
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 290, Number 2, August 1985

ON MINIMAL SURFACES IN A KAHLER MANIFOLD
OF CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

BY

JON G. WOLFSON

Abstract. This paper studies minimal surfaces in Kahler manifolds of constant
holomorphic sectional curvature using the technique of the moving frame. In
particular, we provide a classification of the minima] two-spheres in CP", complex
projective /¡-space, equipped with the Fubini-Study metric. This classification can be
described as follows: To each holomorphic curve in CP" classically there is
associated a particular framing of C" + 1 called the Frenet frame. Each element of the
Frenet frame induces a minimal surface in CP". The classification theorem states
that all minimal surfaces of topological type of the two-sphere occur in this manner.
The theorem is proved using holomorphic differentials that occur naturally on
minimal surfaces in Kahler manifolds of constant holomorphic sectional curvature
together with the Riemann-Roch Theorem.

1. Introduction. In this paper we study, using moving frames, minimal surfaces in
complex projective space (with the Fubini-Study metric) and, more generally,
minimal surfaces in Kahler manifolds of constant holomorphic sectional curvature.

On a minimal surface in any Kahler manifold an invariant cubic form appears
naturally [7]. If the ambient Kahler manifold is of constant holomorphic sectional
curvature, then this form is holomorphic. Moreover, if this cubic form vanishes (as it
will, for example, if the surface is a two-sphere), then one or possibly two holomor-
phic quartic forms appear on the surface. If these vanish, then one or possibly two
quintic holomorphic forms appear and so on. The vanishing of all these forms allows
us to construct a special framing along the surface known as a Frenet frame. This
generalizes the classical construction of Frenet frames along holomorphic curves in
projective space. In the case that the minimal surface lies in projective space the
existence of a Frenet frame along the surface allows us to show that the surface can
be constructed from a certain unique holomorphic curve via a process involving
basically only differentiation. It will follow that all minimal two-spheres in projec-
tive space can be constructed, via this procedure, from holomorphic curves.

The classification of minimal two-spheres in complex projective space was first
carried out by Din and Zakrzewski [8]. Somewhat later in [9] Eells and Wood gave a
mathematically rigorous treatment of the work of Din and Zakrzewski with some
interesting extensions to the case of minimal tori in CP". This work and [7] follow
Eells and Wood though they are independent of them. In fact they grew out of an
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628 J C}. WOLFSON

attempt to understand the results of Din and Zakrzewski from the point of view of
the moving frame.

In §2 we derive the fundamental equations of a minimal surface in a Kahler
manifold. In §3 we apply these equations to construct a Frenet frame along a
minimal two-sphere in a Kahler manifold of constant holomorphic sectional curva-
ture. §4 discusses minimal surfaces in complex projective space. We conclude in §5
with a few remarks.

I would like to express my gratitude to Professor S. S. Chern for his advice,
encouragement and support during the completion of this work.

2. Minimal surfaces in a Kahler manifold. Consider a Kahler manifold X of
complex dimension n. We write the metric of X

(2.1) ds2 = £uacöa = Lw„co5.

Here and throughout this paper we employ the index conventions

(2.2) a,ß= -1,1,2,..., n-\,       \,¡x = 2,.. .,n - 1.
The forms u>a are of type (1,0) and are defined up to a unitary transformation. They
constitute a unitary coframe. Relative to a coframe field cca a unitary connection oiaß
is uniquely determined by the conditions

(2.3) dwa = 2>a/3 A aB,

(2-4) Uaß +  "/la =  0       ("ßa =  <^ßä) ■

If e_x,...,en_x is the unitary frame dual to (>3_l,...,un_l, then we can write the
covariant derivative of ea as

(2-5) Dea = Zc5aMeß,

where u>aß is the connection satisfying (2.3) and (2.4). The curvature of the metric
(2.1) is given by

(2.6) duaß = £coa- Auyß + üaß.

X is said to be of constant holomorphic sectional curvature 4p if

(2.7) üaß = -p(w„ A wß + Sa/g£wY A "r):

Consider now an immersed surface

(2.8) x: M -» X.

We can choose a field of coframes over M satisfying

(2.9) cox = 0.

The induced metric on M is then

(2.10) ds2 = u_xü_x + uxwx.

Let the complex valued 1-form $ define the complex structure on M. We can modify
<p by a real factor so that

(2.11) ds2x = <M>.
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ON MINIMAL SURFACES IN A KAHLER MANIFOLD 629

<í> is then defined up to a complex factor of norm 1. We have, restricted to M,

(2.12) a, = í,.<f> + t¡4>,       i = 1,-1,
where s¡ and ti are complex valued smooth functions on M. Substituting (2.12) into
(2.10) and comparing with (2.11) we get

(2.13) I'll   +l*-il   +l'il   + l'-il   =!.        sxtx + s_xt_x = 0.
The co, are defined up to a unitary transformation. In C2 we introduce the vectors
s = (sx, s_x) and F= (/,, /_,). Equations (2.13) show that they are orthogonal, with
the sum of the squares of their norms equal to 1. By a unitary transformation at each
point of M we can suppose s = (s,0) and t = (0, r), giving the "normalization"

(2.14) W] = s4>,       co_x = t4>,

where s and t are complex valued smooth functions which satisfy |s|2 + \t\2 = 1.
The notion of a minimal surface in X is defined in terms of its underlying

Riemannian structure. We will find the condition that x: M -* X is a minimal
surface. We set

sux + iw_1 = 6X + ]/ — 1 02,

(2.15) fw, - sü_x = 03 + f^$4,

UX = 02A + 1 +  V^^2\ + 2-

Then 6A, 1 < A < 2«, is an orthonormal coframe of the underlying Riemannian
structure of X. It is also a Darboux coframe of M, because along M we have

(2.16) iux - iw_j = 0,
(2.17) coA = 0.

