
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE 2010 2893

On Minimum Variance Unbiased Estimation of Clock
Offset in a Two-Way Message Exchange Mechanism

Qasim M. Chaudhari, Erchin Serpedin, and Khalid Qaraqe, Senior Member, IEEE

Abstract—For many applications, distributed networks require
the local clocks of the constituent nodes to run close to an agreed
upon notion of time. Most of the widely used clock synchronization
algorithms in such systems employ the sender-receiver protocol
based on a two-way timing message exchange paradigm. Max-
imum likelihood estimator (MLE) of the clock offset based on the
timing message exchanges between two clocks was derived in D.
R. Jeske, On maximum likelihood estimation of clock offset[IEEE
Trans. Commun., vol. 53, pp. 53–54, Jan. 2005], when the fixed
delays are symmetric and the variable delays in each direction
assume an exponential distribution with an unknown mean.
Herein, the best linear unbiased estimate using order statistics
(BLUE-OS) of the clock offset between two nodes is derived
assuming both symmetric and asymmetric exponential network
delays, respectively. The Rao-Blackwell-Lehmann-Scheffé the-
orem is then exploited to obtain the minimum variance unbiased
estimate (MVUE) for the clock offset which it is shown to coincide
with the BLUE-OS. In addition, it is found that the MVUE of
the clock offset in the presence of symmetric network delays also
coincides with the MLE. Finally, in the presence of asymmetric
network delays, although the MLE is biased, it is shown to achieve
lesser mean-square error (MSE) than the MVUE in the region
around the point where the bidirectional network link delays are
symmetric and hence its merit as the most versatile estimator is
fairly justified.

Index Terms—Clock, estimation, signal processing, synchroniza-
tion, wireless sensor networks.

I. INTRODUCTION

I N distributed systems, maintaining the logical clocks of the
computers in such a way that they are never too far apart is

one of the most challenging problems. Whether it is the disci-
plining of computer clocks with the devices synchronized to a
GPS satellite or a network time protocol (NTP) server over the
Internet, it is possible to equip some primary time servers for the
purpose of synchronizing a much larger number of secondary
servers and clients connected through a common infrastructure.
In order to do this, a distributed network clock synchronization
protocol is required through which a server clock can be read,
the readings to other clients can be transmitted and each client
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clock can be adjusted as required. In such a distributed synchro-
nization approach, the participating devices exchange timing in-
formation with their chosen reference at regular intervals and
adjust their logical clocks accordingly.

A computer clock in general has two components, namely
a frequency source and a means of accumulating timing events
(consisting of a clock interrupt mechanism and a counter imple-
mented in software). The implementation of the computer clock
in the operating system and the programming interface differ
between operating systems and hardware platforms. However,
the basic source of timing offsets are an uncompensated quartz
crystal oscillator and the clock interrupts it generates. Theoreti-
cally, two clocks would remain synchronized if their offsets are
set equal and their frequency sources run at the same rate. How-
ever, practical clocks are set with limited precision and the fre-
quency sources run at slightly different rates. In addition, the
frequency of a crystal oscillator varies due to initial manufac-
turing tolerance, aging, temperature, pressure and other factors.
Because of these inherent instabilities, distributed clocks must
regularly be synchronized to keep them running close to each
other.

Clock synchronization is important for many applications
such as Internet delay measurements, cellular networks, data
security algorithms, MAC protocols like time division multiple
access (TDMA), IP telephony, ordering of updates in database
systems, etc. Recently, with the advent of wireless sensor
networks (WSNs), developing clock synchronization protocols
that suit their specific requirements is becoming an important
research problem [2]. A large number of WSN applications
require the clocks of the nodes to run synchronously on a
common timescale. This is the case with applications such as
data fusion, efficient duty cycling operations, acoustic beam-
forming, localization, security, and object tracking. Unlike
conventional networks, energy efficiency must also be taken
into account for addressing the clock synchronization problem
in WSNs.

