
ON MINIMAL CONTEXT-FREE INSERTION-DELETION

SYSTEMS

Sergey Verlan

LACL, University of Paris XII

61, av. Général de Gaulle, 94010, Créteil, France

e-mail: verlan@univ-paris12.fr

ABSTRACT

We investigate the class of context-free insertion-deletion systems. It is known that such
systems are universal if the length of the inserted/deleted string is at least three. We
show that if this length is bounded to two, then the obtained systems are not universal.
We characterise the obtained class and we introduce a new complexity measure for
insertion-deletion systems, which permits a better explanation of the obtained results.

Keywords: Formal languages, Insertion-deletion systems, Decidability

1. Introduction

The operations of insertion and deletion are fundamental in formal language theory,
and generative mechanisms based on them have been considered (with linguistic mo-
tivation) since a long time ago, see [6] and [2]. Related formal language investigations
can be found in several places; we mention only [3], [5], [8], [9]. In the last years, the
study of these operations has received a new motivation from molecular computing,
see [1], [4], [10], [12].

In general form, an insertion operation means adding a substring to a given string
in a specified context, while a deletion operation means removing a substring of a
given string from a specified context. A finite set of insertion-deletion rules, together
with a set of axioms provide a language generating device (an InsDel system): start-
ing from the set of initial strings and iterating insertion-deletion operations as defined
by the given rules we obtain a language. The number of axioms, the length of the
inserted or deleted strings, as well as the length of the contexts where these operations
take place are natural descriptional complexity measures in this framework. As ex-
pected, insertion and deletion operations with context dependence are very powerful,
leading to characterizations of recursively enumerable languages. Most of the papers
mentioned above contain such results, in many cases improving the complexity of
insertion-deletion systems previously available in the literature.

The paper [7] contains an unexpected result: context-free insertion-deletion systems
with one axiom are already universal, they can generate any recursively enumerable

2

language. Moreover, this result can be obtained by inserting and deleting strings of
a rather small length, at most three. The same paper stated an open question about
context-free insertion-deletion systems having rules dealing with strings of length at
most two.

In this paper we answer this open question and we show that if the length of the
inserted and deleted string is at most two, then such systems generate a particular
subset of the family of context-free languages. We also show that the traditional
complexity measures for insertion-deletion systems, in particular the size of contexts,
need a revision and we propose new measures based on the total weight.

2. Prerequisites

All formal language notions and notations we use here are elementary and standard.
The reader can consult any of the many monographs in this area – for instance, [11]
– for the unexplained details.

We label positions between letters of a string a1a2 . . . an as follows:

a1 a2 . . . an

0 1 2 . . . n− 1 n

We denote by |w| the length of word w. If A is a set of words, then we put
|A| = max

w∈A
(w). Finally, we denote by card(A) the cardinality of the set A.

The Dyck language, Dn, over Tn = {a1, a
′
1, . . . , an, a

′
n}, n ≥ 1, is the context-free

language generated by the grammar

G = ({S}, Tn, S, {S → ε, S → SS} ∪ {S → aiSa
′
i | 1 ≤ i ≤ n}, S).

Intuitively, the pairs (ai, a
′
i), 1 ≤ i ≤ n, can be viewed as parentheses, left and right,

of different kinds. Then Dn consists of all strings of correctly nested parentheses.

An InsDel system is a construct γ = (V, T,A, I,D), where V is an alphabet, T ⊆ V ,
A is a finite language over V , and I,D are finite sets of triples of the form (u, α, v), of
strings over V . The elements of T are terminal symbols (in contrast, those of V − T

are called nonterminals), those of A are axioms, the triples in I are insertion rules,
and those from D are deletion rules. An insertion rule (u, α, v) ∈ I indicates that
the string α can be inserted in between u and v, while a deletion rule (u, α, v) ∈ D

indicates that α can be removed from the context (u, v). Stated otherwise, (u, α, v) ∈ I

corresponds to the rewriting rule uv → uαv, and (u, α, v) ∈ D corresponds to the
rewriting rule uαv → uv. We denote by =⇒ins the relation defined by an insertion
rule (formally, x =⇒ins y iff x = x1uvx2, y = x1uαvx2, for some (u, α, v) ∈ I and
x1, x2 ∈ V ∗) and by =⇒del the relation defined by a deletion rule (formally, x =⇒del y

iff x = x1uαvx2, y = x1uvx2, for some (u, α, v) ∈ D and x1, x2 ∈ V ∗). We refer by =⇒
to any of the relations =⇒ins,=⇒del, and denote by =⇒∗ the reflexive and transitive
closure of =⇒ (as usual, =⇒+ is the transitive closure of =⇒).