By taking the exterior derivative of (2.16) and making use of (2.3) and (2.14), we get

[(sdi -ids) +if(»1i +«_i,li)] /\ 4> + Wj.t A^ = 0,
which allows us to set

(2.18) (sdi -ids) + si(uxx +«_i,_t) = a^> + ¿>c>,

(2.19) «!_! = b<t> + c$,
where a, b and c are complex valued functions. Similarly, exterior differentiation of
(2.17) gives

suxx AcJ> + rcoA_j AcJ» = 0,

and we can write

(2.20) siúxi = aA<i) + brf,        icox _T = Z»x</> + cxc>,

where ax, bx and cx are complex valued functions.
Instead of the 2« - 2 real second fundamental forms we can consider the n - 1

complex valued ones:

IIe = a</>2 + 2b<Ñ> + c4>2,       IIX = ax<S>2 + 2bx<p4> + c^>2.
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630 J. G. WOLFSON

To see the relation between the real second fundamental forms and IIe and IIe we
must compare the Kahler connection uaß with the Levi-Civita connection 6AB of the
Darboux coframe (2.15). For example, the equation

(2.i5)(c) cox = e2X+x + f^îe2X+2

gives on the one hand (2.20). On the other hand, along M we have 02X + X = 0, and
02X + 2 = 0. Taking the exterior derivative we obtain

0 = ^2X+1 = 02X + l,lA  + Ö2X+1,2-Ö2>

0 = d02X + 2 = 02X + 2 ,l-öl  + #2A + 2,2-02-

By Cartan's Lemma

02\ + i,l = «2A + A + ßlX + ßl-

02X + /.2 = ßlX + fil  + JlX + A*

Thus we get the second fundamental forms

n2A + , = «2X +A2 + WlX + ßA + y2x + fii, i = L2.
By comparing both sides of the exterior derivative of (2.15)(c), it follows easily that

1 1      \¡ax     bx\¡l       f^l

1,2.

1      -v'-l    \bx     e,     1     -V-l'x

P2X+1 \ /—j-[a2X+2       P2X-

,P2X+1        Y2X + I / \P2X + 2       Ï2X + 2,

The analogous result for IIe follows by considering the second equation of (2.15).
The condition for M to be minimal is the vanishing of the traces of IIe, IIe, which

is

(2.21) b = bx = 0.
In the case that M is minimal (2.18) yields interesting information about the zeros

of s and t. Let p e M; then as |i|2 + |i|2 = 1, in a neighborhood of p either i#0
or t # 0, say s ¥= 0. (2.18) can then be written

(2.22) d(si) +siiioxx +«_!_! -2—1 = a<¡>.

Suppose f is a complex coordinate centered at p. Then (2.22) implies

(2.23) ^4^- + si-h = 0,

where h is a C00 complex valued function. In fact hd\ is the (0,1) part of
wiî +t0-i-ï —2ds/2. By a result in [5] (see our Theorem 3.2) (2.23) implies that
either si vanishes identically or si = Çrk(Ç), where r is an integer > 0 and k is a
C°° complex valued function such that k(0) ¥= 0. In particular if M is minimal, then
s and í either vanish identically (in which case M is a holomorphic or antiholomor-
phic curve) or they have only isolated zeros.

In our investigations in §4, minimal surfaces will arise for which s and t both
vanish at isolated points of the surface. At all points, however, s and ; will satisfy

(2.24) i = £'g(0,        t = Vh(ï),
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ON MINIMAL SURFACES IN A KAHLER MANIFOLD 631

where q and r are integers > 0 and g and h are C°° complex valued functions such
that g(0) ¥= 0 and h(0) + 0. Points where both s and / vanish (i.e., points f = 0
where q and r are > 1 in (2.24)) are called branch points of the minimal surface
and such minimal surfaces are called branched minimal surfaces. It will prove useful
to include branched minimal surfaces in our study, so for the remainder of this
paper by minimal surface we will mean branched minimal surface, unless stated
otherwise.

When M is minimal and X has constant holomorphic sectional curvature, (2.19)
leads to an interesting theorem. Our coframe is defined up to the transformation

u1<-*e'klu1,    u_x <-* e'k-lu_1,        kx,k_x real,

under which co1 j transforms as

«i,-ï ■"* eiklcox_xe~ikK

Hence the complex valued symmetric differential form of type (3,0)

(2.25) A0 = uxíúx_xu_x = sic<¡>3,

is an invariant of the minimal surface M.

Theorem 2.1.   Let X be a Kahler manifold of constant holomorphic sectional
curvature. Let M -* X be a minimal surface. Then the cubic form A0 is holomorphic.

Proof. The conclusion means that relative to a local coordinate f of the complex
structure c!> on M, A0 = /(f) df3, where /(f) is a holomorphic function of f.

Let

wi = P\dl,        w_j = p_xd\,        u>x_-x = qdl,
so that A0 = (pxP-Xq)V- We must show that the product in the parentheses is a
holomorphic function of f.

The structure equations give

dicx_x = (cou -«_lr.i) A tólri + 2>lX A«x,-i +®i,-ï-

By (2.20) tolx = — üxx and cox_x are, for a minimal surface, both of type (0,1) so
that the middle sum is zero. On the other hand, ß1 j = 0 since X is of constant
holomorphic sectional curvature. Substituting the expression for cox_x into this
equation, we get

dq = q(u_x_x — Wx,l)    mod Jf.

Similarly, by using the formulas for dux, du>_x, we derive

dpx=pxu>xx,       dp2=-p2ti>_l_i    modi/f.

Hence we get d(pxp_xq) = 0 mod dÇ, and the theorem is proved.    D

Corollary 2.1. Under the assumptions of the theorem, if M is the two-sphere S2,
then A0 = 0.

Proof. The Riemann-Roch Theorem implies that there are no nonzero holomor-
phic forms on S2.
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3. The Frenet frame of a minimal two-sphere in a Kahler manifold of constant
holomorphic sectional curvature. Let X be a Kahler manifold of dimension n, x:
M -* X an immersed surface and (/çMa neighborhood in M.

