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Abstract— In this paper we study fundamental properties of
minimum inter-event times in event-triggered control systems,
both in the absence and presence of external disturbances.
This analysis reveals, amongst others, that for several popular
event-triggering mechanisms no positive minimum inter-event
time can be guaranteed in the presence of arbitrary small
external disturbances. This clearly shows that it is essential to
include the effects of external disturbances in the analysis of the
computation/communication properties of event-triggered con-
trol systems. In fact, this paper also identifies event-triggering
mechanisms that do exhibit these important event-separation
properties.

I. INTRODUCTION

Event-triggered control (ETC) is a new digital control
paradigm that recently received a lot of attention [1]–[10].
In ETC the execution of the control tasks (the sampling of
the plant’s output and the updating of the control inputs)
is triggered by specific conditions, involving actuator and
(measured) output variables. Clearly, event-triggered control
results in aperiodic execution of control tasks, as the time
between two events (the inter-event time) is varying. This is
in contrast to conventional time-triggered control schemes, in
which the execution of the control tasks occurs periodically
and the inter-event times are constant.

The recent interest in ETC is motivated by resource
constraints in networked control systems, such as limited
communication bandwidth and computational power, as well
as restricted energy resources to perform computations and
transmit information if battery-powered (wireless) devices
are used. Due to these resource constraints it is desirable
to only execute control tasks when this is really needed to
guarantee the desired stability and performance properties of
the system. This requires varying inter-event times in order
for the control scheme to let the execution of the control
tasks depend on how the system is operating. As such,
ETC systems are much better equipped than time-triggered
control systems to balance resource utilization and control
performance. Several succesful event-triggering mechanisms
(ETMs) are proposed in [2]–[10]. See also [1] for a recent
overview.
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Just as time-triggered control systems, ETC systems
should be robust to imperfections, such as external dis-
turbances, modeling errors, transmission delays, packet
dropouts, and so on. However, for ETC systems it is not
enough to only verify the robustness of the control properties
(e.g., stability, convergence rates, L2/ISS-gains); also the ro-
bustness of the computation/communication properties needs
to be carefully examined, while for time-triggered systems
this would be trivial. Indeed, if an ETC system would operate
properly in the absence of disturbances, e.g., large minimum
and average inter-event times, but (small) disturbances can
easily reduce the minimum and average inter-event times
significantly, then the ETC system becomes rather ineffective
in practical situations, in which disturbances are always
present.

Some results concerning robustness of computation/com-
munication properties of ETC systems are provided
in [2]–[5], [8], [10]. In particular, in [2], [3], [10], the
robustness of the minimum inter-event time (MIET) with
respect to time delays has been considered, and in [5] with
respect to time delays and modeling uncertainties. These
results exploit, amongst others, that even while the imper-
fections (time delays and modeling errors) do not change
in size, their effect on the system vanishes when the system
approaches the origin. Non-vanishing imperfections such as
external disturbances do not have this property. In fact, in this
paper it is shown that for some systems even if a positive
MIET can be guaranteed in the absence of disturbances,
still the MIET becomes zero for arbitrarily small (non-
vanishing) disturbances. This indicates zero robustness of
the MIET with respect to disturbances and issues a strong
warning that it is crucial to study the robustness of the MIET
of ETC systems with respect to (non-vanishing) external
disturbances. Surprisingly, there is a lack of results in this
area. Notable exceptions are [4], in which a global positive
MIET is guaranteed of a model-based state-feedback ETC
scheme in the presence of bounded disturbances, and [8],
in which a semi-global positive MIET is guaranteed for
(decentralized) output-based ETC schemes in the presence
of bounded disturbances.

