems are designed to meet a certain level of

adjacent channel interference, the output power in this unoccupied channel can

directly be related to the performance of the system. Note that the center channel

contains contributions from all other channels and the power measured there is

therefore the worst possible case of interference. The channel spacing ∆ω is set

to 3W to assure that the spectral truncation noise, due to finite impulse response

filtering, of the channels immediately below and above the unoccupied channel

does not increase the spectral content in the unoccupied channel.

The LS = 156× 50× 5 = 39000 samples of the received signal in direction Θ
is collected and a Hanning window function is applied before the discrete Fourier

transform (DFT) is calculated. The signal is filtered in an ideal 30 kHz bandpass

filter centered at ωe and the power level in the unoccupied channel is measured (this

is equivalent to the procedure described in the GSM 05.05 specification [158]).

The intermodulation power is obtained using power spectrum analysis, define the

Hanning windowed DFT of z(n, Θ) as [180]:

Z(p,Θ) =
1

LS

LS−1∑

n=0

z(n, Θ)wH(n)ej2πp(l/L) (6.50)

for p = 0, . . . , LS − 1 and wH(n) is the Hanning window function. The power in

the measurement bandwidth in direction Θ can now be written as

Pr(Θ) = 10 · log10

[
1

p2 − p1 + 1

p2∑

p=p1

|Z(p,Θ)|2
]

(6.51)

and p1, p2 are chosen to obtained an ideal bandpass filter of 30 kHz bandwidth,

centered at ωq.

Cann’s model, (6.20) was used to model the power amplifier with parameters

s = 8, D = 1, l = 1 and the IBO was set to 10 dB, regardless of Mf , as described

in Section 6.2. Figure 6.9 shows an example of the radiation pattern (6.51) in

the empty frequency channel, centered at ωq. With the number of active carriers

Mf =8, a higher level of IM interference is measured, compared to when Mf =4,

as expected. The number of third-order IMP terms can be calculated by (6.44)

to νe
c = 20 and 4 for the Mf = 8 and Mf = 4 case respectively4. When the

variability υ in (6.46) is decreased, the IMP radiation pattern gets smoothed and

4Note that Mf =9 and Mf =5 is used in (6.44), but the center channel is left empty
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direction Θ
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Figure 6.9: Simulated intermodulation radiation pattern using the power amplifier

nonlinearity. When the number of beams nt (denoted N in the figure) is decreased

and the number of active frequency channels Mf (denoted M in the figure) is

maintained constant, the radiation pattern approaches the single element antenna

radiation pattern.

approaches the single element pattern. This is visible in the nt = 4, Mf = 8 case

in Figure 6.9.

If the received power at the test mobile when using nt = 1 antennas at the

basestation is used as a reference, then the pdf of the difference (in dB) between the

nt = 1 and nt > 1 case for a particular set of mobile locations is estimated using

200 data bursts. Random frequency allocation is performed and no power control

is used. See Figure 6.10 and 6.11 for the Mf = 5 and Mf = 9 case respectively

(where the measurement is made in the empty center channel, as before). Note

that the IBO is equal for the different antenna configurations, hence an increase in

number of antennas, leads to a reduced output power of each MCPA, but the IBO

is kept equal in the simulations, to allow an analysis of the spatial dispersion effect

of the IMP only. Table 6.2 shows the mean of the pdfs in Figure 6.10 and Figure

6.11. According to the discussion in section 6.3.1, a reduction in the IM power of

10 log10(nt) dB is expected. For the Mf =9 case, the number of IMP is so large

that approximately 1/nt of them reach the mobile at maximum power, that is, in
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Figure 6.10: Probability distribution function of the difference in received power

in the empty center channel for nt (denoted N in the figure) antennas, for all angles

in the sector. nt=1 antenna case is set as a reference. Here, Mf =5 (denoted M in

the figure) channels are used.

Antennas Channels Average

nt Mf [dB]

8 9 -9.2

8 5 -13.5

4 9 -6.1

4 5 -8.9

2 9 -2.9

2 5 -4.1

Table 6.2: Average of the received power in the empty measurement channel.

Reference is the nt=1 antenna case.

the main-lobe of the array antenna radiation pattern. However, the Mf = 5 case

allows larger variations in the distribution of the IMPs over the nt beams, i.e. a

larger variability, and a deviation from the 10 log10(nt) expression is increased.

Note that in the nt = 8,Mf = 5 case, the probability that a mobile is not in
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Figure 6.11: Probability distribution function of the difference in received power

in the empty center channel for nt (N) antennas, for all angles in the sector. nt=1

antenna case is set as a reference. Here, Mf =9 (M) channels are used.

the direction of an IMP main beam in the empty center frequency channel is from

Theorem 6.1, Pν(0) =
(

8−1
8

)νe
c =0.59 where νe

c =4 is the total number of IMP in

the center channel given by (6.44). This explains the relatively high probability

for a very large reduction (5-20 dB) in IMP power for nt = 8 in Figure 6.10, as

compared to the nt = 2 case in the same figure, where Pν(0)=0.0625.

The Mf = 9 case in Figure 6.11 shows the case of a large number of third order

IMP. As the number of beams nt is increased, the mean of the IMP is decreased

but the width of the pdf increases (increased variability), due to larger variations in

the number of IMP per beam. Furthermore, the probability that a mobile receives

no main beam IMP Pν(0) is in this case very small.

6.3.3 Conclusions

The effect of a nonlinear transmit amplifiers in a switched beam base-station an-

tenna for a cellular system using FDMA has been analyzed. It has been found that

the main beam direction of the IMP is in general different from the directions of

the principal signal beam directions. It was shown how the increased number of
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degrees of freedom when introducing an array antenna could be utilized to reduce

the received IMD even further, for the mobile users. This is achieved by assign-

ing new users to frequency channels that minimizes the IMD at other mobile users

in the same sector, hence the IMP are “placed” in directions were no mobile user

exists on that frequency. The proposed algorithm outperforms a random channel

allocation method and the improvement is increasing with the traffic load and the

number of antenna elements.

To study the expected value of the IMD reduction at the mobiles, a Monte Carlo

simulation was used to estimate the pdf of the mobile CIR for an example GSM

system. With increased number of antenna elements and a low number of active

channels, the IMD reduction as compared to the nt=1 reference antenna case has

a larger dynamic range. In this case, it is possible, especially if a smart frequency

allocation strategy is used, that the mobile user experiences no main beam IMD,

hence a large IMD reduction compared to the reference case is gained. It was also

shown that when the number of active users is larger than the number of available

beams (i.e. the number of transmit antennas), the pdf is more sharply peaked and

10 log10(nt) dB reduction in IMD is the most likely improvement.
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6.4 Intermodulation distortion in a SISO case

In this section IMD in a SISO channel with log-normal fading is investigated. In

a wireless LAN (WLAN) systems for indoor office environments it is common to

use a single BS and there are no other BS in the vicinity that interfere with the

MS, so the only interference comes from IMD generated in the own BS. Due to

the near-far ratio of two users connected to a WLAN access point5 (AP), the IMD

generated by the AP might block a near transmitter if the AP is simultaneously

transmitting with high power to a MS located on the fringe of the coverage area.

This blocking will manifests itself as a reduction in system capacity from the ideal

case.

Often, in a WLAN environment, there is a shadow fading due to obstacles as

office furniture and walls that fades the signals on a large scale. It is often mod-

elled as a log-normal distribution around the mean given by a path loss equation.

The integration over all possible MS locations has a closed form solution as is

shown in this section. The problem was earlier addressed in [181] where a closed

form expression was derived that characterize the relationship between the block-

ing probability and linearity requirements of the power amplifier in a simple SISO

channel with an inverse power law attenuation of the signal power. Here the cor-

responding closed form expression for the blocking probability in the log-normal

fading case is presented which in [181] was found only by using a Monte Carlo

simulation. Hence, the novelty in this section is the closed form expression for this

outage probability. Monte Carlo simulations are used to verify the analytical result.

