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ON MINIMIZING THE RUIN PROBABILITY BY INVESTMENT
AND REINSURANCE

BY HANSPETER SCHMIDLI

University of Copenhagen

We consider a classical risk model and allow investment into a risky asset
modelled as a Black–Scholes model as well as (proportional) reinsurance. Via
the Hamilton–Jacobi–Bellman approach we find a candidate for the optimal
strategy and develop a numerical procedure to solve the HJB equation. We
prove a verification theorem in order to show that any increasing solution to
the HJB equation is bounded and solves the optimisation problem. We prove
that an increasing solution to the HJB equation exists. Finally two numerical
examples are discussed.

1. Introduction. Consider a classical risk process

X01
t = u + ct −

Nt∑
i=1

Yi

where c > 0, u ≥ 0, {Nt} is a Poisson process with rate λ > 0 and {Yi} are iid with
distribution function G(x) where G(0) = 0. We denote the claim times by {Ti}. It is
assumed that {Nt} and {Yi} are independent. We interpret here the process {X01

t } as
an approximation to a collective risk (or a large portfolio of similar contracts) after
discounting by inflation. That is, the premium as well as the claim sizes increase
with inflation. In the rest of the paper all monetary quantities are discounted by
inflation.

We suppose here that the premium rate c has been fixed already. We need
not to assume a positive safety loading because the positive drift will come from
investment as soon as the surplus becomes large enough.

The insurance company has several decisions to take. The company has the
possibilities to invest the capital and to take reinsurance. If reinsurance is not
allowed the problem was solved by Hipp and Plum (2000) and Hipp (2000). If
the surplus cannot be invested the problem was solved by Schmidli (2001). In this
paper we consider the case where investment and reinsurance are possible. In order
to avoid technical problems we consider proportional reinsurance and assume that
G(x) is continuous. Other types of reinsurance can be treated similarly, see also
Hipp and Vogt (2001).
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The risky asset is described by a geometric Brownian motion

Zt = exp
{
σWt + (

µ− 1
2σ

2)
t
}
,

where {Wt} is a standard Brownian motion. The parameters σ,µ are assumed to
be strictly positive. Then Zt is the (discounted) value at time t of one unit invested
at time 0. Let {At} denote the amount invested into the risky asset at time t . We
allow that the company invests more than its current surplus into the risky asset. In
this case money has to be borrowed for such a strategy. For large capital, however,
investing more than the surplus into the risky asset cannot be optimal, see also
Kalashnikov and Norberg (1999). Recall that the ruin probability of a Brownian
motion with drift decreases exponentially fast; see Rolski et al. (1999), page 416.

The retention level for reinsurance is bt ∈ [0,1], which means that the insurer
pays btY of a claim occurring at time t , the reinsurer (1 − bt )Y . For this
reinsurance, the premium rate c(bt ) has to be paid. The strategies {At} and {bt}
have to be measurable and predictable with respect to the smallest right continuous
filtration {Ft} such that {(X01

t ,Wt)} is measurable. Then the surplus process
satisfies the stochastic differential equation

dXAb
t = (

c − c(bt ) +µAt

)
dt + σAt dWt − bt dSt , XAb

0 = u,

where St = u + ct − X01
t is the aggregate claims process. In order that {XAb

t } is
well-defined we assume that {At} is locally bounded. The ruin time is defined as

τAb = inf{t ≥ 0 :XAb
t < 0}.

This is a stopping time with respect to {Ft}. The quantity to optimise is the
probability of ultimate ruin

ψAb(u) = P[τAb < ∞],
that is, we want to maximise the survival probability δAb(u) = 1 − ψAb(u). The
value function is then δ(u) = supA,b δ

Ab(u). A similar problem has been considered
by Højgaard (2000). He maximised the discounted future dividend payout.

We make the following assumption on the function c(b). The function is
decreasing, continuous, c(1) = 0, lim b↑1c(b)/(1 − b) > 0 and there is a value
b > 0 such that c(b) > c for b < b and c(b) ≤ c for b ≥ b. If E[Y ] = ∞ we assume
that c(0) < ∞. The existence of b is needed in order to prevent that the whole
portfolio can be reinsured, yielding δ(u) = 1 for all u. That c(b) is continuous is
not necessary, but it will simplify the presentation below. That c(b) is decreasing
is natural, otherwise more reinsurance would be cheaper. If c(b) is not strictly
decreasing near 1 one would always choose at least the maximal reinsurance with
zero cost, and the problem could be reformulated with claims already reinsured
at zero costs. That c(b) is decreasing close to one at at least a linear rate is a
technical condition that will imply that the optimal reinsurance strategy for small
capital is not to reinsure. For most of the premium principles used these conditions
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will be fulfilled because G(x) is continuous. If E[Y ] = ∞ the condition on c(0) is
needed in order to prevent almost sure ruin (the whole portfolio may be reinsured).
However, such claims are called “not-insurable,” but there are insurance companies
claiming to insure everything. In order to simplify the notation we will often drop
the superscript Ab.