The language generated by γ is defined by L(γ) = {w ∈ T ∗ | x =⇒∗ w, for some
x ∈ A}.

3

Example 2.1 Let us consider the following InsDel system ID = (T, T,A, I, ∅), with
T = {a, b}, A = {ab} and I = {(a, ab, b)}. It is easy to see that at each derivation
step the string ab is inserted in the middle of the word obtained on the previous step
because this is the only place where the context ab occurs. Since we start from ab it
is clear that L(ID) = {anbn | n ≥ 1}.

An InsDel system γ = (V, T,A, I,D) is said to be of weight (n,m; p, q) if

n = max{|α| | (u, α, v) ∈ I},

m = max{|u| | (u, α, v) ∈ I or (v, α, u) ∈ I},

p = max{|α| | (u, α, v) ∈ D},

q = max{|u| | (u, α, v) ∈ D or (v, α, u) ∈ D},

The total weight of γ is the sum m+ n+ p+ q.

Example 2.2 The system ID from the previous example is of weight (2, 1, 0, 0) and
has the total weight equal to 3.

We denote by INSm
n DEL

q
p, for n,m, p, q ≥ 0, the family of languages L(γ)

generated by InsDel systems of weight (n′,m′; p′, q′) such that n′ ≤ n, m′ ≤ m,

p′ ≤ p, q′ ≤ q. If some of the parameters n,m, p, q is not specified, then we write
instead the symbol ∗. Thus, INS0

∗DEL
0
∗ denotes the family of languages generated

by context-free InsDel systems, i.e., with insertion rules of the form (ε, α, ε) ∈ I and
deletion rules of the form (ε, α, ε) ∈ D, where ε denotes the empty string. In this case
we may treat I and D as finite languages containing strings from the middle part of
rules. We also denote by CFINSDELm,p the family of context-free InsDel systems
having the length of the inserted string at most m and the length of the deleted string
at most p. For a system ID ∈ CFINSDELm,p we shall also say that ID is of size
(m, p).

Context-free InsDel systems have an interesting particularity: insertions and dele-
tions are uncontrolled and may happen at any time at any place in a string. This fact
can give an impression that such systems cannot be controlled in order to perform
computations. However, this affirmation is not true. In [7] it is shown that, in spite of
the above remark, such systems are able to simulate an arbitrary Chomsky grammar.
The next example partially shows the technique used.

Example 2.3 Let us consider a context-free InsDel system ID2 = (V, T, {S}, I,D)
of size (3, 2) with T = {a, b}, V = T ∪ {S, S′}, I = {S′aSb, S′ab} and D = SS′.
The computation in this system goes as follows. Given a word w1Sw2 (initially
w1, w2 = ε) the string S′aSb is inserted after S, which produces w1SS

′aSbw2. After
that, the deletion rule eliminates SS′ and word w1aSbw2 is obtained. It is easy
to see that this corresponds to rewriting rule S → aSb. If the string S′aSb is not
inserted immediately after S, then symbol S′ cannot be eliminated, hence it will not
be possible to generate a terminal string. A more detailed proof of this assertion may
be found in [7].

4

Therefore, system ID2 simulates the grammar with productions {S → aSb, S →
ab}. Hence, L(ID2) = {anbn | n ≥ 1}.

InsDel systems of a “sufficiently large” weight can characterize RE, the family
of recursively enumerable languages. A collection of these results may be found in
Section 5.

3. Main results

In this section we present results about context-free insertion-deletion systems having
the length of the inserted/deleted string at most 2. The following lemma shows that
the non-terminal alphabet is not relevant if we start from an empty word.