Definition 3.1. A unitary frame for U ç M along x is a set of n Cx mappings

ea:UQM-*TmX,        a « -1,1,...,« — 1,

such that e_x(p),ex(p),... ,en_x(p) is a unitary basis for Tx(p)X for each p e U.
For brevity we often suppress mention of U or M and say "a unitary frame along

x".
Suppose now that x: M -» X is a branched minimal immersion which is neither

holomorphic nor antiholomorphic. We saw in §2 that there is a unitary coframe
co_j, uv..., u„_x on M such that

coj = i</>,        cOj = t<f>,        tox = 0,

where s and / satisfy (2.24). Let ex (respectively e_x) be the vector field dual to icx
(respectively co_x). Then ex (resp. e,^ is a well-defined C00 mapping U ç M -» T^JV,
except at the isolated points where s = 0 (resp. / = 0). However, because s and /
both satisfy (2.24) the maps ex and e_, can be smoothly extended across their
singularities to form smooth vector fields. e_x, ex can now be extended to a unitary
frame e_x,ex,e2,.. .,en_x along x. We shall only consider unitary frames along x
for which e_x and e, have been chosen in this manner.

The covariant differential of the field ea is given by

(3.1) Dea = Zx*i*aß)eß,
ß

where the uaß are the connection forms of the unitary coframe dual to
[e_x,ex,... ,en_x}. We will denote (3.1) by

(3.2) Dea = IX^.
fl

Definition 3.2. We say that the fields [ex,...,ek) for some k, 1 < k < n — 1,
form a Frenet framing of the holomorphic osculating space of x if they satisfy the
properties:

(1) {e_x,ex,e2,...,ek,...,en_x} is a unitary frame along x,
(2) Dex = uxxex + üx2e2,
(3) Dey = äy—xey_x + üyyey + üyy^rxey+x for 1 < y < k,
(4) Dek = ûkl—xek_x + ûkkek,

where the forms üx2 and ûYç^r, 1 < y < k, are of type (1,0) and not identically
zero.

There is a similar definition for a Frenet framing of the antiholomorphic osculating
space of x.

If y: M -y X is a holomorphic curve in the Kahler manifold X, then the
"normalization" (2.14) becomes

co¡ = S(j>,        w_j = 0,        ccx = 0
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and so the vector field e_, is undefined. Making this modification to Definition 3.2,
in [6] it is shown that the holomorphic osculating space of the holomorphic curve y
(and so the total osculating space of y) admits a Frenet framing if the Kahler
manifold X is of constant holomorphic sectional curvature. We will prove the
following partial generalization.

Theorem 3.1. Let x: S2 -» X be a branched minimal immersion which is neither
holomorphic nor antiholomorphic, where X is a Kahler manifold of constant holomor-
phic sectional curvature. Then there exists a Frenet framing of the holomorphic
osculating space of x.

To prove this theorem we will need the following result [5]:

Theorem 3.2. Let /¡^(f, f ) be complex valued functions which satisfy the differential
system

9«,      _
~^r = La ghs,       1 < tj, 0 < m,df 9

in a neighborhood of f = 0, where the a^e are complex valued Cl functions. Suppose
that the hn do not all vanish identically. Then the hn are of the form

(3-3) \(f) = frMf),
_

where r is an integer > 0 and the hv(0) are not all zero.

Proof of Theorem 3.1. Let {e_x,ex,...,en_x} be a unitary frame along x, as
constructed above, and let {<o_,, w,,..., u„_x } be the dual coframe. We have

(3.4) Dex = üx_xe^ + üxxex + £üixex,
x

where the uaß are the connection forms of the coframe {w_l5.. .,un_x). The
holomorphic (3,0) A0 defined in §2 is A0 = wxw-x_xu_x. By Corollary 2.1, A0 = 0. It
follows that

(3.5) mCl = 0.
On the other hand, from (2.20) it follows that <jxx is a (1,0) form. Let f be a local

complex coordinate. We can write

(3-6) «1X = hxd¡,

where the hx are C°° complex valued functions. (3.4) becomes

(3.7) Dex - <3lI<?1 + dfähfix)-
Taking the exterior derivative of (3.6) and using the structure equations we get

dhxdl = 03X_X Aw_, x +WlI Aíoxx + £«0^ Aioyx +Í21X

= (*X«iI - EV>M*) Adl.
This means that the h-x satisfy a differential system of the type 3/¡x/3f = £ ax h^,
where the a-X/l are C°° complex valued functions. From Theorem 3.2 we can
conclude either that all the h-x vanish identically or that the hx are of the form (3.3).
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In the former case, Dex = üxxex and the proof of the theorem is complete. In the
latter case we can make a unitary change of frame so that u12 is a (0,1) form with
only isolated zeros and »15 = 0, for 3 < v < n — 1. In this case (3.7) becomes

(3.8) Dex = üxxex + üx2e2.

Now by way of induction we suppose that for some j, 1 </< n — 2, we have
constructed C°° vector fields e2,..., eJ + x along x such that:

(1) (e_x,ex,e2,...,eJ + x) is part of a unitary frame along x,

(2) Dex = üxxex + üX2e2,
De2 = ü2Xex +ü22e2 +ü23e3,

De)_x = üJ_x—2e]_2 + ü]_xy—xe]_x + üJ_XJeJ,

Dej = SJ.J=ïeJ-i + "jJeJ + "j,J^Tej+i>

where côy -^ is a (1,0) form with only isolated zeros for 1 < y < /'.
We now complete [e_x,ex, ...,e¡+l) to a unitary frame (e_1,e1, ...,en_x) along

x and let { w_1, w,,..., un_x] be the dual coframe. Let uaß be the connection forms
of the coframe {co_,,a1,...,u„_1}. Consider

(3.10) Dej+X = üJ + x_xe_x + üJ + xrxex + £wy + 1 xex.
x

It follows from (3.9) that uJ+Xy = 0 for 1 < y < j' - 1, so

Dej + i = «y+i,-l«-i + 5y+i,;«/ + <Vi.77T<v + i + E^j+i/»-

where here and for the remainder of this section we use the index range j + 2 < v,
i^n-\.