Analysis

The assumptions are similar to the assumptions in [181] where an AP is the re-

ceiver (RX) and the desired transmitter TXd and an interfering transmitter TXi are

situated on the distance rd and ri from the AP respectively, see Figure 6.12. The

maximum range for the basestation coverage is R. Some more assumptions are

made to make the problem analytically tractable: Assume that the transmitters are

transmitting with the same power and without power control. The transmitter po-

sitions are independent and uniformly area distributed over a disc with radius R
from the AP. When the desired signal power to IMD power ratio is below a certain

threshold Γ, the desired transmitter is completely blocked.

If a simple power law equation with decay index p is assumed, then the expec-

5In WLAN systems, the basestation is commonly denoted the access point.
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Figure 6.12: The near far scenario where IMD from TXi is interfering the signal

from TXd at the AP. R is the maximum range of the AP.

tation of the received desired and IMD power at the AP is

md = E {pd} = 1/rp
d

mi = E {pi} = PIMD/rp
i

(6.52)

where 10 log10(PIMD) dBc is the IMD product level transmitted from TXi and

the transmitted power from TXd has been normalized to PT = 1 without loss of

generality.

At the AP, the blocking probability is defined as

Pr(blocking)
△
=Pr {pd/pi < Γ} (6.53)

where pn and pi are the received desired and IMD power respectively averaged

over the eventual fast fading. The specified threshold Γ depends on the tolerance

of the modulation to interference. The received power depends on the distances rd

and ri, the path loss and on the probability distribution of the fading. Using Bayes

theorem, rewrite the blocking probability (6.53) as

Pr {pd/pi < Γ} = (2π)2
∫ R

0

∫ R

0
Pr {pd/pi < Γ|rd, ri} p(rd)p(ri)drddri

(6.54)
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where the factor (2π)2 is due to the integrated uniform angle distribution and inde-

pendence of the TXd and TXi positions are assumed. The marginal distribution of

the radial position in an area uniform pdf is

p(r) =
2r

R2
. (6.55)

The blocking probability conditioned on the area mean power md,mi for a log-

normal shadowed channel with equal standard deviations for the desired and the

IMD signal fading statistics, σd = σi = σ, can be written as [182]:

Pr {pd/pi < Γ|md,mi} = Q




ln
(

md
Γmi

)

√
2σ


 . (6.56)

The blocking probability is now obtained using (6.52),(6.55),(6.56) in (6.54) as

Pr {pd/pi < Γ} =
16π2

R4

∫ R

0

∫ R

0
Q

(
1√
2σ

ln

{(
ri

rd

)p

/PIMDΓ

})
rirddridrd

(6.57)

Equation (6.57) reduces after integration to

Pr {pd/pi < Γ} =

=Q (c) +
1

2
e

2σ2

p2

[
(PIMDΓ)2/pQ

(
2σ

p
− c

)
− 1

(PIMDΓ)2/p
Q

(
2σ

p
+ c

)]

(6.58)

where c = − ln(PIMDΓ)/σ. These integrations are carried out in Appendix 6.A.

Note that this expression is independent of the maximum range R. In the limit

σ → 0, i.e. the non-fading case, the expression (6.58) approaches the blocking

probability in [181] for the simple power law decay of the signals, if PIMD < 1/Γ
which is true for practical IMD levels, is assumed :

lim
σ→0

Pr {pd/pi < Γ} =
1

2
(PIMDΓ)2/p (6.59)

The desired to interference level tolerance of the modulation is set to Γ=15 dBc

and plot the blocking probability as a function of the IMD level PIMD, the family

of curves in Figure 6.13 is obtained for different values of the log-normal pdf pa-

rameter σ. The path loss index was set to p = 4. To verify the expression (6.58), a

Monte Carlo simulation was performed by randomly placing terminals around the

AP and selecting a shadowing component from a log-normal distribution. Then

equation (6.53) is evaluated to determine whether blocking has occurred. The cor-

respondence between the theory and simulated results are satisfactory.
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Figure 6.13: Theoretical (solid) and results from Monte Carlo simulation (marked)

of channel blocking probability with respect to linearity of the transmit power am-

plifier. Different cases of log-normal fading (i) σ=9 dB, (ii) σ=6 dB, (iii) σ=−∞
dB. (no fading)

In Figure 6.13 the curve for the non-fading case is displayed, and it shows the

lowest probability of blocking for a given IMD level. Hence, the shadow fading

increases the blocking probability. When the IMD level equals the IMD tolerance

(PIMDΓ=1)the blocking probability is 0.5, because blocking will the occur when

TXi is closer to the AP than TXd and this occurs at equal probabilities Pr(rd <
ri) = Pr(ri < rd) = 0.5.

It can be seen from Figure 6.13 that for a blocking probability of 10%, Γ is

-37 dBc, -33 dBc with a shadow fading standard deviation of σ=9 dB and 6 dB

respectively.
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6.5 Conclusions

The aim of this chapter was to investigate the impact of using MCPA:s at the bases-

tation for the downlink in a wireless system. The derivations was simplified by

assuming a switched beam configuration, often implemented using a beamforming

network, such as the Butler matrix. This technique was shown to have the inter-

esting property that the IMD follows the same radiation patterns as the original

desired signals patterns. This allowed for the concept of a beam-frequency scheme

and a frequency channel allocation algorithm for reducing the harmful IMD in that

particular cell was developed. A basestation with more antenna elements gave a

reduction of intermodulation distortion which could be of the order of several dB.

The one-cell study concluded that in the many user case, the reduction in IMD

is on average nt-fold, where nt is the number of transmit antennas. The distribution

function of the power of the transmitted IMD was calculated using a simulation of

a system resembling the GSM standard. It was seen that the variability decreased

as the number of co-amplified signals increased.

A WLAN scenario was also investigated and it was found that the outage (or

blocking) probability integral in the log-normal fading SISO case had a closed

form analytical solution. This integral had been solved by previous authors [181]

using Monte Carlo integration techniques but in this chapter a closed form expres-

sion is presented, for the first time. The result can be applied to IMD studies in

WLAN system where multicarrier modulation such as OFDM is used. By vary-

ing the log-normal fading parameter, it could be seen that shadow fading increased

the blocking probability. So an open space office has a lower blocking probabil-

ity from intermodulation interference than an WLAN environment with blocked

propagation paths.
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Appendix 6.A The solution to the integral in (6.57)

To solve the integral

∫ R

0

∫ R

0
Q

(
1√
2σ

ln

{(
ri

rd

)p

/PIMDΓ

})
rirddridrd (6.60)

we start with the inner integral and define A = p/(
√

2σ), ri = r and c =
−p ln(rd)/(

√
2σ) − ln(PIMDΓ) and rewrite it as

∫ R

0
Q(A ln(r) + c)dr . (6.61)

Now, make the variable substitution z = A ln(r) + c, which yields the equivalent

integral

e−c/A

A

∫ A ln(R)+c

−∞
Q(z)ez/Adz . (6.62)

This integral is solved by partial integration as

∫ A ln(R)+c

−∞
Q(z)ez/Adz =

[
AQ(z)ez/A

]A ln(R)+c

−∞
−
∫ A ln(R)+c

−∞
A

dQ(z)

dz
ez/Adz .

(6.63)

Hence, the derivative of the Q-function is required, which is easily found from its

definition (2.20)
dQ(z)

dz
= − 1√

2π
e−z2/2 . (6.64)

So, (6.63) can be written as

∫ A ln(R)+c

−∞
Q(z)ez/Adz

= AQ(A ln(R) + c)eln(R)+c/A +
A√
2π

∫ A ln(R)+c

−∞
Aez/A−z2/2dz .