2. The Hamilton–Jacobi–Bellman equation. Suppose the function δ(u) is
twice continuously differentiable, stochastic integrals with respect to Brownian
motion are martingales and all limits and expectations can be interchanged. Then
one can show that the function δ(u) will satisfy the Hamilton-Jacobi-Bellman
equation [see also Schmidli (2001)]

sup
b∈[0,1]

sup
A≥0

[
1
2σ

2A2δ′′(u)+ (
c − c(b)+µA

)
δ′(u)

+λ
(
E[δ(u − bY )] − δ(u)

)] = 0,
(1)

where we use δ(u) = 0 for u < 0. One boundary condition is δ(∞) = 1. The
other boundary condition will be determined below. It follows immediately that
f (u) = kδ(u) solves (1) with boundary condition f (∞) = k. Let us therefore look
for a solution with f (0) = 1 instead. That δ(0) > 0 follows from the case of no
investment and no reinsurance if the safety loading is strictly positive. If the safety
loading is negative there is a strictly positive probability that no claim occurs until
the capital is large enough in order that a positive safety loading is achieved from
investment. At this level ruin is not certain anymore.

We first show that either ruin occurs or XAb
t tends to infinity as t → ∞. Even

though the result is intuitively clear a result of this type has not been proven before.
Hipp and Plum (2000) have circumvented the problem by considering a family of
strategies close to the strategy under consideration.

LEMMA 1. Let {(At, bt )} an arbitrary strategy. Then with probability one
either ruin occurs or XAb

t diverges to infinity as t → ∞.

PROOF. We will just describe the argument. A formal argument should always
mean with probability one. Let ε < 1 be small. Suppose τ = ∞ and lim t→∞Xt ∈
[M,M + ε/2) for some M < ∞. Then there are infinitely many points tk for
which Xtk < M + ε. We can assume that t1 < t1 + 1 < t2 < t2 + 1 < · · ·. By
the strong law of large numbers, there are infinitely many points tk for which
sup{Zt/Ztk : t ∈ [tk, tk + 1]} < 1 + ε. Suppose therefore that the latter holds for
all points tk . The possible income from investment in an interval [tk, tk + 1] can be
taken into the premium rate c, and therefore we do not consider investment in the
remaining part of the proof.

Let δ = ε/c. Suppose there are infinitely many k for which the Lebesgue
measure of {t ∈ [tk, tk +1] :bt ≥ b/2} is larger than δ. Note that {St } has stationary
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and independent increments and its increment St+s − St is independent of the
strategy {bv : 0 ≤ v ≤ t}. Then for any Borel set I with Lebesgue measure |I |
one has

∫
I dSt

d=S|I |. Because P[bSδ/2 > M + c + 1] > 0 ruin has to occur by
the strong law of large numbers. Thus the Lebesgue measure of {t ∈ [tk, tk + 1] :
bt ≥ b /2} is smaller than δ for all but a finite number of k’s. We can assume that
the latter holds for all k. One has

Xtk+1 <Xtk + δc − (
c( b /2) − c

)
(1 − δ) <M + 2ε − (

c( b /2)− c
)
(1 − δ).

Because ε is arbitrary, this would imply lim t→∞Xt <M , which is a contradiction.
Thus M cannot be finite. �

We next show the following property of δ(u).

LEMMA 2. Suppose that the function δ(u) is twice continuously differentiable
and solves the Hamilton–Jacobi–Bellman equation (1). Then:

(i) δ(u) is strictly increasing.
(ii) δ(u) is strictly concave.

PROOF. Choose initial capitals 0 ≤ x < y. Let (A,b) be a strategy for initial
capital x. Let us use the same strategy for initial capital y. Then ruin cannot
occur for initial capital y before ruin occurs for initial capital x. This shows that
δ(x) ≤ δ(y). That δ(x) < δ(y) will follow from strict concavity.

Suppose that δ′′(u) > 0. This will hold on some interval around u. The
maximum over A in (1) is attained as A → ∞ and is infinite. This is a
contradiction. Suppose now δ′′(u) = 0 on some interval. If δ′(u) > 0 again a
contradiction is obtained. Thus δ′(u) = 0 and δ(u) is constant on some interval.
Because δ(u) > 0 this implies δ(u) is constant for all u ≥ u0, that is, δ(u) = 1.
In fact, let x < y < z with δ(x) = δ(y) < δ(z). Then applying the same strategy
for initial capital x and y, the process starting in y will at some time t reach a
level where δ(X

y
t ) > δ(Xx

t ), provided ruin has not occurred before. If we only
consider strategies, where ruin is not certain, this happens with positive probability,
and δ(x) = δ(y) is not possible. On the other hand, there is always a positive
probability for ruin; see the proof of Lemma 1. Hence δ′′(u) cannot be zero on an
interval. Thus δ(u) is strictly concave. �

REMARK. In order to show that δ(u) is strictly increasing it is not necessary
to assume that δ(u) solves (1). There is always a positive probability that, using
the same strategies up to ruin, ruin will occur for initial capital x and the deficit
at ruin is less than (y − x)/2. For initial capital y there is then a strictly positive
probability that ruin does not occur.