In this paper we will study the effect of disturbances on the
MIET for a well-known ETC scheme and introduce various
new notions related to the existence of positive MIETs, that
are called event-separation properties. These properties will
be formulated for general impulsive systems [11], [12], as
ETC systems can be well described through this hybrid
formulation, see, e.g., [8], [13], [14]. Next to formalizing
the (robust) event-separation properties, we will also study
if these properties hold globally, semi-globally or locally.
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In particular, we will investigate for various classes of
dynamical systems (linear, nonlinear) and various ETMs
(relative [2], absolute [4], [15], mixed [8]) these important
properties of closed-loop ETC systems using state-feedback.

The outline of the paper is as follows. We present some
necessary preliminaries in Section II and introduce the prob-
lem setting and the event-separation properties in Section III.
The main results on event-separation properties for state-
feedback controllers are presented in Section IV. Finally, in
Section V we illustrate our findings with an example and
provide conclusive remarks in Section VI.

A. Nomenclature

For a vector x ∈ Rxn , we denote by ‖x‖ :=
√
x>x its

2-norm. For a symmetric matrix A ∈ Rn×n, we denote by
λM (A) and λm(A) its maximum and minimum eigenvalue,
respectively. For a matrix A ∈ Rn×m, we denote by ‖A‖ :=√

λM (A>A) its induced 2-norm. By N := {0, 1, 2, . . . } we
denote the set of natural numbers including zero. With Ln

∞
we denote the space of all essentially bounded functions of
size n, and for a signal w : R>0 → Rnw , w ∈ Lnw

∞ , we
denote by ‖w‖L∞ = ess supt∈R>0 ‖w(t)‖ its L∞-norm. A
function γ : R>0 → R>0 is a K-function if it is continuous,
strictly increasing and γ(0) = 0, and a K∞-function if it is
a K-function and, in addition, γ(s) → ∞ as s → ∞. A
function β : R>0 × R>0 → R>0 is a KL-function if for
each fixed t > 0 the function β(·, t) is a K-function and for
each fixed s > 0, β(s, t) is decreasing in t and β(s, t) → 0
as t → ∞. For vectors x1 ∈ Rn1 , x2 ∈ Rn2 we denote by
[x1, x2] the vector [x>

1 x>
2 ]

> ∈ Rn1+n2 .

II. PRELIMINARIES

We consider the system

ξ̇ = f(ξ, ω), (1)

in which f : Rnξ×Rnω → Rnξ is continuously differentiable
and satisfies f(0, 0) = 0. The variable ξ ∈ Rnξ denotes the
state, and ω ∈ Rnω is a disturbance. Given initial state ξ0 ∈
Rnξ and ω ∈ Lnω

∞ , we define ξ(t, ξ0, ω) as the corresponding
solution to (1) satisfying ξ(0, ξ0, ω) = ξ0. We now recall
some properties and results from [16] and [17].

Definition 2.1 ([16]): The system (1) is input-to-state sta-
ble (ISS) if there exist a KL-function β and a K-function
γ such that for each input ω ∈ Lnω

∞ and each ξ0 ∈ Rnξ it
holds that

‖ξ(t, ξ0, ω)‖ 6 β(‖ξ0‖, t) + γ(‖ω‖L∞) (2)

for each t ∈ R>0.
Lemma 2.1 ([16]): The system (1) is input-to-state stable

if and only if there exists a continuously differentiable
function V : Rnξ → R>0 such that

α1(‖ξ‖) 6 V (ξ) 6 α2(‖ξ‖) (3a)
∂V (ξ)

∂ξ
f(ξ, ω) 6 −W (ξ), when ‖ξ‖ > ρ(‖ω‖) (3b)

for all (ξ, ω) ∈ Rnξ ×Rnω , where α1, α2 are K∞-functions,
ρ is a K-function, and W is a continuous positive definite
function on Rnξ .

