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Czechoslovak Mathematical Journal, 23 (98) 1973, Praha 

ON MINIMAL SEQUENCES OF TYPE h 
AND BOUNDED BIORTHOGONAL SYSTEMS IN BANACH SPACES 

IVAN SINGER, Bucarest 

(Received April 15, 1971) 

A sequence {x„} in a Banach space E is said to be minimal if there exists a (not 
necessarily unique) sequence of functionals {/„} с £* such that flx^ = d^j [ij = 
= 1,2,...); any such pair of sequences {x„,f„) is called a biorthogonal system, 
A minimal sequence is called [5] (£, E^yhounded if there exists a sequence {/„} a £* 
such that (x„,fn) is a biorthogonal system which is bounded in the sense of V. PTAK 
[3], i.e., sup Ijx̂ jj < 00 and sup ||/„[| < oo. A minimal sequence {x„} is said to be 

и П 

of type /+, if it is (E, jE;*)-bounded and if there exists a constant rj > 0 such that we 
have, for every finite sequence a^,..., a„ ^ 0, 

n n 

This notion was introduced by Y. Ptak [3] (for the term "of type /+" see [4], [5]), 
who has shown in [3] that minimal sequences of type /+ exist both in every non-
reflexive Banach space and in the Hilbert space I?([0, 1]). In [5] the question was 
raised ([5], page 166, problem 3.9) whether a minimal sequence {x„} of type Ĵ . 
exists in every Banach space. In the present Note we shall prove that the answer to 
this problem is affirmative and that for a wide class of separable Banach spaces 
(including all spaces having a finite dimensional decomposition) {x„} can be chosen 
to be also complete in E, i.e. such that the closed linear span [x„] of {x„} coincides 
with E. The problem whether every separable Banach space E has a complete minimal 
sequence {x„} of type /+ remains still open and it turns out to be equivalent to the 
problem whether every separable Banach space E has an (£, E*)-bounded complete 
minimal sequence ([5], p. 169, problem 3.10). 

Theorem 1. For a Banach space E the following two statements are equivalent: 

1°. E has a complete minimal sequence {x„} of type /+. 
2°. E has an (E, E^ybounded complete minimal sequence {y„}. 
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Proof. The imphcation 1° => 2° is obvious since by definition every minimal 
sequence of type 1+ is (£, £*)-bounded. 

Conversely, assume that (y„, Qn) {{Уп} ^ E, {g„} с £*) is a bounded biorthogonal 
system such that [y„'\ = £. Put 

(2) x„ = J i + Уп + 1 {n = 1 ,2, . . . ) , 

(3) fn=9n,i (n = l , 2 , . . . ) . 

Then (x„,/„) is a bounded biorthogonal system and for every finite sequence 
a^, ..., oĉ  à 0 we have 

(4) \\T.^i^i\\^ 
kill '̂ ^ 

1 " 1 " 
^ I I ^ i ( x , ) | --Г—7 l a , . 

i.e. (1) with rj = l/||6fi||. Therefore, if [ x j = E, then {x„} is a complete minimal 
sequence of type /+. If [x„] Ф £, then there exists a f̂ e -E* such that éf + 0, Ö'(X„) = О 
(n = 1, 2, . . . ) , whence ör(3'i) = -0^(3^2) = -д{Уз) = ••• and thus, since [y„] = E 
and 0̂  Ф 0, it follows that g{yi) Ф 0. Put 

(5) xo = У1, / 0 = - 7 — g . 
д{У1) 

Then [x„]^ = E and (x„,/„)S' is a bounded biorthogonal system such that for every 
n n 

finite sequence ao, a^,..., a„ ^ 0 we have (4) with ^ replaced by ^ . Therefore {x„}^ 
i = l i = 0 

is a complete minimal sequence of type /+, which completes the proof of theorem 1. 

Remark 1. The problem, whether every separable Banach space has property 2° 
([5], p. 169, problem 3.10), is apparently slightly "easier" then the unsolved problem 
of S. BANACH [1], whether in every separable Banach space E there exists an (E, £*)-
bounded M-basis {y„}, that is, a bounded biorthogonal system {y„, g^ such that 
[>'„] = E and that {g^} is total on E (i.e., {x e £ | g^(x) = 0 (n = 1, 2, ...)} = {0}). 

We shall give now a class of separable Banach spaces having property 2° (and 
hence 1°) of theorem 1. We recall that a sequence of finite-dimensional subspaces 
{£„} of a Banach space E is called a. finite dimensional decomposition (f.d.d.) of E 
if for every xe E there exists a unique sequence {z„} с E with z„ E E„(n = 1, 2, ...) 

