
On Minimizing the Sum of Sensor Movements

for Barrier Coverage of a Line Segment

J. Czyzowicz1, E. Kranakis2, D. Krizanc3, I. Lambadaris4, L. Narayanan5, J.
Opatrny5, L. Stacho6, J. Urrutia7, and M. Yazdani4

1 Département d’informatique, Université du Québec en Outaouais, Gatineau, QC,
J8X 3X7, Canada. Supported in part by NSERC grant.

2 School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada.
Supported in part by NSERC and MITACS grants.

3 Department of Mathematics and Computer Science, Wesleyan University,
Middletown CT 06459, USA.

4 Department of Systems and Computer Engineering, Carleton University, Ottawa,
ON, K1S 5B6, Canada. Supported in part by NSERC and MITACS grants.

5 Department of Computer Science, Concordia University, Montréal, QC, H3G 1M8,
Canada. Supported in part by NSERC grant.

6 Department of Mathematics, Simon Fraser University, 8888 University Drive,
Burnaby, British Columbia, Canada, V5A 1S6. Supported in part by NSERC grant.
7 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Área de la
investigación cientifica, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510,

México, D.F. México. Supported in part by CONACYT grant.

Abstract. A set of sensors establishes barrier coverage of a given line
segment if every point of the segment is within the sensing range of a
sensor. Given a line segment I, n mobile sensors in arbitrary initial po-
sitions on the line (not necessarily inside I) and the sensing ranges of
the sensors, we are interested in finding final positions of sensors which
establish a barrier coverage of I so that the sum of the distances traveled
by all sensors from initial to final positions is minimized. It is shown that
the problem is NP complete even to approximate up to constant factor
when the sensors may have different sensing ranges. When the sensors
have an identical sensing range we give several efficient algorithms to cal-
culate the final destinations so that the sensors either establish a barrier
coverage or maximize the coverage of the segment if complete coverage
is not feasible while at the same time the sum of the distances traveled
by all sensors is minimized. Some open problems are also mentioned.

Key words and phrases: Mobile Sensor, Barrier Coverage, Line seg-
ment, Efficient Algorithm, NP-complete, Movement Optimization.

1 Introduction

An important application of wireless sensor networks involves the surveillance of
a given region. This surveillance can be done in two different ways: either sensors
are be placed throughout the region to monitor the activity in the entire region,
or sensors are placed along the perimeter of a region where they establish a
barrier that can detect intruders attempting to penetrate the region. Surveillance
of a region by such a barrier is more efficient in comparison with complete
coverage of the region, since it can be established with fewer sensors at a lower
cost. When the perimeter of the region to be monitored is difficult to access
or contaminated, it might not be feasible to place sensors right away on the
perimeter of a region so that a barrier coverage of the perimeter is achieved.
However, in such situation mobile sensors can be used, they can be dropped
at some arbitrary initial positions and the mobile sensors are then instructed
to move to some specific positions on the border to establish a barrier at the
perimeter of the region. Since in sensor networks energy available to a sensor is
very limited, one of the main considerations in deployment of sensor networks
is the efficient use of energy. Thus, when using mobile sensors to establish a
barrier at the perimeter of a region, one would be interested to determine for
each sensor a specific position at the border so that sensors in these position
establish a barrier coverage and the moves to these position can be done with
the minimal possible energy consumption.

In a general setting of the barrier coverage problem, there is a predefined
geometric planar region with a well defined boundary and a given set of mobile
sensors. Each sensor, say S, has a pre-determined sensing range r(S) (determined
by the manufacturer). Thus when S is located at location u any other point p
in the plane is within the sensing range of the sensor if and only if its Euclidean
distance from u is at most r(S). The sensors are initially placed in the plane
in arbitrary locations either interior or exterior to the region. They are able to
move in any direction in the plane and the energy consumption for movement is
similar among the sensors and is proportional to the distance traveled. Starting
from these initial positions we are interested in calculating final destination of
each sensor so that the sensors in final destinations establish a barrier coverage
of the region, i.e., no part of the boundary is outside the sensing range of all the
sensors, and the sum of the distances traveled by all sensors is minimized. The
above optimization problem, referred to as MinSum, represents the minimization
of the total energy consumed by all the sensors needed to establish a barrier
coverage of the boundary of the given region.

In this paper we restrict our study to the one dimensional barrier coverage
problem. We are given a line and the barrier is represented by a finite segment
on the line. The sensors are initially located on the line containing the barrier,
possibly outside the given barrier. We consider the problem of minimizing the
sum of movements of sensors within the line in order to achieve a barrier cov-
erage. We assume that an intruder is a mobile agent that may cross the given
barrier from any direction in the plane. As before an intruder can be detected
only if it is within the sensing range (range for short) of at least one sensor of the

wireless sensor network and thus the sensor network establishes barrier coverage
if every point of the barrier is within the sensing range of at least one sensor.

Although the problem is restricted to a simplified one-dimensional barrier
version, it will become apparent in the sequel that it still contains both challeng-
ing algorithmic questions and interesting solutions that illustrate the complexity
of MinSum barrier coverage in this setting. Clearly we have to have a good under-
standing of the one-dimensional version before considering the two-dimensional
problem.

1.1 Preliminaries and notation

We now give several preliminary concepts and define more precisely several vari-
ants of the MinSum barrier coverage problem.

An instance of a barrier coverage problem consists of a closed line interval
I = [0, L], the barrier to be covered, on the real line with pre-defined endpoints
0 and L > 0. We also have n sensors S1, S2, . . . , Sn in initial positions x1 ≤ x2 ≤
· · · ≤ xn on the line (possibly outside the interval [0, L]), and the range of the
i-th sensor is a given positive real number ri = r(Si), 1 ≤ i ≤ n.

Thus the set of points (not necessarily of [0, L]) which is within the range
of sensor Si in position xi is the closed interval I(Si, xi) = [xi − ri, xi + ri] of
length 2ri. We call it the covering interval of Si. The total sensor range of a given
instance, denoted R, is the sum of lengths of covering intervals of all sensors,
i.e., R =

∑n

i=1 2ri.

