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ON MINIMAL SURFACES IN A KAHLER MANIFOLD
OF CONSTANT HOLOMORPHIC SECTIONAL CURVATURE
BY
JON G. WOLFSON

ABSTRACT. This paper studies minimal surfaces in Kahler manifolds of constant
holomorphic sectional curvature using the technique of the moving frame. In
particular, we provide a classification of the minimal two-spheres in CP”, complex
projective n-space, equipped with the Fubini-Study metric. This classification can be
described as follows: To each holomorphic curve in CP”" classically there is
associated a particular framing of C"*! called the Frenet frame. Each element of the
Frenet frame induces a minimal surface in CP". The classification theorem states
that all minimal surfaces of topological type of the two-sphere occur in this manner.
The theorem is proved using holomorphic differentials that occur naturally on
minimal surfaces in Kahler manifolds of constant holomorphic sectional curvature
together with the Riemann-Roch Theorem.

1. Introduction. In this paper we study, using moving frames, minimal surfaces in
complex projective space (with the Fubini-Study metric) and, more generally,
minimal surfaces in Kahler manifolds of constant holomorphic sectional curvature.

On a minimal surface in any Kéahler manifold an invariant cubic form appears
naturally [7]. If the ambient Kahler manifold is of constant holomorphic sectional
curvature, then this form is holomorphic. Moreover, if this cubic form vanishes (as it
will, for example, if the surface is a two-sphere), then one or possibly two holomor-
phic quartic forms appear on the surface. If these vanish, then one or possibly two
quintic holomorphic forms appear and so on. The vanishing of all these forms allows
us to construct a special framing along the surface known as a Frenet frame. This
generalizes the classical construction of Frenet frames along holomorphic curves in
projective space. In the case that the minimal surface lies in projective space the
existence of a Frenet frame along the surface allows us to show that the surface can
be constructed from a certain unique holomorphic curve via a process involving
basically only differentiation. It will follow that a// minimal two-spheres in projec-
tive space can be constructed, via this procedure, from holomorphic curves.

The classification of minimal two-spheres in complex projective space was first
carried out by Din and Zakrzewski [8]. Somewhat later in {9] Eells and Wood gave a
mathematically rigorous treatment of the work of Din and Zakrzewski with some
interesting extensions to the case of minimal tori in CP". This work and [7] follow
Eells and Wood though they are independent of them. In fact they grew out of an
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628 J. G. WOLFSON

attempt to understand the results of Din and Zakrzewski from the point of view of
the moving frame.

In §2 we derive the fundamental equations of a minimal surface in a Kahler
manifold. In §3 we apply these equations to construct a Frenet frame along a
minimal two-sphere in a Kahler manifold of constant holomorphic sectional curva-
ture. §4 discusses minimal surfaces in complex projective space. We conclude in §5
with a few remarks.

I would like to express my gratitude to Professor S. S. Chern for his advice,
encouragement and support during the completion of this work.

2. Minimal surfaces in a Kahler manifold. Consider a Kahler manifold X of
complex dimension n. We write the metric of X

(2.1) ds’ =Y @, =3 ww,.
Here and throughout this paper we employ the index conventions
(2.2) a,B=-1,12,....n—1, ANuw=2,...,n—1.

The forms w, are of type (1,0) and are defined up to a unitary transformation. They
constitute a unitary coframe. Relative to a coframe field w, a unitary connection w,z
is uniquely determined by the conditions

(2.3) dw, = Zwag A wg,

(24) waﬁ + wﬁa =0 (wga = GBE).

If e ;,...,e,_, is the unitary frame dual to w_j,...,w,_;, then we can write the
covariant derivative of e, as

(2.5) De, = ) &,ze5,

where w,; is the connection satisfying (2.3) and (2.4). The curvature of the metric
(2.1) 1s given by

(2.6) dw,g = Y 0,5 Nz + Q.

X is said to be of constant holomorphic sectional curvature 4p if

(2.7) Qg = —p(wu/\ wg + 8,50 w, A wy).
Consider now an immersed surface

(2.3) x: M- X.

We can choose a field of coframes over M satisfying

(2.9) wy = 0.

The induced metric on M is then

(2.10) ds? = w &, + w,@;.

Let the complex valued 1-form ¢ define the complex structure on M. We can modify
¢ by a real factor so that

(2.11) ds? = ¢¢.
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ON MINIMAL SURFACES IN A KAHLER MANIFOLD 629

¢ is then defined up to a complex factor of norrﬁ 1. We have, restricted to M,

(2.12) w=s¢+10, i=1-1,

where s, and ¢, are complex valued smooth functions on M. Substituting (2.12) into
(2.10) and comparing with (2.11) we get

(2.13) o # sl +lal +1ea =1, sif +s.i,=0.

The w, are defined up to a unitary transformation. In C? we introduce the vectors
5§ =(s;,5_,) and £ = (1,,7_;). Equations (2.13) show that they are orthogonal, with
the sum of the squares of their norms equal to 1. By a unitary transformation at each
point of M we can suppose § = (s,0) and 7 = (0, ¢), giving the “normalization”

(2.14) w, =5, @ =19,

where s and ¢ are complex valued smooth functions which satisfy |s|? + 7|2 = 1.

The notion of a minimal surface in X is defined in terms of its underlying
Riemannian structure. We will find the condition that x: M — X is a minimal
surface. We set

Swy+ 1o =6, +v-180,,
(2.15) fw, — s, = 8, + V=18,
wy =01 +V-10,,,.

Then 6,, 1 < A < 2n, is an orthonormal coframe of the underlying Riemannian
structure of X. It is also a Darboux coframe of M, because along M we have

(2.16) tw, —sw_; =0,

(2.17) w, = 0.