894 H. SCHMIDLI

We therefore restrict to strictly increasing and strictly concave solutions to (1).
The maximum over A in (1) is attained for

A∗(u) = − µδ′(u)
σ 2δ′′(u)

= − µf ′(u)
σ 2f ′′(u)

> 0.(2)

Note that A∗(u) is measurable and locally bounded. Hence the equation to solve
remains

sup
b∈[0,1]

− µ2f ′(u)2

2σ 2f ′′(u)
+ (

c − c(b)
)
f ′(u) + λ

(
E[f (u− bY )] − f (u)

) = 0.(3)

Note that the equation is continuous in both u and b. This has the consequence
that the argument b∗(u) (not necessarily unique) for which the supremum is taken
exists and that b∗(u) can be chosen to be measurable. We will in the sequel write
b(u) if we do not interpret it as the optimal strategy.

For u small, the above equation will not vary widely as b varies. The supremum
in (3) will therefore be determined by the infimum of c(b) for u small. Thus one
can conjecture that for u small the supremum is taken for b∗(u) = 1.

LEMMA 3. Suppose there exists a solution f (u) to (3) on some interval [0, η)
with η > 0. Then there exists ε > 0 such that b∗(u) = 1 for u < ε.

PROOF. Note that b(0) = 1. Let

H(u,b) = − µ2f ′(u)2

2σ 2f ′′(u)
+ (

c − c(b)
)
f ′(u)+ λ

(
E[f (u− bY )] − f (u)

)
.

Then

H(u,1)−H(u,b)

1 − b
= c(b)

1 − b
f ′(u)+ λE

[
f (u − Y ) − f (u − bY )

1 − b
1Y≤u/b

]
.

By Taylor’s theorem,

f (u − bY ) = f (u− Y ) + (1 − b)Yf ′(ζ(Y )
)

where ζ(Y ) ∈ (0, u). Because f ′(x) is bounded on [0, η/2] we have by bounded
convergence

lim
b↑1

E

[
f (u− Y )− f (u− bY )

1 − b

]
= −E[Yf ′(u− Y )1Y<u]

for u < η/2. The absolute value of this term can be made arbitrarily small by
choosing u small enough. On the other hand, lim b↑1c(b)/(1 − b) > 0. Thus for
u small enough, H(u,b) is strictly decreasing in b for b close to one. Thus
if b(u) < 1 for 0 < u < ε this is only possible if limu↓0b(u) < 1, that is b(u)

jumps at u = 0. Because H(u,b) is continuous in u and b this is only possible if
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H(0, b) = H(0,1) = 0 for some b < 1. Because H(0, b) is strictly decreasing in
b for b close to one this is not possible. �

The equation to solve for u small is therefore identical with the equation to solve
in Hipp and Plum (2000).

REMARK. Note that in (3) µ and σ 2 only appear as α = µ/σ . Thus for fixed
α the solution δ(u) and the optimal strategy b∗(u) will not depend on the real size
of σ . The σ will appear as a proportional factor in A∗(x), hence a larger volatility
will yield less investment.

In principle, (3) could be solved numerically and has not to be investigated
further. However, we want to find an alternative representation in order to find
f ′(0). This alternative representation will give an opportunity to show that a
solution to (3) exists. Moreover, it will be possible to find a solution iteratively.
This turns out to be helpful in order to find the optimal strategies b∗(u) and A∗(u).
Indeed, in the numerical examples treated below it turns out to be necessary to
iterate the solution obtained by an Euler scheme before the correct strategies are
obtained. Of course, alternatively equation (3) could be iterated. This approach is
chosen by Hipp and Plum (2000).

Equation (3) can be written as

− f ′′(u)
f ′(u)2

= µ2

2σ 2

1

infb∈[0,1] λ(f (u)− E[f (u− bY )])− (c − c(b))f ′(u)
.

Observe that the denominator must be strictly positive for u > 0. Integrating from
u0 to u leads to

1

f ′(u) = µ2

2σ 2

∫ u

u0

1

infb∈[0,1] λ(f (x) − E[f (x − bY )])− (c − c(b))f ′(x) dx

+ 1

f ′(u0)
.

Because f ′(u0) is decreasing in u0 it is possible to let u0 → 0 yielding

1

f ′(u)
= µ2

2σ 2

∫ u

0

1

infb∈[0,1] λ(f (x) − E[f (x − bY )]) − (c − c(b))f ′(x)
dx

+ 1

f ′(0)
,

(4)

where 1/∞ = 0. From Hipp and Plum (2000) we know that A∗(u) tends to
zero as u → 0+. Indeed, limu→0A

∗(u) > 0 would imply δ(0) = 0 because in
any small interval the infimum of the return from investment is strictly negative.
From c(b∗(u)) → 0 and A∗(u) → 0 we can conclude from (1) that f ′(0+) = λ/c.
Taking the derivative in (4) or letting u → 0 in (2) yields f ′′(0+) = −∞.
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Letting g(u) = f ′(u) gives the equation

g(u) = 1
µ2

2σ 2

∫ u
0

1
infb∈[0,1] λ(1−G(x/b)+∫ x

0 (1−G((x−z)/b))g(z) dz)−(c−c(b))g(x)
dx + c

λ

.(5)

3. A verification theorem. We now show that the Hamilton–Jacobi–Bell-
man approach leads to the correct solution, provided the correct initial values are
chosen. Note that, in contrast to the proof of Hipp and Plum (2000) we do not need
to assume that f (u) is bounded.