First of all observe that the barrier coverage problem is feasible if and only
if the total sensor range R is at least as large as the interval [0, L], i.e., R ≥ L.
In the sequel, we also consider the non-feasible case R < L. In this case we will
be interested in optimizing the sensor movements so that the sensors in the final
positions cover either a sub-interval or sub-intervals of I of total length R.

Given an instance of a barrier coverage problem, we call a gap a sub-interval of
I none of whose points is within range of any sensor and which cannot be enlarged
any further. Since the ranges of sensors are assumed to be closed intervals, a gap
is an open sub-interval of [0, L], except when one of the endpoints of the gap
is either 0 or L. Thus if interval [a, b] is a gap, we assume that a, or b is not a
part of the gap unless a = 0 or b = L. We call an overlap either a sub-interval of
I which is covered by more than one sensor and which cannot be enlarged any
further, or a sub-interval of the line outside I which is covered by a sensor and
which cannot be enlarged any further.

Optimization problems. Given an instance of the barrier coverage problem
we investigate how to determine the final destinations of the sensors so that
the barrier is covered by sensors and the sum of the distances traveled by the
respective sensors to their final destinations in minimized. As mentioned before,
the sum of distances traveled by sensors corresponds to the total energy needed
by sensors to reach the final configuration. More formally, if the i-th sensor Si

moves by a distance mi (a movement to the left, right will be indicated by
mi < 0, mi > 0, respectively) from its original position xi, the new position will

be xi + mi and the new covering interval will be I(Si, xi + mi). If the problem
is feasible we are interested in studying the following optimization problem.
MinSum optimization problem R ≥ L:

minimize {
∑

1≤i≤n

|mi|} subject to [0, L] ⊆

n⋃

i=1

I(xi + mi). (1)

When R < L and thus the problem is not feasible, we are interested in a best
effort solution, i.e., an arrangement of sensors that attains the largest possible
coverage of [0, L], while at the same time achieving the MinSum requirements
of the movements of the sensors. We call contiguous an arrangement of sensors
that attains the largest possible coverage of size R as a contiguous sub-interval
of [0, L], and non-contiguous an arrangement of sensors that attains the largest
possible coverage of size R as a collection of possibly disjoint sub-intervals.
Non-contiguous MinSum optimization problem for R < L:

minimize {

n∑

i=1

|mi|} subject to

n⋃

i=1

I(Si, xi + mi) ⊆ [0, L] and (2)

|

n⋃

i=1

I(Si, xi + mi)| = R.

Contiguous MinSum optimization problem for R < L:

minimize {

n∑

i=1

|mi|} subject to

n⋃

i=1

I(Si, xi + mi) ⊆ [0, L] and (3)

n⋃

i=1

I(Si, xi + mi) is an interval of size R.

1.2 Related work

Several recent papers in the area of sensor networks considered the problem of
deployment of mobile sensors for coverage of a region, see for example [11], [12],
and [13]. Unlike the problem considered in this paper, they aim to provide cov-
erage of an entire two-dimensional region, and their algorithms do not consider
the optimization problems stated above.

The problem studied in our paper is motivated by securing an area by ensur-
ing its border surveillance and intruder detection with a wireless sensor system.
[10] proposes efficient algorithms to determine, after sensor deployment, whether
a region is barrier covered. It also establishes optimal deployment patterns to
achieve barrier coverage when deploying sensors deterministically. In addition,
they consider barrier coverage with high probability when sensors are deployed
randomly. In [4] the problem of local barrier coverage is introduced and it is
shown that it is possible for individual sensors to locally determine the exis-
tence of local barrier coverage, even when the region of deployment is arbitrarily
curved. Techniques for deriving density estimates for achieving barrier coverage
and connectivity in thin strips are introduced in [1], where sensors are deployed

as a barrier to detect moving objects and events. In all these instances the prob-
lem studied concerns static optimal sensor deployment patterns and there is no
concept of mobility of the sensors.

Related to our study is the work in [7] but it does not consider the coverage
problem. Also related is a supply and demand problem, known in the literature
as Earth Movers Problem (or EMP for short), see [5], [3], [9]. Despite some
similarities EMP differs from our problem in several respects and the results for
EMP cannot be used to solve the barrier coverage problem studied here.

There are two papers which are closely related to our study. The first is [2],
where a similar but simpler problem was introduced and studied. Their opti-
mization problem differs from our model in that they do not specify the sensor
ranges to be employed; unlike in our paper they seek algorithms to move the
sensors to “equidistant” locations on the barrier so as to optimize the efficiency
of the barrier coverage regardless of the initial coverage of the sensors. For exam-
ple, according to their model the n sensors will move from their initial positions

to the specific locations 0, L
n−1 , . . . , iL

n−1 , . . . , (n−2)L
n−1 , L, respectively. In our work

the algorithms are sensitive to the predefined sensor ranges (which are given as
input to the problem) thus accomplishing the same barrier coverage task with
less movement than may be done in [2]. Similar observations apply to the other
cases of the two dimensional versions of the problem considered in [2].

The second and most directly related research is done in [6] where the same
geometric setting is being considered: n sensors on a line that want to establish
a barrier coverage of a given line segment by moving the sensors to new posi-
tions, but a different optimization measure is being analyzed. Namely, the final
positions of sensors that establish barrier coverage minimize “the maximum dis-
tance traversed” by any sensor, as opposed to the “sum of the distances covered”
considered in the present paper. The motivation for the problem studied in [6]
is to minimize the time required to attain coverage while in the problem studied
here we minimize the total energy consumed. Despite the apparent similarity of
the two problems the results and algorithms are quite different.