(6.65)

Hence, we need to solve a new integral which solution is found in [80, Eq. 2.33]

∫ A ln(R)+c

−∞
Aez/A−z2/2dz =

√
π

2
e1/2A2

[
erf

(
A ln(R) + c√

2
+

1√
2A

)
+ 1

]
.

(6.66)

By utilizing the relations erf(x) + erfx(x) = 1 and Q(x) = 1
2erfc(x/

√
2) [14],

(6.66) is written as

∫ A ln(R)+c

−∞
Aez/A−z2/2dz =

√
π

2
e1/2A2

{
2 − 2Q

(
A ln(R) + c +

1

A

)}
.

(6.67)



252 Chapter 6. Nonlinearities in transmit amplifiers for MISO systems

So, the integral (6.61) can, if (6.67),(6.65) is used in (6.62) be written as

∫ R

0
Q(A ln(r) + c)dr

= RQ(A ln(R) + c) + e−c/A−1/2A2

(
1 − Q

(
A ln(R) + c +

1

A

))
.

(6.68)

So we see that the inner integral in (6.60) consists of Q-functions as well. Now,

make the substitutions B = −p/
√

2σ, d1 = A ln(R)−ln(PIMDΓ), E = e−c/A−1/2A2
,

rd = r and d2 = d1 + A−1. Then (6.60) can be written as

∫ R

0
RQ(B ln(r) + d1) + E(1 − Q(B ln(r) + d2))dr (6.69)

which is solved by applying the derived formula (6.68) once more. The calculations

are straightforward but tedious and the result is finally given in (6.57).



Chapter 7
Switched Parasitic Antenna

Applications for Wireless Systems

A novel techniqe to introduce pattern diversity is studied in this chapter. A switched

parasitic antenna (SPA) is used to electronically steer the radiation pattern of the

receiving or transmitting antenna. The correlation between different beams are

shown to be sufficiently low to yield a diversity gain and the capacity is shown to

be comparable with the antenna array in certain situations. Furthermore, a space

time block code is used to evaluate the BER of a MIMO system with SPA. It is

found that a SPA requires a 5 dB higher SNR than the array antenna to acheive

a BER of 10−2 but the benefits are the lower costs for radio hardware since the

SPA utilizes only one transceiver. The SPA is also shown to be useful in direction

finding (DF) applications. The DF performance of a SPA is found by calculating

the lower bound on the DF accuracy, i.e. the Cramer Rao lower Bound (CRB).

It is found that the SPA offers a compact implementation with high resolution DF

performance with only a single radio receiver and is thus an interesting low-cost

alternative to traditional multiple antenna arrays.

7.1 Introduction

An unfortunate aspect of multiple antenna systems is the high cost of multiple

radio transceivers at the access point and at the user terminal. There is always

a need to reduce the size of the antenna array, to lower the fabrication costs but

also the reduce the negative impact on the visual environment by improving the

aestethics of the antenna. Furthermore, it is expensive to calibrate and maintain

antenna arrays with many antenna elements. Recently, switched parasitic antennas

253
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(SPAs) have been subject of an increased interest in the literature, for improving

capacity in indoor LANs [183], as a diversity antenna [184, 185], for tracking of

base-stations [186] and for high resolution direction of arrival estimation [109].

See also the recent book [187] for an extensive overview of SPA:s.

In a sense, SPA offers characteristics similar to an array antenna with several

fixed beams, but is more compact in size, and might be more suitable on certain

mobile equipments. The use of SPAs in MIMO systems will be examined in this

chapter, where the SPA is primarily used at the mobile station (MS). It has been

observed that when the fades of the MIMO receive channels are correlated, the

channel capacity can be significantly smaller than when the fades are independent

and a identically distributed (i.i.d.) [88]. Hence, the capacity of the SPA in this

type of scenarios is studied and compared to a completely uncorrelated scenario.

Furthermore, space time block coding (STBC) techniques are applied to examine

how this correlation affects the BER of a SPA system.

7.2 Switched parasitic antennas

SPAs offering directional patterns dates back to the early work of Yagi and Uda

in the 1930’s. For mobile communications, Vaughan [185] gave some examples

of this technology to provide angle diversity as two parasitics on a mobile phone

handset. The concept is to use a single active antenna element, connected to a radio

transceiver, in a structure with one or several passive antenna elements, operating

near resonance. The passive elements are called parasitic elements (PE) and act

together with the active element to form an array, as in the well known Yagi-Uda

array [108]. To alter the radiation pattern, the termination impedances of the PEs

are switchable, to change the current flowing in those elements. The PE become

reflectors when shorted to the ground plane using pin diodes [188] and when not

shorted, the PE have little effect on the antenna characteristics. The receiver is

always connected to the center antenna element so there are no switches in the RF

signal path.

The parasitic antennas can be designed using monopoles on a ground plane

[185, 188] or as parasitic patch antennas [189]. In this chapter, the monopole

on the ground plane is considered for its omnidirectional properties. Examples

of parasitic antennas are shown in Figure 7.1 for a 4-direction symmetry and in

Figure 7.2 for a 3-direction symmetric antenna. The antenna in Figure 7.2 have an

additional circle of parasitic elements that always are shorted to ground. The effect

of this arrangement is an increased directivity as their length are shorter than the

corresponding resonant length (≈ λc/4) and will lead the induced emf [108].

The lengths and distances displayed in Figure 7.1 and 7.2 have not been opti-
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Figure 7.1: A five element monopole SPA. The center element is active and con-

nected to the transceiver. The four passive antenna elements can be switched in or

out of resonance using appropriately biased pin diodes.
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Figure 7.2: A seven element monopole SPA. The center element is active and con-

nected to the transceiver. The three passive antenna elements closest to the active

can be switched in or out of resonance using appropriately biased pin diodes. The

three outermost monopoles are hardwired to ground.

mized. The lengths can be adjusted to give the antenna certain characteristics, such

as directivity and/or dual band tuning, as demonstrated in [188], where a genetic

algorithm approach was taken to optimize a six element switched beam antenna. If

the parasitics are moved closer to the active element, then the mutual coupling in-

creases and the change in the radiation pattern when switching is greater, however,

the antenna impedance changes also more dramatically, which makes the antenna

matching difficult. Hence, a too large mutual coupling renders in an inefficient

antenna. The trade-off is thereby between compactness and high directivity on one

hand and antenna efficiency on the other.

The antennas in Figure 7.1 and 7.2 was simulated using HFSS (High Frequency

Structure Simulator) from Agilent Technologies Inc. which is a 3D simulator us-

ing the finite element method to solve for the electromagnetic field. The software

was used to calculate the far-field radiation pattern of the antenna for different set-
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tings of the switched parasitics. The monopole elements were cylindrical with an

length to radius ratio l/r = 100 which have a first resonance at approximately

0.24λc [108]. The monopoles were assumed to be perfect conductors which forces

the electrical field to be normal to the surface. Furthermore, to shorten the sim-

ulation time, the ground plane was assumed to be of infinite extent. The chosen

frequency was 2.15 GHz, suitable for the downlink in UMTS FDD mode. Hence,

the wavelength is λc=0.1395 meter.

The far-field power radiation pattern for three shorted parasitics and one open

for the parasitic antenna in Figure 7.1 is shown in Figure 7.3 and the corresponding

plot for Figure 7.2 is shown in Figure 7.4 for two shorted and one open parasitic

monopole. The directivity of the two antennas are 9.9 dB and 10.0 dB respectively.