THEOREM 1. Let f (x) : R+ → R+ be a strictly increasing twice continuously
differentiable function solving the Hamilton–Jacobi–Bellman equation (1) or
equivalently (3). This will be the case for f (x) = 1 + ∫ x

0 g(z) dz, provided g(x)

is a decreasing solution to (5). Then f (x) is bounded and δ(u) = f (u)/f (∞).
Moreover, the optimal strategy is A∗(Xt−) and b∗(Xt−), where A∗(x) is given
by (2) and b∗(x) is the argument maximising the left hand side in the Hamilton–
Jacobi–Bellman equation. In particular, there is at most one strictly increasing
twice continuously differentiable solution to (1) with f (0) = 1.

PROOF. Let us start by considering the process {X∗
t } following the optimal

strategy {(A∗
t , b

∗
t )}. Let 0 < ε < u < n and τ ∗n

ε = inf{t ≥ 0 :X∗
t /∈ (ε, n)}. Then A∗

t

is bounded on [0, τ ∗n
ε ]. By Itô’s formula,

f (X∗
t∧τ∗n

ε
) = f (u) +

∫ t∧τ∗n
ε

0

((
c − c(b∗

s )+µA∗
s

)
f ′(X∗

s ) + 1
2σ

2A∗2
s f ′′(X∗

s )
)
ds

+
∫ t∧τ∗n

ε

0
σA∗

s f
′(X∗

s ) dWs +
Nt∧τ∗n

ε∑
i=1

(
f (X∗

Ti
)− f (X∗

Ti−)
)

= f (u) +
∫ t∧τ∗n

ε

0
σA∗

s f
′(X∗

s ) dWs +
Nt∧τ∗n

ε∑
i=1

(
f (X∗

Ti
) − f (X∗

Ti−)
)

+λ

∫ t∧τ∗n
ε

0

(
f (X∗

s ) − E[f (X∗
s − b∗

s Y )])ds,
where we used (1). Because σA∗

s f
′(Xs) is bounded the first integral is a

martingale. Note that the second integral does not change if s is replaced
by s−. Thus {f (X∗

t∧τ∗n
ε
)} is a martingale [see Brémaud (1981), page 27]. Taking

expectations, and letting first ε → 0 and then n → ∞, applying the monotone
convergence theorem, it follows that E[f (X∗

τ∗∧t )] = f (u).
Let us now consider an arbitrary predictable strategy {(At, bt )} such that the

process {XAb
t } is well defined. Let {ξn,m} be a localization sequence of the local
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martingale
∫ t∧τnε

0 σAsf
′(Xs)dWs , where τn

ε = inf{t ≥ 0 :Xt /∈ (ε, n)}. Proceeding
as for the optimal strategy we find for n,m ∈ N

E[f (Xt∧τnε ∧ξn,m)] ≤ f (u).

Because f (x) is bounded on (−∞, n] the bounded convergence theorem yields as
m → ∞

E[f (Xt∧τnε
)] ≤ f (u).

By monotone convergence we conclude E[f (Xt∧τ )] ≤ f (u). From Lemma 1 we
know that either ruin occurs or Xt tends to infinity. By Fatou’s lemma we obtain

f (∞)P[τ = ∞] ≤ f (∞)P[τ = ∞] + f (0)P[τ < ∞,Xτ = 0] ≤ f (u)

as t → ∞. Because there exists a strategy for which P[τ = ∞] > 0 we must have
f (∞) < ∞. This yields δAb(u) ≤ f (u)/f (∞), with equality for δA

∗b∗
(u). Note

that X∗
τ∗ �= 0 because the claim sizes have a continuous distribution and ruin cannot

occur by investment. Indeed, let ε > 0 such that b∗(x) = 0 for x ≤ 2ε and choose
the strategy b̃t = b∗

t and Ãt = 1
X̃t>2εA

∗(X̃t ). Then

f (u) = E[f (X̃τ̃2ε )] = E[f (X∗
τ∗

2ε
)]

and

f (u) = E[f (X∗
τ∗
ε
)] ≥ E[f (X̃τ̃ε )].