1.3 Results of the paper

In this paper we study several interesting variants of the barrier coverage problem
obtained by changing assumptions on the sensors and final destinations, e.g.,
when (a) the sensors may have different ranges, (b) the sensors have identical
ranges, (c) the resulting coverage is contiguous or non-contiguous and study
the complexity of the proposed algorithms. Several instances of the problem are
shown to have efficient algorithmic solutions while others are shown to be NP-
complete even to approximate up to constant factor (see Remark 1 after the
proof of Theorem 1). Our results are summarized in Table 1 below.

Section 2 presents NP completeness results for MinSum problems for sensors
with non-identical ranges. Section 3 deals with sensors of identical ranges. Sub-
section 3.1 includes the ordering lemma which is basis for the remaining results
of the paper. Subsection 3.2 gives algorithms for different versions of the Min-
Sum barrier coverage. The paper concludes with several proposals for possible

identical ranges non-identical ranges

coverage contiguous non-contiguous

R < L O(n) O(n) NP-complete

R = L O(n) not applicable NP-complete

R > L O(n2) not applicable NP-complete

Table 1. MinSum problem results for n sensors with barrier of length L and R the
total sensor ranges.

extensions as well as related open problems. Due to lack of space, some details
of the proofs can be found in the Appendix.

2 NP Completeness Results

In this section we consider the MinSum problems for sensors with non-identical
ranges.

Theorem 1. Let S1, S2, . . . , Sn be n sensors with ranges r1, r2, . . . , rn located
on a line containing segment [0, L], in initial positions x1 ≤ x2 ≤ . . . ≤ xn,∑n

i=1 ri = R ≥ L, and k be a given number. The problem of calculating the
movements of sensors on the line so that the sensors cover the segment [0, L]
and the sum of movement of the sensors is less than k is NP-hard.

Proof. We give the proof only for the case R = L. The proof for the case R > L
is very similar. We prove it by reducing the 3-partition problem (see [8]) to the
problem of covering the line segment [0, L] with sensors such that the sum of
the movements of the sensors is minimized. The 3-partition problem is defined
as follows: we are given a multiset S = {a1 ≥ a2 ≥ · · · ≥ an} of n = 3m positive
integers such that B/4 < ai < B/2 for 1 ≤ i ≤ n and

∑n

i=1 ai = mB for some
B. The problem is to decide whether S can be partitioned into m triples T1,
T2, . . . , Tm such that the sum of the numbers in each triple is equal to B.

Let L = mB +m−1 and k = m(m+1)(B +1). Consider a sensor movement
problem as shown in Figure 1. We have a sensor Si of range ai/2 for every
1 ≤ i ≤ n positioned at −ai/2. In addition, we have m − 1 blocks of sensors of
range 1/(2k), each block containing k sensors. Each block of these sensors covers
a subinterval of [0, L] of size 1, leaving m gaps of size B on the line segment [0, L].
Clearly, any solution that covers the segment [0, L] requires that all sensors are
moved inside the segment without leaving there any gaps or overlaps, and any
solution can be interpreted as a partition of S into subsets, with sensors with
range 1/(2k) separating the subsets in the partition.

If there is a partition of S into m triples T1, T2, . . . , Tm, the sum of each triple
being B, then there is a solution to the movement of the sensors such that we only
move sensors S1, S2, . . . , Sn and the three sensors corresponding to triple Ti are
moved to fill the ith gap in the interval [0, L]. The sum of the moves of the three
sensors corresponding to Ti into ith gap is less than iB +(i− 1), and the sum of
the moves of all sensors for all triples is thus less than m(m+1)(B+1)/2 = k/2 in
this case. If such a partition does not exist, then any solution to the coverage of
the line segment [0, L] corresponds to either: (a) a partition of S into m subsets

1 11
B

0 L

a
n

...
B B

2

a

.

..

1

a
n−1

a

Fig. 1. Sensor arrangement for proving the NP completeness of the MinSum problem.

in which the sum of elements in at least two subsets differs from B by at least
1 in which case we need to move all the sensors in at least one block of sensors
with range 1/(2k) at least distance 1; or (b) a partition of S into less than m
or more than m subsets and this would require one to move at least k of the
sensors with range 1/(2k) by a distance of 1 or more.

However, moving k of the sensors with range 1/(2k) by 1 increases the sum
of movements of sensors by at least k = m(m + 1)(B + 1). Thus the sum of
movement of the sensors is less than k/2 if and only if the 3-partition problem
has a solution. It remains to show that the transformation from the 3-partition
problem to the sensor movement problem is polynomial.

Since 3-partition is strongly NP-complete [8], we may assume that the val-
ues a1, a2, . . . , an are bounded by a polynomial cnj for some constants c and j.
Therefore, B ≤ 3c1n

j and k ≤ c2n
j+2 for some constants c1 and c2. Our reduc-

tion uses n+k(m−1) sensors and n+km ≤ n+m2(m+1)B ≤ c3n
j+3 for some

constant c3. The 3-partition problem can be represented using O(n log n) bits.
In the corresponding sensor movement problem we need O(n log n) bits for the
positions and sizes of sensors S1, S2, . . . , Sn and we need O(log k) = O(log n)
bits to represent the position and size of each sensor of size 1/(2k). Thus we
need O(nj+3 log n) bits to represent the corresponding sensor movement prob-
lem, which shows that the transformation is polynomial. ⊓⊔

One can similarly show that when R < L the problem of calculating the
movements of sensors on the line so that the sensors give a maximal coverage
the segment [0, L] and the sum of movement of the sensors is less than k is
NP-hard.

Remark 1. The proof of the above theorem also shows that if NP 6= P there
is no polynomial 2-approximation algorithm for the MinSum problem, since the
result of a 2-approximation algorithm for sensor movements would be less than k
if and only if the corresponding 3-partition problem has a solution. Clearly, the
proof can be modified to show the non-existence result for any constant factor
approximation algorithm.

3 Sensors with Identical Ranges

In view of the NP-complete results of the previous section, we consider in this
section the MinSum problem for sensors of identical range, say r.