By taking the exterior derivative of (2.16) and making use of (2.3) and (2.14), we get
[(sdi —ids) + si(w;; +w )] Ad+w_1Ad=0,

which allows us to set

(2.18) (sdi —ids) + si(w7 +w_,_1) = ap + bo,

(2.19) w1 = b + co,

where a, b and ¢ are complex valued functions. Similarly, exterior differentiation of
(2.17) gives

swap A+ twy 1 Ap =0,
and we can write
(2.20) swai = @y + by,  tw, 1= b + 30,

where a,, b, and c, are complex valued functions.
Instead of the 2n — 2 real second fundamental forms we can consider the n — 1
complex valued ones:

1€ = a¢® + 2bog + cd®,  1IS = a,¢? + 2b,00 + 9.
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630 I G. WOLFSON

To see the relation between the real second fundamental forms and 11€ and 11 we
must compare the Kahler connection w,z with the Levi-Civita connection 8, of the
Darboux coframe (2.15). For example, the equation

(2.15)(c) wy =01 tV-10;,,

gives on the one hand (2.20). On the other hand, along M we have 8,, ,, = 0, and
0,, ., = 0. Taking the exterior derivative we obtain

0= d02)\+1 = 02>\+1,1“01 + 02>\+1,2"0 >
0=4db,,,= br5,21-0, + 02>\+2.2A02-
By Cartan’s Lemma
Onsia = @ny by + Baxi s,
Oriiz = Bansibr + Yari0s,
Thus we get the second fundamental forms
Iy, = gy, 02 + 285, ,0,0, + vy, .67, i=1,2.

By comparing both sides of the exterior derivative of (2.15)(c), it follows easily that
1 1 a, b1 v-1
v=1 —v-=-1J{b, ¢ )11 —vV-1
_ (a2>\+1 :Bz>\+1) +m(a2x+z Bzmz)‘

Binir Yo Boria  Yarez

i=1,2.

The analogous result for I11€ follows by considering the second equation of (2.15).
The condition for M to be minimal is the vanishing of the traces of 11, 11§, which
is
(2.21) b=b,=0.
In the case that M is minimal (2.18) yields interesting information about the zeros
of s and ¢. Let p € M; then as |s|> + |7|> = 1, in a neighborhood of p either s # 0
or ¢ # 0, say s # 0. (2.18) can then be written

(2.22) d(sf)+ st_(wli +w_; g —295) = a¢.

Suppose ¢ is a complex coordinate centered at p. Then (2.22) implies
(2.23) M +sf-h =0,
where h is a C* complex valued function. In fact hd{ is the (0,1) part of
wiy +w_ 1 —2ds/2. By a result in [5] (see our Theorem 3.2) (2.23) implies that
either st vanishes identically or st = {’k({), where r is an integer > 0 and k is a
C* complex valued function such that k£(0) # 0. In particular if M is minimal, then
s and ¢ either vanish identically (in which case M is a holomorphic or antiholomor-
phic curve) or they have only isolated zeros.

In our investigations in §4, minimal surfaces will arise for which s and ¢ both
vanish at isolated points of the surface. At all points, however, s and ¢ will satisfy

(2.24) s=8%(), 1=¢n(§),
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ON MINIMAL SURFACES IN A KAHLER MANIFOLD 631

where ¢ and r are integers > 0 and g and /4 are C*® complex valued functions such
that g(0) # 0 and A(0) # 0. Points where both s and ¢ vanish (i.e., points { = 0
where ¢ and r are > 1 in (2.24)) are called branch points of the minimal surface
and such minimal surfaces are called branched minimal surfaces. It will prove useful
to include branched minimal surfaces in our study, so for the remainder of this
paper by minimal surface we will mean branched minimal surface, unless stated
otherwise.

When M is minimal and X has constant holomorphic sectional curvature, (2.19)
leads to an interesting theorem. Qur coframe is defined up to the transformation

w, = efw, w,-e*w , ki, k_, real,
under which w, _; transforms as
w, 1~ e, _ge .
Hence the complex valued symmetric differential form of type (3,0)
(2.25) Ay = wwy_w_1 = sice’,
is an invariant of the minimal surface M.

THEOREM 2.1. Let X be a Kdhler manifold of constant holomorphic sectional
curvature. Let M — X be a minimal surface. Then the cubic form A, is holomorphic.

Proor. The conclusion means that relative to a local coordinate { of the complex
structure ¢ on M, A, = f($)d¢3, where f({) is a holomorphic function of ¢.
Let
w, = p,df, w1 = P-1d§, ©-1= qdS,

so that Ay, = (p,P_,4)¢>. We must show that the product in the parentheses is a
holomorphic function of §.
The structure equations give

doy 1= (w017 —w 1) Aw g+ LexAwy 1 +8 1
By (2.20) w;3 = —,; and w,_; are, for a minimal surface, both of type (0,1) so
that the middle sum is zero. On the other hand, £, ; = 0 since X is of constant

holomorphic sectional curvature. Substituting the expression for w;_j into this
equation, we get

dg = ‘7(‘0—1,-1 —w;3) moddf.
Similarly, by using the formulas for dw;, dw_,, we derive
dp, = pyv, 3, dp, = —pyw_;_1 modds.
Hence we get d(p,p_,7) = 0 mod d¢, and the theorem is proved. 0O

COROLLARY 2.1. Under the assumptions of the theorem, if M is the two-sphere S?,
then Ay = 0.

ProOF. The Riemann-Roch Theorem implies that there are no nonzero holomor-
phic forms on S2.
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632 1. G. WOLFSON

3. The Frenet frame of a minimal two-sphere in a Kahler manifold of constant
holomorphic sectional curvature. Let X be a Kiahler manifold of dimension n, x:
M — X an immersed surface and U € M a neighborhood in M.

DEFINITION 3.1. A unitary frame for U C M along x is a set of n C* mappings

e, UCM->T,X, a=-11,...,n—1,

such that e_,(p),e(p),...,e,_1(p) is a unitary basis for 7, X for each p € U.
For brevity we often suppress mention of U or M and say “a unitary frame along

E3]

x”.