In order to accomplish the inductive step it will be necessary to show that
ío+1_j = 0. As was the case in showing that w,_¡ = 0 this requires the introduction
of a global invariant on S2. To this end we note, by (3.9), WyiT+1, 1 < y <j, are
(1,0) forms and, by (2.20), wy^y,.! is also a (1,0) form. This allows us to define a
complex valued symmetric form of bidegree (j + 3,0)

Definition 3.3. Ay = uxo)X2u23 ■ ■ ■ Uj J+xu—^[_xu_x.
A is a generalization of the symmetric (3,0) form A0. Of course, Ay is only

defined locally. A priori, it depends on the choice of unitary frame {e_x, e,,..., e„„,}.
However, we have

Proposition 3.1. Ay is invariantly defined and so Ay is a globally defined symmetric
form on S2.

Furthermore, we have the crucial

Theorem 3.3. Ay is a holomorphic form.

We will postpone the proof of these results in order to complete the induction.

Corollary 3.1. A; = 0.
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Proof. The Riemann-Roch Theorem applies as in the proof of Corollary 2.1.    □
By the inductive assumption, the forms w^  +1 have only isolated zeros. It follows

then from the corollary that

(3.11) ccJ + xA = 0.

Hence (3.10) becomes

(3-12) Dej + X = üf+tjej + üJ+1yfy¡ + E«;+i,^-
V

We must now deal with the terms uJ+1 ¡¡ in (3.12). From (3.9) we have

(3.13) Ujf = 0.
Taking the exterior derivative of (3.13) and using the structure equations, the
curvature assumption and (3.9), we get

0 = d(0j-y = ujjïï A uj+l<v.

By the inductive hypothesis Ojj^i is a (0,1) form, so the w+1 - are also (0,1) forms.
We can write

(3.14) »Jn;fT..g,d?,

where the g¡, are C00 complex valued functions. Taking the exterior derivative of
(3.14) and using the curvature assumption, (3.9) and (3.11) we have

(3.15) dg-v Adl = duJ + x-v = uJ + Xj—x A uJ + xv + X>y+1,¿ Au( -
i

= Í &»>+i,7+ï - Egf«î,p) A dÇ.
í

This means that the gv satisfy a differential system of the type

where the bH are C°° complex valued functions. It follows from Theorem 3.2 that
either the g„ = 0 or gP(f ) = £%(£), where s is an integer > 0 and the gP(0) are not
all zero. In the former case we have

(3.16) DeJ + x = üj+ijej + üJ + xyy^xeJ + x.

In the latter case we can make a unitary change of frame so that aJ+1 —2 is a (0,1)
form with only isolated zeros and so that Uj+ij = 0 for j + 3 < ir < n - 1. In this
case we have

(3.17) DeJ+x = ûJ+1jej + üJ+uj^eJ+í + ^J+i,yneJ + 2.

This completes the induction and the proof modulo Proposition 3.1 and Theorem
3.3.    D

Proof of Proposition 3.1. Ay is defined with respect to a unitary frame
{e_x,ex,...,ej+x,...,en_x}. e_x and ex are defined according to the convention
discussed at the beginning of this section. It follows that they are determined up to

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



636 J. G. WOLFSON

the transformation

<?_i -» ë_x = exp(v/:Tic_1)e.1,        ex -> ëx = exp(/ITK1)e1,

where k_x and k, are real valued functions. The vector fields e2,...,eJ+x are
required to satisfy (3.9). This implies that they are determined up to the transforma-
tion

ey*->ëy = exp(J^ÏKy)ey,        y = 2, ...,j+ 1,

where the Ky are C00 real valued functions. Let {¿¿_1,ül,&2,...,Wj+l} be the
1-forms dual to the vector fields {ë_x, ëx, ë2,..., ëJ+ x} and let waß be the connection
forms of the coframe {ù_x,ùx,...,uj+x,icJ+2,...,icn_x}. Then we have

(3.18) û_x = exp(-\/-l k.Ju.,,        wx = exp(-v/-l kx)ux,

«T = exp(-/:rTKY)(oY,        y = 2,...,y +1,

from which it follows that

(3-19)     w8i+J = exp(/zTKs)wgÄ+1exp(-/:rTKs+1),       5 = 1,...,7,

"JTï.-i = exp(v^Ky+1)u-rr,_iexp(-/:rT/c_1).

Therefore if A, denotes the symmetric (_/ + 3,0) form defined using the frame
{ë_x,ëx,...,ëJ+x,eJ+x,...,en_x}  we have Aj = Ay  from (3.18) and (3.19). We
remark that Aj does not depend on the choice of vector fields ej+2,.. .,en_x. The
proposition follows.   D

Proof of Theorem 3.3. Let f be a local complex coordinate. We can write

co, = rd$,       wY,7fï -Pydl,   l<y<y,
(3.20) wj+i,-i= qdl,     «_i = ■«#,

where /•, /> , ¿7 and í are C00 complex valued functions. We have

Aj= (rPiPi ■■■ Pjq~s)d$i + \

We must show that the product in the parentheses is a holomorphic function of f.
The structure equations give

¿wy,7TT = Lwy.5 A "a.^TT + ñY,7TT>        1 «?«./.
a

Using (3.9), (3.20) and the curvature assumption this becomes

dpy f\dl= wY? AwY ̂ TT + wY,y7¡T A »Y+i.:r^ï

= /\(Wy.r  -«Y + l.Y^)   A  ^

So

¿PT-'^y(»T+i.7iT ~ wt.t)    modiC        1<Y<7'.

Also from the structure equations we have

dWj+l.-l = IWy+1,5 A a>a_T +ßy + lr.T.
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Using (3.9), (3.20) and the curvature assumption this becomes

(3-21) ¿«,+i,-ï = ",+1,-1 A«-i,-î +«/+i,7Tî A aj+irl

From (3.14) we know that tó/+li¡¡ is a (0,1) form and from (2.20) we know that uv_x
is also a (0,1) form. It follows that the sum in (3.21) vanishes. Using (3.20) we can
conclude that

dq = <7(«-i,-ï -«, + i,7TT)    modrff.
Similarly using the formulas for dcox and dic_x we derive

dr = ruxx    moddf,        ds = — su_x_x    modi/f.
From these it follows easily that

dirPxPi ■ ■ ■ Pj+xqs) = 0   mod¿f.
This completes the proof.    D

Using the same techniques as we employed in the proof of Theorem 3.1 we can
prove

Theorem 3.4. Let x: S2 -» X be a branched minimal immersion which is neither
holomorphic nor antiholomorphic, where X is a Kahler manifold of constant holomor-
phic section curvature. Then there exists a Frenet framing of the antiholomorphic
osculating space of x.