3.1 Ordering Property of Optimal Configurations

An important observation that will be useful in the MinSum optimization prob-
lem concerns the order of final positions of sensors in an optimal configuration.
It is shown below that there exists an optimal solution of the MinSum problem
so that the final destinations of sensors preserve the initial ordering of sensors.
In other words, two sensors on their way to the optimal locations do not have
to cross paths.

Lemma 1. Let xi ≤ xj and yi > yj be real numbers.

|xi − yi| + |xj − yj | ≥ |xi − yj | + |xj − yi| (4)

Proof. It can be easily proved by considering the five possible arrangements of
values xi, xj , yi, yj . ⊓⊔

Lemma 1 implies that there exists an optimal solution of the barrier coverage
problem which preserves the initial order of position of the sensors.

Corollary 1 (Order Preservation). For any of the MinSum optimization
problems, if x1 ≤ x2 ≤ · · · ≤ xn are the initial positions of sensors S1, S2, . . . , Sn

of identical range then there exists an optimal solution of the problem such that
the final destinations of sensors satisfy y1 ≤ y2 ≤ · · · ≤ yn, respectively.

According to the order preservation lemma the MinSum problem is trivial
when R = L and thus we consider below only the cases R > L and R < L.

3.2 Algorithms for MinSum Barrier Coverage

We now propose several efficient algorithms for sensors with identical ranges.
We start with the Contiguous MinSum problem, R < L. We first give an O(n)
algorithm for maximal contiguous coverage of the line with n sensors which
minimizes the sum of the movements of the sensors.

We say that sensors Si and Si+1 are in attached position if the difference
between their positions is equal to 2r, i.e., there is no gap or overlap between
the two sensors.

Lemma 2 (On an infinite line). Let S1, S2, . . . , Sn be n sensors with identical
range r located on a line in initial positions x1 ≤ x2 ≤ . . . ≤ xn with R < L.
There is an O(n) algorithm that calculates the movements of sensors on the line
so that the sensors cover a segment of size 2rn and the sum of movements of
the sensors is minimized.

Proof. Let y1, y2, . . . , yn be positions on the line such that
∑n

i=1(|xi − yi| is
minimal among all such possible assignment of values. According to Lemma 1,
there is an optimal solution such that y1 < y2 < . . . < yn. Furthermore, since
the sensors cover a contiguous segment of the line, we have yi = y1 + 2(i − 1)r
for 2 ≤ i ≤ n. In fact, our algorithm determines a solution of this type.

Consider the possibility that the sensors S1, S2, . . . , Sn have moved to posi-
tions y1 = 0, y2 = 2r, . . . , yn = 2(n−1)r, respectively, on the line, i.e., the sensor
S1 is moved to location 0 and the other sensors are moved to attached positions
following the initial order of sensors. Then the values −x1, 2r − x2, . . . , 2(n −
1)r − xn give the displacements of the sensors. Let l1 be the number of sensors
that move left, l2 be the number of sensors that move right, l3 be the number of
sensors that remain stationary in this assignment, and shifts0 be the sum of the
absolute values of all shifts when S1 is in position 0. If l1 > l2 + l3 then consider
the assignment of positions to sensors by shifting all positions of the sensor to
the right by c where c is the smallest negative shift. In this assignment all left
shifts of sensors are decreased by c, all the right shifts of sensors are increased by
c and the zero shifts become c. Thus in this assignment the sum of the absolute
values of all shifts, say shiftsc, is equal to shifts0 − c(l1 − l2 − l3), which is
smaller than shifts0. Similarly, if l2 > l1 + l3 then the assignment of positions
by shifting positions of all sensors to the left by c, where c is the smallest positive
shift, we obtain an assignment of positions to sensors in which the sum of the
absolute values of all shifts is smaller than shifts0. Thus we obtain an optimal
assignment of positions to sensors when l1 ≤ l2 + l3 and l2 ≤ l1 + l3. By finding
the median of −x1, 2r − x2, . . . , 2(n− 1)r − xn and shifting the configuration to
the right or left by the median value so that the median of all the shifts becomes
0 we obtain an assignment that minimizes the sum of shifts. Clearly, the value
of the median of n values can be calculated in O(n) and so can the n shifted
values of positions of the sensors. ⊓⊔

When sensors are in the positions determined by the algorithm of the previous
lemma they give a maximal contiguous coverage of a segment of a line which
minimizes the sum of all shifts, but not necessarily of the segment [0, L]. However,
when R < L we can easily modify the solution above so as to solve the MinSum
contiguous problem by shifting the solution into the segment [0, L] if the segment
covered by the sensors from Lemma 2 is not in it already and we obtain the
following theorem.

Theorem 2. Let I = [0, L] be a line segment and S1, S2, . . . , SN be sensors with
identical range r located on a line in initial positions x1 ≤ x2 ≤ . . . ≤ xn and
R < L. There is a O(n) algorithm to solve the Contiguous MinSum problem for
R < L.

MinSum problem, R > L: The optimal solution of this problem is more
difficult to obtain, since it does not correspond to sensors being in attached
positions. We give below an algorithm for the MinSum problem that is of time
complexity O(n2). This algorithm is more complex to state and to verify its
correctness and thus we break it into several lemmas.

Given an instance of the barrier coverage problem with R > L we enumerate
the gaps in the interval [0, L] as g1.g1, . . . gl from the left. Informally, the algo-
rithm considers the gaps in the given interval [0, L] in the left to right order. It
eliminates each gap by removing the overlaps to the left and right of the gap in
the inside-out manner, removing at every step the overlap whose “cost” is the
lowest among the available gaps. The cost is related to the number of sensors
whose positions must be shifted when eliminating the overlap.

Let A be an algorithm that solves the MinSum problem. We say that the
algorithm is locally optimal with respect to gaps g1, g2, . . . , gk, 1 ≤ k ≤ l, if
the sum of moves of the sensors needed to eliminate gaps g1, g2, gk is minimal,
without creating any new gap or increasing the size of the other gaps.