Definition 2.2 ([17]): The system (1) is input-to-state
practically stable (ISpS) if there exist a KL-function β, a
K-function γ and a constant d ∈ R>0 such that for each
input ω ∈ Lnω

∞ and each ξ0 ∈ Rnξ it holds that

‖ξ(t, ξ0, ω)‖ 6 β(‖ξ0‖, t) + γ(‖ω‖L∞) + d (4)

for each t ∈ R>0.
Lemma 2.2 ([17]): The system (1) is input-to-state prac-

tically stable if and only if there exists a continuously
differentiable function V : Rnξ → R such that

α1(‖ξ‖) 6 V (ξ) 6 α2(‖ξ‖) (5a)
∂V (ξ)

∂ξ
f(ξ, ω) 6 −W (ξ), when ‖ξ‖ > ρ(‖ω‖) + c (5b)

for all (ξ, ω) ∈ Rnξ ×Rnω , where α1, α2 are K∞-functions,
ρ is a K-function, W is a continuous positive definite
function on Rnξ , and c ∈ R>0 is a constant.

III. CONTROL SETUP AND PROBLEM STATEMENT

In this section we introduce two general control architec-
tures, shown in Figure 1, for stabilizing a plant P in an
appropriate sense. We assume that P can be described by

P

ETM

C

ZOH
ua

w

x

xc

u

(a) Architecture I

P

ETM

C

ZOH

ua = u
w

x

xc

(b) Architecture II

Fig. 1. The two architectures for event-triggered state-feedback control
considered in this paper.

ẋ = f(x, ua, w), (6)

with x ∈ Rnx the state of the plant, ua ∈ Rnu the actuator
values and w ∈ Rnw an external disturbance. Furthermore,
we assume that the controller C is given by the state-feedback

u = k(xc), (7)

where xc ∈ Rnx is the state information available to the
controller and u ∈ Rnu is the controller output.

In Architecture I, the controller C is collocated with the
sensors of the plant, therefore the state xc available to the
controller is equal to the true state x of the plant P . At
event time ti determined by the event-triggering mechanism
(ETM), the actuator values ua(ti) are updated to the output
u(ti) of the controller, while between updates the input ua

is held constant in a zero-order-hold (ZOH) fashion, i.e.,

ua(t) = u(ti), for t ∈ [ti, ti+1). (8)
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In Architecture II, the controller is collocated with the
actuators, thus ua = u. At event time ti the sampled state
xc(ti) is updated to x(ti). Between updates the sampled state
xc is held constant in a ZOH fashion, resulting similarly as
in (8) in

xc(t) = x(ti), for t ∈ [ti, ti+1). (9)

In both architectures the ETM has full acces to the state x
of the plant, and we assume that the first event is generated
at the time the system is deployed, i.e.,

0 = t0 6 t1 6 t2 6 t3 6 . . . (10)

Note that in conventional time-triggered control, we would
have ti+1− ti = h for all i ∈ N, with h the sampling period.
However, in ETC the inter-event times ti+1 − ti are varying
and determined based on state information. By introducing

e(t) = x(ti)− x(t), for t ∈ [ti, ti+1), (11)

we can write the closed-loop system of both architectures as

ẋ = f(x, k(x+ e), w). (12)

To indicate how the ETM will be chosen, we assume that
k has been designed such that for the closed-loop sys-
tem (12) there exists a continuously differentiable function
V : Rnx → R satisfying

α1(‖x‖) 6 V (x) 6 α2(‖x‖) (13a)
∂V (x)

∂x
f(x, k(x+ e), w) 6 −W (x), when

‖x‖ > ρ1(‖e‖) + ρ2(‖w‖) (13b)

for all (x, e, w) ∈ Rnx × Rnx × Rnw , where α1, α2 are
K∞-functions, ρ1 and ρ2 are K-functions, and W is a
continuous positive definite function on Rnx . Obviously,
according to Lemma 2.1 this implies that (12) is ISS with
respect to both e and w.