The proof of Theorem 3.4 involves defining symmetric (/' + 3,0) forms A_,,
i = l,2,....

Let ( , ) denote the Hermitian scalar product in T*( X).

Proposition 3.2. // [ex,...,ek) and {e_x,...,e_¡} are Frenet frames for the
holomorphic and antiholomorphic osculating spaces, respectively, of a minimal surface
x: S2 -y X, then (e_s, ey) = 0 for all 1 < y < k, 1 < 5 < /.

Proof. If /= 1 we are done. Suppose /> 1 and consider (e_x,ey) = 0 for
1 < y < k. Taking the exterior derivative we have

0 = d(e.l,ey) = {De_x,ey) + (e^x,Dey)

= (w_i,_i«-i + ü_x_2e_2,ey)

+ {e.x,üy + xyz^ey_x + üyyey + ûy + xy^xey + x)
= 5-i,-3(«-2j«y);

As w_! _3 vanishes only at isolated points, we must have (e_2,ey) = 0, I ^ y ^ k.
By induction suppose (e_s, ey> = 0 for 1 < y < A:, 1 ^ S < i, where i < I. Then

by the inductive assumption
0 = d(e_¡,ey)

= (ü_i¡_-¡—T)e.u.X) + ü_i^ie^ + «_,,¿(7+íyC:(/+í>,*'y)

+ (e-i,ày + x—xex + Ü    e y + fy+ijzje y+1)

= w-/,-(7+î)\e-(, + i)'eY/.
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It follows that (e_(/ + 1),ey) = 0 for all 1 sg y < k. This completes the induction and
the proof.    □

It follows immediately that {e_h...,e_x,ex,...,ek} is part of a unitary frame
along x. In fact it is a unitary framing of the total osculating space of x.

Because {e_h...,e_x,ex,...,ek) spans the total osculating space of jc, we can
choose vector fields e , k + 1 < y < n - I, so that:

(1) [e_¡,.. .,e_x,ex,.. .,ek,ek + x,... ,en_,} is a unitary frame along x,
(2) Dey = 0 for k + 1 < y < n - I.

We can assume, then, that k + I = n and that {e.¡,...,e_x,ex,...,ek.} is a unitary
frame along x which satisfies the following relations:

De_, = ü_L_¡e_i + ü_,_{—X)e^l_X),

De-a-D = u-(t-i),-ie-i + w-(/-i),-(7^í)e-(í-i) + co-(/-D,-(7i:2)e-(/-2)'

De_x = w_,_2^-2 + «-1,-1^-1.
(3.22)

Dex = wlxex + ux2e2,
De2 = ü2Xex + ü22e2 + ü23e3,

Dek = ük,f—iek_x + ük-kek,

where the w_/í_1)_g, 2 < S < /, are forms (possibly zero) of type (1,0) and the ü^rj,
1 < y < k - 1, are forms (possibly zero) of type (1,0).

Definition 3.4. A unitary frame {e_h...,e_x,ex,... ,ek} along a minimal surface
in a Kahler manifold of dimension k + I is called a Frenet frame if

(1) e_x and e, are the fields dual to co^ = t§ and co, = s<f>, respectively,
(2) the unitary frame satisfies (3.22).
We have shown that a minimal surface x: S2 -» X which is neither holomorphic

nor antiholomorphic admits a Frenet frame if X is a Kahler manifold of constant
holomorphic sectional curvature. Recalling the proof of this result we see that we
used the fact that the minimal surface is a two-sphere only to conclude that the
holomorphic forms ,... A_x, A0, A,,... are zero. This motivates the following

Definition 3.5. A minimal surface in a Kahler manifold of constant holomorphic
sectional curvature is called superminimal if all the holomorphic forms
..., A_x, A0, Aj,... are defined and vanish.

The term superminimal was coined by R. Bryant in a somewhat different context
[!]•

If A1 is a Kahler manifold of constant holomorphic sectional curvature, then, of
course, any minimal two-sphere in X is superminimal. Moreover, we have

Theorem 3.5. If X is a Kahler manifold of constant holomorphic sectional curvature
and x: M —> X is a superminimal surface, then there is a Frenet frame along x.

We remark that although A0 is defined and holomorphic for any minimal surface
in X this is not true for the forms A,, j # 0. In general A -, j > 0, is defined and
holomorphic if and only if the A,, /' = 0,..., j' - 1, are defined and vanish (simi-
larly for the A    ,  j > 0). Thus on a minimal surface in a Kahler manifold of
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constant holomorphic sectional curvature which is not superminimal there is at least
one globally defined holomorphic form (and possibly two different such forms).

It should be remarked that if X is a Kahler manifold nonpositive constant
holomorphic sectional curvature, then there are no minimal two-spheres in X. It can
be shown, however, that locally X admits superminimal surfaces which are neither
holomorphic nor antiholomorphic. It is not known if there are any complete
superminimal surfaces in X which are neither holomorphic nor antiholomorphic.

4. Minimal surfaces in CP". We wish to apply the results of §3 to the case that X
is complex projective space, CP", with the Fubini-Study metric. We begin by giving
a description of the geometry of CP".

For W, Z g C" + 1 the usual Hermitian inner product is defined by

(4.1) (W,Z) = Y,waza,        W=iw0,...,w„),Z=izQ,...,z„),

where here and throughout this section we employ the index ranges

(4.2) 0^a,b,c^n,       l^i,j,k^n.
The unitary group U(n + 1) is the group of all linear transformations on C" + 1
leaving the inner product (4.1) invariant. CP" is the orbit space of C+1 - {0}
under the action of the group Z -y XZ, where X is a complex number ¥= 0. We thus
have the projection map <n: C" + 1 - {0} -» CP". For a point p g CP" a vector
ZG77_1(/?) is called a homogeneous coordinate vector of p. We put Z0 =
Z/(Z, Z)1/2 so that (Z0, Z0) = 1. The homogeneous coordinate vector Z0 at a
point p g CP" is defined up to the change

Z0 i-» Z0 = e»~lTZ0,        t real.