Lemma 3.1 Let ID = (V, T,A, I,D) be a context-free InsDel system of size (2, 2).
Suppose also that A = ε. Then there is a system ID2 = (T, T, ε, I2, D2) of size (2, 2)
such that L(ID) = L(ID2).

Proof. Consider a derivation of w ∈ T ∗. Let us mark corresponding insertion pairs by
an overline and corresponding deletion pairs by an underline. For example, suppose
that we insert aA, after that bC in position 1, DE in position 2, aA in position 6
and bc in position 8. After that suppose that we delete EC, DA and Ab. Then the
corresponding marking will be as follows (w = abac):

a
_^]\

b
GF ED

D
'& %$^^^^^^

E C"# !
^^̂ ^^^

ABC@A

a
'& %$^̂^̂^̂

A b"# !
^^^^^

'& %$^^^^^

c

We may interpret symbols as labeled graph nodes and lines as edges. In this case
we obtain a graph. It is easy to observe that this graph is composed from a set of
linear paths, or cycles. Indeed, for each node, at most two edges corresponding to
an insertion and a deletion may be drawn. Let us also label edges corresponding to
insertions by i and edges corresponding to deletions by d. If we take the example
above, we obtain:

a
i

A
d

D
i

E
d

C
i

b

a
i

A
d

b
i

c

We may suppose that the first and the last edge of a path are marked with i. If
this is not the case, we add an additional node labeled by ε and we connect this node
with the last node by a path labeled by i. In particular, a path containing only one

letter a (corresponding to an insertion of a) will be written as ε
i
a . Hence, each

path consists of sequences of one insertion followed by one deletion.
We observe that if we consider a derivation of w ∈ T ∗ then there are paths of 4

types:

5

1. Paths that start with a letter a ∈ T and that end with a letter b ∈ T .

2. Paths that have at one end a terminal letter a and at the other end ε.

3. Paths that have ε at both ends.

4. Circular paths.

We remark that in case 1 the path leads to the word ab (i.e., contributed to the
production of the subword ab of w), in the second case the path produces the letter
a and in the last two cases the path generates the empty word.
More exactly, let p be a path. We denote by yield(p) the word produced by p:

yield(p) =

{

ab, if p = a
i
− · · ·

i
− b, a, b ∈ T ∪ {ε}.

ε, if p is circular.

Let xy 6= ε, x, y ∈ V ∪ {ε} be a word. We denote by yield(xy) the set of all words
that may be produced by the path containing xy:

yield(xy) = {yield(p), where x
i
− y ∈ p}.

We remark that |yield(xy)| ≤ |xy|.

Without loss of generality we may suppose that there are no paths of type 3 and 4,
because by eliminating corresponding insertions and deletions we obtain the same
word.

Suppose that we have a path marked by over- and underlines as above. We shall
understand by an interior of the path the set of all positions that are underlined.
In the example above, all positions between D and the first A form the interior
of the path. It is clear that no other path (of type 1 and 2) may be situated in
the interior of some path, because in this case the corresponding deletion cannot be
performed. Consequently, all paths are independent of each other and we may group
rules corresponding to each path and compute paths one after another. Moreover, each
path contributes to at most two terminal symbols of the resulting word. Therefore,
the computation consists of insertion of terminal symbols corresponding to paths ends
as well as of deletion of terminal symbols.

Now, in order to prove the lemma, it is enough to show that me may precompute
all possible paths. This may be done by using the following observation. We may

assume that each path p has the following property: if A
i
− B belongs to p, then p

does not contain an insertion that has A in the left-hand side (A
i
− X) or B in the

right-hand side (Y
i
− B). This affirmation is obvious, because if p contains such a

pair, for example p = · · ·
d
− A

i
− X

d
− · · ·

d
− A

i
− B · · · , then we may eliminate the

subpath between two A’s by obtaining an equivalent path (that leads to same ends)

p′ = · · ·
d
− A

i
− B · · · . Hence, the length of each path is bounded by 2 ∗ card(V) and

we may precompute all possible paths.
Finally, let I ′ be the subset of I that contains only terminal insertion rules, i.e.,

any rule of I ′ is of form ab or a, where a, b ∈ T . Analogously, let D′ be the subset of
terminal deletion rules of D. Let us also precompute all possible paths that end with
a terminal letter or ε (of type 1 and 2). Let us denote by I1 the set of words produced

6

by these paths. More exactly, we define I1 = {yield(xy) | xy ∈ I}. It is clear that
the system ID2 = (T, T, ε, I2, D2), where I2 = I ′ ∪ I1 and D2 = D′ generates the
same language as ID . It is also clear that the converse inclusion holds. Hence, our
assertion is proved. 2

Now we prove that the non-terminal alphabet is not relevant even in general case.