Consider an instance of the MinSum problem for R > L with sensors of
identical range. We enumerate the overlaps of the sensor ranges from left to
right as o1, o2, . . . , ok, each overlap is either the interval corresponding to the
nonempty intersection of the ranges of two consecutive sensors, if the intersection
is inside I, or the nonempty intersection of the range of a sensor with (−∞, 0)
or (L,∞). Thus all of a sensor range outside of the interval [0, L] it treated
as an overlap. When moving a sensor, say Si, in order to achieve a contiguous
coverage of the interval [0, L], we assign to it a real number di, indicating the
difference between the present and initial position and we call it its shift value.
Thus negative values correspond to moving sensors to the left, while positive
values correspond to moving sensors to the right.

Clearly, at any stage of the algorithm the sum
∑n

i=1 |di| gives the cost of the
moves of sensors performed so far. See Figure 2 for a possible initial and final
configuration, including the shifts and overlaps.

0 0 0 0

000

.5 .5 −.25

o o o o2 631

−.25 −.25

.125 .125

o
7

−.75

L0

0

0

0 0 0 0 0 0 0

0000 0

o o o o o oo
2 3 4 6 7

o
851

0

o
9

0 L
g

1

g
2

Fig. 2. Example of initial and final configurations

We first provide some claims concerning the necessary properties of any lo-
cally optimal solution of the problem, which will also form the foundations of
our algorithm.

Lemma 3. Consider a locally optimal solution with respect to gaps g1, g2, . . . , gk,
1 ≤ k ≤ l. Then in this solution, no new overlaps are created. Furthermore, an

d >0
i

(a)

d <0
i+1

(b)

Fig. 3. Forbidden sensor configurations in a locally optimal solution

initial overlap inside [0, L] cannot be moved left or right and its size cannot
be increased. Thus any locally optimal algorithm can only eliminate an existing
overlap or make it smaller by moving its left sensor to the left, or (and) the right
sensor to the right, or it leaves the overlap exactly as it is initially.

Proof. Let Si and Si+1 be two overlapping sensors in a locally optimal solution.
If di > 0, we could decrease the cost of the solution by moving Si slightly to
the left (see (a) of Figure 3), since Si moved too much to the right. Similarly if
di+1 < 0, we could decrease the cost of the solution by moving Si+1 slightly to
the right (see (b) of Figure 3). Thus the configurations in Figure 3 cannot occur
in a locally optimal solution. However, creation of a new overlap necessarily
corresponds to (a) or (b) of Figure 3. Similarly, moving an initial overlap left
or right, or increasing its size necessarily corresponds to either (a) or (b) of
Figure 3. ⊓⊔

Lemma 4. Consider a locally optimal solution with respect to gaps g1, g2, . . . , gk,
1 ≤ k ≤ l. Let Si, S2, . . . , Sj be the sensors in the portion of the solution which
does not contain gaps any more and let di, di+1, . . . , dj be the sequence of shift
values of these sensors. If for some m, 1 ≤ m ≤ j − 1 we have dm > 0 and
dm+1 ≥ 0, or dm ≤ 0 and dm+1 < 0, or dm > 0 and dm+1 < 0, then Sm and
Sm+1 are in attached position in the solution.

Proof. Since Sm and Sm+1 are in the part where gaps were eliminated, they are
either attached or they overlap. An overlap of these two sensors in either case
would be one of the forbidden configurations in Figure 3. ⊓⊔

Lemma 5. Let Si, Si+1, . . . , Sj be a sequence of sensors that in the initial con-
figuration does not contain any gap but it contains overlaps ok, ok+1, . . . , ol. Let
mt be the integer such that Smt

and Smt+1 are the two sensors that form over-
lap ot, k ≤ t ≤ j. If in a locally optimal solution overlap ot is either eliminated
or made smaller by moving the right sensor Smt+1 to the right, then in this
solution all overlaps ot+1, . . . , ol have been eliminated by moving the sensors
Smt+1, Smt+2, . . . , Sj to the right into attached positions. If in a locally optimal
solution overlap ot is either eliminated or made smaller by moving sensor Smt

to
the left, then in this solution all overlaps ok, ok+1 . . . , ot−1 have been eliminated
by moving the sensors Si, Si+1, . . . , Smt

to the left into attached positions.

Proof. If overlap ot is either eliminated or made smaller by moving Smt+1 to
the right, then all sensors to the right of it until the next right gap must be
moved to the right so that we do not create a new overlap, which is forbidden by
Lemmas 3. Since the shift values of Smt+1, Smt+2, . . . , Sj are all positive, they
must be all in attached positions by Lemma 4. The proof of the second part of
the lemma is analogous. ⊓⊔

Lemmas 3, 4, 5 above form the basis for the design of our MinSum algorithm.

Main Algorithm: MinSum algorithm for R > L:

Our algorithm proceeds by closing the gaps from left to right producing a locally
optimal solution. For each gap, say g, we search to the left and to the right from
the gap to find the “closest overlaps”, say oi and oj of sensor ranges on each side
of the gap that can be used to shrink the gap. For each of these two overlaps we
calculate the cost of using oi or oj to shrink the gap, the cost being equal to the
number of sensors that are being shifted. At any time the cheapest of the two
overlaps is used to shrink the gap. The sensors that are moved in the shrinking
process are put in attached position, unless the gap is smaller than the overlap.
The pseudocode for the main algorithm is as follows.

Algorithm MinSum

Input: L and the initial positions x1, x2, . . . , xn of sensors (assumed sorted).
Output: The final positions y1, y2, . . . , yn of sensors for the contiguous coverage

of the interval [0, L] that minimize the sum of movements.
1: initialize array d1, d2, . . . , dn of sensor shifts to 0;
2: scan x1, x2, . . . , xn and calculate the sequence of overlaps o1, o2, . . . , ok,

the sequence of gaps g1, g2, gl, and their sizes;
3: for i := 1 to l do //eliminate Gap i

repeat
find oj , the closest overlap left of gi and its cost w.r.t. gi;

(if there is no such overlap, set the cost to ∞).
find ok, the closest overlap right of gi and its cost w.r.t. gi;

(if there is no such overlap, set the cost to ∞).
if (cost(oj) ≤ cost(ok)) then //right shift is done

{ if size(oj) < size(gi) then c := size(oj) else c := size(gi);
size(gi) := size(gi) − c;
size(oj) := size(oj) − c;
add c to the values in array d of sensors between oj and gi;

}
else //left shift is done

{ if size(ok) < size(gi) then c := size(ok) else c := size(gi);
size(gi) := size(gi) − c;
size(ok) := size(ok) − c;
subtract c from the values in array d of sensors between gi and ok;

}
until size(gi) = 0;

4: for i := 1 to n do
yi = xi + di; //the final positions of the sensors.