Under this change we have

(dZ0,Z0) = (dZ0,Z0) + f^ldj,

(dZ0,dZ0) = (dZ0,dZ0) + /^ïdr{-(dZ0,Z0) + (Z0,dZ0))+dr2.

The resulting invariant expression

(4.3) ds2=(dZ0, dZQ) ~(dZ0, Z0><Z0, dZ0)

is the Fubini-Study metric on CP".
Now let Za be a unitary frame in C"+1 so that (Za, Zh) = Sah. In the bundle of

all unitary frames on C" + 1 we have

(4-4) dZa = £*tfZ„
b

where $a-h = -i¡>ha= (dZa,Zh) is a one-form. The \pa-h are the Maurer-Cartan
forms of the group U(n + 1) and so satisfy the Maurer-Cartan structure equations

(4-5) ^.ï-Ë*«A^.
c

These are obtained by exterior differentiation of (4.4). By (4.3) and (4.4) the
Fubini-Study metric can be written

(4-6) ds2 = Etr-oÂ,.
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It is of the form (2.1) if we set

(4.7) <0,   =   *„,:.

If we choose

(4-8) «i>- -(^/-M*)'
then these forms satisfy the conditions (2.3) and (2.4). They are therefore the
connection forms of the Fubini-Study metric and this metric is Kahler. Its curvature
forms are

(4.9) 0V- -«, A W; - Siy2>* A uk.
k

Thus the Fubini-Study metric has constant holomorphic sectional curvature.
We want to apply these results to an immersed surface x: M -> CP". Over a

neighborhood t/çMwe define a unitary frame Za along * as C°° maps

Za: Î/Ç Af^ C" + 1 -{0}

such that: (1) it ° Z0: U —y CP" is the immersion x; and (2) (Z0, Z,,..., Zn) is a
unitary frame in C" + 1 for each point p G £/. All of the above considerations remain
valid for a frame field defined in this manner, where we must now regard (4.3)-(4.9)
as equations restricted to M.

Let y: M -» CP" be a holomorphic curve, U a coordinate neighborhood in M
and f a complex coordinate on U. Using homogeneous coordinates on CP", y is
given locally by a holomorphic vector valued function Z(f ) = (z0(Ç),..., z„(f ))

(4.10) Z: UQ M^C" + l -{0}.

We assume that _y is nondegenerate, i.e. that y(M) does not belong to any
hyperplane in CP". This means that

(4.11) ZA-^A-.-A— #0

except perhaps at isolated points. As Z and its derivatives are all holomorphic
functions of f, any zeros of (4.11) are removable. This enables us to define a unitary
frame along y which is intimately related to the osculating spaces of y.

Set Z0 = Z/ (Z, Z)1/2. Choose maps Z,: U ç M -» C + 1 - {0} such that
Z0(p), Zx(p),..., Zj(p) forms a unitary basis for the vector space spanned by
Z(/>),(3Z/3f)(/>),...,(3'Z/3f')(/>) (the /th osculating space of y at p) for each
/ = 1,..., n and p e U. { Z0,..., Z„} is a unitary frame along _y which satisfies

¿Z0 = 'r'oöZo + 'r'oï2!'
(4.12) ^J = ^^ïZ(,_1 + ^5ZJ-r^^ZI+1,        1 < a < n - 1,

¿Z« = ,rV;^TZ,,-l + ^„,«Z„>

where »i'p.^TT is a f°rm OI lyPe (1,0) for 0 < p < « - 1 and \¡/¡—r is a form of type
(0,1) for 1 « i < «.
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For later use we record the following

Lemma 4.1. For 0 < p < n - 1 the (1,0) forms i*pyj^\ have only isolated zeros. In
particular, in some neighborhood of f = 0

(4.13) </y^ = S%dt,
where r is an integer > 0 and ~hp is a C00 function such that hp(0) =£ 0.

Proof. As ^pyrï is a (1> 0) f°rm we can write

(4.14) .¿VpTT = h„dS.

Taking the exterior derivative of (4.14) and using the Maurer-Cartan equations and
(4.12) we get

dhp A c/f = 4>p - Adjp jTY + »rV^T A 4>P+t,JÏÏ
= (iP,p-Vi^)AV^

So

[dhp-hpi^prp'^p + x^-x)\ Arff.-O.
This means that hp satisfies a differential equation of the form (3/i/3f ) = fhp, where
/ is a complex valued C°° function on U. By Theorem 3.2 either VVp+T satisfies
(4.13) or <r/p,pn - 0- The latter implies that the osculating space of y has dimension
p, contradicting the assumption that y is nondegenerate.   D

A similar statement holds for the (0,1) forms ^¿rr, 1 < / < R.
Each Z(, 1 < / < n, is determined, by the above construction, up to a transforma-

tion Z, >-» tZ,, where t is a complex valued function of norm one. If it is the
projection C" + 1-{0}->CP", then it follows that the map

(4.15) y¡ = TT°Zy. M^CP",    lii<R,

is well defined.

Theorem 4.1. Suppose y : M -y CP" is a nondegenerate holomorphic curve. Then
the maps

y,: M-> CP",    1 </<r,
are branched superminimal immersions which are neither holomorphic nor antiholomor-
phic. The map y y M -» CP" is an antiholomorphic map.

Proof. Consider the unitary frame { Z0,..., Z¡,..., Zn} as a framing along the
map y,. Set

(4.16) coy = dj, j^    for 1 < y < n - I,

to_s = \pi jzg    for 1 < 8 < /.

{<o_s, «y } is the unitary coframe dual to {Z0,..., Z„}. On the surface defined by y,
we have

(4.17) <oY = 0    for 2 < y < n - I,

co . = 0    for2^5</.
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The metric on M induced by y, is, then

dSy, = «r'/.TTÎ'r'/.TTÎ + ^t,T^A>tJ=ï
=  COjtöj   +  03_xCû_x.