Suppose now that x: M — X is a branched minimal immersion which is neither
holomorphic nor antiholomorphic. We saw in §2 that there is a unitary coframe
w_{, Wy, ..., w,_; on M such that

w; = 5, w_, = ta), wy =0,

where s and ¢ satisfy (2.24). Let e, (respectively e_,) be the vector field dual to w,
(respectively w_;). Then e, (resp. e_,) is a well-defined C* mappingU C M —» T, X,
except at the isolated points where s = 0 (resp. ¢t = 0). However, because s and ¢
both satisfy (2.24) the maps e, and e_, can be smoothly extended across their
singularities to form smooth vector fields. e_;, e, can now be extended to a unitary
frame e_j,e,,e,,...,e,_, along x. We shall only consider unitary frames along x
for which e_, and e, have been chosen in this manner.

The covariant differential of the field e, is given by

(3.1) Dea=§x*(6a5)eﬁ,

where the w,z are the connection forms of the unitary coframe dual to
{e_1,ey..--,e,_}. Wewill denote (3.1) by

(3.2) De, = Y &,5¢5-
B

DEFINITION 3.2. We say that the fields {e,...,e,} for some k, 1 < k <n -1,
form a Frenet framing of the holomorphic osculating space of x if they satisfy the
properties:

M) {e_), e,y ....€;4,...,€, 1} is a unitary frame along x,

(2) De; = w5, + @ 3€,,

(3) De, = w, e, + @, e, + o, 57e,,, forl <y <k,

(4) De, = &, p1€4 -y + @4 k€4
where the forms &5 and @ ;77,1 <y <k, are of type (1,0) and not identically
zero.

There is a similar definition for a Frenet framing of the antiholomorphic osculating
space of x.

If y: M > X is a holomorphic curve in the Kahler manifold X, then the
“normalization” (2.14) becomes

w, =59, w, =0, wy, =10
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ON MINIMAL SURFACES IN A KAHLER MANIFOLD 633

and so the vector field e_, is undefined. Making this modification to Definition 3.2,
in [6] it is shown that the holomorphic osculating space of the holomorphic curve y
(and so the total osculating space of y) admits a Frenet framing if the Kahler
manifold X is of constant holomorphic sectional curvature. We will prove the
following partial generalization.

THEOREM 3.1. Let x: S? = X be a branched minimal immersion which is neither
holomorphic nor antiholomorphic, where X is a Kihler manifold of constant holomor-
phic sectional curvature. Then there exists a Frenet framing of the holomorphic
osculating space of x.

To prove this theorem we will need the following result [5]:

THEOREM 3.2. Let h,(§, §) be complex valued functions which satisfy the differential
system

doh
-5 = Ldghg, 1<n,0<m,
9

a

in a neighborhood of §{ = 0, where the a4 are complex valued C ! functions. Suppose
that the h,, do not all vanish identically. Then the h, are of the form

(3.3) ho($) = {h, (%),
where r is an integer > 0 and the 71,,(0) are not all zero.

PROOF OF THEOREM 3.1. Let {e_,e,,...,e,_,} be a unitary frame along x, as

constructed above, and let {w_;, ;, ..., w,_;} be the dual coframe. We have
(34) Del = 51’_ie_1 + Eﬂel + Zaﬂe,\,
A
where the w,z are the connection forms of the coframe {w_j,...,w,_;}. The

holomorphic (3,0) A, defined in §2 is A = w,w;j_,w_;. By Corollary 2.1, A, = 0. It
follows that
(35) wl‘ 1= 0.

On the other hand, from (2.20) it follows that w,3 is a (1,0) form. Let { be a local
complex coordinate. We can write

(3.6) wpn = h3dS,
where the ~5 are C* complex valued functions. (3.4) becomes
(37) Del = w5, + d{(zilj\e)‘)

Taking the exterior derivative of (3.6) and using the structure equations we get
dh;\df =w) AW 3 twg Awpy + Zwlﬁ /\w#;\ +Ql7\
= (h;‘wﬂ - Zh'—‘w"j\) A d?
This means that the hy satisfy a differential system of the type dk5/0¢ = X a5, h;;,

where the a5, are C* complex valued functions. From Theorem 3.2 we can
conclude either that all the hy vanish identically or that the A5 are of the form (3.3).
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634 J. G. WOLFSON

In the former case, De; = w,5¢; and the proof of the theorem is complete. In the
latter case we can make a unitary change of frame so that w,5 is a (0,1) form with
only isolated zeros and w,; = 0, for 3 < v < n — 1. In this case (3.7) becomes

(38) Del = 5116’1 + 51562.

Now by way of induction we suppose that for some j, 1 <j <n ~ 2, we have
constructed C* vector fields e,, ..., e, , along x such that:

(1) {e_i.ei.e5,....e;,,} ispart of a unitary frame along x,
(2) De, = @ye, + &yze,,

De, = wye; + wyze; + Wyzes,

(3.9)

De, | = W1 726 T w_ | 71e, T, e

-1.j¢>

De; =w, 75e;, |+ w e, + & 777€;,,

where @, -5 is a (1,0) form with only isolated zeros for 1 <y <.

We now complete {e_j,e,...,e;,;} to a unitary frame {e_;,e,...,e,_,} along
x and let {w_, @),...,w,_;} be the dual coframe. Let w,z be the connection forms
of the coframe {w_;,w,,...,w,_,}. Consider

(3.10) Dej,y = w16, + @ 16 + Z‘_"J'H,Xe)\-
A

It follows from (3.9) that w;  ; ; =0for1 <y <j— 1,50

De, \ =w; 16, + Wy €+ @ 55780 T ij+l,z7ev’
v

where here and for the remainder of this section we use the index range j + 2 < »,
E<xn—1.