A common design practice, originating from [2], for find-
ing stabilizing ETMs is enforcing that1 ρ1(‖e‖) 6 σ‖x‖+β.
When 0 6 σ < 1 and β > 0, this leads based on (13) to

α1(‖x‖) 6 V (x) 6 α2(‖x‖) (14a)
∂V

∂x
f(x, k(x+ e), w) 6 −W (x), when

‖x‖ >
1

1− σ
(ρ2(‖w‖) + β) . (14b)

As a consequence, the triggering mechanism

ti+1 = inf
{
t > ti

∣∣∣ρ1(‖e(t)‖) > σ‖x(t)‖+ β
}

(15)

with 0 6 σ < 1 and β > 0 renders the system (12) ISpS if
β > 0, and ISS if β = 0, due to Lemma 2.1 and Lemma 2.2.

We will call (15) a relative ETM when 0 < σ < 1 and
β = 0, which is the ETM as proposed in [2] and many
follow-ups, including [5]–[7], [10], an absolute ETM when

1Note that the ISS characterizations used in this paper are slightly
different from the ones used in [2], but are equivalent and result in essentially
the same ETMs.

σ = 0 and β > 0, as used in, e.g., [4], [15], and a mixed
ETM when 0 < σ < 1 and β > 0, as proposed in [8].

Combining (11), (12) and (15) leads to the closed-loop
ETC system

ẋ(t) = f(x(t), k(x(t) + e(t)), w(t))

e(t) = x(ti)− x(t), for t ∈ [ti, ti+1)

ti+1 = inf {t > ti | ρ1(‖e(t)‖) > σ‖x(t)‖+ β} .
(16)

The main objective of this paper is to investigate under
which conditions the ETC system (16) can be guaranteed
to have inter-event times ti+1 − ti, i ∈ N, that are bounded
from below by a positive constant, even in the presence of
external disturbances w. In order to study this problem, we
formally introduce the relevant event-separation properties in
Section III-B. However, before doing so, we first introduce
in Section III-A the special case where the functions f and
k are linear.

A. The linear case

When considering instead of the nonlinear plant P in (6)
a linear model of the form ẋ = Ax + Bu + w, the above
derivation would replace (12) by

ẋ = (A+BK)x+BKe+ w, (17)

in which we assume that A+BK is Hurwitz, to satisfy the
conditions in (13). To design an ETM that results in an IS(p)S
closed-loop system, we can use the following procedure,
inspired by [2]. Since A + BK is Hurwitz, we can find
positive definite matrices Z and Q, satisfying

(A+BK)>Z + Z(A+BK) = −Q. (18)

From this we derive for V (x) = x>Zx that

V̇ 6 2‖ZBK‖‖x‖‖e‖+2‖Z‖‖x‖‖w‖−λm(Q)‖x‖2. (19)

By selecting any 0 < γ < 1, it follows that

V̇ 6 (γ − 1)λm(Q)‖x‖2 when

‖x‖ >
2‖ZBK‖
γλm(Q)

‖e‖+ 2‖Z‖
γλm(Q)

‖w‖, (20)

which is in the form of (13). In this case the ETM (15) is
equal to

ti+1 = inf
{
t > ti

∣∣∣‖e(t)‖ > P‖x(t)‖+ T
}

(21)

with
P = σγ

λm(Q)

2‖ZBK‖
, T = βγ

λm(Q)

2‖ZBK‖
. (22)

Combining (11), (17) and (21) leads to the closed-loop ETC
system

ẋ(t) = (A+BK)x(t) +BKe(t) + w(t)

e(t) = x(ti)− x(t), for t ∈ [ti, ti+1)

ti+1 = inf {t > ti | ‖e(t)‖ > P‖x(t)‖+ T} ,
(23)

which is a special case of (16).
Remark 3.1: Note that also in the nonlinear case we can

consider an ETM of the form (21) when ρ1 is Lipschitz
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continuous on compacts. By taking P = σ
L1

and T = β
L1

,
with ρ1(‖e‖) 6 L1‖e‖, it holds on compact sets that ‖e‖ 6
P‖x‖ + T implies ρ1(‖e‖) 6 σ‖x‖ + β, thus the IS(p)S
properties of ETM (15) are preserved by ETM (21). Because
ETM (15) cannot generate an event before ETM (21) does,
we can use ETM (21) to find a lower bound on the inter-event
times generated by ETM (15) in the closed-loop system (16).