II. RELATED WORK

During the last two decades, many clock synchronization pro-
tocols have been proposed such as [3], [5], [6], etc. The NTP
[3] is a protocol for synchronizing the clocks of computer sys-
tems over packet-switched, variable-latency data networks and
it represents the Internet standard for time synchronization. It
is a layered client-server architecture based on the UDP mes-
sage passing which synchronizes computer clocks in a hier-
archical way using the offset delay estimation method. NTP’s
sender-receiver synchronization mechanism is widely accepted
in designing time synchronization algorithms and consists of the
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same two-way timing message exchange paradigm targeted in
this paper.

A protocol based on the remote clock reading method was
put forward by [5], which handles unbounded message delays
between processes. In [6], the time transmission protocol is used
by a node to communicate the time on its clock to a target node,
which subsequently estimates the time in the source node by
using message timestamps and message delay statistics.

For ad-hoc communication networks, the time synchroniza-
tion protocol [7] represented one of the pioneering contributions
reported in this area. The protocol is based on generating times-
tamps to record the time at which an event of interest occurs.
The timestamps are updated by each node using its local clock
and the time transformation method, where the final timestamp
is expressed in terms of an interval with a lower bound and an
upper bound.

In the realm of WSNs, several clock synchronization proto-
cols of special interest were proposed: reference broadcast syn-
chronization (RBS [8]), timing synch protocol for sensor net-
works (TPSN [4]) and time diffusion protocol (TDP [9]). RBS
relies on the simultaneous reception of broadcast pulses by sev-
eral nodes transmitted by a common neighboring node after
which the nodes exchange their timestamps and estimate the rel-
ative time offsets and skews. On the other hand, TPSN is based
on the same sender-receiver paradigm as in NTP, like many
other traditional clock synchronization protocols. The basic dif-
ference is that TPSN has been molded sufficiently well to suit
the WSN requirements. TDP establishes a network-wide equi-
librium time through an iterative weighted averaging technique
by diffusing the synchronization messages through all the net-
work nodes. In the context of WSNs, the results presented in this
paper are applicable to a wide range of time transfer problems
either directly (as is the case with TPSN and other protocols) or
through some minor extensions.

Based on the two-way timing message exchange mechanism
and assuming an exponential network delay distribution, [10]
brought some interesting results by applying techniques from
the statistical signal processing field. However, an important
problem was not fully addressed in [10]. Assuming known fixed
delays and known symmetric exponential mean link delays, [10]
concluded that the maximum likelihood estimator (MLE) of the
clock offset does not exist in this scenario. However, in [1], as-
suming an unknown fixed delay, irrespective of the symmetric
exponential mean link delay being known or unknown, the MLE
of the clock offset was successfully derived.

Assuming both symmetric and asymmetric exponentially
distributed network link delays, this paper focuses on finding
the best linear unbiased estimators using order statistics
(BLUE-OS) and the minimum variance unbiased estimates
(MVUE) for the clock offset between two nodes and evaluates
their performance in terms of the mean square error (MSE),
which is chosen as the performance criterion throughout this
paper. The timing exchange mechanism between the two nodes
is the same classical two-way message exchange mechanism
adopted in protocols such as NTP [3], TPSN [4], etc. The main
contributions of this paper are as follows.

1) A relatively unnoticed estimation scheme in engineering
literature, the BLUE-OS, is investigated in the context

Fig. 1. Sender-receiver timing message exchange paradigm.

of clock offset and relevant clock offset estimators are
derived.

2) The Rao-Blackwell-Lehmann-Scheffé theorem is then
used to derive the MVUE and it is shown that the MVUE
coincides with the BLUE-OS. Therefore, in the class of
unbiased estimators, it is the optimal solution and no other
estimator can be found with lesser MSE (or variance,
which is the same as MSE in the unbiased case) than
the MVUE. For the sake of completion, the clock offset
estimators are also derived in two scenarios, namely when
the mean of the exponential link delays is known and
unknown for each direction, respectively.

