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Abstract. Let (Σ1, g1) and (Σ2, g2) be connected, complete and orientable
2-dimensional Riemannian manifolds. Consider the two canonical Kähler structures
(Gε, J,Ωε) on the product 4-manifold Σ1 × Σ2 given by Gε = g1 ⊕ εg2, ε = ±1 and
J is the canonical product complex structure. Thus for ε = 1 the Kähler metric G+ is Rie-
mannian while for ε = −1, G− is of neutral signature. We show that the metric Gε is locally
conformally flat if and only if the Gauss curvatures κ(g1) and κ(g2) are both constants sat-
isfying κ(g1) = −εκ(g2). We also give conditions on the Gauss curvatures for which every
Gε-minimal Lagrangian surface is the product γ1 × γ2 ⊂ Σ1 × Σ2, where γ1 and γ2 are
geodesics of (Σ1, g1) and (Σ2, g2), respectively. Finally, we explore the Hamiltonian stabil-
ity of projected rank one Hamiltonian Gε-minimal surfaces.

1. Introduction. A submanifold of a symplectic manifold is said to be Lagrangian if
it is half the ambient dimension and the symplectic form vanishes on it. A Lagrangian sub-
manifold of a pseudo-Riemannian manifold is said to be minimal if it is a critical point of
the volume functional associated with pseudo-Riemannian metric. A minimal submanifold is
characterized by the vanishing of the trace of its second fundamental form, the mean curva-
ture. Recently, an interest in minimal Lagrangian submanifolds in pseudo-Riemannian Kähler
structures has grown amongst geometers [2], [20], while minimal Lagrangian submanifolds
in Calabi-Yau manifolds are of great interest in theoretical physics because of their close re-
lationship to the mirror symmety [19]. In addition, the space L(M3) of oriented geodesics in
a 3-dimensional space form (M3, g) admits a natural Kähler structure where the metric G is
of neutral signature, scalar flat and locally conformally flat [1], [3], [11], [12].

The significance of these structures is that the identity component of the isometry group
of G is isomorphic with the identity component of the isometry group of g . Moreover, Salvai
has proved that the neutral Kähler metrics on L(E3) and L(H3) are the unique metrics with
this property [16], [17]. The neutral Kähler structure on L(M3) plays an important role in the
surface theory in (M3, g). In particular, if S is a smoothly immersed surface in M , the set of
oriented geodesics normal to S forms a Lagrangian surface in L(M3). A Lagrangian surface
Σ in L(M3) is G-minimal if and only if Σ is locally the set of normal oriented geodesics of
an equidistant tube along a geodesic in M [3], [6], [10].
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Oh in [14] has introduced a natural variational problem, apart from the classical varia-
tional problem of minimizing the volume functional in a homology class, consisting of min-
imizing the volume with respect to Hamiltonian compactly supported variations. An impor-
tant property of these variations is that they preserve the Lagrangian constraint. A Lagrangian
submanifold in a Kähler or a pseudo-Kähler manifold is said to be a Hamiltonian minimal
submanifold if it is a critical point of the volume functional with respect to Hamiltonian com-
pactly supported variations. A Hamiltonian minimal submanifold can be characterized by its
mean curvature vector being the divergence-free.

For example, in the space L(E3) of oriented lines in the Euclidean 3-space, a Hamiltonian
minimal surface is the set of oriented lines normal to a surface S ⊂ E

3 that is a critical point
of the functional

F(S) =
∫
S

√
H 2 −KdA ,

where H,K denote the mean and the Gauss curvatures of S, respectively [6]. The neutral
Kähler structures on the space of oriented great circles in the three sphere S3 and the space of
oriented space-like geodesics in the anti De Sitter 3-space AdS3 can both be identified with
the product structures, L(S3) = S

2 × S
2 and L

+(AdS3) = H
2 × H

2.
More generally, one is led to consider the Kähler structures derived by the product struc-

ture ofΣ1×Σ2, where (Σ1, g1) and (Σ2, g2) are complete, connected, orientable Riemannian
2-manifolds.

Let ω1 and ω2 be the symplectic two forms of (Σ1, g1) and (Σ2, g2), respectively, and j1

and j2 their complex structures as Riemann surfaces. For ε = 1 or −1, consider the product
structures of the four-dimensional manifoldΣ1 ×Σ2 endowed with the product metricsGε =
π∗

1 g1 + επ∗
1 g2, the almost complex structure J = j1 ⊕ j2 and the symplectic two forms

Ωε = π∗
1ω1 + επ∗

2ω2, where πi are the projections of Σ1 × Σ2 onto Σi , i = 1, 2. The
quadruples (Σ1 ×Σ2,G

ε, J,Ωε) are easily seen to be 4-dimensional Kähler structures.
In this paper we studyGε-minimal Lagrangian surfaces in the Kähler 4-manifold (Σ1 ×

Σ2,G
ε, J,Ωε). In Section 2 we prove:

THEOREM 1. The Kähler metric G+ is Riemannian while the Kähler metric G− is
neutral. Moreover, the Kähler metricGε is conformally flat if and only if the Gauss curvatures
κ(g1) and κ(g2) are both constants with κ(g1) = −εκ(g2).

In Section 3, we first define the projected rank (see Definition 3.1) of a surface inΣ1×Σ2

and we prove that every Lagrangian surface is either of projected rank one or of projected rank
two.