Because X̃t can reach [0, ε) only by a jump the difference between E[f (X̃τ̃2ε )]
and E[f (X̃τ̃ε )] will vanish as ε → 0. Similarly it follows that E[f (X̃τ̃ε )] →
f (∞)P[τ ∗ = ∞]. Thus P[τ ∗ < ∞,X∗

τ∗ = 0] = 0. Because f (u) = f (∞)δ(u) the
solution is unique. �

REMARKS. (i) The proof shows that the derivative in zero is completely
determined by the requirement, that the solution has to exist on the whole half
line R+. Thus for all other initial derivatives the solution will explode or not be
strictly increasing. In fact, a similar argument as in the proof above will give that
f (x) cannot be bounded from below unless we choose f ′(0) correctly.

(ii) Hipp and Plum (2000) prove that their solution is bounded if the claim
sizes have a finite mean. This follows here directly from the verification theorem.
Moreover, if f (u) is unbounded, then ruin is almost surely. From the proof above
it follows that −f (Xτ∧t ) is a submartingale. By the convergence theorem [see
for instance Rolski et al. (1999)] −f (Xτ∧t ) converges to an integrable random
variable. Thus the limit cannot be −∞. This shows that P[τ = ∞] = 0.

(iii) Note that P[τ ∗ < ∞,X∗
τ∗ = 0] = 0 was not verified by Hipp and Plum

(2000). The same argument as used above will close this gap.
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4. Existence of a solution. The approach below follows Hipp and Plum
(2000). However, some additional technical problems occur in the proof of the
existence of a solution because b∗(u) is not constant. In order to show that a
solution exists it is enough to show there is a solution to (5). The problem is to
secure that the integral in the denominator is finite for small u. Hence we start by
showing that a solution exists on an interval close to zero. As mentioned above,
the optimal strategy will be b∗(u) = 1 for u small enough. Let us therefore first
consider the case without reinsurance previously treated in Hipp and Plum (2000).
This allows us to use their result to start with. In order to simplify the notation
we choose in this section c = λ = 1, readily obtained by a change of time and
monetary unit.

In the denominator of the integral the inner integral will not be important
because it is of order O(x). Indeed, then the outer integral would not be defined.
Thus we have 1 − g(x) − G(x) is dominating and we would be interested in a
solution where 1 − g(x) is the dominating factor. By Taylor’s expansion one gets
for h(u) = 1 − g(u) and some constant K ,

1 − h(u)≈ 1

1 +K
∫ u

0
1

h(x)
dx

≈ 1 −K

∫ u

0

1

h(x)
dx.

Thus the solution is approximatively h(u) ≈ √
2Ku. One conjectures therefore

that the solution is of the form g(u) = 1 − K̃
√
u+ o(

√
u) as u → 0.

LEMMA 4. Suppose that G(x) has a bounded density. Then there exists an
ε > 0 and a function g(x) solving (5) on [0, ε). Moreover, g(u) = λ/c − α

√
u +

o(
√
u) as u → 0, where

α = λµ

σc3/2
.

PROOF. From Hipp and Plum (2000) we know that the assertion is true if
b(u) = 1 on [0, ε]. By Lemma 3 this holds if ε is small enough. �

REMARK. The assumption of a bounded density seems to be quite strong.
However, we need that the second derivative of δ(u) exists in order that our
approach works. That the assumption of a bounded density is close to a necessary
condition can also be seen from the theory of perturbed risk processes, see
Schmidli (1995) or Schmidli (1999) and references therein. In this case a
sufficient condition that the differential equation to solve has a twice continuously
differentiable solution will be a continuous density of the claim size distribution.

Note that

u−1/2
(

1 − g(u) −G(u)+
∫ u

0

(
1 −G(u− z)

)
g(z) dz

)

= α + o(1)− u−1/2G(u)+ √
u

1

u

∫ u

0

(
1 −G(u− z)

)
g(z) dz → α
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as u → 0. Thus

inf
b∈[0,1]λ

(
1 −G(u/b)+

∫ u

0

(
1 −G

(
(u − z)/b

)
g(z)

)
dz

)
− (

c − c(b)
)
g(u) > 0(6)

for u �= 0 small enough. As long as (6) holds it is no problem to extend the solution.
Thus we need to show that (6) holds also on the right endpoint of an interval on
which a solution to (5) exists.

LEMMA 5. Assume G(x) has a bounded density. Suppose there is a decreas-
ing solution g(u) to (5) on the interval [0, u0) such that (6) holds for all u ∈ (0, u0).
Then the solution can be extended to [0, u0] and (6) holds also for u = u0.

PROOF. We assume again that λ = c = 1. Because g(u) is decreasing we get
that g(u0) can be defined as the limit of g(u) as u approaches u0. By continuity,
(5) is fulfilled for u = u0, where in the case g(u0) = 0 the integral must be
infinite. This case, however, will be excluded by verifying (6) for u = u0. Let
xn be a sequence converging monotonically to u0 and let bn = b(xn). Because
bn ∈ [0,1] we can assume (possibly by restricting to a subsequence) that the limit
b0 = limn→∞ bn exists. By continuity, b0 is an argument minimising the left hand
side of (6) for u = u0. Let us now assume that (6) does not hold for u = u0, i.e.