3) A short commentary on whether the MVUE is the best pos-
sible solution as compared to the other estimators such as
the MLE is presented. It is shown that in the most practical
scenario, i.e., asymmetric link delays with unknown expo-
nential means, the MLE derived in the presence of sym-
metric link delays—although biased for asymmetric link
delays—outperforms the MVUE in terms of the achievable
MSE in the region around the point of link symmetry.

III. SIGNALING MECHANISM

Adopting the classical approach of sender-receiver synchro-
nization for performing a timing handshake between a pair of
nodes, the uplink and downlink timing message exchanges be-
tween two clocks and are shown in Fig. 1. The messages

and represent the times measured by the local clock of
node , while the messages and represent the times mea-
sured by the local clock of node (which is also the reference).
The synchronization procedure starts at time and at each suc-
cessive message exchange round , node sends a synchroniza-
tion packet containing the timestamp to node which records
its reception time as . At , node sends an acknowledge-
ment packet back to node containing the timestamps and

, which is delivered and timestamped at time in accor-
dance with node clock. This process between the two nodes
is repeated times, where stands for the required number
of samples. It should be noted that is a function of the target
synchronization accuracy and the price the protocol is willing
to invest in the form of network resources.

Based on the above pairwise synchronization message ex-
change mechanism, the clock offset measurement model can be
represented in terms of these two equations
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For simplification, the above equations will be rewritten as

where and . The quantity symbol-
izes the fixed portions of the delays assumed to be symmetric
for each direction, and denote the independent and
identically distributed variable portions of delays and assume
exponential distributions with means and , respectively, and

stands for the clock offset of node with respect to node
. Turning towards modeling the network delays, the Weibull,

exponential, Gamma, and log-normal distributions [11]–[13]
have been found to closely capture the true distribution of the
network delays. There are various reasons behind choosing
the exponential distribution for the purpose of this study.
Reference [14] collected several traces of delay measurements
on the Internet and MBone [15] for more than a month using
constant length UDP packets whose payloads consisted of a
sequence number and a timestamp sent out at periodic intervals.
The exponential distribution provided quite a satisfactory fit
for the measurements obtained in the experiment. In addition,
a single-server M/M/1 queue can fittingly represent the cu-
mulative link delay for point-to-point hypothetical reference
connections, where the random delays are independently mod-
eled as exponential random variables [10]. Moreover, [10]
proposed five different clock offset estimation algorithms such
as the median round delay, the minimum round delay, the
minimum link delay, the median phase and the average phase,
amongst which the minimum link delay algorithm has been
experimentally demonstrated to be superior than the rest [16].
Reference [1] later mathematically proved that this algorithm
yields the maximum likelihood estimate under exponential
link delays. All these results confirm that the assumption of
exponential distribution for network delays is a sufficiently
adequate model to fit the experimental observations.

In [1], it was argued that for an unknown , irrespective of the
symmetric exponential distribution mean (which is the same
as and in symmetric case) being known or unknown, the
MLE of the vector parameter is given by

(1)

where and denote the minimum order statistics (i.e.,
), and and represent the sample average of

the data and , respectively. When is known,
the MLEs of assume the same expressions.

Next, the BLUE-OS and MVUE are derived for both the
asymmetric and symmetric cases, assuming unknown exponen-
tial delay means. For the sake of completion, we also state the
results for the known case at the end of the corresponding sub-
sections of Section V.

IV. BLUE-OS

Deriving regular BLUE for a problem yields suboptimal re-
sults in general, since the class of unbiased estimators, within
which the search is performed, is restricted to be linear. In the
case when the noise is normally distributed, the direct appli-
cation of BLUE provides the optimal solution by virtue of the
Gauss–Markov theorem. But for other distributions, including
the exponential distribution as is the case with the modeling
framework adopted in this paper, the direct application of BLUE
is not of much relevance. However, for a general location-scale
distribution, [17] suggested a different technique based on the
derivation of BLUE using order statistics instead of just the raw
observations. Such a technique will be applied herein to the
target scenario as follows.