For the projected rank one case, we classify all HamiltonianGε-minimal surfaces:

THEOREM 2. Every projected rank one Lagrangian surface can be locally parametrised
by Φ : S → Σ1 × Σ2 : (s, t) �→ (φ(s), ψ(t)), where φ and ψ are regular curves on Σ and
the induced metric Φ∗Gε is flat. Φ is Hamiltonian Gε-minimal if and only if φ and ψ are
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Cornu spirals of parameters λφ and λψ , respectively, such that

λφ = −ελψ .
Φ is aGε-minimal Lagrangian if and only if both φ andψ are geodesics. Furthermore, every
projected rank oneGε-minimal Lagrangian surface in Σ1 ×Σ2 is totally geodesic.

In the same section, the following theorem gives the conditions for the non-existence of
projected rank two Gε-minimal Lagrangian surfaces:

THEOREM 3. Let (Σ1, g1) and (Σ2, g2) be Riemannian two manifolds and let
(Gε, J,Ωε) be the canonical Kähler product structures on Σ1 × Σ2. Let κ(g1), κ(g2) be
the Gauss curvatures of g1 and g2, respectively. Assume that either of the following hold:

(i) The metrics g1 and g2 are both generically non-flat and εκ(g1)κ(g2) < 0 away
from flat points.

(ii) Only one of the metrics g1 and g2 is flat while the other is non-flat generically.
Then every Gε-minimal Lagrangian surface is of projected rank one.

Here a generic property is one that holds almost everywhere. Note that Theorem 3.5
is no longer true when (Σ1, g1) and (Σ2, g2) are both flat, since there exist projected rank
two minimal Lagrangian immersions in the complex Euclidean space C

2 endowed with the
pseudo-Hermitian product structure [6].

Minimality is the first order condition for a submanifold to be volume-extremizing in its
homology class. Harvey and Lawson [13] have proven that minimal Lagrangian submanifolds
of a Calabi-Yau manifold is calibrated, which implies by Stokes theorem, that are volume-
extremizing. The second order condition for a minimal submanifold to be volume-extremizing
was first derived by Simons [18].

Minimal submanifolds that are local extremizers of the volume are called stable minimal
submanifolds. The stability of a minimal submanifold is determined by the monotonicity of
the second variation of the volume functional. If the second variation of the volume functional
of a Hamiltonian minimal submanifold is monotone for any Hamiltonian compactly supported
variation, it is said to be Hamiltonian stable. In [14] and [15], the second variation formula of
a Hamiltonian minimal submanifold has been derived in the case of a Kähler manifold, while
for the pseudo-Kähler case it has been derived in [5].

The following theorem in Section 4 investigates the Hamiltonian stability of projected
rank one HamiltonianGε-minimal surfaces in Σ1 ×Σ2:

THEOREM 4. LetΦ = (φ,ψ) be of projected rank one HamiltonianGε-minimal immer-
sion in (Σ1 ×Σ2,G

ε) such that κ(g1) ≤ −2k2
φ and κ(g2) ≤ −2k2

ψ along the curves φ and ψ
respectively. Then Φ is a local minimizer of the volume in its Hamiltonian isotopy class.
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2. The product Kähler structure. Consider the Riemannian 2-manifolds (Σk, gk)
for k = 1, 2 and denote by jk the rotation by an angle +π/2 in TΣk . Set ωk(·, ·) = gk(jk·, ·)
so that the quadruples (Σk, gk, jk, ωk) are 2-dimensional Kähler manifolds.

Using the following identification,

X ∈ T (Σ1 ×Σ2) 	 (X1,X2) ∈ TΣ1 ⊕ TΣ2 , where Xk ∈ TΣk ,
we obtain the natural splitting T (Σ1 × Σ2) = TΣ1 ⊕ TΣ2. Let (x, y) ∈ Σ1 × Σ2 and
X = (X1,X2) and Y = (Y1, Y2) be two tangent vectors in T(x,y)(Σ1 ×Σ2). Define the metric
Gε(x,y) by:

Gε(x,y)(X, Y ) = g1(X1, Y1)(x)+ εg2(X2, Y2)(y) ,

where ε = 1 or −1. The Levi-Civita connection ∇ with respect to the metric Gε is

∇XY = (D1
X1
Y1,D

2
X2
Y2) ,

where X = (X1,X2), Y = (Y1, Y2) are vector fields in Σ1 × Σ2 and D1,D2 denote the
Levi-Civita connections with respect to g1 and g2, respectively.

Consider the endomorphism J ∈ End(T Σ1 ⊕ TΣ2) defined by J = j1 ⊕ j2, i.e.,
J (X) = (j1X1, j2X2). Clearly, J is an almost complex structure onΣ1 ×Σ2.

PROPOSITION 2.1. The almost complex structure J is integrable.

PROOF. The Nijenhuis tensor NJ is

NJ (X, Y ) = [JX, JY ]∇ − J [JX, Y ]∇ − J [JX, Y ]∇ − [X,Y ]∇ ,
where X = (X1,X2), Y = (Y1, Y2) are vector fields in Σ1 × Σ2 and [·, ·]∇ denotes the Lie
bracket with respect to the Levi-Civita connection ∇. Then

[X,Y ]∇ = ([X1, Y1]D1
, [X2, Y2]D2

) ,

where [·, ·]Di are the Lie brackets with respect to the Levi-Civita connectionsDi . Thus,

NJ (X, Y )= [JX, JY ]∇ − J [JX, Y ]∇ − J [JX, Y ]∇ − [X,Y ]∇
= (Nj1(X1, Y1),Nj2(X2, Y2)) ,

and the proposition follows. �

Let πi : Σ1 ×Σ2 → Σi be the i-th projection, and define the following two-forms

Ωε = π∗
1ω1 + επ∗

2ω2 .