Lemma 3.2 Let ID = (V, T,A, I,D) be a context-free InsDel system of size (2, 2).
Then there is a system ID2 = (T, T,A2, I2, D2) of size (2, 2) such that L(ID) =
L(ID2).

Proof. If we take a look at the proof of previous lemma, we may see that we elimi-
nated insertion productions having nonterminals as follows. All possible paths were
precomputed. For each insertion production xy of I, the set of paths that contain

x
i
− y was selected. Finally, the production xy was replaced by the set yield(xy).

A similar idea holds in the case of this lemma. We shall show that we may replace
each axiom wi by the set YIELD(wi) consisting of only terminal words.

Let w = be a word. We construct the set YIELD(w) incrementally as follows.

YIELD0(w) = {w}.
YIELDn+1(w) = YIELDn(w) ∪ YIELD ′

n+1(w) ∪ YIELD ′′
n+1(w),

where

YIELD ′
n+1(w) = {w1tw2 | w1xw2 ∈ YIELDn(w), |x| = 1 and t ∈ yield(x)},

YIELD ′′
n+1(w) = {w1w2 | w1xw2 ∈ YIELDn(w), x 6= ε and x ∈ D}.

And finally,

YIELD(w) = ∪n≥0YIELDn(w) ∩ T ∗.

Informally, set YIELD ′′
n+1 contains words that are obtained by applying a deletion

rule on words from YIELDn, while in order to obtain set YIELD ′
n+1 each letter x of

a word from YIELDn is tried to be replaced by another end of an insertion/deletion

path that starts with this letter (ε
i

− x
d

− . . .
i

− t).

It is easy to observe that there is n ≥ 0 such that YIELDk(w) = YIELDn(w) for
all k ≥ n. This follows from the fact that at each step we do not increase the length
of words because |YIELD ′

n(w)| ≤ |w|, hence |YIELD(w)| ≤ |w|.
From the construction of the set YIELD(w) it is clear that if we replace an axiom

wi ∈ A, 1 ≤ i ≤ n, by the set YIELD(wi) then the generated language is the same.
Indeed, let w0 ∈ A and w0 =⇒∗ w ∈ T ∗, w0 = a1 . . . an. We may suppose without
loss of generality that a1 ∈ V \T and a2, . . . , an ∈ T . Since a1 is not terminal, then it
shall be erased during the derivation. If a1 is erased by a deletion rule a1 from D, then
it is clear that w′ =⇒∗ w, where w′ = a2 . . . an. It is also clear that w′ ∈ YIELD(w0).
A similar argument holds if a1 is erased by a deletion rule a1a2. Now, if a1 is erased
by a rule a1b from D (b 6= a2), then this b shall be inserted by some insertion rule,

hence it shall be at the end of an insertion/deletion path (b
i
− . . .

i
− c). Hence, a1 is

replaced by c. It is clear, that if c ∈ V \ T , then we may repeat the above process.
Otherwise, ca2 . . . an =⇒∗ w and, by construction, ca2 . . . an is in YIELD(w0).

7

Now, consider the system ID2 = (T, T,A2, I2, D2), where A2 is defined by A2 =
{YIELD(w) | w ∈ A}, and I2 and D2 are constructed as in the previous lemma. It is
clear that L(ID2) = L(ID). 2

Following lemma shows that we can eliminate the deletion operation.

Lemma 3.3 Let ID = (T, T,A, I,D) be a context-free InsDel system of size (2, 2).
Then there is a system ID2 = (T, T,A2, I2, ∅) of size (2, 2) such that L(ID) = L(ID2).