In order to accomplish the inductive step it will be necessary to show that
w;+1-1 = 0. As was the case in showing that w,_;j = 0 this requires the introduction
of a global invariant on S2. To this end we note, by (3.9), w11, 1 <y <, are
(1,0) forms and, by (2.20), w;57_, is also a (1,0) form. This allows us to define a

complex valued symmetric form of bidegree (j + 3,0)

DEFINITION 3.3. A, = 00ppwsy *** W) ;1@ 191
A, is a generalization of the symmetric (3,0) form A,. Of course, A, is only
defined locally. A priori, it depends on the choice of unitary frame {e_,e,,...,¢€,_1}.

However, we have

PROPOSITION 3.1. A, is invariantly defined and so A ; is a globally defined symmetric
form on S2.

Furthermore, we have the crucial
THEOREM 3.3. A is a holomorphic form.
We will postpone the proof of these results in order to complete the induction.

COROLLARY 3.1. A ;= 0.
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Proo¥r. The Riemann-Roch Theorem applies as in the proof of Corollary 2.1. 0O
By the inductive assumption, the forms w, have only isolated zeros. It follows
then from the corollary that

Y.r+l

(311) ij,_i = 0
Hence (3.10) becomes
(312) Dej+ j+l jej + wj+1 Jj+1 + Zw +1,%

We must now deal with the terms w, ; ; in (3.12). From (3.9) we have
(3.13) w;; = 0.
Taking the exterior derivative of (3.13) and using the structure equations, the
curvature assumption and (3.9), we get
0=d“"a= W 731 AN W,

By the inductive hypothesis w
We can write

(3.14) W15 = &S,

w; 75118 2 (0,1) form, so the w,, , ; are also (0,1) forms.

where the g; are C* complex valued functions. Taking the exterior derivative of
(3.14) and using the curvature assumption, (3.9) and (3.11) we have

(3.15) dg; AdS = dw;, 1 5= w4 7T ,+1,,+E W1 § N0 5

= (gaw,+1.,+—1 - de“"e,.-,) A df.
t

This means that the g; satisfy a differential system of the type

985

g
where the b;, are C* complex valued functions. It follows from Theorem 3.2 that
either the g, = 0 or g;(§) = {*8;(§), where s is an integer > 0 and the g;(0) are not
all zero. In the former case we have

(3.16) Dej ), =@y j€;+ @1 771€41-

= Zbigg§9

In the latter case we can make a unitary change of frame so that w,, ;773 is a (0,1)
form with only isolated zeros and so that w;,, ; = 0 for j + 3 <7 < n — 1. In this
case we have

(3'17) Dej+l = ,+1 et w; 41,7416 +1 +w Wit1.5+26+2-

This completes the induction and the proof modulo Proposition 3.1 and Theorem

33. O
PROOF OF PROPOSITION 3.1. A is defined with respect to a unitary frame
{e_,e1..-1€11,---5€,1}. €, and e, are defined according to the convention

discussed at the beginning of this section. It follows that they are determined up to
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the transformation

e, ,—é_ = exp(\/jx_l)e_l, e, —é = exp(\/—_llcl)el,

where «_, and &, are real valued functions. The vector fields e,,...,e;,, are
required to satisfy (3.9). This implies that they are determined up to the transforma-
tion

ey>—>é7=exp(v—lxy)ey, Yy=2,...,j+1,

where the k., are C* real valued functions. Let {&_;,&;,&,,...,&;.,} be the
1-forms dual to the vector fields {é_,,&,,&,,...,¢,,} and let &,5 be the connection
forms of the coframe {&_,, @;,...,&; ., ®;45,...,w,_}. Then we have

(3.18) o, =exp(—V=1x_)w,, & =exp(-V-1k )0,
o, =exp(—V=1k,)w, Y=2,...,j+1,
from which it follows that
(3.19) @545, =exp(V-Tks)wss,1exp(—V—-1ks,1), 8=1,...,/,
@771 = exp(\/_—_lxjﬂ)wﬁ—l'_lexp(—\/——lx_l).

Therefore if A denotes the symmetric (j + 3,0) form defined using the frame
(61,81 & 1,€,1,...,€,_1} we have A = A, from (3.18) and (3.19). We

J
remark that A, does not depend on the choxce of vector fields e, ,,,...,e, ;. The

proposition follows a
PrROOF OF THEOREM 3.3. Let { be a local complex coordinate. We can write

w =rd, o 57=pdl, 1<y<),
(3.20) ' vyt oy )
Wit1-17 qdf, w_y = sdf,
where 7, p., g and s are C* complex valued functions. We have
Aj = (’ﬁlﬁz T ﬁjqf)dfjﬁ-
We must show that the product in the parentheses is a holomorphic function of §.
The structure equations give

yy+l Zwya (xy+1 +Qy,y+l’ ISYSJ'

Using (3.9), (3.20) and the curvature assumption this becomes
dp, A d¢ = w3 Aw, T3 @, TIT A 0,41 35T
= Py(‘*’y,y _“’y+1,ﬁ) A .
So
dp, = P(@y41777 — ©,5) moddf, 1<y<)
Also from the structure equations we have

Wit1-17 E Wirra N Wo i +Qj+1,—i'
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Using (3.9), (3.20) and the curvature assumption this becomes
(3.21) dwi 1 1= @ 1A 11w 777 AWy

n—1

+ Z W5 A@, T
v=j+1

From (3.14) we know that Wit is a (0, 1) form and from (2.20) we know that w,_;
is also a (0, 1) form. It follows that the sum in (3.21) vanishes. Using (3.20) we can
conclude that

dg = g(w_; 5 —wjﬂjﬁ) mod d¢.
Similarly using the formulas for dw, and dw_, we derive

dr=rw;; moddf, ds = —5w_,_7 moddf.