THEOREM 2.2. The quadruples (Σ1 × Σ2,G
ε, J,Ωε) are 4-dimensional Kähler

structures. The Kähler metric Gε is conformally flat if and only if the Gauss curvatures κ(g1)

and κ(g2) are both constants with κ(g1) = −εκ(g2).

PROOF. We have already seen that the almost complex structure J is integrable. It is
obvious that Ωε is closed, i.e., dΩε = 0 and hence a symplectic form on Σ1 ×Σ2.

Moreover, J is compatible with Ωε since for X = (X1,X2) and Y = (Y1, Y2), we have

Ωε
(x,y)(JX, JY )=Ωε

(x,y)((j1X1, j1X2), (j2Y1, j2Y2))
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= ω1(j1X1, j1Y1)(x)+ εω2(j2X2, j2Y2)(y)

= ω1(X1, Y1)(x)+ εω2(X2, Y2)(y)

=Ωε
(x,y)(X, Y ) .

We proceed with the proof by considering the cases of G+ and G−.
THE CASE OF G+: Assume that (e1, e2) and (v1, v2) are orthonormal frames on Σ1

and Σ2 respectively, both oriented in such a way j1e1 = e2 and j2v1 = v2. Consider the
orthonormal frame (E1, E2, E3, E4) of (Σ1 ×Σ2,G

+) defined by

E1 = 1√
3
(e1, v1 + v2) , E2 = JE1 = 1√

3
(e2, v2 − v1)

E3 = 1√
3
(e1 − e2,−v1) , E4 = JE3 = 1√

3
(e1 + e2,−v2) .

If Ric+ denotes the Ricci curvature tensor with respect to the metric G+, we have

Ric+(E1, E1)(x,y) = Ric+(E2, E2)(x,y) = κ(g1)(x)+ 2κ(g2)(y)

3
,

Ric+(E3, E3)(x,y) = Ric+(E4, E4)(x,y) = 2κ(g1)(x)+ κ(g2)(y)

3
,

and the scalar curvatute R+ is:

(1) R+ =
4∑
i=1

Ric+(Ei, Ei) = 2(κ(g1)(x)+ κ(g2)(y)) .

If Gε is conformally flat, it is scalar flat [9] and thus, from (1), the Gauss curvatures κ(g1),

κ(g2) are constants with κ(g1) = −κ(g2).
Conversely, suppose that

(2) κ(g1) = −κ(g2) = c ,

where c is a real constant. Consider the corresponding coframe B+ = (e1, e2, e3, e4) of
the orthonormal frame (E1, E2, E3, E4). The Hodge star operator ∗ : Λ2(Σ1 × Σ2) →
Λ2(Σ1 ×Σ2) defined by

a ∧ ∗b = G+(a, b)Vol ,

splits the bundle of 2-formsΛ2(Σ1 ×Σ2) into:

Λ2(Σ1 ×Σ2) = Λ2+(Σ1 ×Σ2)⊕Λ2−(Σ1 ×Σ2) ,

where Λ2+(Σ1 × Σ2),Λ
2−(Σ1 × Σ2) are the self-dual and the anti-self-dual 2-form bundles,

respectively, and Vol = e1 ∧ e2 ∧ e3 ∧ e4 is the volume element.
With respect to this splitting the Riemann curvature operator R : Λ2(Σ1 × Σ2) →

Λ2(Σ1 ×Σ2) defined by

R(ei ∧ ej )ek ∧ el = G(R(Ei,Ej )Ek,El) ,
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is decomposed by:

R =
(
W+ + R+

12 I Z

Z∗ W− + R+
12 I

)
,

where W± : Λ2±(Σ1 × Σ2) → Λ2±(Σ1 × Σ2) are the self-dual and the anti-self-dual part
of the Weyl tensor W and Z is the traceless Ricci tensor. Note that W = W+ ⊕ W−. An
orthonormal basis for Λ2±(Σ1 ×Σ2) is

e±1 = 1√
2
(e1 ∧ e2 ± e3 ∧ e4) ,

e±2 = 1√
2
(e1 ∧ e3 ∓ e2 ∧ e4) ,

e±3 = 1√
2
(e1 ∧ e4 ± e2 ∧ e3) .

The metric G+ is scalar flat and the self-dual partW+ vanishes, since

W+ = R+
⎛
⎝1/3

−1/6
−1/6

⎞
⎠ .

Substituting (2) into (1), the scalar curvature R+ vanishes and thusW−(e−i , e
−
j ) =

R(e−i )e−j . A brief computation shows that R(e−i )e−j = 0 for all i, j . For example,

R(e−1 )e−2 = 1

2
R(e1 ∧ e2)e1 ∧ e2 + 1

2
R(e3 ∧ e4)e3 ∧ e4

= 1

2

(
G+(R(E1, E2)E1, E2)+G+(R(E3, E4)E3, E4)

)
= 0 .