Now we can state the main theorem.

Theorem 3. Let S1, S2, . . . , Sn be sensors with identical range r located on a
line in initial positions x1 ≤ x2 ≤ . . . ≤ xn (not restricted to lie inside the
segment [0, L]) and R > L. Algorithm MinSum above solves this instance of the
MinSum problem in time O(n2).

When calculating the cost of a shift for the overlap oi on the left of the
present gap, we have to take into account the fact that shifting those sensors to
the right whose shift is negative at present is actually equivalent to undoing a
left shift that was done when removing another gap to the left of the present
gap. Thus shifting these sensors with negative moves to the right is decreasing
the cost of the sum of movements done so far. Another factor that needs to be
considered is the difference between overlaps of sensors inside interval [0, L] and
overlaps that are outside this interval. Therefore, we need to define the cost of
moving a portion p of overlap sj to the right and left, respectively. Due to the
page limit, these Definitions 1 and 2 and the detailed proof of Theorem 3 are
given in the Appendix.

4 Conclusion and open problems

We have studied the barrier coverage problem for a wireless sensor network
when the perimeter to be covered is a finite line segment. In view of the results,
an interesting problem is to study the barrier coverage by sensors with limited
number of different ranges. For the case of a one dimensional barrier, one could
consider the problem of barrier k coverage, whereby each intruder should be
detected by at least k different sensors, for some fixed k > 1. Also, the possibility
that the perimeter consists of several line sub-intervals could be investigated.
Another class of problems concerns extensions to higher dimensions.

The two dimensional version of the problem is wide open. Specifically, one
might consider other geometric barriers, e.g., circular barriers, convex barriers
or boundaries of simple polygons. Also one might consider other types of sensor
movements, e.g., the movement of the sensors towards the globally optimal po-
sition on the circular barrier may proceed through the interior of the circle as
opposed to only moving on the perimeter.

Another interesting class of problems would be to examine the above ques-
tions in light of a “decentralized” sensor communication model. Finally, it would
be interesting to investigate how to optimize other more realistic energy con-
sumption metrics, e.g., sum of squares of movements of all the sensors.

Bibliography

[1] P. Balister, B. Bollobas, A. Sarkar, and S. Kumar. Reliable density estimates for
coverage and connectivity in thin strips of finite length. Proceedings of the 13th
annual ACM international conference on Mobile computing and networking, pages
75–86, 2007.

[2] B. Bhattacharya, M. Burmester, Y. Hu, E. Kranakis, Q. Shi, and A. Wiese. Op-
timal Movement of Mobile Sensors for Barrier Coverage of a Planar Region. The-
oretical Computer Science, to appear. Also in proceedings of 2nd Annual Interna-
tional Conference on Combinatorial Optimization and Applications (COCOA’08)
held August 21-24, 2008, in St. John’s, Newfoundland, Canada. LNCS, 2008.

[3] S. Cabello, P. Giannopoulos, C. Knauer, and G. Rote. Matching point sets with
respect to the Earth Mover’s Distance. Computational Geometry: Theory and
Applications, 39(2):118–133, 2008.

[4] A. Chen, S. Kumar, and T.H. Lai. Designing localized algorithms for barrier
coverage. Proceedings of the 13th annual ACM international conference on Mobile
computing and networking, pages 63–74, 2007.

[5] S. Cohen. Finding Color and Shape Patterns in Images. PhD Thesis, Stanford
University, Dept. of Computer Science, 1999.

[6] J. Czyzowicz, E. Kranakis, D. Krizanc, I. Lambadaris, L. Narayanan, J. Opatrny,
L. Stacho, J. Urrutia, and M. Yazdani. On minimizing the maximum sensor move-
ment for barrier coverage of a line segment. In proceedings of 8th International
Conference on Ad Hoc Networks and Wireless, September 22-25, Murcia, Spain,
2009, SVLNCS, 5793:194–212, 2009.

[7] E.D. Demaine, M.T. Hajiaghayi, H. Mahini, A.S. Sayedi-Roshkhar, S. Oveisgha-
ran, and M. Zadimoghaddam. Minimizing movement. ACM Transactions on
Algorithms (TALG), 5(3):1–30, 2009.

[8] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. WH Freeman, San Francisco, 1979.

[9] O. Klein and R.C. Veltkamp. Approximation Algorithms for Computing the Earth
Mover’s Distance Under Transformations. LNCS, 3827:1019, 2005.

[10] S. Kumar, T.H. Lai, and A. Arora. Barrier coverage with wireless sensors. Wireless
Networks, 13(6):817–834, 2007.

[11] X. Li, H. Frey, N. Santoro, and I. Stojmenovic. Localized sensor self-deployment
with coverage guarantee. ACM SIGMOBILE Mobile Computing and Communi-
cations Review, 12(2):50–52, 2008.

[12] Shuhui Yang, Minglu Li, and Jie Wu. Scan-based movement-assisted sensor de-
ployment methods in wireless sensor networks. IEEE Trans. Parallel Distrib.
Syst., 18(8):1108–1121, 2007.

[13] Y. Zou and K. Chakrabarty. A distributed coverage- and connectivity-centric
technique for selecting active nodes in wireless sensor networks. IEEE Trans.
Comput., 54(8):978–991, 2005.

Appendix

Proof of Theorem 3. First, we need to introduce some notation for the algo-
rithm and state the properties of optimal solutions.