7.3 MIMO channel capacity and diversity gain

To achieve a high capacity in MIMO systems or a large diversity gain, the signals

received by different settings of the parasitics, called the mr modes, must have low

correlation (ideally zero). Hence, define the correlation coefficient of the signal

voltages received by two patterns as [190]

ρ12 =

∫ 2π

0

∫ π

0
S(θ, φ)E1(θ, φ) · E∗

2(θ, φ) sin θdθdφ (7.1)

where the two far field patterns E1(θ, φ) and E2(θ, φ) are normalized as

∫ 2π

0

∫ π

0
S(θ, φ)|Ei(θ, φ)|2 sin θdθdφ = 1 (7.2)

for i = 1, 2. Above, S(θ, φ) is the pdf of the incident waves.

The correlation coefficients for the complex voltage patterns corresponding to

the power radiation patterns in Figure 7.3 and 7.4 are calculated assuming the Clark

scenario [191] with pdf S(θ, φ) = δ(θ − π/2)/(2π sin θ) to model a ring of dense

sources on a horizon about the receiving antenna. Assume that three (two) para-

sitics are always shorted, to get four (three) different directions with 90◦ (120◦)

separation. This gives the correlation coefficient for adjacent patterns, or modes,

for the parasitic antenna in Figure 7.3 as |ρi,i+1|2 = 0.1157 and for opposite pat-

terns |ρi,i+2|2 = 0.0120. For the parasitic antenna in Figure 7.4, |ρi,i+1|2 = 0.1002
is obtained. The envelope correlation coefficients for the signals received from the

modes are taken as ρeij ≈ |ρij |2 [192]. A well known rule of thumb is that “uncor-

related” signals in diversity branches corresponds to an envelope correlation lower

than 0.5. Hence, the SPAs presented here would achieve a diversity gain in Clarke’s

scenario.
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Figure 7.3: Power radiation pattern of the five element monopole antenna shown

in Figure 7.1 with three parasitics shorted (S) to ground and one open (O).

7.3.1 Channel capacity

The MIMO channel capacity is calculated using the SPA at the base station (BS)

and/or at the mobile station (MS). A single user, point to point communication

over a flat-fading channel with mt transmit modes (or array antenna elements)

and mr receive modes (or array antenna elements) and no co-channel interference

is considered1. Assume that the block fading model, discussed in Section 1.1.2 is

valid. Then the channel output corresponding to an input block spanning N symbol

times is, from (1.22),

Y = HC + V , (7.3)

where the received signal Y is mr × N , the fading channel H is mr × mt, the

codeword matrix C is mt × N and the receiver noise V is a mr × N matrix. The

entries of the noise matrix are i.i.d. complex Gaussian with zero mean. Recall that

it is assumed that the channel is quasi-static, i.e. constant over the block of length

N symbols.

With np parasitic elements, there are 2np different modes, or settings of the

switchable diodes. The (mr or mt) transmit and receive modes of the parasitic

antennas are chosen among these to minimize the envelope correlation. Here, it is

1The number of antenna modes is denoted mt as opposed to the number of antennas nt in previ-

ous chapters since the definition of “antenna elements” does not hold on SPA:s.
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Figure 7.4: Power radiation pattern of the seven element monopole antenna shown

in Figure 7.2 with two parasitics shorted (S) to ground and one open (O) plus three

hardwired to ground (S).

assumed that the receiver switches through and samples the chosen modes during

one symbol interval. This is possible in many systems, since the switching time for

a pin diode is on the order of a few nanoseconds. The technique of oversampling

the received signal is common in many communication systems, but here the over-

sampling is performed in both space and time, i.e. spatio-temporal oversampling.

If the increased sampling rate (or bandwidth) poses a problem, then a bandpass

sampling strategy could also be employed. In this chapter, the potential in using

the different radiation patterns of a SPA for diversity and capacity enhancement

is examined. It is important to note that further work is needed on the practical

aspects of the antenna design as well as sampling strategies.

As the underlying concept here is angle diversity, a simple, yet detailed channel

model is used that includes the spatial dimension. It was defined in Section 3.3.1

as the scattering disc model. Different channel scenarios is easily be obtained by

varying the radius of the scattering disc as well as the location of the BS relative

the disc [104]. The channel capacity are investigated in the following cases:

• BS with antenna array and MS with antenna array

• BS with antenna array and MS with SPA
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• BS with SPA and MS with SPA.

When the array is used, omnidirectional antenna elements are assumed with δBS =
2λc spacing at the BS and δMS = 0.5λc spacing at the MS.

Shannon’s capacity formula for a mt input, mr output MIMO channel, assum-

ing equal power radiated from each transmitting antenna/mode and CSI unknown

at the transmitter was given by (2.58) and is repeated here

C = EH

[
log2 det

{
Im +

PT

σ2
nmt

HH∗
}]

(7.4)

where PT /σ2
n is the signal to noise ratio (SNR) for each receive antenna/mode. The

channel matrix H in (7.4) is normalized in the sense that ‖H‖F =
√

min(mr,mt),
where F denotes the Frobenius norm.

Since the channel matrix H is a function of the random position and reflec-

tion coefficients of the scatterers, the channel H is a stochastic matrix and thus

the capacity C in (7.4) is obtained as the expectation value over the mutual in-

formation. With the SNR set to 4 dB, a Monte Carlo simulation with 4000 trials

was performed to estimate the Complementary Cumulative Distribution Function

(CCDF) of the capacity C for a scenario with L = 20 scatterers. The calculations

are performed for an equal number of modes at the transmitter and the receiver

(mt=mr=4). The distance between the BS and MS is D = 50λc. The CCDF of

the capacity is shown in Figure 7.5 for the scattering disc radius R = 50λc. The

curves are compared to the i.i.d. channel matrix Hw according to Definition 3.2

on page 81. Using the array antenna at the MS results in a slightly higher capacity

than the array-parasitic configuration, however at the expense of more hardware

due to the use of four transceivers instead of one. If the SPA is used at the BS, then

the capacity is further decreased, as the signals from the modes becomes correlated

due to the small angular spread as seen at the BS.

The outage capacity CPo
2 at Po = 10% outage probability is presented in

Figure 7.6 and 7.7 for the two types of antenna configurations respectively. A large

disc correspond to an indoor scenario, where both BS and MS are surrounded by

scatterers. The other extreme, with a small scattering disc centered at the MS, as

in an outdoor to indoor channel, results in a smaller capacity, due to the reduced

angular spread, and hence, lower diversity advantage. This can especially be seen

in the case where the BS and the MS both are equipped with parasitic antennas,

the capacity increases when the radius of the scattering disc exceeds the BS to MS

distance, where full angular diversity also is possible at the BS.

At high bit rates, it might not be possible to switch through several modes dur-

ing a symbol interval. Therefore a system with only two modes was investigated.

2See the definition of outage capacity in Definition 2.2 on page 36.
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Figure 7.5: The complementary cumulative distribution function of the MIMO

channel capacity for the mt=mr=4 case. The SNR is 4 dB and the scattering disc

radius is 50λc. The parasitic antenna is shown in Figure 7.1.

The parasitic antenna in Figure 7.1 was used, but only two modes with lowest sig-

nal correlation (opposite in direction) was utilized. The outage capacity at 10%
outage probability is shown in Figure 7.8. Comparing Figure 7.6 and 7.8, it is ob-

served that the overall capacity is lower, but the difference between the array and

the SPA is slightly smaller at scattering disc radius around 10λc.

7.4 Evaluating BER using STBC

In this section, an orthogonal space time block coding (STBC) is used, see Section

2.3.2, to exploit the available channel capacity discussed in the previous section.