Thus, the anti-self-dual part W− also vanishes. Therefore, the Weyl tensor W = 0, or G+ is
locally conformally flat.

THE CASE OF G−: We now prove that the neutral Kähler metric G− is conformally flat
if and only if the Gauss curvatures κ(g1), κ(g2) are both constants with κ(g1) = κ(g2). For
this metric, consider the orthonormal frame (E1, E2, E3, E4) defined by:

E1 = (e1, v1 + v2) , E2 = JE1 = (e2, v2 − v1) ,

E3 = (e1 − e2, v1) , E4 = JE3 = (e1 + e2, v2) .

In particular,

−|E1|2 = −|E2|2 = |E3|2 = |E4|2 = 1 , G(Ei,Ej ) = 0 , ∀i �= j .

A brief computation gives

Ric−(E1, E1) = Ric−(E2, E2) = κ(g1)(x)+ 2κ(g2)(y) ,

Ric−(E3, E3) = Ric−(E4, E4) = 2κ(g1)(x)+ κ(g2)(y) ,
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where Ric− is the Ricci tensor of the metric G−. Then, if R− denotes the scalar curvature of
G−, we have

R− =
2∑
k=1

(− Ric−(Ek,Ek)+ Ric−(E2+k, E2+k)
)

= 2(κ(g1)(x)− κ(g2)(y)) .(3)

If the neutral Kähler metric G− is conformally flat, it is also scalar flat [7] and hence,
from (3), the Gauss curvatures κ(g1) and κ(g2) are constants with κ(g1) = κ(g2). Following
the same argument as before, assume the converse, that is, κ(g1) = κ(g2) = c, where c is a
real constant. Consider the corresponding coframe B2 = (e1, e2, e3, e4) and the Hodge star
operator ∗ : Λ2(Σ1 × Σ2) → Λ2(Σ1 × Σ2). The Hodge star operator splits the Riemann
curvature operator R : Λ2(Σ1 ×Σ2) → Λ2(Σ1 ×Σ2) in the same way as in the Riemannian
case. The Weyl (0, 4)-tensorW is given by:

Wijkl = RGijkl −
1

2
(−Gjk RicG

il +Gjl RicG
ik −Gil RicG

jk +Gik RicG
jl ) ,

where RGijkl = G(RG(Ei,Ej )Ek,El). An orthonormal basis forΛ2±(Σ1 ×Σ2), in the neutral
case, is

e±1 = 1√
2
(e1 ∧ e2 ± e3 ∧ e4) ,

e±2 = 1√
2
(e1 ∧ e3 ± e2 ∧ e4) ,

e±3 = 1√
2
(e1 ∧ e4 ∓ e2 ∧ e3) .

The metricG− is scalar flat, following [7], and the anti-self-dual partW− vanishes, since

W− = R−
⎛
⎝1/3

1/6
1/6

⎞
⎠ .

The self-dual part is

W+ =
⎛
⎝W1212 +W3434 + 2W1234 2(W1213 +W1334) 2(W1214 +W1434)

2(W1313 +W1324) 2(W1314 −W1323)

2(W1414 −W1423)

⎞
⎠ ,

and a brief computation shows that W+ vanishes. Therefore, the Weyl tensor W vanishes, or
G is locally conformally flat. �

COROLLARY 2.3. Let (Σ, g) be a Riemannian two manifold. The neutral Kähler met-
ric G− of the four dimensional Kähler manifold Σ × Σ is conformally flat if and only if the
metric g is of constant Gaussian curvature.
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3. Surface theory in the 4-manifoldΣ1 ×Σ2 . Let Φ : S → Σ1 ×Σ2 be a smooth
immersion of a surface S in Σ1 ×Σ2, where (Σ1, g1) and (Σ2, g2) are both Riemannian two
manifolds and let πi be the projections of Σ1 × Σ2 onto Σi , i = 1, 2. We denote by φ and
ψ the mappings π1 ◦ Φ and π2 ◦ Φ, respectively, and we write Φ = (φ,ψ). The rank of a
mapping at a point is the rank of its derivative at that point.

DEFINITION 3.1. The immersion Φ = (φ,ψ) : S → Σ1 × Σ2 is said to be of
projected rank zero at a point p ∈ S if either rank(φ(p)) = 0 or rank(ψ(p)) = 0. Φ is
of projected rank one at p if either rank(φ(p)) = 1 or rank(ψ(p)) = 1. Finally, Φ is of
projected rank two at p if rank(φ(p)) = rank(ψ(p)) = 2.

Note that, since it is an immersion, Φ must be of projected rank zero, one or two.

3.1. Projected rank zero case. LetΦ = (φ,ψ) be of projected rank zero immersion
in Σ1 × Σ2. Assuming, without loss of generality, that rank(φ) = 0, the map φ is locally
a constant function and the map ψ is a local diffeomorphism. We now give the following
proposition:

PROPOSITION 3.2. There are no Lagrangian immersions inΣ1×Σ2 of projected rank
zero.

PROOF. If Φ = (φ,ψ) : S → Σ1 × Σ2 were an immersed surface with rank(φ) = 0,
then ψ : S → Σ2 is a local diffeomorphism and thus for any vector fields X,Y on S

Φ∗Ωε(X, Y )=Ωε(dΦ(X), dΦ(Y ))

=Ωε((0, dψ(X)), (0, dψ(Y )))

= ε ω(dψ(X), dψ(Y ))

�= 0 ,

where the last line follows from the non-degeneracy of ω and the fact that dψ is a bundle
isomorphism. �

3.2. Projected rank one Lagrangian surfaces. We begin by giving the definition of
Cornu spirals in a Riemannian two manifold.