Let the order statistics of the observations and
be denoted as and , respec-

tively. Define

which are a set of independent observations on the standardized
variate and hence their distribution is parameter-free. The order
statistics of and are denoted by and , respec-
tively. The following relations hold:

Now using standard results from [18, p. 500], the statistics of
the ordered samples can be expressed as

As a result, the symmetric positive-definite covariance
matrix for both and takes the common expression:

...
...

...
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It is worth pointing out at this time that a simple exercise yields
the following closed-form expression for the inverse of the co-
variance matrix (see the first matrix at the bottom of the page).

The BLUE-OS will be next derived separately for both sym-
metric and asymmetric network delays.

A. Symmetric Link Delays

The symmetric network delay assumption is reasonable for
some realistic scenarios, specially when the nodes have a di-
rect communication link between them and the topology of the
network is constant. In this case, . Consider the
BLUE-OS , which is a linear function
of an ordered set of observations and . Let

. Then, it is straight-
forward to notice that (see the second matrix at the bottom of
the page), where is the ordered data vector, is a
known matrix of dimension and is the
3 1 vector of unknown parameters. The above linear relation-
ship lends the problem to be solved by the Gauss–Markov the-
orem. Since and are independent data sets

as shown in the third matrix at the bottom of the page. Therefore,
the BLUE-OS in the symmetric exponential network delays case
is given by (2), shown at the bottom of the page, with and

representing the sample averages of the data sets
and , respectively, and which coincide with the sample
averages of ordered observations and , re-
spectively. Note that the BLUE-OS of the clock offset matches
the MLE in (1), but this is not true for the estimates of the de-
terministic and mean variable delay ( and ). This is because

is unbiased unlike and , which are multiplied
by suitable factors to remove their bias.

B. Asymmetric Link Delays

In many broadband and wireless channels, and ad-hoc net-
works with time-varying topologies, the symmetric network
delay assumption does not hold and applying the same results
derived under the symmetric assumption is suboptimal. There-
fore, a study for deriving the efficient estimators in this case is
very important. Let , then the linear
model based on the ordered observations can be expressed as

...
...

...
...

...

(2)
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the first equation at the bottom of the page, where is again a
concatenated vector of ordered data and

is a known matrix of dimension and is the
4 1 vector of unknown parameters. The inverse of the joint
covariance matrix for and can be expressed as

Based on the above expression, it follows that

and consequently (see the second equation at the bottom of the
page), which implies (3), shown at the bottom of the page.

V. MVUE

In parameter estimation, very often the ultimate goal is to find
the estimator that achieves the minimum MSE (MMSE), and
it is usually the criterion of choice. However, it is well known

in theory that the optimal MSE estimators are usually not re-
alizable. Since the MSE is the sum of estimator variance and
squared bias, a technique chosen to attain realizable yet best es-
timators is to constrain the bias to be zero (since the dependence
of MMSE estimator on the unknown parameter typically comes
from the bias). Therefore, restricting the possible estimators to
be unbiased and then finding the estimator with the smallest
variance for all values of the unknown parameter yields the op-
timal solution within the class of unbiased estimators. There-
fore, we will resort on the concept of MVUE, which is derived
based on the Rao-Blackwell-Lehmann-Scheffé theorem.

A. Asymmetric Link Delays

Starting with the asymmetric case, the likelihood function
for the clock offset as a function of observations and

is given by

(4)

(3)
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where denotes the unit step function. Exploiting the fact
that the raw sample mean and the ordered sample mean are ac-
tually the same, (4) can be factored as

where

In the above relations, is independent of the
unknown vector parameter , whereas

and are functions depending on the data through
. Therefore, ac-

cording to Neyman-Fisher factorization theorem, is a
sufficient statistic for .

Since , it is easier to deter-
mine the MVUE directly from without having to evaluate

by finding a 4 1 vector function
such that , provided that is a
complete sufficient statistic. Finding the probability density
function (pdf) of is required to prove that is complete
but the problem of finding this pdf is a little complex, because

and , and similarly and , are
not independent.