1 −G(u0/b0)+
∫ u0

0

(
1 −G

(
(u0 − z)/b0

))
g(z) dz − (

1 − c(b0)
)
g(u0) = 0.

Suppose first b0 > 0. Taking the derivative in (5) and letting u → u0 gives
g′(u0) = −∞, where here the derivative has to be interpreted as derivative from
the left. Moreover, c(b0) �= 1 because otherwise (6) would hold. If b0 < b we get
from g(u0) ≥ 0 and 1 − c(b0) < 0 that g(u0) = 0, implying b0 = 0 which we had
excluded. Thus c(b0) < 1. Clearly,

1 −G(u/b0) +
∫ u

0

(
1 −G

(
(u− z)/b0

))
g(z) dz− (

1 − c(b0)
)
g(u) > 0

for any u < u0. Taking the difference of the above two displayed equations and
dividing by (u0 − u) yields

G(u0/b0) −G(u/b0)

u0 − u
− 1

u0 − u

∫ u0

u

(
1 −G

(
(u0 − z)/b0

))
g(z) dz

+
∫ u

0

G((u0 − z)/b0) −G((u− z)/b0)

u0 − u
g(z) dz

− (
1 − c(b0)

)g(u)− g(u0)

u0 − u
> 0.

Letting u → u0 yields the contradiction −∞ ≥ 0. Thus g(u0) = b0 = 0. In
particular, b(u) → 0 as u → u0. Thus b(u) < b /2 for u > u1. Then

1

g(u)
< 1 + γ + µ2

2σ 2

∫ u

u1

1

(c( b /2) − 1)g(x)
dx
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for an appropriate γ . By Gronwall’s inequality [see Ethier and Kurtz (1986),
page 498] we find

1

g(u)
< (1 + γ )eκ(u−u1)

for some κ . In particular, g(u0) = 0 is not possible, which is a contradiction. This
proves the lemma. �

We are now able to prove the main result of this section.

THEOREM 2. Suppose that G(x) has a bounded density. Then there exists a
unique strictly decreasing solution g(x) to (5) on [0,∞).

PROOF. We already proved uniqueness in Theorem 1. Let (0, u0) be the
largest interval such that (5) and (6) are fulfilled. From Lemma 4 we know that
u0 > 0. Suppose u0 < ∞. Then by Lemma 5, (5) and (6) are fulfilled on (0, u0].
As in Hipp and Plum (2000) we want to show that the solution can be extended to
an interval [0, u0 + η). As before choose λ = c = 1 and let α = µ/σ . Define

κ = 1 + α2

2

∫ u0

0
1
/(

inf
b∈[0,1] 1 −G(x/b)+

∫ x

0

(
1 −G

(
(x − z)/b

))
g(z) dz

− (
1 − c(b)

)
g(x)

)
dx

and

ξ = 1
2

(
1 −G(u0/b) +

∫ u0

0

(
1 −G

(
(u0 − z)/b

))
g(z) dz − (

1 − c(b)
)
g(u0)

)
> 0.

Let us now consider the operator on positive continuously decreasing functions
h(u) on [u0,∞) with h(u0) = 1/κ :

Vh(u) = 1

κ + α2

2

∫ u
u0

1
[infb∈[0,1] 1−G(x/b)+∫ x

0 (1−G((x−z)/b))h(z) dz−(1−c(b))h(x)]∨ξ
dx

.(7)

Let h1(u) and h2(u) be two positive continuously decreasing functions with
hi(u0) = 1/κ . Because we want to iterate the operator V we can assume hi(u) ≥
(κ +α2/(2ξ)(u−u0))

−1, which is a lower bound for Vh(u) for any function h(u).
Denote the arguments for which the infimum is taken by bi(u). Denote by

Ii(x) =
[
1 −G

(
x/bi(x)

) +
∫ x

0

(
1 −G

(
(x − z)/bi(x)

))
hi(z) dz

− (
1 − c

(
bi(x)

))
hi(x)

]
∨ ξ.
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Then

|Vh1(u) − Vh2(u)| ≤ α2

2

∫ u
u0

|I−1
1 (x) − I−1

2 (x)|dx(
κ + α2

2

∫ u
u0

I−1
1 (x) dx

)(
κ + α2

2

∫ u
u0

I−1
2 (x) dx

) .

The integral in the numerator can be estimated by

∫ u

u0

|I−1
1 (x) − I−1

2 (x)|dx ≤ ξ−2
∫ u

u0

|I1(x) − I2(x)|dx.

Let now b(x) = b2(x) if I1(x) ≥ I2(x) and b(x) = b1(x) otherwise. Then

|I1(x) − I2(x)| ≤
∣∣∣∣(1 − c

(
b(x)

))(
h1(x) − h2(x)

)

−
∫ x

u0

(
1 −G

(
(x − z)/b(x)

))(
h1(z)− h2(z)

)
dz

∣∣∣∣.