DEFINITION 3.3. Let (Σ, g) be a Riemannian two manifold. A regular curve γ of Σ
is called a Cornu spiral of parameter λ if its curvature κγ is a linear function of its arclength
parameter such that κγ (s) = λs + μ, where s is the arclength and λ,μ are real constants.

A Cornu spiral γ in R
2 of parameter λ can be parametrised, up to congruences, by

γ (s) =
(∫ s

0
cos(λt2/2)dt,

∫ s

0
sin(λt2/2)dt

)
,

and they are bounded but have infinite length [4].
Let Φ = (φ,ψ) : S → Σ1 × Σ2 be of projected rank one immersion in Σ1 × Σ2.

Then either φ or ψ is of rank one. The following theorem gives all rank one Hamiltonian
Gε-minimal surfaces:
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THEOREM 3.4. Every projected rank one Lagrangian surface can be locally
parametrised by Φ : S → Σ1 × Σ2 : (s, t) �→ (φ(s), ψ(t)), where φ and ψ are regular
curves onΣ and the induced metric Φ∗Gε is flat. In addition,Φ is HamiltonianGε-minimal
if and only if φ and ψ are Cornu spirals of parameters λφ and λψ , respectively, such that

λφ = −ελψ .
Moreover, Φ is a Gε-minimal Lagrangian if and only if both φ and ψ are geodesics, and
every projected rank one Gε-minimal Lagrangian surface in Σ1 ×Σ2 is totally geodesic.

PROOF. Let Φ = (φ,ψ) : S → Σ1 ×Σ2 be of projected rank one Lagrangian immer-
sion. Assume, without loss of generality, that φ is of rank one. We now prove that ψ is of
rank one.

Since Φ is an immersion of a surface, the map ψ cannot be of rank zero. Suppose that
ψ is of rank two, i.e., a local diffeomorphism. Thus, Φ is locally parametrised by Φ : U ⊂
S → Σ1 ×Σ2 : (s, t) �→ (φ(s), ψ(s, t)). Hence,

Φs = (φ′(s), ψs) Φt = (0, ψt ) .

Since Φ is a Lagrangian immersion, we have that ω2(ψs, ψt ) = 0. The fact that ψ is a
local diffeomorphism implies that for any non-zero vector field X in Σ2 can be written as
X = aψs + bψt . Hence, we have that ω2(ψs,X) = 0. The nondegeneracy of ω2 implies that
ψ is cannot be a local diffeomorphism, since ψs = 0. Thus ψ is also a rank one immersion.

We now have that S is locally parametrised by Φ : U ⊂ S → Σ1 × Σ2 : (s, t) �→
(φ(s), ψ(t)), where φ and ψ are regular curves in Σ1 and Σ2, respectively. If s, t are the
corresponding arc-length parameters of φ and ψ , the Frénet equtions give

D1
φ′φ′ = kφjφ

′ D2
ψ ′ψ ′ = kψjψ

′ ,

where kφ and kψ denote the curvatures of φ and ψ , respectively. Moreover,Φs = (φ′, 0) and
Φt = (0, ψ ′) and thus

∇ΦsΦs = (D1
φ′φ′, 0) = (kφjφ

′, 0) , ∇ΦtΦt = (0,D2
ψ ′ψ ′) = (0, kψjψ ′) , ∇ΦtΦs = (0, 0) .

The first fundamental formGεij = Gε(∂iΦ, ∂jΦ) is given by

Gss = εGtt = 1 , Gst = 0 ,

which proves that the immersion Φ is flat.
The second fundamental form hε of Φ is completely determined by the following tri-

symmetric tensor

hε(X, Y,Z) := Gε(hε(X, Y ), JZ) = Ωε(X,∇YZ) .
We then have

hεsst = Ωε(Φs,∇ΦsΦt) = 0 , hεst t = Ωε(Φs,∇ΦtΦt ) = 0 .

Moreover,

hεsss = Ωε(Φs,∇ΦsΦs) = Ωε((φ′, 0) , (kφjφ′, 0)) = Gε((jφ′, 0), (kφjφ′, 0)) = kφ ,
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and similarly, hεtt t = εkψ . Denote the mean curvature of Φ with respect to the metric Gε by
�Hε. Then

Gε(2 �Hε, JΦs) = hεsssG
ε
tt + hεst tG

ε
ss − 2hεsstG

ε
st

GεssG
ε
tt − (Gεst )

2 = kφ ,

and

Gε(2 �Hε, JΦt ) = hεsstG
ε
tt + hεtt tG

ε
ss − 2hεst tG

ε
st

GεssG
ε
tt − (Gεst )

2 = kψ .

Hence
2 �Hε = kφJΦs + εkψJΦt .

It is not hard to see that the Lagrangian immersion Φ is Gε-minimal if and only if the curves
φ and ψ are geodesics. Moreover, if Φ is a Gε-minimal Lagrangian it is totally geodesic,
since the second fundamental form vanishes identically.

Note also that

divε(Φs) = −Gε(∇ΦsΦs,Φs) = −Gε((kφjφ′, 0) , (φ′, 0)) = −g(kφjφ
′, φ′) = 0 .