Definition 1. (Right-shift cost) Let g be a gap, o be the closest overlap of
sensors to the left of the gap g and xi, xi+1, . . . , xj be the sequence of sensors
starting with rightmost sensor of the overlap until the gap g. Let p be the size of
o if there is no negative values in di, di+1, . . . , dj or p be the absolute value of
the smallest left shift in the sequence di, di+1, . . . , dj. If o is in the interval [0, L]
we define the cost(o) of size p with respect to g to be the difference between the
number of sensors in xi, xi+1, . . . , xj that have non-negative shifts so far and the
number of sensors with negative shifts. If o is outside the interval [0, L] we define
the cost(o) of size p with respect to g to be the addition of the distance of o to 0
and of the difference between the number of sensors in xi, xi+1, . . . , xj that have
non-negative shifts so far and the number of sensors with negative shifts.

In example in Figure 4 (a) we obtain that cost(o) of size .5 with respect to g is
equal to 4− 2. In Figure 4 (b) overlap o is outside the interval [0, L] at distance
0.5 to 0. Thus its cost to g of size 1 is equal to .5 + 4 − 2.

0

0

0 0

0

.2 −.4.2

...(a)

|o| =.5

g ...

(b) ...
0 .3 .5 −.2 −.3

g
 |o| = 1

0

.3 −.3
0 L

L0

Fig. 4. Examples of right-shift costs

We include a similar cost increase for overlaps outside [0, L] in the definition
of the left-shift costs.

Definition 2. (Left-shift cost) Let g be a gap, o be the closest overlap of size
x to the right of g and i be number of sensors from g up to the overlap o and
including the leftmost sensor of the overlap. If o is in the interval [0, L] we define
the cost(o) of size x with respect to g to be equal to (j + 1 − i). If o is outside
the interval [0, L] we define the cost(o) of size x with respect to g to be equal to
(j + 1 − i) + b where b is the distance of o to L.

In Figure 5 (a) we obtain that cost(o) of size 0.25 with respect to g is equal to 3.
In Figure 5 (b) overlap o is outside the interval [0, L] at distance 0.5 to L. Thus
its cost to g of size 0.75 (g cannot use more of it) is equal to 0.5 + 4.

(a)

(b) ...

...
−.1 −.1 0

g

g
|o| = 1

|o| =.25

−.1 −.1 0
.75

...

...

0 L

0 L

Fig. 5. Examples of left-shift costs

The difference in the definition of the left-shift and right-shift costs is due to
the left-to-right processing of the gaps. The left shifts involve moves of sensors
whose shift values are all zero or negative, while right shifts involve moves of
sensors whose shift values are zero, positive, or negative. Also due to the left-to-
right processing of the gaps, when a right shift is done, it is done over a sequence
of sensors that are in attached positions and thus these sensors are shifted right
as one block in attached positions. This does not need to be the case of a left
shift in case when for a gap gi the closest overlap to the right of it is located
to the right of gap gi+1. In such a case, since we are interested in a locally
optimal solution with respect to gaps g1, g2, . . . , gi, we simply shift to the left
all sensors from the overlap up to the gap by the same amount, thus leaving
attached sensors in attached positions, and leaving gaps to the right of gi of the
same size.

Proof. (Theorem 3) We use below o : p to denote a part of the overlap o of
size p. We show the correctness of our MinSum algorithm by induction on the
gap sequence. Consider the elimination of the first gap by the algorithm. The
algorithm considers the relevant overlaps in the inside-out order, and at every
step chooses the elimination of the overlap of the lowest cost and the shifted
sensors are put in the attached positions as needed by Lemmas 4 and 5. Thus, the
algorithm eliminates a subsequence (oi1 :pi1 , oi2 :pi2 , . . .) of overlaps o1, o2, . . . , ok

in this process, the overlaps at the ends of the subsequence could be eliminated
only partially. The total size of overlaps in the subsequence is equal to |g1|.
In view of Lemmas 4 and 5, any locally optimal algorithm A would need to
eliminate a subsequence (oi′

1
: pi′

1
, oi′

2
: pi′

2
, . . .) of overlaps o1, o2, . . . , ok and the

total of eliminated overlaps is equal to |g1|. Assume that i′1 < i1, Then necessarily
i2 < i′2 but our algorithm did not use oi1 − 1 since its cost is higher than the
cost of oi2 , and clearly, cost of oi′

1
is at least as large as the the cost of oi1 − 1.

Thus, we could improve the solution obtain by A by using oi2 instead of oi′
1

in
the elimination of g1. Therefore, the elimination of the first gap by our algorithm
is locally optimal. Similarly a contradiction is obtained if i′2 < i2.

Assume that the algorithm eliminated gaps g1, g1, . . . , gi so that the cost is
locally optimal. Consider the elimination of the gi+1. If no overlaps remain to
the left of gi+1, all the shifts are done from the right in inside out order and this
is obviously optimal. Let oj , oj+1, . . . be overlaps that remain to the right of the

sensors that formed gap gi after the elimination of g1, g1, . . . , gi. If the algorithm
uses in the elimination of gi+1 only the overlaps oj , oj+1, . . . and overlaps to
the right of gi+1, then any overlap that was used previously to eliminate gaps
g1, g1, . . . , gi would be obviously of higher cost to gi+1 than oj and the other
way around. Thus the overlaps being used in the elimination of gi+1 were of no
use for an optimal elimination of g1, g1, . . . , gi and the overlaps being used in an
optimal elimination of g1, g1, . . . , gi are of no use for the elimination of gi+1. This
means that the moves done by our algorithm are locally optimal with respect to
gi+1 and also to g1, g1, . . . , gi, gi+1.

If while processing gap gi+1 after the elimination of overlap oj there are
no more overlaps to the left of gi+1 then, necessarily, overlaps to the right are
used by the algorithm in the inside-out manner to eliminate it and this is again
optimal.