From these it follows easily that

d(1p1Bs +** Bjrf)
This completes the proof. O

Using the same techniques as we employed in the proof of Theorem 3.1 we can

prove

0 modd¢.

THEOREM 3.4. Let x: S? > X be a branched minimal immersion which is neither
holomorphic nor antiholomorphic, where X is a Kdhler manifold of constant holomor-
phic section curvature. Then there exists a Frenet framing of the antiholomorphic
osculating space of x.

The proof of Theorem 3.4 involves defining symmetric (i + 3,0) forms A_,,
i=12,....
Let {, ) denote the Hermitian scalar product in T ,(X).

PrOPOSITION 3.2. If {e,,...,e,} and {e_,,...,e_;} are Frenet frames for the
holomorphic and antiholomorphic osculating spaces, respectively, of a minimal surface
x: 8% = X, then {e_s,e,) =0 foralll <y<k1<d<I

PROOF. If /=1 we are done. Suppose /> 1 and consider (e_;,e,) =0 for
1 € y < k. Taking the exterior derivative we have

0= d<e_1,ey> = (De_l,ey> + (e_l, Dey>
= (5_1‘_1e_1 + 5_1‘_§e_2,ey>
+ <e—1’ av+1-7T1e7—1 + ay‘vev + av+l-me7+l>
= 5_1'_§<€_2, €y>.
As w_;_; vanishes only at isolated points, we must have (e_,,e,) =0,1 <y <k.
By induction suppose (e_s,e,) =0 for1 <y <k, 1 <8<, where i </ Then
by the inductive assumption
0= d<e_,.,e,{>
= <5-i,_(7:°1$e-(i—1) to et o, Fne g+ ev>
(e Bya1 7oyt + Bys8y + Bya1 771041

= & rife e ey)-
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It follows that {(e_,,,),e,) = 0 for all 1 <y < k. This completes the induction and

the proof. O

It follows immediately that {e_,,...,e_,,e,,...,e,} is part of a unitary frame
along x. In fact it is a unitary framing of the total osculating space of x.

Because {e_,,...,e_,e,,...,e,} spans the total osculating space of x, we can
choose vector fields e, k+1<y<n—1sothat:

MW {e_,....e_,e,...,€4,€4,1,---,€,_,} is a unitary frame along x,

(2) De, =0fork+1<y<n—1L
We can assume, then, that k + /= n and that {e_,,...,e_,,e,,...,€,} is a unitary

frame along x which satisfies the following relations:
De_,=w_,_je_;+ @1y (1)

De_; y=w_g it o hoaHe-u-1 T O on-7T0)€-u-2

(3.22) De \=w_, s ,+ &, 16,

De, = w76, + 0 3e,,

De, = wye; + &3¢, + wy5e;,

De, = &, 7=7€, 1 + @ 28>
where the @_5_,,_5, 2 < 8 </, are forms (possibly zero) of type (1,0) and the &, /57,
1 < vy < k — 1, are forms (possibly zero) of type (1, 0).

DEFINITION 3.4. A unitary frame {e_,,...,e_j,e,,..., e, } along a minimal surface
in a Kahler manifold of dimension k + [/ is called a Frenet frame if

(1) e_, and e, are the fields dual to w_, = t¢ and w, = s¢, respectively,

(2) the unitary frame satisfies (3.22).

We have shown that a minimal surface x: $? — X which is neither holomorphic
nor antiholomorphic admits a Frenet frame if X is a Kahler manifold of constant
holomorphic sectional curvature. Recalling the proof of this result we see that we
used the fact that the minimal surface is a two-sphere only to conclude that the
holomorphic forms,... A _;, Ay, Ay,... are zero. This motivates the following

DEFINITION 3.5. A minimal surface in a Kahler manifold of constant holomorphic
sectional curvature is called superminimal if all the holomorphic forms
...»A_|, Ay, Ay, ... are defined and vanish.

The term superminimal was coined by R. Bryant in a somewhat different context
[1].

If X is a Kahler manifold of constant holomorphic sectional curvature, then, of
course, any minimal two-sphere in X is superminimal. Moreover, we have

THEOREM 3.5. If X is a Kihler manifold of constant holomorphic sectional curvature
and x: M — X is a superminimal surface, then there is a Frenet frame along x.

We remark that although A is defined and holomorphic for any minimal surface
in X this is not true for the forms Aj, j # 0. In general Aj, Jj > 0, is defined and
holomorphic if and only if the A, i =0,..., j — 1, are defined and vanish (simi-

larly for the A_,, j> 0). Thus on a minimal surface in a Kahler manifold of
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constant holomorphic sectional curvature which is not superminimal there is at least
one globally defined holomorphic form (and possibly two different such forms).

It should be remarked that if X is a Kahler manifold nonpositive constant
holomorphic sectional curvature, then there are no minimal two-spheres in X. It can
be shown, however, that locally X admits superminimal surfaces which are neither
holomorphic nor antiholomorphic. It is not known if there are any complete
superminimal surfaces in X which are neither holomorphic nor antiholomorphic.

4. Minimal surfaces in CP". We wish to apply the results of §3 to the case that X
is complex projective space, CP”, with the Fubini-Study metric. We begin by giving
a description of the geometry of CP".

For W, Z € C"*! the usual Hermitian inner product is defined by

(4.1) (W,Z) = Y w1z, W= (wyy....w,), Z=1(2¢---,2,),
where here and throughout this section we employ the index ranges
(4.2) 0<a,b,c<n, 1<i, j,k<n.