In a similar way, we derive that divε(Φt ) = 0 .
Thus,

−divε(2J �Hε)=Gε(∇kφ,Φs)+ kφdivε(Φs)+ εGε(∇kψ,Φt )+ εkψdivε(Φt )

= D

ds
kφ(s)+ ε

D

dt
kψ(t) ,

and the theorem follows. �

3.3. Projected rank two Lagrangian surfaces. For the projected rank two case, we
have the following theorem:

THEOREM 3.5. Let (Σ1, g1) and (Σ2, g2) be Riemannian two manifolds and let
(Gε, J,Ωε) be the canonical Kähler product structures on Σ1 × Σ2 constructed in Section
2. Let κ(g1), κ(g2) be the Gauss curvatures of g1 and g2, respectively. Assume that one of the
following holds:

(i) The metrics g1 and g2 are both generically non-flat and εκ(g1)κ(g2) < 0 away
from flat points.

(ii) Only one of the metrics g1 and g2 is flat while the other is non-flat generically.
Then every Gε-minimal Lagrangian surface is of projected rank one.

PROOF. Assume that the Gε-minimal Lagrangian immersionΦ = (φ,ψ) : S → Σ1 ×
Σ2 is of projected rank two. Then by definition the mappings φ : S → Σ1 and ψ : S → Σ2

are both local diffeomorphisms. The Lagrangian assumption Φ∗Ωε = 0 yields

(4) φ∗ω1 = −εψ∗ω2 .

Take an orthonormal frame (e1, e2) of Φ∗Gε such that,

Gε(dΦ(e1), dΦ(e1)) = εGε(dΦ(e2), dΦ(e2)) = 1 , Gε(dΦ(e1), dΦ(e2)) = 0 .

The Lagrangian condition implies that the frame (dΦ(e1), dΦ(e2), J dΦ(e1), J dΦ(e2)) is or-
thonormal. Let (s1, s2) and (v1, v2) be oriented orthonormal frames of (Σ1, g1) and (Σ2, g2),
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respectively, such that j1s1 = s2 and j2v1 = v2. Then there exist smooth functionsλ1, λ2, μ1,

μ2 on Σ1 and λ̄1, λ̄2, μ̄1, μ̄2 on Σ2 such that

dφ(e1) = λ1s1 + λ2s2 dφ(e2) = μ1s1 + μ2s2 ,

dψ(e1) = λ̄1v1 + λ̄2v2 dψ(e2) = μ̄1v1 + μ̄2v2 .

Hence
φ∗ω1(e1, e2) = λ1μ2 − λ2μ1 , ψ∗ω2(e1, e2) = λ̄1μ̄2 − λ̄2μ̄1 .

Using the Lagrangian condition (4), we have

(λ1μ2 − λ2μ1)(φ(p)) = −ε(λ̄1μ̄2 − λ̄2μ̄1)(ψ(p)) , ∀p ∈ S .
Moreover, the assumption that Φ is of projected rank two, implies that λ1μ2 − λ2μ1 �= 0 for
every p ∈ S.

For the mean curvature vectorHε of the immersionΦ, consider the one form aHε defined
by aHε = Gε(JHε, ·). It is known from [8] that since Φ is Lagrangian

(5) daHε = Φ∗ρε ,
where ρε is the Ricci form of Gε. Since Φ is a Gε-minimal Lagrangian immersion Φ∗ρε
vanishes and thus

0 = ρε(dΦ(e1), dΦ(e2))

= Ricε(dΦ(e1), J dΦ(e2))

= εGε(R(dΦe1, dΦe2)J dΦe2, dΦe2)+Gε(R(dΦe1, dΦe2)J dΦe1, dΦe1)

= εg1(R1(dφe1, dφe2)j1dφe2, dφe2)+ g2(R2(dψe1, dψe2)j2dψe2, dψe2)

+g1(R1(dφe1, dφe2)j1dφe1, dφe1)+ εg2(R2(dψe1, dψe2)J dψe1, dψe1)

= ε
(
(λ2

1 + λ2
2 + ε(μ2

1 + μ2
2)
)
(μ1λ2 − μ2λ1)κ(g1)

+(λ̄2
1 + λ̄2

2 + ε(μ̄2
1 + μ̄2

2)
)
(μ̄1λ̄2 − μ̄2λ̄1)κ(g2)

= ε(μ1λ2 − μ2λ1)
[(
λ2

1 + λ2
2 + ε(μ2

1 + μ2
2)
)
κ(g1)−

(
λ̄2

1 + λ̄2
2 + ε(μ̄2

1 + μ̄2
2)
)
κ(g2)

)]
,

which finally gives,

(6)
(
λ2

1 + λ2
2 + ε(μ2

1 + μ2
2)
)
κ(g1) = (

λ̄2
1 + λ̄2

2 + ε(μ̄2
1 + μ̄2

2)
)
κ(g2) .

The conditionGε(dΦ(e1), dΦ(e2)) = 0 yields

(7) λ1μ1 + λ2μ2 = −ε(λ̄1μ̄1 + λ̄2μ̄2) .

Now, using (4) and (7), we have

(8) (λ2
1 + λ2

2)(μ
2
1 + μ2

2) = (λ̄2
1 + λ̄2

2)(μ̄
2
1 + μ̄2

2) .