The joint pdf of is given by

(5)

whereas the pdf of the minimum order statistic is also ex-
ponential with mean . Now consider the transformation

where . Since
and the Jacobian of the transformation is , a substitution in
(5) reveals that

i.e., are independent exponential random variables with sim-
ilar mean . In addition, since each , each as-
sumes a Gamma distribution , too. Using the rela-
tionship , and the fact that each
of is independent of (and hence of , since

),
and is independent of .

By a similar reasoning, it can be deduced that
and is independent of . There-

fore, the one-to-one function
of is also suffi-

cient for estimating because the sufficient statistics
are unique within one-to-one transformations [19]. Conse-
quently, comprises of four independent random variables
that in terms of the three-parameter Gamma distribution assume
the distributions:

Note that the domains of and are controlled by and
, respectively. Next, it has to be checked whether , or

equivalently , is complete. Completeness implies that there is
but one function of that is unbiased. Let be a function
of such that . Suppose that there exists
another function for which is also true.
Then

where and the expectation is taken with
respect to . As a result
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where is the region defined by and
. The above relation can be expressed as

The expression on the left above is the four-dimensional
Laplace transform of the function . It follows from
the uniqueness theorem for two-sided Laplace transform that

almost everywhere, resulting in
and hence there is only one unbiased function of . This
proves that the statistic , or equivalently , is complete for
estimating when the links are asymmetric and both
and are unknown.

Finally, the complete sufficient statistic is also minimal
owing to Bahadur’s theorem which states that if , taking values
in , is sufficient for and boundedly complete, then

is minimal sufficient.
What it remains to prove is finding an unbiased estimator for

as a function of , which will represent the MVUE ac-
cording to the Rao-Blackwell-Lehmann-Scheffé theorem. Ap-
parently, it seems difficult to find four unbiased functions of

for each of and just by inspection. But note that
BLUE-OS in (3) is also an unbiased function of

. Hence, it is concluded that the BLUE-OS is also the MVUE

(6)

As a result, the MVUE for the desired parameter, the clock
offset, for asymmetric unknown network delays is expressed as

(7)

Similarly, the MVUE of the fixed delay and mean link de-
lays and are the same as in (3). For the sake of completion,
the MVUE is also given when and are known. It is straight-
forward to see from (4) that and are the complete min-
imal sufficient statistic for estimating and . The only unbi-
ased functions of yielding are

(8)

B. Symmetric Link Delays

In the symmetric case when , the likelihood func-
tion for the clock offset as a function of observations
and is

(9)

Apparently, for unknown , it seems that
are again the sufficient sta-

tistics for the estimation of . But then they
have already generated two unbiased clock offset estimators,
given by (2) and (3). Naturally, this question arises: since the
same sufficient statistics have been proved complete, how can
they yield two unbiased estimators? Using the factorization
theorem, it turns out that ,
and not , is actually the
minimal sufficient statistic according to Neymann-Fisher
Factorization theorem. Consequently, the clock offset estimator
in (3) can not be considered since it is not a function of .

Now proceeding similarly as before,
is Gamma distributed with parameters

and

It follows that is also the minimal sufficient statistic and
the MVUE is the same as in (2) expressed as

(10)

Hence, the MVUE for the clock offset, in the case of symmetric
unknown network delays, is expressed as

(11)

Furthermore, the MVUEs for the fixed delay and mean link
delay under the symmetric assumption match the ones in (2).
Finally, following a similar procedure, when is known, the
sufficient statistics are and and the MVUE is given by

(12)
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TABLE I
MVUE FOR THE CLOCK OFFSET

VI. SIMULATIONS AND EXPLANATORY REMARKS

Summarizing the results derived so far, Table I shows the
MVUE for the clock offset for the possible combinations of
symmetries/asymmetries in the network delays and knowledge
of the mean link delay parameters from (6), (8), (10), and (12).