Assume that the transmitter have no knowledge of the CSI. For complex symbol

constellations, rate R=1 orthogonal STBC only exists for N = 2 [29], however

for real constellations there exists orthogonal, delay optimal rate one codes for

mt = 2, 4, 8, as for example the mt = 4 case [29]

C =

√
PT

4




s(n) −s(n + 1) −s(n + 2) −s(n + 3)
s(n + 1) s(n) s(n + 3) −s(n + 2)
s(n + 2) −s(n + 3) s(n) s(n + 1)
s(n + 3) s(n + 2) −s(n + 1) s(n)


 . (7.5)
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Figure 7.6: The outage capacity C0.1 at 10% outage probability versus the radius

of the scattering disc for the mt=mr=4 case. The parasitic antenna is shown in

Figure 7.1. SNR=4 dB.

To study the performance in terms of BER using the SPA, the systems are simulated

employing the STBCs (2.70) and (7.5), using the 4-direction SPA in Figure 7.3 and

compare the results with the array antenna solution. When the Alamouti’s STBC

scheme is used, two opposite (180◦ separation direction) modes are utilized as the

two receiving/transmitting modes for the SPA. The BER for these configurations is

compared in Figure 7.9 where BPSK modulation is used in both cases, hence the

bit rate 1 bit/s/Hz. It is observed that at the bit error rate of 10−2, the 2-mode SPA

gives 8 dB gain over a SISO and the 4-mode gives about 16 dB gain in SNR. The

large and small scattering radius gives a difference in SNR gain less than 1 dB. The

array-array configuration is about 5 dB better than the array-SPA configuration.

7.5 High-Resolution Direction Finding Using a SPA

Direction finding (DF) is of great importance in a variety of applications, such

as radar, sonar, communications, and recently also personal locating services. In

the last two decades, direction finding and sensor array processing has attracted

considerable interest in the signal processing community. The focus of this work

has been on high resolution, i.e. a resolution higher than the width of the main

lobe, DOA estimation algorithms [193]. These algorithms exploit the fact that an

electromagnetic wave that is received by an array of antenna elements reaches each

element at different time instants. Although the performance of these systems is
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excellent, an unfortunate aspect is the high costs of employing a radio receiver

for each antenna element. Furthermore, it is expensive to calibrate and maintain

antenna arrays with many antenna elements.

Recently, it was proposed to employ an SPA for direction finding [186, 189]

that only uses a single active radio receiver, thereby significantly reducing the cost.

The possibilities of exploiting the SPA for high-resolution DOA estimation will be

examined in this section, since no attempt to employ high-resolution DOA methods

was undertaken in [186, 189].

7.5.1 The SPA in a DF application

The far field radation patterns in the azimuth plane F (φ) is shown in Figure 7.3

and 7.4 for the 4-mode and 3-mode SPA respectively. Once these far-field radia-

tion properties are found, it is straightforward to derive a model for the received

voltages [194]. If p waves are incident upon an antenna with mr symmetry direc-

tions, then the received voltages can be written in matrix form as

x(t) = A(φ)s(t) + v(t), (7.6)

where the vector of measured voltages x(t) is mr × 1. The matrix A(φ) (mr × p)

corresponds to the response of the different symmetry directions and has elements
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[A(φ)]qp = F (φp+2qπ/mr). This matrix is typically called the steering matrix in

the sensor array processing literature. The signal vector s(t) is p × 1 and contains

the strength of the received fields. Finally, the noise vector v(t) is nr × 1.

In order for the analysis in the following sections to be valid, some additional

assumptions are needed:

• The steering matrix has full rank, i.e., rk(A) = p.

• v(t) is temporally white and circularly Gaussian distributed with zero mean

and covariance matrix E{v(t)v(s)∗} = δtsσ
2
nI.

• s(t) is also temporally white and circularly Gaussian distributed with zero

mean and covariance matrix Rss.

The noise is both spatially and temporally white, while the signal is only assumed

to be temporally white. Furthermore, the signal is assumed to be uncorrelated with

the noise.

7.5.2 Direction Finding Performance

The data model (7.6) is identical to the usual data model used in sensor array pro-

cessing [193], except for a new steering matrix. This will of course change the

direction finding properties. Before the properties of a specific DOA estimation

scheme is studied, a lower bound, the Cramer-Rao Bound, on the variance of the

DOA estimates will be analyzed. Note that it is possible to asymptotically achieve

this bound with many methods in the literature [193].

Expressions for the CRB was derived for an array of antenna elements in [195];

and can also be applied to the parasitic antenna by changing the steering matrix.

For any unbiased estimator φ̂, the following holds

E{(φ̂ − φ0)(φ̂ − φ0)
T } ≥ B (7.7)

where B−1 is the Fisher information matrix which in the white noise case can be

shown to be [195]

B =
σ2

n

2NS

[
Re{(D∗P⊥

AD) ⊙ (RssA
∗R−1ARss)

T }
]−1

, (7.8)

where the elements of Dqp = ∂F (φ+2qπ/mr)
∂φ


φ=φp

. Furthermore, ⊙ denotes the

Hadamard (or Schur) product, i.e., element-wise multiplication and P⊥
A = I −

PA = I−AA† 3 is the orthogonal projector onto the null space of A∗. The matrix
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Figure 7.10: The square root of the CRB for the configurations in Figure 7.1 and

7.2 when two waves are incident from (30◦, 30◦ + ∆) with SNR=10dB and 1000

samples.

R = ARssA
∗ + σ2

nI is the covariance matrix of the measured voltages x(t) and

NS denotes the number of time samples.

The square root of the CRB, i.e. the standard deviation, is shown in Figure 7.10

for the antenna configurations in Figure 7.1 and 7.2 as two waves are incident

from (30◦, 30◦ + ∆). Only the CRB for the first DOA, i.e. the wave arriving

from 30◦, is shown since the CRB for the second DOA will behave similarly. The

standard deviation for a uniform linear array of three elements spaced λc/2 apart is

compared to the 4-mode and 3-mode SPA:s. As expected, the performance is better

when using four rather than the three symmetry directions. Also, note that the three

element array performance slightly better the 4-mode SPA. However, these results

depend on the incidence angles, since the array will work best for broadside and

worst for end-fire incidence.

In Figure 7.11, the standard deviation is shown for the same antenna config-

urations as in Figure 7.10 when two waves are incident from (φ0, φ0 + 5◦). The

parasitic antenna, due to its symmetrical properties, offers similar direction finding

performance properties for all incidence angles. The linear array performs worse

than the parasitic antenna at end-fire incidence, while performing much better at

3
A

† is the Moore-Penrose pseudo inverse of A.
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Figure 7.11: The square root of the CRB for the configurations in Figure 7.1 and

7.2 when two waves are incident from (φ0, φ0 + 5◦) with SNR=10dB and 1000

samples.

broad-side incidence. However, for many direction finding applications, the direc-

tion finding performance of the parasitic antenna is sufficient and the cost reduction

of using only a single radio receiver outweighs the loss in performance for broad-

side angles. It should also be stressed that the antenna designs in Figure 7.1 and 7.2

are by no means optimal and better DOA properties may be obtained by a proper

optimization.

7.5.3 Estimation Methods

The analysis in the previous section was based on the CRB on the estimation error.

In this section, algorithms that approximately achieve this lower bound will be

discussed. In principle, all DOA estimation schemes derived for a general antenna

array can also be applied to a parasitic antenna by inserting a new steering matrix.

For an overview of DOA estimation methods, see [193].