From Gε(dΦ(e1), dΦ(e1)) = εGε(dΦ(e2), dΦ(e2)) = 1 we obtain

(9) λ2
1 + λ2

2 + ε(λ̄2
1 + λ̄2

2) = ε(μ2
1 + μ2

2)+ μ̄2
1 + μ̄2

2 = 1 .

Set a := λ2
1 + λ2

2, b := μ2
1 +μ2

2, ā := λ̄2
1 + λ̄2

2, b̄ := μ̄2
1 + μ̄2

2. The relations (7), (8) and
(9) give

ab = āb̄ , a + εā = εb + b̄ = 1 .
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Thus a = −εā + 1 and b = ε − εb̄, and from ab = āb̄ we have that ā + εb̄ = ε. Moreover,
ā = ε − εa and b̄ = 1 − εb, and again from ab = āb̄ we have a + εb = 1. Hence, relation
(6) becomes

κ(g1)(φ(p)) = εκ(g2)(ψ(p)) , for every p ∈ S ,
which implies that the metrics g1 and g2 can satisfy neither condition (i) nor condition (ii) of
the statement. �

The following corollaries follow:

COROLLARY 3.6. EveryG+-minimal Lagrangian surface immersed in S
2 ×H

2 is, up
to isometry, the cylinder S1 ×R. Moreover, everyGε-minimal Lagrangian surface immersed
in R

2 × H
2 (R2 × S

2) is of projected rank one and thus it is γ1 × γ2, where γ1 is a straight
line in R

2 and γ2 is a geodesic in H
2 (γ2 is a geodesic in S

2), respectively.

COROLLARY 3.7. Let (Σ, g) be a Riemannian two manifold such that the metric g

is non-flat. Then every G−-minimal Lagrangian surface immersed in Σ × Σ is of projected
rank one and consequently the product of two geodesics of (Σ, g).

4. The Hamiltonian stability of minimal Lagrangian surfaces. The Hamiltonian
stability of a Hamiltonian minimal surface S in a pseudo-Riemannian manifold (M,G)

is given by the monotonicity of the second variation formula of the volume V (S) under
Hamiltonian deformations (see [14] and [5]). For a smooth compactly supported function
u ∈ C∞

c (S) the second variation δ2V (S)(X) formula in the direction of the Hamiltonian
vector field X = J∇u is:

δ2V (S)(X) =
∫
S

(
(Δu)2 − RicG(∇u,∇u)− 2G(h(∇u,∇u), nH)+G2(nH, J∇u))dV ,

where h is the second fundamental form of S, RicG is the Ricci curvature tensor of the metric
G, andΔ with ∇ denote the Laplacian and gradient, respectively, with respect to the metricG
induced on S. For the Hamiltonian stability of projected rank one Hamiltonian Gε-minimal
surfaces we give the following theorem:

THEOREM 4.1. Let Φ = (φ,ψ) be of projected rank one Hamiltonian Gε-minimal
immersion in (Σ1 × Σ2,G

ε) such that κ(g1) ≤ −2k2
φ and κ(g2) ≤ −2k2

ψ along the curves
φ and ψ respectively. Then Φ is a local minimizer of the volume in its Hamiltonian isotopy
class.

PROOF. Let Φ = (φ,ψ) : S → Σ1 × Σ2 be of projected rank one Hamiltonian Gε-
minimal immersion and let (s, t) be the corresponded arclengths of φ and ψ , respectively.
Then (φs, j1φs) is an oriented orthonormal frame of (Σ1, g1) and (ψt , j2ψt ) is an oriented
orthonormal frame of (Σ2, g2). Therefore,

Ricε(Φs,Φs)= εGε(R(Φt ,Φs)Φs,Φt )+Gε(R(JΦs,Φs)Φs, JΦs)

+εGε(R(JΦt ,Φs)Φs, JΦt)
=Gε(R(JΦs,Φs)Φs, JΦs)
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=Gε((R1(j1φs, φs)φs, R2(j2ψs,ψs)ψs), (j1φs, j2ψs))

=Gε((R1(j1φs, φs)φs, 0), (j1φs, 0))

= g1(R1(j1φs, φs)φs, j1φs)

= κ(g1) .

Moreover, a similar computation gives

Ricε(Φt ,Φt ) = κ(g2) and Ricε(Φs,Φt ) = 0 .

Then, for every u(s, t) ∈ C∞
c (S), we have

Ricε(∇u,∇u) = κ(g1)u
2
s + κ(g2)u

2
t .

Furthermore,
Gε(hε(∇u,∇u), 2 �Hε) = u2

s k
2
φ + u2

t k
2
ψ

and
Gε(2 �Hε, J∇u) = uskφ + εutkψ .

The second variation formula for the volume functional with respect to the Hamiltonian
vector field X = J∇u becomes

δ2V (S)(X)=
∫
S

(Δεu)2 − Ricε(∇u,∇u)− 2Gε(hε(∇u,∇u), 2 �Hε)+Gε(2 �Hε, J∇u)2

=
∫
S

(uss + εutt )
2 − u2

s κ(g1)− u2
t κ(g2)− (uskφ − εutkψ)

2

=
∫
S

(uss + εutt )
2 + u2

s (−κ(g1)− k2
φ)+ u2

t (−κ(g2)− k2
ψ)+ 2εusutkφkψ .