If Ii(x) = ξ then (c(bi(x)) − 1)hi(x) ≤ ξ and c(bi(x)) ≤ 1 + ξ/hi(x). Suppose
u − u0 ≤ 1. Then bi(x) can be chosen on (u0, u0 + 1) such that c(bi(x)) remains
bounded. Let ζ be the maximal possible value of |c(bi(x)) − 1| ≥ 1. Then for
u ≤ u0 + 1,

∫ u

u0

|I1(x) − I2(x)|dx
≤ sup

u0≤x≤u0+1
|h1(x) − h2(x)|[ζ(u − u0) + 1

2 (u− u0)
2]
.

We can now choose η̃ > 0 such that ζ η̃ + 1
2 η̃

2 = (2ξ2)/α2. We just have proved

|Vh1(u)− Vh2(u)| ≤ κ−2 sup
u0≤x≤u0+η̃

|h1(x) − h2(x)|

for u ∈ (u0, u0 + η̃). Thus the operator V is a contraction on (u0, u0 + η̃). In
particular, there is a fixed point h(x) solving Vh(x) = h(x). Because

I (x) = inf
b∈[0,1]

(
1 −G(x/b)

) +
∫ x

0

(
1 −G

(
(x − z)/b

))
h(z) dz− (

1 − c(b)
)
h(x)

is continuous in x, there must be an 0 < η ≤ η̃ such that I (x) > ξ on (u0, u0 + η).
Thus there is a solution g(x) to (5) on (0, u0 + η) such that (6) holds. Because
(0, u0) was the largest interval on which this holds, this is a contradiction and
u0 = ∞ follows. �
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5. Examples. As an illustration we calculate the optimal strategies for two
examples, a light tailed and a heavy tailed claim size distribution. Without the
possibility to control the risk process the ruin probabilities in these two examples
are quite different; see Rolski et al. (1999). We consider the case with no
safety loading, λ = E[Y ] = c = 1. Without the possibility of investment the ruin
probability would be one. The investment yields here a possibility to charge a low
premium. The diffusion parameters are chosen as µ = 0.04 and σ 2 = 0.01.

REMARK. The choice of µ and σ 2 has a big influence on the ruin probability.
If µ2/σ 2 is large the ruin probability can even for zero initial capital be almost
zero. This is, because the ruin probability of the Brownian motion is exponentially
decreasing with exponent 2µ/σ 2. It is therefore possible to reinsure the whole risk
and to invest a certain amount already for quite small initial capital. In this way the
risk can almost be removed. If µ2/σ 2 is small it will be risky to invest. The optimal
strategy will then turn out not to reinsure until a certain level is reached, such that
investment can give a positive drift without increasing the risk too much. We have
chosen the parameters here, such that the ruin probability is not decreased to much
and such that reinsurance will take place inside the range where the function δ(u)

is calculated.

The reinsurance company charges a premium obtained from an expected value
principle with safety loading 0.2, that is, c(b) = 1.2(1 − b)λE[Y ]. For this
premium the assumptions on c(b) are fulfilled, also because c(0) = 1.2 > 1 = c.

The numerical solution is obtained as follows. First a solution g(u) = f ′(u) is
obtained from (3) by an Euler scheme, where of course E[f (u − bY )] − f (u) is
replaced by the corresponding expression containing g(u) only. The form of g(u)
for u close to zero is obtained from Lemma 4. We choose this initial function g0(u)

in order to save computer time. With an arbitrary initial function the scheme could
take long time to converge because on the interval (u0, u0 + η) the scheme starts
to converge only after gn(u) is close to g(u) on the interval (0, u0). Thereafter
the numerical solution is iterated using (5). Note that (5) is locally a contraction
and therefore the scheme is convergent. The reason for the iterations is, because of
the numerical errors (at least in the author’s program), that the optimal strategies
b∗(u) and A∗(u) turn out not to be correct even though the numerical solution to
the Euler scheme is close to the function δ(u) after the iterations. It should be noted
that because of the discretization of the state space only numerical approximations
are obtained. The function δ(u) will then be close to the correct solution. Because
we worked with the derivative f ′(u) also δ′(u) can be expected to be close to the
correct derivative. How close the obtained optimal strategies A∗

n(u) and b∗
n(u) will

be is an open question. We have not investigated here whether the corresponding
optimal controls converge to the correct optimal controls as the discretisation
interval tends to zero. The author believes that this is the case. In any case, the
strategies shown in the figures below will be good enough in the sense that the
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FIG. 1. δ(u) for Exp(1) distributed claim sizes.

ruin probability connected to these strategies will be close to the optimal ruin
probability. The reader should keep in mind that the discussion of the strategies
below are based on the author’s numerical results and not on the true strategies.

5.1. Exponentially distributed claim sizes. A typical example for small claims
are exponentially distributed claim sizes G(x) = 1 − e−x . The survival probability
is given in Figure 1. The ruin probability goes to zero exponentially fast. This
was also expected because the ruin probability both for a classical model with
exponentially claim sizes (and positive loading) and for the Brownian motion
decrease exponentially fast. For initial capital zero the ruin probability is 0.6756,
that is, it has decreased by one third due to optimisation.