Proof. Let us define the set INS as follows.
INS0 = I.
INSn+1 = INSn ∪ {YIELD(w) | w ∈ INSn}.
INS = ∪n≥0INSn.
Following the same arguments as in previous lemma, it is clear that there is n ≥ 0

such that INSk = INSn, for all k ≥ n (because |INSk| ≤ 2).
It is clear that if we substitute set I by set INS then the new system generates

the same language. Indeed, for each path a
i
− · · ·

i
− b of ID there is an insertion

rule ab in INS . We can also replace each axiom w by YIELD(w). Hence, we do
not need any deletion rules any more. So, if we consider ID2 = (T, T,A2, INS , ∅),
A2 = {YIELD(w) | w ∈ A}, then L(ID) = L(ID2). 2

We now show that a context-free insertion-deletion system of size (2, 2) without
non-terminal alphabet and without deletion rules may be described by a context-free
grammar.

Lemma 3.4 Let ID = (T, T,A, I, ∅) be a context-free InsDel system of size (2, 2).
Then there is a context-free grammar G = (N,T, Z, P) such that L(ID) = L(G).

Proof. We construct G as follows.
Consider N = {Z, S} and put T be the terminal alphabet of ID .
Define P = PA ∪ PI ∪ {S → ε}, where
PA = {Z → Sa1Sa2S . . . SanS | a1a2 . . . an ∈ A} and
PI = {S → SaSbS | ab ∈ I} ∪ {S → SaS | a ∈ I}.
It is clear that L(G) = L(ID). Indeed, symbol S marks all possible insertion

positions and it permits to simulate insertion rules as well. 2

Consequently, we obtain:

Theorem 3.5 CFINSDEL2,2 ⊂ CF .

Proof. The strictness of the inclusion follows from the fact that the language
L = {a∗b∗ | n ≥ 0} cannot be generated by a context-free insertion-deletion sys-
tem of size (2, 2). Indeed, consider an arbitrary system ID = (T, T,A, I, ∅). It is easy
to observe that for each word w that belong to L(ID) words I∗wI∗ belong to L(ID).
Therefore, if we suppose that L(ID) is not finite, in this case I 6= ∅, then for any word
w ∈ L(ID), there are words I∗wI∗ in L(ID). It is easy to see that L does not have
such a property. 2

8

Theorem 3.6 CFINSDEL2,2 is incomparable with REG.

Proof. From the previous theorem we obtain that REG \CFINSDEL2,2 6= ∅. It is
also clear that the Dyck language Dn may be generated by a context-free insertion
system having insertion rules aia

′
i, 1 ≤ i ≤ n. Hence, the assertion is proved. 2

Remark 3.1 The proof of Lemma 3.1 shows why the computational power increases
in the case when the size of inserted or deleted string is increased to 3. It is easy
to observe that if we construct a similar insertion/deletion graph – by connecting
inserted, respectively deleted, symbols pairwise by edges labeled with i, respectively
d, and following the ordering of symbols in the string – then this graph may contain
trees. For example, suppose that we insert ABC, after that DEF in position 3, GHI
in position 2 and finally delete CD and BG. Then, the corresponding graph will be
the following:

A
i

B
i

d

C
d

I
i

H
i

G D
i

E
i

F

The obtained graph no longer has a linear structure, hence sets YIELD defined
above do not have the property |YIELD(w)| ≤ |w|, i.e., we may increase the length
of a word.

A similar thing happens when the deletion of strings of length 3 is permitted. In
the example below, we inserted AB, CD in position 2, FE in position 1 and deleted
EBC.

E
i

F

A
i

B

d llllll

d
RRRRRR

C
i

D

4. Systems with insertion or deletion of less than two symbols

In this section we shall consider context-free insertion-deletion systems having the
length of the inserted or deleted context equal to one.

Theorem 4.1 For any m > 0, CFINSDELm,1 = CFINSDELm,0 ⊂ CF .

Proof. It is clear that if we consider a context-free insertion-deletion system of size
(m, 1), then we can use same construction as in Lemma 3.3, see also Remark 3.1, and
reduce it to a system without any deletion (as |INSn| ≤ m and |YIELD(w)| ≤ |w|).