00 

such that X = J] Zi.lt is well known that in this case for each n the operator P„{x) = 
00 

= z„ (x = YJ ZiE E) is a. bounded linear projection, called '4he natural projection^' 

of E onto £„, and that sup ||P„|| < 00. Let us also recall that a sequence {z„} a E 
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is called a basis of £ if the one-dimensional subspaces E = {az„ | a scalar} constitute 
an f.d.d. of E, i.e., if for every xe E there exists a unique sequence of scalars {a„} 

00 

such that X = J] ociZi. In this case {z„} is a complete minimal sequence in £, namely, 
i = 1 СХЭ 

for h„(x) = a„ (x = ^ a ^ z ^ e E ) we have h^eE"^ (n = 1,2, ...) and hi(xj) = ôij 

(i,j = 1, 2, . . . ) . Moreover, it is also known that if inf ||z„|| > 0 then sup \\h„\\ < oo. 
n n 

Lemma 1. Every Banach space E with an f.d.d. {£„} Jws an (E, E^)-bounded 
M-basis {y„}. 

Proof. Since dim£„ < oo (/t = 1,2,...), for each n there exists (see e.g. [1]) 

a biorthogonal system {yi, (pi}7^mr.-, + i ({У/}"=т„_, + 1 ^ £̂ «. {^J7=m„-i + i ^ ^*) 
such that 

(6) biW = \Wi\\ = 1 0 = "^.-1 + b . . . , m „ ; n = 1,2,...; Шо = 0) . 

For each i = m„_i + 1, . . . , m„ (n = 1, 2,. . .) put 

(7) .̂(х) = И ^ ) ^̂ ' ^^^« 
^ ^ ^̂  ^ lo for XE[JEj 

00 

and extend QI by hnearity to the (dense) hnear subspace of E spanned by \J Ej\ this is 

p 

possible, since £„ n U £̂ j = {0}. Then for every finite sum x = Y^Zf^EE with 
J + n fc=l 

Zj^e E,^{k = 1 , . . . , p) we have 

л=1 (0 for i = m„_i + 1, ..., m„; и = ]? + 1, p + 2, . . . 

whence, by (6), we obtain for i = m„_i + 1, ..., m„ and n = 1, ..., p 

|^,(x)| й \\cp,\\ |iz„| = |z„|| = ||P„(x)| £ sup ||P^| ||x|| 
J 

where P„ is the natural projection of E onto E„ (n = 1,..., p). Since the set of all 
p 

finite sums ^ ẑ t with ẑ t G Ê^ (/c = 1, ..., p) is dense in E, it follows that {g„} cz £* 

and that sup Ц̂г̂Ц < oo. Furthermore, obviously [j^„] — E and gi{yj) = ^jj (г, J = 
и CO 

= 1, 2, . . . ) . Finally, {g^} is total on E, because x = J^Zj^e E and g„(x) = 0 (n = 

= 1, 2, . . .) imply, by (7), (pi{z„) = 0 (г = m„_i + 1, . . . , m„; ?t= 1, 2, . . . ) , whence 
z^ = 0 (и = 1, 2, ...) and X = 0. 

From theorem 1 and lemma 1 it follows 
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Corollary 1. Every Banach space E with an f.d.d. (in particular, every Banach 
space E with a basis) has a complete minimal sequence {x„} of type l+. 

Dropping the assumption that E is separable (and hence the requirement that {x„} 
be complete in £), we have 

Theorem 2. Every Banach space E contains a minimal sequence {x„] of type /+. 

Proof. It is well known (see e.g. [1]) that every Banach space has a "basic se
quence" {z„} (i.e., a sequence {z„} which is a basis of [ z j ) . Then {y^} = {z„/]|z„||} 
is a basis of [y„] = [ z j with \\y„\\ = 1 (n = 1,2,...) and hence for {g„} с [;;„]* 
with gi{yj) = ôij {i,j = 1, 2, . . .) we have sup \\g„\\ < oo. Hence, by theorem 1, the 

It 

subspace [з^„] of E has a complete minimal sequence {x„} of type /+. Since {x„} is 
obviously a minimal sequence of type l+in E, the proof of theorem 2 is complete. 

Remark 2. Note that in a direct proof of theorem 2 the case [x„] ф E of the proof 
of theorem 1 can be omitted. 

Remark 3. Such a result is no longer true if we require, in addition, that {/„ | f-̂ .-j} 
be total on [ x j . Indeed, V. Ptak has observed [3] that if a Banach space E has 
a minimal sequence {x„} of type /+ with this additional property, then E is non-
reflexive. The converse of this latter statement is also true, since every non-reflexive 
Banach space E has ([4], [2]) even a basic sequence {x„} of type /+. 

Added in proof. Our problem mentioned before theorem 1 (and in remark 1) has been solved 
in the affirmative by W. J. Davis and Vsl. B. Johnson (to appear in Studia Math.). 
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