The unitary group U(n + 1) is the group of all linear transformations on C"*!
leaving the inner product (4.1) invariant. CP" is the orbit space of C"*! — {0}
under the action of the group Z — AZ, where A is a complex number # 0. We thus
have the projection map #: C"*! — {0} - CP". For a point p € CP" a vector
Z € w7}(p) is called a homogeneous coordinate vector of p. We put Z, =
Z/{(2Z,Z)/* so that (Z,, Z,) = 1. The homogeneous coordinate vector Z, at a
point p € CP” is defined up to the change

Zy— Zy= e‘/j’Zo, T real.
Under this change we have
(dZ,, Zo) = (dZ,, Zy) + V—1dr,
(dZy,dZ,) = (dZ,,dZ,) + V—-1dr{—{dZ,, Z,) + {Z,,dZ,)} + dr>.
The resulting invariant expression
(4.3) ds? = {(dZ,,dz,) — {dZ,, Zy){Z,, dZ,)
is the Fubini-Study metric on CP",

Now let Z, be a unitary frame in C"*! so that (Z,, Z,) = §,,. In the bundle of
all unitary frames on C"*! we have

(4‘4) dZa = lebaﬁzb’
b

where ¢ ;= —y,,=(dZ,, Z,) is a one-form. The y,; are the Maurer-Cartan
forms of the group U(n + 1) and so satisfy the Maurer-Cartan structure equations

(45) d\l/af) = Z‘Pa? AIIJ(B

These are obtained by exterior differentiation of (4.4). By (4.3) and (4.4) the
Fubini-Study metric can be written

(4~6) ds* = Z‘PQ}‘IO]-
7
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It is of the form (2.1) if we set

(47) wj = ‘1!/0]
If we choose
(4-8) w;; = _(‘Pﬁ - 6:‘,‘4’06)’

then these forms satisfy the conditions (2.3) and (2.4). They are therefore the
connection forms of the Fubini-Study metric and this metric is K&hler. Its curvature
forms are

(4.9) Q= —w A w— 8w, A wp.
k
Thus the Fubini-Study metric has constant holomorphic sectional curvature.
We want to apply these results to an immersed surface x: M — CP". Over a
neighborhood U C M we define a unitary frame Z, along x as C* maps

Z.UcCM—-C*' —{0}

such that: (1) wo Z,: U —» CP" is the immersion x; and (2) {Z,,Z,,...,Z,} isa
unitary frame in C"*! for each point p € U. All of the above considerations remain
valid for a frame field defined in this manner, where we must now regard (4.3)-(4.9)
as equations restricted to M.

Let y: M — CP" be a holomorphic curve, U a coordinate neighborhood in M
and { a complex coordinate on U. Using homogeneous coordinates on CP", y is
given locally by a holomorphic vector valued function Z({) = (z4(£),- .., z,(£))

(4.10) Z:Uc M- C"' —{0}.

We assume that y is nondegenerate, i.e. that y(M) does not belong to any
hyperplane in CP". This means that
9Z 9"Z

AN—=%0

(4.11) ZA e N N e

except perhaps at isolated points. As Z and its derivatives are all holomorphic
functions of §, any zeros of (4.11) are removable. This enables us to define a unitary
frame along y which is intimately related to the osculating spaces of y.

Set Z,=2Z/{Z,Z)/% Choose maps Z: UC M — C"*! — {0} such that
Zy(p), Z,(p),....Z,(p) forms a unitary basis for the vector space spanned by
Z(p),(3Z/3L) p),...,(d'Z/3¢') p) (the Ith osculating space of y at p) for each
I=1,...,nand p € U. {Z,,...,Z,} is a unitary frame along y which satisfies

dZy = Y2y + Y121,
(412) dZ = ‘P wzu—l + tI/o.éza + tpa,mzo-f-l’ 1 < Y S n— 1’

o g,0—-1
dZn = \Pn.mzn—l + ¢n.ﬁzn’

where ¢, 557 is a form of type (1,0) for 0 < p < n — 1 and y,;—7 is a form of type
O, forl <i<n.
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For later use we record the following

LEMMA 4.1. For 0 < p < n — 1the (1,0) forms Y, 57 have only isolated zeros. In
particular, in some neighborhood of { = 0

(4.13) Y, 571 = $h,d8,
where r is an integer > 0 and h o is a C™ function such that h ,(0) # 0.

PROOF. As ¢, <7 1s a (1,0) form we can write

(4.14) ¥, 517 = h,d§.
Taking the exterior derivative of (4.14) and using the Maurer-Cartan equations and
(4.12) we get

dhy NdS =Y, 5 A, 537 b 5T Ao
= (‘Pp,f) _¢p+l.pTl) A hpdg'
So

[th - hp(‘Pp.ﬁ _‘Pp+1,pT1)] Ad§=0.

This means that 4, satisfies a differential equation of the form (94/ ) = fh,, where
/ is a complex valued C* function on U. By Theorem 3.2 either ¢, 57 satisfies
(4.13) or Y, ;57 = 0. The latter implies that the osculating space of y has dimension
p, contradicting the assumption that y is nondegenerate. O

A similar statement holds for the (0,1) forms ¢, ;—7, 1 <i < n.

Each Z;, 1 < i < n, is determined, by the above construction, up to a transforma-
tion Z, = 7Z,, where 7 is a complex valued function of norm one. If = is the
projection C"*! — {0} — CP", then it follows that the map

(4.15) y=meZ:M—->CP" 1<i<n,
is well defined.

THEOREM 4.1. Suppose y: M — CP" is a nondegenerate holomorphic curve. Then
the maps

y:M->CP" 1<gli<n,

are branched superminimal immersions which are neither holomorphic nor antiholomor-
phic. The map y,: M — CP" is an antiholomorphic map.