In [196], a popular high resolution DOA estimation method, MUSIC, was in-

troduced where the DOA estimates are taken as those φ that maximizes the MUSIC

criterion function

φ̂ = arg max
φ

a∗(φ)a(φ)

a∗(φ)ÊnÊ∗
na(φ)

, (7.9)
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Figure 7.12: The normalized MUSIC spectrum when two waves are incident from

25◦ and 45◦ upon a 4-mode parasitic antenna and a three element array with

SNR=10dB and 1000 samples.

where the steering vector aq(φ) = F (φ + 2qπ/mr). Usually this is formulated

as finding the p largest peaks in the “MUSIC spectrum”. Here, Ên denotes the

mr − p eigenvectors corresponding to the mr − p smallest eigenvalues of the es-

timated covariance matrix R̂. A typical example of a MUSIC spectrum is shown

in Figure 7.12, where two waves are incident from 25◦ and 45◦ upon a 4-mode

SPA and a three element array with SNR=10dB and NS = 1000 samples. This

figure indicates that the SPA, in this case, offers a high-resolution direction find-

ing performance similar to that of an antenna array without the cost of multiple

radio receivers. Most other DOA estimation schemes [193] can also be applied to

SPAs with similar results. For instance, the SML algorithm [195] for this type of

antenna was implemented. The root mean square error of the maximum likelihood

estimator achieved the CRB bound from Section 7.5.2, as expected.

7.6 Conclusions

A MIMO system using a switched parasitic antenna has been analyzed, in terms

of capacity and BER, assuming orthogonal space time block codes. The channel

capacity was simulated using a spatial channel model. It was found that the SPA

offered capacities close to the capacities offered by an array antenna, in realistic
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MIMO scattering environments. Since the SPA only requires one receiver, it could

be an attractive low cost solution to future user terminals using space time coding

to increase bit rates.

Furthermore, the potential use of an SPA for high-resolution direction finding

was investigated. The SPA generates directional radiation patterns that can be used

successfully to estimate DOAs. The direction finding performance was examined

by calculating the CRB and the MUSIC estimator. It was found that the SPA of-

fers a compact implementation with high-resolution direction finding performance

using only a single radio receiver. Thus, exploiting SPAs for direction finding is

an interesting alternative that offers several advantages over traditional arrays. An-

other advantage of the SPA is that a very compact implementation of the antenna

is possible.

The examples of SPA:s presented here are only for demonstration purpose,

the design of the SPA depends on the dimensions of the user equipment. Further

work is needed on the practical aspects of the antenna design as well as sampling

strategies.



Appendix A
The Butler Matrix

In this appendix, the theory of the Butler matrix is explained more thoroughly. The

Butler matrix was developed as a multiple beam feed network for a phased array

antenna. It is attributed to Butler [20], but it was independently discovered by

Shelton [78]. It uses 3-dB directional couplers, or hybrid junctions along with fixed

phase shifters to form nr beams from an nr element array where nr is an integer

expressed as some power of 2, that is nr = 2p. The 3-dB directional couplers is

a four port junction that divides the power equally on two ports with +90◦ phase

shift and no power is present at the fourth port. Similarly, a signal entering port

four will be equal-power divided between the two ports with -90◦ phase difference

and no signal at port one.

For an nr-element antenna array, (nr/2) log2(nr) directional couplers and

(nr/2)(log2(nr) − 1) phase shifters are required to create the Butler matrix. The

Butler matrix is theoretically lossless, but there will always be a finite insertion

loss, due to the inherent losses in directional couplers, phase shifters and transmis-

sion lines. There is no theoretical limit of the bandwidth, but due to the hardware,

the bandwidth is usually limited, to about 30%.

The normalized input-output relationship can be written as

Fr =
1√
nr

nr−1∑

l=0

fl exp

[
−j

2πlr

nr

]
(A.1)

and

fl =
1√
nr

nr−1∑

r=0

Fr exp

[
j
2πlr

nr

]
(A.2)

where fl is the signal at the lth input port and Fr is the signal at the rth output port,

connected to antenna r. Note the similarities with the fast Fourier transform (FFT).
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Figure A.1: Eight-element Butler matrix for beamforming

The fact is that the Butler matrix had existed a few years before the FFT appeared

in 1965.

If the Butler matrix is connected to an antenna array, then the matrix will act so

that the array will have a uniform amplitude distribution and constant phase differ-

ence between neighboring elements. This will then generate the beams depending

on which input port is used. The direction of the beam depends on the wavelength

of the transmitted signal, and will thus squint with frequency. If port one is used,

then all other ports are grounded, the output of antenna r is

Fr =
1√
nr

f1 exp

[
−j

2πr

nr

]
(A.3)

and the radiation pattern in direction θ is

U(θ) =

nr∑

r=1

Fr(t)e
−jr 2πδ

λc
sin(θ)−j 2πr

nr (A.4)
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where we assumed iso-tropical radiation patterns. This expression will have a max-

ima when the exponent is unity, given by

2πδ

λc
sin(θmax) +

2πr

nr
= 0 (A.5)

Here δ is the inter-element spacing (linear uniformly spaced array is assumed) and

λc is the wavelength. To maintain the same direction of the maximums when the

frequency is changed, the distance δ must be changed to maintain the quotient δ/λc

constant.
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[14] T. Öberg, Modulation, Detection and Coding. Chichester: John Wiley and

Sons, 2001.

[15] J.G. Proakis, Digital Communications. Singapore: McGraw-Hill, 1989.

[16] E. Lindskog. Space-Time Processing and Equalization for Wireless Com-

munications, PhD thesis, Signals and Systems Group, Uppsala University,

Uppsala, Sweden, 1999.

[17] C. Tidestav. The Multivariable Decision Feedback Equalizer- Multiuser De-

tection and Interference Rejection, PhD thesis, Signals and Systems Group,

Uppsala University, Uppsala, Sweden, 1999.

[18] J.P. Kermoal, L. Schumacher, F. Fredriksen, and P.E. Mogensen, “Polar-

ization diversity an MIMO radio channels: Experimental validation of a



BIBLIOGRAPHY 275

stochastic model and performance assessment,” in Proceedings of Vehicu-

lar Technology Conference, VTC Fall, Atlantic City, USA, Oct. 2001, pp.

22–26.

[19] R.U. Nabar, H. Bölcskei, and A.J. Paulraj, “Transmit optimization for spatial

multiplexing in the presence of spatial fading correlation,” in IEEE Global

Telecommunications Conference, San Antonio, USA, Nov. 2001, pp. 131–

135.

[20] J.L. Butler, Digital matrix and intermediate frequency scanning, Scanning

Antennas, vol. 3: Academic Press, 1966.

[21] T. Svantesson, “An antenna solution for MIMO channels: The multimode

antenna,” in Conference Record of the Thirty-Fourth Asilomar Conference,

Pacific Grove, USA, Oct. 2000.

[22] M. Wennström and T. Svantesson, “An antenna solution for MIMO chan-

nels: the switched parasitic antenna,” in IEEE Personal Indoor and Mobile

Radio Communications Conference (PIMRC), San Diego, USA, Oct. 2001,

pp. 159–163.

[23] C.C. Martin, J.H. Winters, and N.R. Sollenberger, “MIMO radio chan-

nel measurements: Performance comparison of antenna configurations,” in

Proceedings of Vehicular Technology Conference, VTC Fall, Atlantic City,

USA, Oct. 2001, pp. 1225–1229.

[24] A.S. Macedo and E.S. Sousa, “Coded OFDM in broadband indoor wireless

systems,” in Proceedings of IEEE Int. conf. on Communications (ICC),

Montreal, Canada, June 1997, pp. 934–938.

[25] H. Bölcskei, D. Gesbert, and A.J. Paulraj, “On the capacity of OFDM-based

spatial multiplexing systems,” IEEE Transactions on Communications, vol.

50, no. 2, pp. 225–234, Feb. 2002.

[26] T. Ottosson, A. Ahlen, A. Brunström, M. Sternad, and A. Svensson, “To-

wards 4G IP-based wireless systems,” in Future Telecommunications Con-

ference, Beijing,China, 2001.

[27] E. Biglieri, G. Caire, and G. Taricco, “Limiting performance of block-fading

channels with multiple antennas,” IEEE Transactions on Information The-

ory, vol. 47, no. 4, pp. 1273–1289, May 2001.