It remains to consider the situation during the execution of the algorithm
when the only remaining overlap located to the left of gi+1, say ok, is located
to the left of the sensors that formed gap gi and there are also some overlaps to
the right of gi+1.

If all the shift factors between ok and gi+1 are positive, then all overlaps to
the right of oj up to gi+1 were eliminated using the right shifts. If ok is of lower
cost to gi+1 than any overlap to the right of gi+1, then applying the right shift to
ok is the optimal move and all the previous moves done to eliminate g1, g1, . . . , gi

remain locally optimal by Lemma 5. Clearly ok was not useful for other gaps to
the left of it.

If in the elimination of a gap, say gm, located between ok and gi+1, gap
gm was eliminated or diminished using a left shift involving overlap oim

, than
it could be better, with respect to g1, g1, . . . , gi, gi+1, to use the right shift of
sensors from oim

up to gi+1 and use ok to eliminate or diminish gm using a right
shift, since ok is closer to gi+1. Thus this reverses the left shift done previously.
By Lemma 5, all sensors between the rightmost sensor of ok and gi+1 are in
attached position and removal or diminishing of ok must maintain these sensors
in attached positions. Thus the right shift of the rightmost sensor of ok actually
is done by shifting to the right the whole sequence of sensors in attached position
up to gi+1, which reverses the right shift of sensors from oim

up to gm. In our
algorithm, when we calculate the cost of ok with respect of gi+1, this cost is
defined to be equal to be the difference between the number of sensors that have
non-negative shifts so far and the number of sensors with negative shifts. Thus
we are actually calculating the cost of using oj for elimination of gap gm by a
right shift and use ok to eliminate or diminish gi+1 using a right shift. This move
would be done if its cost is cheaper than using an overlap to the right of gi+1.
Thus, the overall cost of moves done in the elimination of g1, g1, . . . , gi, gi+1

is improved. However, we cannot claim anymore that we preserved the local
optimality with respect to g1, g1, . . . , gi.

To show the optimality of the algorithm in this case, consider the sequence of
overlaps that are used in the elimination of gaps between the position of ok and
gi+1. As mentioned above, these overlaps form a subsequence in the sequence of

overlaps, and the sum of overlaps of the subsequence equals the sum of these gap
sizes. Furthermore all sensors between the rightmost sensor of ok and gi+1 are in
attached position. Any different lower-cost process would have to use a different
subsequence of overlaps for the elimination of the gaps between the position of
ok and gi+1. This could be done only by using a subsequence or subsequences
of overlaps that is obtained from the current one either by (a) adding some
overlaps on its right end and removing some in the sequence or (b) adding some
overlaps on its left end and removing some in the subsequence, or (c) adding
some overlaps on its left and right end and removing some in the subsequence.
We now consider these three cases in detail.

Case (a): Adding an overlap on the right end of the subsequence and remov-
ing ok at the left end was exactly the move considered by the algorithm before
ok was used and it was rejected due to a higher cost. Any further continuation
in this process of extending the sequence further to the right will increase the
overall cost even further as any of these is of higher cost than the cost of ok.
Removing an overlap in the middle of the subsequence will restore a part of a
gap either in one of g1, g1, . . . , gi or in gi+1. If it restores a part of a gap in
one of g1, g1, . . . , gi then this new gap must be covered using an overlap ok, but
the use of ok was not optimal for g1, g1, . . . , gi by the inductive hypothesis. If it
restores a part of a gap in gi+1 then adding an overlap on the right end of the
subsequence was considered by the algorithm and rejected.

Case (b): If we remove an overlap at the right end of the subsequence it
restores a part of gap gi+1, as this overlap was necessarily used in a left shift
elimination of gi+1. This part of gap gi+1 must be removed by using an overlap
to the left of ok. Our algorithm used an overlap at the right end because it was of
lower cost than using ok. Removing an overlap in the middle of the subsequence
will restore a part of a gap either in one of g1, g1, . . . , gi or in gi+1. If it restores a
part of a gap in one of g1, g1, . . . , gi then this new gap must be covered using an
overlap ok, but the use of ok was not optimal for g1, g1, . . . , gi by the inductive
hypothesis. If it restores a part of a gap in gi+1 then it would need to be covered
by an overlap on the right end of the subsequence which was considered by the
algorithm and rejected.

Case (c): of adding overlaps at the left and right end can be shown not to
be optimal in the same way as (a) and (b).

Thus the subsequence of overlaps used by the algorithm is locally optimal
with respect to the gaps removed by these overlaps, including gi+1. The optimal-
ity of removal of gaps not involved in this subsequence of overlaps remains valid,
and thus we obtain a locally optimal solution with respect to g1, g1, . . . , gi, gi+1.

Consider now the time complexity of the algorithm. We have n sensors to
consider. Any consecutive pair of sensors can create at most one gap. In addition,
there can be one gap preceding the first sensor and following the last sensor.
Thus, in total there at most n + 1 overlaps in the given instance. Inside the
interval [0, L], any consecutive pair of sensors can create at most one overlap,
and a sensor can also create an overlap if its range is located outside the interval.
Thus, in total there O(n) overlaps in the given instance. For each gap, the

algorithm performs a sequence of left and right shifts. For each shift, we need
to calculate its cost, which is proportional to n. After each shift is done, the
algorithm updates the shift values of the sensors, which is proportional to n.
Thus the total cost of each shift is of time complexity O(n). Each left shift either
eliminates an overlap or it completes the coverage of a gap. Thus, in total, we can
do at most n+1 of these shifts. In view of the NP-complete results presented in
this paper, an interesting problem is to study approximation algorithms for the
barrier coverage by sensors with different ranges. Any right shift either eliminates
an overlap, or it completes the coverage of a gap, or it could be a reversal of a left
shift. In a reversal of a left shift we either make a right shift equal to the size of
a left shift (and decrease the size of some left shifts), or we eliminate an overlap,
or complete an elimination of a left shift that was decreased earlier. Thus, in
total there can be at most O(n) such shifts. Therefore, the total complexity of
the algorithm is O(n2).