Assuming that κ(g1) ≤ −2k2
φ and κ(g2) ≤ −2k2

ψ along the curves φ and ψ , respectively, we
conclude that the second variation formula is nonnegative. �

Every minimal Lagrangian surface in a pseudo-Kähler 4-manifold is unstable [2]. The
following corollary explores the Hamiltonian stability ofG−-minimal Lagrangian surfaces in
Σ1 ×Σ2:

COROLLARY 4.2. Let (Σ1, g1) and (Σ2, g2) be Riemannian two manifolds such that
their Gauss curvatures κ(g1) and κ(g2) are both negative. Then every G−-minimal La-
grangian surface is a local minimizer of the volume in its Hamiltonian isotopy class.

PROOF. From Theorem 3.5 every G−-minimal Lagrangian immersion must be of pro-
jected rank one and thus it is parametrised by Φ = (φ,ψ) : S → Σ1 ×Σ2, where φ = φ(s)

and ψ = ψ(t), where s, t are arclengths. Assuming that κ(g1), κ(g2) are both negative, we
have that:

κ(g1)(s) ≤ −2k2
φ(s) = 0 , κ(g2)(t) ≤ −2k2

ψ(t) = 0 ,

and from Theorem 4.1 theG−-minimal Lagrangian immersionΦ is stable under Hamiltonian
deformations. �

We also have the next corollary:
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COROLLARY 4.3. Let (Σ, g) be a Riemannian two manifold of negative Gaussian cur-
vature. Then everyG−-minimal Lagrangian surface immersed inΣ ×Σ is a local minimizer
of the volume in its Hamiltonian isotopy class.

EXAMPLE 1. It is easy to see that if (Σ, g) is a Riemannian two manifold of constant
Gauss curvature c �= 0, then every G−-minimal Lagrangian surface immersed in Σ ×Σ is a
local minimizer of the volume in its Hamiltonian isotopy class if and only if c < 0.

EXAMPLE 2. Let L(S3) and L+(AdS3) be the spaces of oriented closed geodesics
in the three sphere and anti-De Sitter 3-space, respectively. Then L(S3) = S

2 × S
2 and

L+(AdS3) = H
2 × H

2 (see [1] and [3]). The previous example generalises a result obtained
in [5] which states that every minimal Lagrangian surface in the space of closed oriented
geodesicsL(S3) is Hamiltonian unstable and every Lagrangian minimal surface in L+(AdS3)

is Hamiltonian stable.

The following proposition investigates the Hamiltonian stability of G+-minimal La-
grangian surfaces:

PROPOSITION 4.4. Let (Σ1, g1) and (Σ2, g2) be Riemannian two manifolds with
Gaussian curvatures satisfying

c1 ≤ |κ(g1)(x)| ≤ C1 , c2 ≤ |κ(g2)(y)| ≤ C2 , and κ(g1)(x)κ(g2)(y) < 0 ,

for every pair (x, y) ∈ Σ1 × Σ2 and for some positive constants c1, c2, C1, C2. Then, every
G+-minimal Lagrangian surface is Hamiltonian unstable and hence G+-unstable.

PROOF. Consider again a Lagrangian minimal immersionΦ = (φ,ψ) : S → Σ1 ×Σ2.
From Theorem 3.5, we have that φ = φ(s) and ψ = ψ(t) are geodesics of Σ1 and Σ2,
respectively, with (s, t) chosen to be the corresponding arc-lengths. Then (φs, j1φs) is an
oriented orthonormal frame of (Σ1, g1) and (ψt , j2ψt) is an oriented orthonormal frame of
(Σ2, g2). A computation similar to that in Theorem 4.1 gives

Ric+(Φs,Φs) = κ(g1) , Ric+(Φt ,Φt ) = κ(g2) , Ric+(Φs,Φt ) = 0 ,

and the second variation formula for the volume of S in the direction of the Hamiltonian
vector field X = J∇u is

δ2V (S)(X) =
∫
S

(
(uss − utt )

2 − κ(g1)u
2
s − κ(g2)u

2
t

)
dV .

Assume that κ(g1) < 0. Then, κ(g2) > 0 and

δ2V (S)(X) ≥
∫
S

(
(uss − utt )

2 − C1u
2
s + c2u

2
t

)
dV .

Thus, for the quadratic functional

Q1(u) :=
∫
S

−C1u
2
s + c2u

2
t ,

there exists u1 ∈ C∞
c (S) such that Q1(u

1) ≥ 0. Therefore, δ2V (S)(J∇u1) ≥ 0.
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On the other hand, for every u ∈ C∞
c (S)

δ2V (S)(J∇u) ≤
∫
S

(
(uss + utt )

2 − c1u
2
s + C2u

2
t

)
dV .

Then, for the quadratic functional

Q2(u) :=
∫
S

−c1u
2
s + C2u

2
t ,

there exists u2 ∈ C∞
c (S) such that Q2(u

2) ≤ 0. An argument similar to that in the proof of
Theorem 3 of [5] establishes the existence of u3 ∈ C∞

c (S) such that∫
S

(
(u3
ss + u3

t t )
2 − c1(u

3
s )

2 + C2(u
3
t )

2)dV ≤ 0 ,

which implies that δ2V (S)(J∇u3) ≤ 0. Therefore the second variation formula for the vol-
ume of S under Hamiltonian deformations is indefinite. �
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