The function b∗(u) is given in Figure 2. The optimal reinsurance strategy is
not to reinsure close to zero. Then the retention level jumps to 0.04 and thereafter
increases slowly to the asymptotic value 0.20. This means, close to zero the goal

FIG. 2. Optimal reinsurance strategy b∗(u) for Exp(1) distributed claim sizes.
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FIG. 3. Optimal investment strategy A∗(u) for Exp(1) distributed claim sizes.

is to get away from zero as quick as possible. Then reinsurance is taken in order to
make the jumps small. As capital increases less reinsurance is needed, but there is
an asymptotic optimal retention level that will be approached. The optimal strategy
in the case without investments looks similar; see Schmidli (2001).

The function A∗(u) is given in Figure 3. The optimal investment strategy is to
invest more than the surplus close to zero in order to make the drift positive. From
Lemma 4 and equation (5) it follows that A∗(u) ∼ C

√
u as u → 0. From the point

on, where reinsurance is taken, the investment decreases to the asymptotic optimal
value 9.00. Also here, close to zero the goal is to get away from zero as quickly
as possible. Drift and volatility have to be balanced. After reinsurance is taken the
drift increases because the retention level is increased. Therefore it is possible to
invest less. Until reinsurance is taken, the strategy is the same as the one found in
Hipp and Plum (2000). Thereafter it changes because the drift increases by taking
less reinsurance.

Numerically, this case is quite simple because 1 − G(u) is decreasing
exponentially fast. This will give a good approximation to the second derivative
of δ(u) and therefore A∗

n(u) should be close to the correct strategy. Also the
exponential decrease in (6) will give a “nice” function in b in order to determine
b∗
n(u). Thus the author believes that in this case the optimal strategies are close to

their numerical approximations.

5.2. Pareto distributed claim sizes. A typical example for large claims are
Pareto distributed claims sizes G(x) = 1 − (1 + x)−2. Let us first consider the
case where the whole insurance risk is reinsured. Then the premium rate left to the
insurer is −0.2. Calculating the survival probability yields δA,0(u) = 1 − e−0.4u

and the optimal investment is A = 10, where we used that ruin occurs almost
surely if u = 0. Therefore it is not surprising that the ruin probability under optimal
reinsurance and investment goes to zero exponentially fast; see Figure 4. Hence
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FIG. 4. δ(u) for Par(2) distributed claim sizes.

investment and reinsurance decrease the ruin probability considerably for larger
initial capital. Without these two possibilities the ruin probability would decrease
with a power tail. For zero initial capital the ruin probability is 0.6411.

The function b∗(u) is given in Figure 5. As always, for small initial capital
no reinsurance is taken. Then the optimal retention level jumps to 0.09. After a
slight increase the retention level decreases slowly and then jumps to zero. Thus
for small initial capital the goal is to get away from zero as fast as possible.
Then reinsurance is taken to decrease the claim sizes. As the capital increases
the retention level is only changed slightly. As soon as the capital is large enough
such that the investment risk becomes small enough, the whole risk is transferred
to the reinsurer and the company is only left with the investment risk. This strategy
may be prohibited by law. Because the probability of a claim larger than u is

FIG. 5. Optimal reinsurance strategy b∗(u) for Par(2) distributed claim sizes.
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FIG. 6. Optimal investment strategy A∗(u) for Par(2) distributed claim sizes.

(1 + u)−2 ∼ u−2 the ruin probability cannot decrease faster than b(u)u−2. Thus
b(u) has to converge to zero exponentially fast in order to obtain an exponential
decrease of the ruin probability. The reinsurance strategy looks quite different
from the optimal strategy without investment; see Schmidli (2001). Without an
investment possibility the optimal retention level decreases slowly and converges
to an optimal asymptotic value, but is far from this asymptotic value for moderate
initial capital. Whether b∗(u) really jumps to zero or not is not clear. Because of
the slow decrease of 1 − G(u) the expression in (6) will not show big differences
as a function of b. In the author’s program the smallest b is chosen if several b
yield the same expression. It is therefore possible that b∗(u) > 0 but numerically
will yield the same value as b = 0.

The function A∗(u) is given in Figure 6. The investment increases close to zero
like C

√
u. At the point where reinsurance is taken the investment starts to decrease

slightly and then increases slowly until the point where full reinsurance is chosen.
At this point the asymptotically optimal investment 10 is reached. Also here close
to zero investment risk is taken to increase the drift in order to get away from
zero as fast as possible. In some interval reinsurance and investment are chosen to
be balanced, until the whole risk is transferred to the investment. The strategy is
quite different from the optimal strategy obtained in Hipp and Plum (2000) where
reinsurance was not possible. With and without reinsurance the two strategies of
course coincide until reinsurance is taken. In Hipp and Plum (2000) the optimal
investment first decreases after some point and then increases slowly such that
A(u) converges to infinity in order to increase the drift because the heavy tailed
claim sizes are a constant threat to the company.
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