276 BIBLIOGRAPHY

[28] N. Seshadri and J.H. Winters, “Two signalling schemes to improving the er-

ror performance of frequency-division-duplex (FDD) transmission systems

using transmitter antenna diversity,” in Proceedings of Vehicular Technology

Conference (VTC), Secaucus, USA, May 1993, pp. 508–511.

[29] V. Tarokh, H. Jafarkhani, and A.R. Calderbank, “Space-time block codes

from orthogonal designs,” IEEE Transactions on Information Theory, vol.

45, no. 5, pp. 1456–1467, July 1999.

[30] G.J. Foschini, “Layered space-time architecture for wireless communica-

tion in a fading environment when using multi-element antenna,” Bell Labs

technical Journal, pp. 41–59, 1996.

[31] B. Hassibi and B. Hochwald, “High-rate linear space time codes,” in Pro-

ceedings of International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), vol. 4, Salt Lake City, USA, May 2001, pp. 2461–2464.

[32] G. Jöngren, M. Skoglund, and B. Ottersten, “Combining transmit beam-

forming and orthogonal space-time block codes by utilizing side informa-

tion,” in Proceedings IEEE Sensor Array and Multichannel Signal Process-

ing Workshop, Cambridge, USA, March 2000, pp. 153–157.

[33] M.T. Ivrlac, T.P. Kurpjuhn, C. Brunner, and W. Utschick, “Efficient use of

fading correlations in MIMO systems,” in Proceedings of Vehicular Tech-

nology Conference, VTC Fall, Atlantic City, USA, Oct. 2001, pp. 2763–

2767.

[34] M.T. Ivrlac and J.A. Nossek, “Correlated fading in MIMO systems - bless-

ing or curse ?,” in Proceedings of the Allerton Conference on communica-

tions, Monticello, USA, 2001.

[35] N. Sharma and E. Geraniotis, “Analyzing the performance of the space

time block codes with partial channel state feedback,” in IEEE Wireless

Communications and Networking Conference, Chicago, USA, Sep. 2000,

pp. 1362–1366.

[36] G. Ganesan and P. Stoica, “Differential detection based on space-time block

codes,” Wireless Personal Communications, vol. 21, pp. 163–180, 2002.

[37] V. Tarokh, N. Seshadri, and A.R. Calderbank, “Space time codes for high

data rate wireless communication: performance criterion and code construc-

tion,” IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 744–

765, March 1998.



BIBLIOGRAPHY 277

[38] E. N. Onggosanusi, A. Gatherer, A. G. Dabak, and S. Hosur, “Performance

analysis of closed-loop transmit diversity in the presence of feedback delay,”

IEEE Transactions on Communications, vol. 49, pp. 1618–1630, 2001.

[39] A.T. James, “Distribution of matrix variate and latent roots derived from

normal samples,” Ann. Math. Stat, vol. 35, pp. 475–501, 1964.

[40] S.M. Kay, Fundamentals of Statistical Signal Processing, vol.II, Detection

theory. New Jersey: Prentice Hall, 1998.

[41] R.W. Heath.Jr. and A. Paulraj, “Switching between multiplexing and diver-

sity based on constellation distance,” in Proceedings of the Allerton Confer-

ence on communications, Monticello, USA, Oct. 2000.

[42] H. Lutkepohl, Handbook of matrices. Chichester: John Wiley and Sons,

1999.

[43] R.J. Muirhead, Aspects of multivariate statistical theory. Ann Arbour, USA:

John Wiley and Sons, 1982.

[44] G. Taricco and E. Biglieri, “Exact pairwise error probability of space-time

codes,” IEEE Transactions on Information Theory, vol. 48, no. 2, pp. 510–

513, Feb. 2002.

[45] R. Knopp and P.A. Humblet, “On coding for block-faded channels,” IEEE

Transactions on Information Theory, vol. 46, no. 1, pp. 189–205, Jan. 2000.

[46] E. Biglieri, J. Proakis, and S. Shamai, “Fading channels:information-

theoretic and communications aspects,” IEEE Transactions on Information

Theory, vol. 44, no. 6, pp. 2619–2692, Oct. 1998.

[47] I.E. Telatar, “Capacity of multi antenna Gaussian channels,” European

transactions on telecommunication, pp. 585–595, Nov. 1999, Originally

published as an AT&T Bell Labs Technical Memo, June 1995.

[48] G.J. Foschini and M.J. Gans, “On limits of wireless communications in a

fading environment using multiple antennas,” Wireless Personal Communi-

cations, vol. 6, pp. 311–335, 1998.

[49] R.G. Gallager, Information Theory and Reliable Communication. New

York: John Wiley and Sons, 1968.

[50] A.J. Goldsmith and P.P. Varaiya, “Capacity of fading channels with side-

information,” IEEE Transactions on Information Theory, vol. 43, no. 6, pp.

1896–1992, Nov. 1997.



278 BIBLIOGRAPHY

[51] D.W. Bliss, K.W. Forsythe, A.O. Hero, and A.L. Swindlehurst, “MIMO

environmental capacity sensitivity,” in Conference Record of the Thirty-

Fourth Asilomar Conference, Pacific Grove, USA, Nov. 2000, pp. 764–768.

[52] B.A. Bjerke and J.G. Proakis, “Multiple antenna diversity techniques for

transmitting over fading channels,” in IEEE Wireless Communication and

Networking Conference, New Orleans, USA, Sep. 1999, pp. 1038–1042.

[53] B. Hassibi and H. Vikalo, “On the expected complexity of sphere decod-

ing,” in Conference Record of the Thirty-Fourth Asilomar Conference, Pa-

cific Grove, USA, Nov. 2001, pp. 1051–1055.

[54] S. Sandhu, R.W. Heath Jr., and A. Paulraj, “Space time block codes versus

space-time trellis codes,” in Proceedings of IEEE Int. conf. on Communica-

tions (ICC), vol. 4, Helsinki, Finland, June 2001, pp. 1132–1136.

[55] P. Stoica and G. Ganesan, “Space-time block codes: Trained, semi-blind

and blind detection,” in Proceedings of International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), Orlando, USA, May 2002,

pp. 1609–1612.

[56] G. Ganesan and P. Stoica, “Space-time diversity using orthogonal and am-

icable orthogonal designs,” in Proceedings of International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Istanbul, Turkey, June

2000, pp. 2561–2564.

[57] P. Stoica and G. Ganesan, “Maximum-SNR space-time designs for MIMO

channels,” in Proceedings of International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Salt Lake City, USA, May 2001, pp.

2425–2428.

[58] G.B. Giannakis, editor, Signal Processing Advances in Wireless and Mobile

Communications: Trends in Single- and Multi-user systems, vol. 2, chap-

ter 3, Prentice Hall, Upper Saddle River, USA, 2001, Space-Time Diversity

Chapter, authored by G. Ganesan and P. Stoica.

[59] S. Sandhu and A. Paulraj, “Union bound on error probability of linear space-

time block codes,” in IEEE Transactions on Acoustics, Speech and Signal

Processing, Salt Lake City, USA, May 2001, pp. 2473–2476.

[60] S. Sandhu and A. Paulraj, “Space time block codes: A capacity perspective,”

IEEE Communications Letters, vol. 4, no. 12, pp. 384–386, Dec. 2000.



BIBLIOGRAPHY 279

[61] A.J. Goldsmith and S-G. Chua, “Variable-rate variable-power MQAM for

fading channels,” IEEE Transactions on Communications, vol. 45, no. 10,

pp. 1218–1230, Oct. 1997.

[62] S.T. Chung and A.J. Goldsmith, “Degrees of freedom in adaptive modula-

tion: A unified view,” IEEE Transactions on Communications, vol. 49, no.

9, pp. 1561–1571, Sept. 2001.