Moreover, a system ID = (T, T,A, I, ∅) ∈ CFINSDEELm,0 can be simulated by
the following grammar G = (N,T, Z, P), where N = {Z, S} and
P = PA ∪ PI ∪ {S → ε}, with
PA = {Z → Sa1Sa2S . . . SakS | a1a2 . . . ak ∈ A} and
PI = {S → Sa1Sa2S . . . SanS | a1a2 . . . an ∈ I} (n ≤ m).
It is clear that L(ID) = L(G), see also Lemma 3.4. 2

9

If we consider systems where only insertions of size at most 1 are permitted, then
the power of such systems is smaller.

Theorem 4.2 For any p > 0, CFINSDEL1,p ⊂ REG.

Proof. Consider a system ID = (N,T,A, I,D) ∈ CFINSDEL1,p. Using same con-
struction as in Lemma 3.3, see also Remark 3.1, we may reduce it to the system
ID2 = (T, T,A2, I2, ∅) (as |INSn| = 1 and YIELD(w) ≤ |w|). The last system gener-
ates the regular language {I∗2a1I

∗
2a2 . . . anI

∗
2 | a1 . . . an ∈ A2}. 2

5. Complexity measures

We summarize the known results on insertion-deletion systems in the table below.

Nb. total weight (γ) (n,m; p, q) family generated references

1 6 (3, 0; 3, 0) RE [7]

2 5 (1, 2; 1, 1) RE [4, 10]

3 5 (1, 2; 2, 0) RE [4, 10]

4 5 (2, 1; 2, 0) RE [4, 10]

5 5 (1, 1; 1, 2) RE [12]

6 5 (2, 1; 1, 1) RE [12]

7 5 (2, 0; 3, 0) RE [7]

8 5 (3, 0; 2, 0) RE [7]

9 4 (1, 1; 2, 0) RE [10]

10 4 (1, 1; 1, 1) RE [12]

11 4 (2, 0; 2, 0) ⊂ CF Theorem 3.5

12 m+ 1 (m, 0; 1, 0) ⊂ CF Theorem 4.1

13 p+ 1 (1, 0; p, 0) ⊂ REG Theorem 4.2

From this table it is clear that the notion of the total weight (γ) shall be revised,
because it cannot distinguish between universality and non-universality cases (rows 10
and 11). We think that the main problem consists in the fact that in relation m =
max{|u| | (u, α, v) ∈ I or (v, α, u) ∈ I}, m is the maximum of the length of both
contexts.

We suggest to use the length of each context instead of the maximum. More exactly,

n = max{|α| | (u, α, v) ∈ I},

m = max{|u| | (u, α, v) ∈ I},

m′ = max{|v| | (u, α, v) ∈ I},

p = max{|α| | (u, α, v) ∈ D},

q = max{|u| | (u, α, v) ∈ D},

q′ = max{|v| | (u, α, v) ∈ D}.

10

Hence we shall describe the complexity of insertion/deletion by the vector
(n, m,m

′; p, q, q
′). We also denote by INSm,m′

n DELq,q′

p corresponding families of
insertion-deletion systems. Moreover, we define the total weight of the system as
the sum of all numbers above: ψ = n + m + m′ + p + q + q′. In this case we may
distinguish rows 10 and 11 by the total weight, because the total weight of 10 is
equal to 6 while the total weight of 11 is equal to 4; corresponding systems are of size
(1, 1, 1; 1, 1, 1) and (2, 0, 0; 2, 0, 0) respectively.

We give below the previous table without lines 12 and 13 where we indicate the
old (γ) and the new (ψ) measures.

Nb. γ (n,m; p, q) family ψ (n,m,m′; p, q, q′)

1 6 (3, 0; 3, 0) RE 6 (3, 0, 0; 3, 0, 0)

2 5 (1, 2; 1, 1) RE 8 (1, 2, 2; 1, 1, 1)

3 5 (1, 2; 2, 0) RE 7 (1, 2, 2; 2, 0, 0)

4 5 (2, 1; 2, 0) RE 6 (2, 1, 1; 2, 0, 0)

5 5 (1, 1; 1, 2) RE 8 (1, 1, 1; 1, 2, 2)

6 5 (2, 1; 1, 1) RE 7 (2, 1, 1; 1, 1, 1)

7 5 (2, 0; 3, 0) RE 5 (2, 0, 0; 3, 0, 0)

8 5 (3, 0; 2, 0) RE 5 (3, 0, 0; 2, 0, 0)

9 4 (1, 1; 2, 0) RE 5 (1, 1, 1; 2, 0, 0)

10 4 (1, 1; 1, 1) RE 6 (1, 1, 1; 1, 1, 1)

11 4 (2, 0; 2, 0) ⊂ CF 4 (2, 0, 0; 2, 0, 0)

The value of ψ describes in some sense the amount of cooperation between symbols
in the system. We think that in order to achieve the universality, a cooperation at
least equal to 5 is required.