B. Definitions
The resulting event-triggered system can be written as an

impulsive system, cf. [8], [18], of the form

ξ̇ = F (ξ, ω), if ξ ∈ C, (24a)

ξ+ = G(ξ), if ξ ∈ D, (24b)

where the sets C and D are determined by the event-
triggering mechanism, as we will see. Throughout this sec-
tion we will assume that C, D, F and G are such that
existence and uniqueness of solutions is guaranteed for each
initial condition ξ0 and each disturbance ω of interest. In
addition, we assume that all solutions are complete in the
sense of [11], i.e., loosely speaking, either the solution is
defined for time t → ∞, or the number of jumps i → ∞, or
both. See [11] for more details on the definitions of solutions
and the hybrid model class (24).

To be precise, the ETC system (16), can be written in the
form (24) by taking ξ = [x, e] ∈ Rnξ with nξ = 2nx, ω = w,
and

F (ξ, ω) =

[
f(x, k(x+ e), w)

−f(x, k(x+ e), w)

]
, G(ξ) =

[
x
0

]
,

C = {ξ | ρ1(‖e‖) 6 σ‖x‖+ β} ,
D = {ξ | ρ1(‖e‖) > σ‖x‖+ β} .

Since we assume that for the ETC system (16) the first
event is generated at the time the system is deployed, the
corresponding impulsive system (24) must start in the set

Ξ0 := {ξ0 ∈ Rnξ | ξ0 = G(ξ) for some ξ ∈ Rnξ} . (25)

Given disturbance ω and initial condition ξ0 ∈ Ξ0, the
system (24) jumps according to (24b) at the jump times
included in the set {ti | i ∈ I(ξ0, ω)}, where I(ξ0, ω) is an
index set enumerating the jump times. Clearly, I(ξ0, ω) = N
or I(ξ0, ω) = {0, 1, 2, . . . , N} for some N ∈ N. To make the
dependence of the jump/event times on the initial condition
ξ0 ∈ Ξ0 and the disturbance signal ω explicit, we sometimes
write ti = ti(ξ0, ω), i ∈ I(ξ0, ω). In the case that I(ξ0, ω) =
{0, 1, 2, . . . , N}, we define tN+1 := ∞ (as we know that
solutions are complete).

All definitions below apply to the impulsive system (24).
Definition 3.1: The i-th inter-event time τi(ξ0, ω) with i ∈

I(ξ0, ω) corresponding to disturbance signal ω : R>0 → Rnω

and initial condition ξ0 ∈ Ξ0 is given as

τi(ξ0, ω) := ti+1(ξ0, ω)− ti(ξ0, ω). (26)
Definition 3.2: The minimum inter-event time for distur-

bance signal ω : R>0 → Rnω and initial state ξ0 ∈ Ξ0 is
defined as

τ(ξ0, ω) := inf
i∈I(ξ0,ω)

ti+1(ξ0, ω)− ti(ξ0, ω). (27)

Based on the above definitions on inter-event times, we
introduce the following event-separation properties for sys-
tem (24).

Definition 3.3: The impulsive system (24) has the global
event-separation property if

inf
ξ∈Ξ0

τ(ξ, 0) > 0. (28)

Definition 3.4: The impulsive system (24) has the semi-
global event-separation property if for all compact subsets
X ⊂ Rnξ

inf
ξ∈X∩Ξ0

τ(ξ, 0) > 0. (29)

Definition 3.5: The impulsive system (24) has the local
event-separation property if for all ξ ∈ Ξ0

τ(ξ, 0) > 0. (30)
In addition, we define their robust counterparts as follows.