PrOOF. Consider the unitary frame {Z,,...,Z,,..., Z,} as a framing along the

map y,. Set
(4.16) w, =¥, 7y forl<y<n-—|,
ws=y, 75 forl<d<l
{w_s, w, } is the unitary coframe dual to { Z,,..., Z,}. On the surface defined by y,
we have
(4.17) , =0 for2<y<n-—|,
ws=0 for2 <8<l
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The metric on M induced by y, is, then
=¥, v Y

= ww, + w_;0_;.
This is not the same metric as ds? = ¢, the metric induced by y. However, because
w, 1s a (1,0) form and w_; is a (0 1) form, the metrics ds and ds are conformally
equivalent. Thus the complex structures induced on M by ds and ds_l are
equivalent. This allows us to write

(4.18) w =Y 5 =8¢, W =Yo7 =g,
where s and ¢ are C* complex valued functions. (4.17) and (4.18) are the same as
equations (2.9) and (2.14). It follows from Lemma 4.1 that the map y, is a branched
immersion.

Using the Maurer-Cartan equations to compute the connection forms of the
coframe (4.16), wegetforl < y<xn—/and1 <6 </

(4.19) W 5=~V 575y
From (4.12) it follows that on M
(4.20) w, 1= ~¥175y =0, l<sy<sn—|,
ws1= Y1775 =0, 1<d<l
Consulting (2.19) and (2.20) we see that this means that y,; M — CP” is minimal.
Moreover by the definition of the holomorphic forms A ,, =/ + 1< g<(n—-1) -1,

(4.20) implies that they all vanish. Hence y, is a branched supermmlmal immersion
forl </ <n.

To see that y, = o Z, is an antiholomorphic map, note that since ¥
(0, 1) form

—7is a

n.n

dZ, =y, ;Z, mod d¢.
Sod(meZ,)=0modd¢, ie. y, = moZ, is antiholomorphic. O

Theorem 4.1 gives a procedure, involving basically only differentiation, of con-
structing superminimal surfaces in CP" from holomorphic curves. Utilizing the
Frenet frame of a superminimal surface in CP" constructed in §3 we can show that
all superminimal surfaces in CP” can be constructed in this way. In particular, we
can show that all minimal two-spheres in CP" can be constructed using this
procedure.

Let x: M — CP" be a nondegenerate superminimal surface. Using homogeneous
coordinates on CP” x is given locally by a vector valued function Z;: UC M —
C"*1 of unit length. From the results of §3 there is a unitary frame
{e ....e_1,€,...,e,_,} along x which satisfies (3.22). We need to translate this
framing into a framing using homogeneous coordinates. This is easily accomplished
for if p € CP" and V € n~!( p), then we can identify T,(CP") with {W & C"*":
(W,V) = 0}. Under this identification we let e_, e; correspond to Z_;, Z;, respec-
tively, for 1 €j </, 1<i<n-1I Then {Z ,,...,Z_l,ZO,Zl,...,Z,,,,} is a
unitary frame field along x. Moreover, by our convention on the choice of e_; and
e, we have

(4-21) dzZ, = ‘Po,-iz-l + Y5 Zo T Vo141,
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where
(4.22) Yoi=w =1, Yo = =5b.
From (3.22) we know that w;; =0 if |/ —j| > 1, and from (4.8) we have w;; =
—(¥,; — 8;;¥05)- Thus
(4.23) ¥;;=0, li—j|>1.
The unitary frame {Z_,,...,Z_,,Z,, Z,, ..., Z,_,)} satisfies
dZ_; =V ;i Z_+ ¥ 12 -u-1»

dZ—l = 11’-1.-52-2 + ‘P-l,-iz—l + ‘P—l,(‘)zo,
(4-24) dZ, = ‘Po,-iz-l + ‘Po.(')Zo + Yoz,
dz, = ‘Pl.ﬁzo +¥11Z) + Y32,

az,_,= ‘Pn—/,n—/—lzn—/—l + ‘Pn—/,ﬁzn—/-

As was the case with the elements of the Frenet frame of a holomorphic curve,
each Z,, —1 < i < n — [, is determined up to the transformation Z;, — 7Z,, where 7
is a complex valued function of norm one. Thus the maps
(4.25) x;=moZ: M- CP”"
are well defined. By the same argument as in the proof of Theorem 4.1, for
—I+1<i<n-1-1, x;is a superminimal surface in CP". The map x,_, is
antiholomorphic and the map x_, is holomorphic. The holomorphic map x_, is
called the directrix (or generating) curve of x and is denoted by A , .

Comparing (4.24) with (4.12) we see that the framing {Z_,,..., Z,,...,Z,_,}isa
Frenet framing of the holomorphic curve A ,. Moreover, the superminimal surface x
occurs as the /th element of this Frenet frame. We have proved the following

THEOREM 4.2. Let x: M — CP" be a superminimal surface. Let | be the dimension
of the antiholomorphic osculating space of x. Then there is a unique holomorphic curve,
A, called the directrix curve of x such that x occurs as the lth element of the Frenet
frame along A .

Theorem 4.2 shows that all superminimal surfaces in CP” can be constructed
using the procedure of Theorem 4.1. Moreover, as minimal two-spheres in CP” are
superminimal, Theorem 4.2 provides a classification of the minimal two-spheres in
CP". That is, a minimal two-sphere in CP” is determined by its directrix curve (a
holomorphic curve in CP") and in the dimension of its antiholomorphic osculating
space (an integer between 1 and n).

5. Further results. In this section we record a few more results of the techniques
introduced in §§2-4.

Given a minimal surface x: M — CP”" with homogeneous coordinate vector Z,,
as we have seen, the holomorphic osculating direction Z; and the antiholomorphic
osculating direction Z_, give rise to well-defined maps x, = 7o Z, and x_; =w°Z_,
from M to CP".
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THEOREM 5.1. If x: M — CP" is a branched minimal surface, then the maps x:
M — CP"and x_,: M — CP" are also branched minimal surfaces.

The proof follows using the technique of the proof of Theorem 4.1.