Conjecture 5.1 Consider systems of size (n,m,m′; p, q, q′). Assume that n, p ≥ 1,
and that both n+m+m′ and p+ q + q′ are at least equal to 2. We conjecture that
such systems having total weight at least 5 are universal, while those whose weight is
at most 4 are not universal.

6. Conclusions

In this article we investigated context-free insertion-deletion systems having a minimal
length of the inserted or deleted string (at most 2). We showed that systems of
size (2, 2) generate a subset of context-free languages incomparable with the family
of regular languages. We also provided a context-free grammar that describes the
obtained family. A similar result holds for systems of size (m, 1), m > 0. Systems
of size (1, p), p > 0, are less powerful and they generate only a subset of regular
languages. The obtained results together with results from [7], where it is shown that
systems of size (2, 3) and (3, 2) generate all recursively enumerable languages, answer

11

completely the question about the generative power of context-free insertion-deletion
systems.

The obtained results also show that one of the measures considered before, the
total weight, is not accurate because it cannot distinguish between decidability and
non-decidability cases. We propose to redefine this measure and to base it on the
sum of all parameters of the system. Since we consider two additional parameters,
there are left several open questions about the power of corresponding systems, in
particular about systems having only one-sided context.

Acknowledgments

The author acknowledges Rudolf Freund and Jean Néraud for their important re-
marks concerning the above result. The author also acknowledges Yurii Rogozhin
and Artiom Alhazov for very helpful suggestions, most of them incorporated in the
present version of the paper.

References

[1] M. Daley, L. Kari, G. Gloor, R. Siromoney, Circular contextual inserti-
ons/Deletions with applications to biomolecular computation. In: Proc. of 6th

Int. Symp. on String Processing and Information Retrieval, SPIRE’99 (Cancun,
Mexico, 1999), 47–54.

[2] B.S. Galiukschov, Semicontextual grammars, Matematika Logica i Matem-

atika Linguistika, Tallin University, 1981 38–50 (in Russian).

[3] L. Kari, On insertion and deletion in formal languages, PhD Thesis, University
of Turku, 1991.

[4] L. Kari, Gh. Păun, G. Thierrin, S. Yu, At the crossroads of DNA computing
and formal languages: characterizing RE using insertion-deletion systems. In:
Proceedings of 3rd DIMACS Workshop on DNA Based Computing, Philadelphia,
1997, 318–333.

[5] L. Kari, G. Thierrin, Contextual insertion/deletion and computability, Infor-

mation and Computation, 131, 1 (1996), 47–61.

[6] S. Marcus, Contextual grammars, Rev. Roum. Math. Pures Appl., 14 (1969),
1525–1534.

[7] M. Margenstern, Gh. Paun, Yu. Rogozhin, S. Verlan, Context-free
insertion-deletion systems. Theoretical Computer Science, 330 (2005), 339–348.

[8] C. Martin-Vide, Gh. Păun, A. Salomaa, Characterizations of recursively
enumerable languages by means of insertion grammars, Theoretical Computer

Science, 205, 1–2 (1998), 195–205.

[9] Gh. Păun, Marcus contextual grammars. Kluwer, Dordrecht, 1997.

[10] Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing

Paradigms . Springer–Verlag, Berlin, 1998.

12

[11] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages . Springer–
Verlag, Berlin, 1997.

[12] A. Takahara, T. Yokomori, On the computational power of insertion-
deletion systems. In: Proceedings of 8th International Workshop on DNA-Based

Computers, DNA8 (Sapporo, Japan, June 10–13, 2002), Revised Papers, LNCS,
2568 (2003), 269–280.