This is not the same metric as ds2. = <}><}>, the metric induced by y. However, because
ux is a (1,0) form and u_x is a (0,1) form, the metrics ds2. and ds2 are conformally
equivalent. Thus the complex structures induced on M by ds2 and ds2 are
equivalent. This allows us to write

(4.18) co! = t/^TTi = s<t>,        to,, = t/^TTT = f<i>,
where 5 and t are C00 complex valued functions. (4.17) and (4.18) are the same as
equations (2.9) and (2.14). It follows from Lemma 4.1 that the map y, is a branched
immersion.

Using the Maurer-Cartan equations to compute the connection forms of the
coframe (4.16), we get for 1 < y < n — I and 1 < S < /
(4.19) "y,-s= -ti-s.TTy-
From (4.12) it follows that on M
(4.20) coy,_t = -V,-i,7T^ =0,        1 < y < n - I,

w-s,ï = -^/+i.7=» = °<       1 « 8 < /.
Consulting (2.19) and (2.20) we see that this means that y,: M -* CP" is minimal.
Moreover by the definition of the holomorphic forms A, —/+l<^r<(n — /) — 1,
(4.20) implies that they all vanish. Hence y, is a branched superminimal immersion
for 1 < / < n.

To see that yn = tt ° Zn is an antiholomorphic map, note that since tyny¡Z\ is a
(0,1) form

dzn = 4>„,-„Z„    moddt
So d(TT ° Z„) = 0 mod c/f, i.e. y„ = it ° Z„ is antiholomorphic.   D

Theorem 4.1 gives a procedure, involving basically only differentiation, of con-
structing superminimal surfaces in CP" from holomorphic curves. Utilizing the
Frenet frame of a superminimal surface in CP " constructed in §3 we can show that
all superminimal surfaces in CP" can be constructed in this way. In particular, we
can show that all minimal two-spheres in CP" can be constructed using this
procedure.

Let x: M -» CP" be a nondegenerate superminimal surface. Using homogeneous
coordinates on CP" x is given locally by a vector valued function Z0: U ç M ->
C" + 1 of unit length. From the results of §3 there is a unitary frame
{e_„...,e_,,e1,...,e„_i) along x which satisfies (3.22). We need to translate this
framing into a framing using homogeneous coordinates. This is easily accomplished
for if p g CP" and Kg <tt~\p), then we can identify T^CP") with {W g C"+1:
(W,V) = 0}. Under this identification we let e_J,ei correspond to Z_p Z„ respec-
tively, for 1<7</, 1 < i < r —/. Then {Z_„...,Z_1,Z0,Z1,...,Zn_¡} is a
unitary frame field along x. Moreover, by our convention on the choice of e_, and
ex we have
(4.21) dZ0 = ^0_-xZ^x +xpoöZ0 + 4/oxZx,
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where

(4.22) </>„_! = co_! = r<i>,        xp0î = co, = s<¡>.

From (3.22) we know that u,¡ = 0 if |i - j\ > 1, and from (4.8) we have u,¡ =
-(^/-á,,»r'0o)-ThuS

(4.23) »//,7 = 0,      |'i-;|>l.
The unitary frame {Z_¡,..., Z_x, Z0, Z,,..., Zn_¡) satisfies

dZ_[ = ii_L_]Z_l + </'-,_(7rî)Z.(/_1),

dZ_x = ii_x^_2Z_2 + i>_x_xZ_x + i/'.loZo,
(4.24) </Z0 = ^o,-ïz-i + '/'o.ôZo + «r'olZ^,

¿Zl = 'r'l.öZo + «r'llZ! + ^iiZ2,

_dZn_, = «p„_/(^=7rîZ„_/_1 + il>„_t—,Zn_,.
As was the case with the elements of the Frenet frame of a holomorphic curve,

each Zy, -/</'< n - I, is determined up to the transformation Z, «-* tZ,, where t
is a complex valued function of norm one. Thus the maps
(4.25) x, = iroZy. M ^ CP"

are well defined. By the same argument as in the proof of Theorem 4.1, for
— I + 1 < i < r — / — 1, Xj is a superminimal surface in CP". The map x„_¡ is
antiholomorphic and the map x_¡ is holomorphic. The holomorphic map x_, is
called the directrix (or generating) curve of x and is denoted by A^.

Comparing (4.24) with (4.12) we see that the framing {£_/,..., Z0,. ".', Zn'_,} is a
Frenet framing of the holomorphic curve Ax. Moreover, the superminimal surface x
occurs as the /th element of this Frenet frame. We have proved the following

Theorem 4.2. Let x: M -* CP" be a superminimal surface. Let I be the dimension
of the antiholomorphic osculating space of x. Then there is a unique holomorphic curve,
Ax, called the directrix curve of x such that x occurs as the Ith element of the Frenet
frame along Ax.

Theorem 4.2 shows that all superminimal surfaces in CP" can be constructed
using the procedure of Theorem 4.1. Moreover, as minimal two-spheres in CP" are
superminimal, Theorem 4.2 provides a classification of the minimal two-spheres in
CP". That is, a minimal two-sphere in CP" is determined by its directrix curve (a
holomorphic curve in CP") and in the dimension of its antiholomorphic osculating
space (an integer between 1 and n).

5. Further results. In this section we record a few more results of the techniques
introduced in §§2-4.

Given a minimal surface x: M -» CP" with homogeneous coordinate vector Z0,
as we have seen, the holomorphic osculating direction Zx and the antiholomorphic
osculating direction Z_x give rise to well-defined maps xx = it ° Zx and x_x = it ° Z_x
from M to CP".
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Theorem 5.1. If x: M —> CP" is a branched minimal surface, then the maps xy.
M —> CP" and x_x: M -* CP" are also branched minimal surf aces.