Definition 3.6: The impulsive system (24) has the robust
global event-separation property if there exists ε > 0 such
that

inf
ξ∈Ξ0

‖ω‖L∞6ε

τ(ξ, ω) > 0. (31)

Definition 3.7: The impulsive system (24) has the robust
semi-global event-separation property if for all compact
subsets X ⊂ Rnξ there exists ε > 0 such that

inf
ξ∈X∩Ξ0

‖ω‖L∞6ε

τ(ξ, ω) > 0. (32)

Definition 3.8: The impulsive system (24) has the robust
local event-separation property if there exists ε > 0 such that
for all ω ∈ L∞ such that ‖ω‖L∞ 6 ε and all ξ ∈ Ξ0 it holds
that

τ(ξ, ω) > 0. (33)

IV. MAIN RESULTS FOR THE STATE-FEEDBACK CASE

In this section we study the event-separation properties
for ETC systems (16) for the relative, mixed and absolute
ETMs (15). Whenever we mention event-separation proper-
ties for ETC systems, we naturally mean the event-separation
properties of the corresponding impulsive system (24).

A. Relative triggering

It is shown in [2] that if w = 0 and the functions f , k, and
ρ1 are Lipschitz continuous on compacts, then on a compact
set X , the ETC system (16) with σ > 0 and β = 0 has a
positive minimum inter-event time

inf
x∈X

τ([x, 0], 0) > P/(L+ LP ), (34)

where L > 0 is such that

‖f(x, k(x+ e), 0)‖ 6 L‖x‖+ L‖e‖, (35)

for all x ∈ X , and with P according to Remark 3.1. This
means that the ETC system (16) using a relative ETM (15)
has the semi-global event-separation property if the functions
f , k, and ρ1 are Lipschitz continuous on compacts, and the
global event-separation property if the functions f , k, and ρ1
are globally Lipschitz continuous. This is an interesting and
valuable result, but it appears that the guarantee in (34) does

7373



not extend to the case where arbitrarily small disturbances are
present. Indeed, the system (16) using a relative ETM (15) in
general does not have any robust event-separation properties.
We prove this statement for the ETC system (23) with P > 0
and T = 0, i.e., focussing on the linear case.

Theorem 4.1: The closed-loop event-triggered control
system (23) with P > 0 and T = 0 does not have the robust
local event-separation property.

Proof: See [19].
Since the ETC system (23) with P > 0 and T = 0 does not
have the robust local event-separation property, obviously it
also does not have the robust (semi-)global event-separation
property.

B. Mixed triggering
In the next theorem, which forms an extension to Theo-

rem III.1 of [2] towards mixed ETMs, we state that large
class of ETC systems using mixed ETMs have the robust
semi-global event-separation property.

Theorem 4.2: Consider the closed-loop event-triggered
system (16) with 0 < σ < 1 and β > 0. If

1) f , k and ρ1 are Lipschitz continuous on compacts;
2) there exists a continuously differentiable function V

for the system satisfying (13),
then the system (16) is ISpS and has the robust semi-global
event-separation property.

Proof: See [19].
Corollary 4.3: Consider the closed-loop event-triggered

system (16) with 0 < σ < 1 and β > 0. If
1) f , k and ρ1 are globally Lipschitz continuous;
2) there exists a continuously differentiable function V

for the system satisfying (13),
then the system (16) is ISpS and has the robust global event-
separation property.
The proof of Corollary 4.3 can be directly derived from the
proof of Theorem 4.2.

C. Absolute triggering
Next we show that ETC systems (16) with f , k and

ρ1 Lipschitz continuous on compacts, using absolute ETMs
have the robust semi-global event-separation property.

Theorem 4.4: Consider the closed-loop event-triggered
control system (16), with σ = 0 and β > 0. If

1) f , k and ρ1 are Lipschitz continuous on compacts;
2) there exists a continuously differentiable function V

for the system satisfying (13),
then the system (16) is ISpS and has the robust semi-global
event-separation property.