This theorem can be extended by considering a minimal surface x: M — CP" for
which the forms Ao = --- = A; =0 for some j and A, , # 0. x is not super-
minimal; however, we can apply the constructions of §§2 and 3 to find a unitary
frame {Z_,,Z,,Z\,...,Z,Z,,,,..., Z,_,} along x so that

(5.1) dZ, =y, 712, T ¥, 52, Y ¥, 012,01, 0<p <,

where ¢, =7 is a (0,1) form and ¢, =7 1s a (1,0) form. The maps x, =7 Z,
~1 < p <j + 1, are well defined.

THEOREM 5.2. If x: M — CP" is a branched minimal surface for which the forms
Ag= - =A,=0,A,,,#0, thenthemaps x,=n°Z: M—->CP", -1<p<j
+ 1, are also branched minimal surfaces.

Again the proof follows using the technique of the proof of Theorem 4.1. The

vanishing of the forms A, --- A, allows the construction, using basically only
differentiation, of j new minimal surfaces. Of course, similar remarks apply to the
case Ag=A_ ;= -=A_,=0and A_,,,#0.

Consider a minimal surface x: M — CP” for which A, =0, j > 0. Using the
idea §2 we can construct a Frenet frame {Z,,..., Z, } for the holomorphic osculat-
ing space of x. Then the map x, = wo Z,: M — CP" is an antiholomorphic curve.
But then the minimal surface x occurs as an element of the Frenet frame of an
antiholomorphic curve. Thus x must be superminimal and the forms A_;, j > 0,
must also vanish. Similarly if A_; = 0, j > 0, then the surface is superminimal and
A;=0 />0

We would like to find results about minimal surfaces in CP" which relate the
geometry of the surfaces to the superminimality conditions. In the case that the
surface is the torus, T'? (the surface of genus one), we have such a theorem.

The universal covering space of the torus is given by

C

L

T2
where C is the complex plane and  is the usual map to 72 regarded as C/T', I' a
lattice in C. We can assume that = is a holomorphic mapping. If A is a holomorphic

(j,0) form on T2, then 7*A is a holomorphic ( j,0) form on C. Letting z be a global
complex coordinate on C we can write

TN = g(z)(dz)j,

where g(z) is a holomorphic, doubly periodic function on C. It follows that g is
constant.
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THEOREM 5.3. If x: T? - CP" is an immersed minimal torus and if for some
p € T? the tangent space x*(T},(TZ)) is a complex line in T, ,(CP"), then x:
T? —» CP" is a superminimal surface. Every branched minimal torus in CP" is
superminimal.

PROOF. Applying the above remarks to the holomorphic (3,0) form A, we have
7*A o = go(2z)(dz)>. Recall that A, = w,w1_,w_1 = sic(¢)’. The condition on the
tangent space of the immersed minimal torus (resp. the condition that p € T2 is a
branch point) says with respect to our normalization (2.14)

w; = 5P, w_, = ta,

that either s(p) =0 or ¢(p) = 0 (resp., both s(p) =0 and ¢(p) = 0). It follows
that go(7~'(p)) = 0. But g, is a constant. Hence 7*A, = 0; and so A, = 0.

The vanishing of A, implies that A; (and A_;) is defined and holomorphic.
Moreover, if we set w;; = u¢ and w,_; = vp, where u and v are complex valued
functions, then

__o0 4
A = owne; w1 = sudi(9) .

Thus, as above, A, = 0.

Continuing, this argument shows that all the A ;8 J=0,+£1,£2,..., vanish. O

We conclude this section by indicating how Calabi’s classification of minimal
two-spheres in the Euclidean sphere SV [2, 3] can be derived from our result. Let w:
S? - SV be a minimal immersion, where SV is the sphere of radius 1 in Euclidean
(N + 1)-space. We assume that w is nondegenerate in the sense that the image of w
does not lie in an equator of S". Denote by pr: S¥ - RP" the projection of SV to
real projective N-space and denote by «: RPY — CP¥ the inclusion. The map ¢ opr
is totally geodesic, so the map x = toprow: S2 - CP" is a minimal immersion

x: 525 sV ERrpv S cpv,

Furthermore, x is real (i.e., x = X) and nondegenerate (i.e. x(S?) does not lic in a
hyperplane).

Applying the results of §4 to the minimal surface x we get a Frenet frame
{(Z_,....Z.,2y,Z,,...,Z,} along x, where {Z,,...,Z,} is a Frenet frame for
the holomorphic osculating space of x and {Z,,..., Z_,} is a Frenet frame for the
antiholomorphic osculating space of x. 7 o Z_, is the directrix curve, A , of x. As x
is real, we have k = [ and

(5.2) Z,=Z, 1<i<l=k.
In particular 7o Z_, = A .

PROPOSITION 5.1. If w: S2 —> SV is a nondegenerate minimal immersion, then N is
even.

PROOF. Using the above notation we have by the nondegeneracy of x, kK + [/ = N.
Butas xisreal, k =/ O
We can suppose then that N = 2/.
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Because the holomorphic curve A, is associated with a minimal map §2 —» S?/ it
has some special properties. To explain these we denote by (, ) the scalar product on
C2?'*! which is complex linear in both arguments. That is, if Y, Z € C**,

Y = (yo’yl"--syZ[), Z = (Zo, 21,...,22/) then
2/
(Y,Z) = ¥ yaza
A=0

For 1 < i, j < I we have by (5.2),

(5.3) 0=(z.z.)=(2.Z) = (2.2).

The osculating space of order jof A, forl <j < /is
S=Z NZ N NZ

I+

It follows from (5.3) that the (/ — 1) osculating space of A lies completely on the
nondegenerate hyperquadric Q,, , in CP?. Q,,_, is defined by the equation
(Z,Z) =0, where Z is a homogeneous coordinate vector in C?/*!. Moreover, it is
not difficult to show that any nondegenerate holomorphic curve A: S? » CP%,
whose (/ — 1) osculating space satisfies this property, is the directrix curve associ-
ated to some minimal map S2 — S?/ 7, 10].
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