The proof follows using the technique of the proof of Theorem 4.1.
This theorem can be extended by considering a minimal surface x: M -* CP" for

which the forms A0 = • ■ • = Ay = 0 for some j and AJ+l # 0. x is not super-
minimal; however, we can apply the constructions of §§2 and 3 to find a unitary
frame {Z_,, Z0, Z,,..., Z-, Z+1,..., Z„_,} along x so that

(5.1) dZp = tp—xZp„x + ^prpZp + ^p^xZp + x,       OKpKj,

where ^"f is a (0,1) form and ^p-p~tî is a (1,0) form. The maps xp = it ° Zp,
— 1 < p <7 + 1, are well defined.

Theorem 5.2. //jc: M —y CP" is a branched minimal surface for which the forms
A0 = ••• = Aj = 0, A+1 =* 0, then the maps xp = it ° Zp: M -» CP", -1 < p <7
+ 1, are also branched minimal surfaces.

Again the proof follows using the technique of the proof of Theorem 4.1. The
vanishing of the forms A0 • • • A. allows the construction, using basically only
differentiation, of j new minimal surfaces. Of course, similar remarks apply to the
caseA0 = A_,= ••• = A_, = 0 and A_(/+1) ¥= 0.

Consider a minimal surface x: M -y CP" for which A =0, j ^ 0. Using the
idea §2 we can construct a Frenet frame {Z0,..., Zk} for the holomorphic osculat-
ing space of x. Then the map xk = it ° Zk: M -» CP" is an antiholomorphic curve.
But then the minimal surface x occurs as an element of the Frenet frame of an
antiholomorphic curve. Thus x must be superminimal and the forms A_¡, j > 0,
must also vanish. Similarly if A_y = 0, _/' > 0, then the surface is superminimal and
A; = 0, j > 0.

We would like to find results about minimal surfaces in CP" which relate the
geometry of the surfaces to the superminimality conditions. In the case that the
surface is the torus, P2 (the surface of genus one), we have such a theorem.

The universal covering space of the torus is given by

C
-n J,
T2

where C is the complex plane and it is the usual map to P2 regarded as C/I\ L a
lattice in C. We can assume that 77 is a holomorphic mapping. If A is a holomorphic
(j, 0) form on T2, then it*A is a holomorphic (j, 0) form on C. Letting z be a global
complex coordinate on C we can write

vr*A = giz)idz)J,

where g(z) is a holomorphic, doubly periodic function on C. It follows that g is
constant.
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Theorem 5.3. If x: T2 -» CP" is an immersed minimal torus and if for some
p G T2 the tangent space x*(Tp(T2)) is a complex line in Tx(p)(CP"), then x:
T2 —y CP" is a superminimal surface. Every branched minimal torus in CP" is
superminimal.

Proof. Applying the above remarks to the holomorphic (3,0) form A0 we have
7T*A0 = g0(z)(dz)3. Recall that A0 = œxcox_xcc_x = sic(<j>)3. The condition on the
tangent space of the immersed minimal torus (resp. the condition that pe P2 is a
branch point) says with respect to our normalization (2.14)

ux = s<f>,        co_x = t<¡>,

that either s(p) = 0 or t(p) = 0 (resp., both s(p) = 0 and t(p) = 0). It follows
that gQ(it'l(p)) = 0. But g0 is a constant. Hence w*A0 = 0; and so A0 = 0.

The vanishing of A0 implies that Ax (and A_x) is defined and holomorphic.
Moreover, if we set uX2 = «<#> and co2_î = v4>, where u and v are complex valued
functions, then

Ax = uxwX2u2__xw_x = suvi(<t>) .

Thus, as above, A, = 0.
Continuing, this argument shows that all the Afs, j = 0, ±1, ±2,..., vanish. D
We conclude this section by indicating how Calabi's classification of minimal

two-spheres in the Euclidean sphere SN [2,3] can be derived from our result. Let w:
S2 -* SN be a minimal immersion, where SN is the sphere of radius 1 in Euclidean
(N + l)-space. We assume that w is nondegenerate in the sense that the image of w
does not lie in an equator of SN. Denote by pr: SN -* RPN the projection of SN to
real projective A-space and denote by t: RPW -> CPN the inclusion. The map i °pr
is totally geodesic, so the map x = i°pr° w: S2 -> CP^ is a minimal immersion

-,   vv      XT pr i

x: S2^SN ->RP" -^CP"

Furthermore, x is real (i.e., x = x) and nondegenerate (i.e. x(S2) does not lie in a
hyperplane).

Applying the results of §4 to the minimal surface x we get a Frenet frame
{ Z_„..., Z_x, Z0, Zx,...,Zk) along x, where {Z0,..., Zk} is a Frenet frame for
the holomorphic osculating space of x and {Z0,..., Zw) is a Frenet frame for the
antiholomorphic osculating space of x. v ° Z_, is the directrix curve, Ax, of x. As x
is real, we have k = I and

(5.2) Z, = z„ KU.!-;*.
In particular tt ° Z_k = Ax.

Proposition 5.1. If w: S2 -* SN is a nondegenerate minimal immersion, then N is
even.

Proof. Using the above notation we have by the nondegeneracy of x, k + I = N.
But as x is real, k = /.    D

We can suppose then that N = 21.
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Because the holomorphic curve Ax is associated with a minimal map S2 —> S21 it
has some special properties. To explain these we denote by (, ) the scalar product on
C2/+1 which is complex linear in both arguments. That is, if Y, Z G C2/+1,
Y = (Jo.^i»---.^/). z = (z0.zi--..z2/)then

2/

(Y,Z)=   ZïaZa-
A=0

For 1 < i, j < / we have by (5.2),

(5-3) 0=(z,,Z_y) = (z,,Zy) =(Z,,Zy).

The osculating space of order j of A x for 1 < j =% I is

Sj = Z_,A Z_l+X A  ■■■ AZ_l+J.

It follows from (5.3) that the (/ - 1) osculating space of A^. lies completely on the
nondegenerate hyperquadric Q2,_x in CP2/. Q2I_x is defined by the equation
(Z, Z) = 0, where Z is a homogeneous coordinate vector in C2/+1. Moreover, it is
not difficult to show that any nondegenerate holomorphic curve A: S2 -» CP2/,
whose (/ — 1) osculating space satisfies this property, is the directrix curve associ-
ated to some minimal map S2 -» S21 [7, 10].
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