Proof: See [19].
The MIET τ∗ is a function of xmax, indicating that the semi-
global result cannot be readily extended to a global result
along the lines of the proof above. In fact, in the next theorem
we state that ETC systems (23) using absolute ETM do not
have the global event-separation property.

Theorem 4.5: The closed-loop event-triggered control
system (23) with A + BK 6= 0, P = 0 and T > 0 does
not have the global event-separation property.

Proof: See [19].

D. Overview of the linear case

Summarizing the above results for the linear case, the
event-separation properties of closed-loop ETC systems (23)
are shown in Table I for relative, mixed and absolute ETMs.

ETM rob. glb. glb. rob. s-glb. s-glb. rob. loc loc
rel × X × X × X
mix X X X X X X
abs × × X X X X

TABLE I
EVENT-SEPARATION PROPERTIES FOR CLOSED-LOOP ETC

SYSTEMS (23).

V. ILLUSTRATIVE EXAMPLE

As is shown above, closed-loop ETC systems (23), have
no robust event-separation property when relative ETMs are
used, but have the robust global event-separation property
when a mixed ETM is used. We illustrate these findings by
studying the example of [2] and adding disturbances w. This
leads to the ETC system

ẋ = Ax+BK(x+ e) + w

e = x(ti)− x, for t ∈ [ti, ti+1)

ti+1 = inf {t > ti | ‖e(t)‖ > P‖x(t)‖+ T} ,
(36)

where

A =

[
0 1

−2 3

]
, B =

[
0
1

]
, K =

[
1 −4

]
, (37)

and w is zero-mean white noise satisfying ‖w‖L∞ 6 ε. We
compare two ETMs, the relative ETM with P = 0.05 and
T = 0, and the mixed ETM with P = 0.05 and T = 0.001.
The relative ETM renders the closed-loop ISS with respect
to w, and the mixed ETM renders the closed-loop ISpS with
respect to w.

The ETC system (36) is simulated using the relative ETM
for the cases ε = 0 and ε = 0.1, and using the mixed
ETM for the case ε = 0.1. Figure 2 shows the evolution
of ‖x(t)‖ and the inter-event times τi. For all three cases,
the control performance of the system is comparable. For
the relative ETM we find, using the results of [2], that
infx∈Rnx τ([x, 0], 0) = 0.028. It can be seen in Figure 2(b)
that this lower bound is indeed satisfied when ε = 0.
However, the inter-event times drop well below this bound
for ε = 0.1, and many events are generated when ‖x‖
becomes small. Clearly, this is unsatisfactorily in view of the
ETC philosophy that few or no events should be generated
when the system is performing satisfactorily. The mixed
ETM however is robust to disturbances and generates less
and less events as the system approaches the origin, despite
the presence of disturbances.
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Fig. 2. The evolution of ‖x(t)‖ (a) and the inter-event times τi (b) for
the example (36).

VI. CONCLUSIONS

We have introduced the (robust) global, semi-global and
local event-separation properties for impulsive systems, and
have studied these event-separation properties for ETC sys-
tems based on both Architecture I and II, for relative,
absolute and mixed event-triggering mechanisms.

It was found that relative ETMs are not robust to distur-
bances and generate many events in the presence of arbitrar-
ily small disturbances when the system is operating close
to the origin. Absolute ETMs, while robust to disturbances,
generate many events when the system is operating far away
from the origin (the desired equilibrium). Mixed ETMs yield
the most desirable event-separation properties by combining
the advantages of both relative and absolute ETMs, i.e.,
robustness to disturbances and global MIETs.

We conclude that, since every physical system is subject
to external disturbances, the effect of these disturbances
should not be disregarded in the stability and robustness
analysis of both the control properties of the system and
its computation/communication properties.

In future research we intend to extend the results of
this paper to output-based control and to also consider the
presence of measurement noise.
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