[63] D.W. Lin, “On optimal bit loading for multitone ADSL,” in IEEE Interna-

tional Symposium on Circuits and Systems, Geneva, Switzerland, May 2000,

pp. 597–600.

[64] B.S. Krongold, K. Ramchandran, and D.L. Jones, “Computationally effi-

cient optimal power allocation algorithms for multicarrier communication

systems,” IEEE Transactions on Communications, vol. 48, no. 1, pp. 23–27,

Jan. 2000.

[65] T.H. Liew and L. Hanzo, “Space-time block coded adaptive modulation

aided OFDM,” in IEEE Global Telecommunications Conference, San Anto-

nio, USA, Nov. 2001, pp. 136–140.

[66] M.-S. Alouini and A.J. Goldsmith, “Capacity of Rayleigh fading channels

under different adaptive transmission and diversity combining techniques,”

IEEE Transactions on Vehicular Technology, vol. 48, no. 4, pp. 1165–1181,

1999.

[67] H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder and

decoder design for MIMO channels using the weighted MMSE criterion,”

IEEE Transactions on Communications, vol. 49, pp. 2198–2206, 2001.

[68] J. Campello, “Optimal discrete bit loading for multicarrier modulation,” in

IEEE International Symposium on Information Theory, Cambridge, USA,

Aug. 1998, p. 193.

[69] M. Wennström, “Smart antenna implementation issues for wireless commu-

nications,”, Technical report, Signals and Systems Group, Uppsala Univer-

sity, Uppsala, Sweden, 1999, Technical Licentiate Thesis in Signal Process-

ing, http://www.signal.uu.se/Publications/abstracts/l991.html.

[70] B. Noble and J.W. Daniel, Applied Linear Algebra. Englewood Cliffs, USA:

Prentice-Hall, 1988.

[71] J. Litva and T. Lo, Digital beamforming in wireless communications.

Boston: Artech-House Publishers, 1996.



280 BIBLIOGRAPHY

[72] D. Shim and S. Choi, “Should the smart antenna be a tracking beam array

or switching beam array?,” in Proceedings of Vehicular Technology Confer-

ence (VTC), Ottawa, Canada, May 1998, pp. 494–498.

[73] S.S. Swales, M.A. Beach, D.J. Edwards, and J.P. McGeehan, “The perfor-

mance enhancement of multibeam adaptive base-station antennas for cellu-

lar land mobile radio systems,” IEEE Transactions on Vehicular Technology,

vol. 39, no. 1, pp. 56–67, Feb. 1990.

[74] C.R. Ward, D.N. Adams, F.M. Wilson, K.S. Wilson, and A.K. Bush, “The

live-air trial of a multi-beam cellular base station antenna system,” in IEE

National Conference on Antennas and Propagation, London, UK, 1999, pp.

169–172.

[75] M.J. Ho, G.L. Stuber, and M.D. Austin, “Performance of switched-beam

smart antenna systems,” IEEE Transactions on Vehicular Technology, vol.

47, pp. 10–19, 1998.

[76] P. Petrus, R.B. Ertel, and J.H. Reed, “Capacity enhancement using adaptive

arrays in an AMPS system,” IEEE Transactions on Vehicular Technology,

vol. 47, pp. 717–727, 1998.

[77] K.I. Pedersen, P.E. Mogensen, and F. Fredriksen, “Joint directional proper-

ties of uplink and downlink channel in mobile communication,” Electronic

Letters, vol. 35, no. 16, pp. 1311–1312, Aug. 1999.

[78] J.P Shelton and K.S. Kelleher, “Multiple beams from linear arrays,” IRE

Transactions on antennas and propagation, vol. 9, pp. 154–161, 1961.

[79] M-S. Alouini and A.J. Goldsmith, “Comparison of fading channel capacity

under different CSI assumptions,” in Proceedings of Vehicular Technology

Conference, VTC Fall, Boston, USA, Sep. 2000, pp. 1844–1849.

[80] I.S. Gradshteyn, I.M. Ryzhik, and A. Jeffrey, Table of integrals, series, and

products. San Diego, USA: Academic Press, 6 edition, 2000.

[81] J.W. Wallace and M.A. Jensen, “Modeling the indoor MIMO wireless chan-

nel,” IEEE Transactions on Antennas and Propagation, vol. 50, no. 5, pp.

591–599, May 2002.

[82] M. Nakagami, “The m-distribution - a general formula of intensity distri-

bution of rapid fading,”, in Statistical Methods in Radio Wave Propagation,

Pergamon, Oxford, England, 1960.



BIBLIOGRAPHY 281

[83] J. Luo, J.R. Zeidler, and S. McLaughlin, “Performance analysis of compact

antenna arrays with MRC in correlated Nakagami fading channels,” IEEE

Transactions on Vehicular Technology, vol. 50, no. 1, pp. 267–277, Jan.

2001.

[84] S. Rice, “Mathematical analysis of random noise,” Bell System Technical

Journal, vol. 23, 1944.

[85] C.N. Chuah, D. Tse, J.M. Kahn, and R.A. Valenzuela, “Capacity scaling

in MIMO wireless systems under correlated fading,” IEEE Transactions on

Information Theory, vol. 48, no. 3, pp. 637–650, March 2002.

[86] H. Bölcskei and A. Paulraj, “Performance of space-time codes in the pres-

ence of spatial fading correlation,” in Conference Record of the Thirty-

Fourth Asilomar Conference, Pacific Grove, USA, October 2000.

[87] J. Wallace and M.A. Jensen, “Mutual coupling in MIMO wireless systems:

A rigorous network theory analysis,”, 2002, Submitted to IEEE Journal on

Selected Areas in Communication.

[88] D-S. Shiu, G.J Foschini, M.J. Gans, and J.M Kahn, “Fading correlation and

its effect on the capacity of multielement antenna systems,” IEEE Transac-

tions on Communications, vol. 48, no. 3, pp. 502–513, March 2000.

[89] K. Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Karlsson, and

M.Beach, “Second order statistics of NLOS indoor MIMO channels based

on 5.2 GHz measurements,” in IEEE Global Telecommunications Confer-

ence, San Antonio, USA, Nov. 2001, pp. 156–160.

[90] A. Grant, “Rayleigh fading multiple-antenna channnels,” EURASIP Journal

on applied signal processing, Special issue on space time coding (Part 1),

vol. 2002, no. 3, pp. 316–329, March 2002.

[91] Z.D. Bai and Y.Q. Yin, “Limit of the smallest eigenvalue of a large dimen-

sional sample covariance matrix,” Ann. Probab., vol. 21, pp. 1275–1294,

1993.

[92] Z.D. Bai, J.W. Silverstein, and Y.Q. Yin, “A note on the largest eigenvalue

of a large dimensional sample covariance matrix,” Journal on Multivariate

Analysis, vol. 26, pp. 166–168, 1988.

[93] K. Johansson, “Shape fluctuations and random matrices,” Communications

in mathematical physics, vol. 209, pp. 437–476, 2000.



282 BIBLIOGRAPHY

[94] A.A.M. Saleh and R.A. Valenzuela, “A statistical model for indoor multipath

propagation,” IEEE Journal on Selected Areas in Communications, vol. 5,

pp. 128–132, 1987.

[95] Q.H. Spencer, B.D. Jeffs, M.A. Jensen, and A.L. Swindlehurst, “Modeling

the statistical time and angle of arrival characteristics of an indoor multipath

channel,” IEEE Journal on Selected Areas in Communications, vol. 18, no.

3, pp. 347–360, March 2000.

[96] P. Petrus, J.H. Reed, and T.S. Rappaport, “Geometrical-based statistical

macrochannel model for mobile environments,” IEEE Transactions on Com-

munications, vol. 50, no. 3, pp. 495–502, March 2002.

[97] W.C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.
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