It is evident from Table I that in practical scenarios where
the means of the exponentially distributed delays are unknown,
the MVUE is given by (7) or (11) depending on whether the
network delays are asymmetric or symmetric. A natural ques-
tion arises at this stage: which estimator is better when these
network delays are slightly asymmetric. To answer this ques-
tion, note that the MVUE is not always the best estimator, it is
only the best among unbiased estimators. If some estimator is
devised having reduced variance with relatively lesser resultant
increase in squared bias, then it can outperform the MVUE in
the MSE sense. Hence, for the asymmetric unknown mean link
delays case, we will compare the MSE of the MLE in (1) with
the MVUE in (7) as follows:

(13)

(14)

Notice that though is biased in the most realistic
setting, i.e., asymmetric unknown mean link delays, in accor-
dance with (13) and (14), it outperforms the MVUE under the
condition

(15)

which can be expressed equivalently as

(16)

The above relations bring into attention a number of remarks.
First, (16) provides the number of timing synchronization mes-
sages to be exchanged given and , up to which the MLE
has lesser MSE than the MVUE for asymmetric link delays. It
also suggests that though the MLE is equal to the MVUE only
in the symmetric link delays case, it attains lesser MSE in the
asymmetric case in the region around the point . As the
asymmetry of the link increases, i.e., tends to drift away

from zero, the MVUE starts outperforming the MLE. The exact
point where their performance is the same can be easily derived
from (16). The two respective MSEs are drawn in Fig. 2, where

and are held constant at 15 and 2, respectively, while is
varied across through the relation .
For this plot, the range is chosen to be 4 and the step size is

. It shows that the MSE of MLE actually decreases when
initially approaches because the chosen is a small

value and hence the MSE rise due to a slight increase in is
overcome by the fall in the MSE due to the smaller
(for larger values of , this fall might not occur). It is clear that
around the region where (illustrated by the solid line in
Fig. 2), the MLE outclasses the MVUE and then a further in-
crease in again results in higher asymmetry thus making the
MVUE the better choice. Second, it is evident from (13) and
(14) that for a constant , and increasing and/or , the MLE
again exhibits better performance than the MVUE, and hence
should be preferred over MVUE in networks with large delays.
Third, (16) shows that for any can be made large
enough to surpass the expression on the right hand side. This
fact is also clear from Fig. 3, where the same plot is drawn with

ranging from 15 to 20. Notice that although the MSEs of both
estimators decrease with , the two lines representing the inter-
sections of the MSE curves manifest decreasing separation be-
tween them. This result corroborates the fact that MVUE over-
takes the MLE after a certain number of observations. Fourth,
it apparently seems that for a constant , estimating and
utilizing (6) and (10) and plugging in (16) might be a good idea
for adaptively selecting between the MVUE and MLE as

However, since processes nonlinearly the estimates,
an amplification of estimation errors might occur which affects
the quality of the resultant . In other words, even having
access to and might not help to estimate accurately

, despite the fact that the MLE is functionally invariant.
Nevertheless, such a technique can be used when the asymmetry
between the delays is large, since the incorrect choice appears
only around the region where the two MSE curves (as in Fig. 2)
intersect with each other.

To address briefly the issue pertaining to the robustness of
proposed estimators to slight deviations from the exponential
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Fig. 2. MSE of the MLE (1) and the MVUE (7) for asymmetric unknown delays with constant � � ��.

delay model, we have run computer simulations assuming the
same timing message exchange mechanism but with Gamma
distributed delays with shape parameter and scale pa-
rameter (Gamma distribution is one of the most general
distributions used for modeling network delays as explained in
Section III). There is no closed-form expression for the max-
imum likelihood estimates of the clock offset and deterministic
delay in this case, and the MLE of the clock offset had to be esti-
mated numerically. The results are drawn in Fig. 4 showing that
the MVUE derived for exponential case is robust in the pres-
ence of asymmetric delays and performs close to the maximum
likelihood estimate in Gamma delays. The cost of higher MSE
of the former saves a very large number of iterations required
for the latter.

However, for distributions quite different than the exponen-
tial distribution, the derived MVUE is not robust, as described
in detail in [20]. In this case, one can resort to an MMSE par-
ticle filtering based approach as described in [21]. An attrac-
tive feature of the proposed MMSE particle filtering estimator
[21] is the fact that the density of network delays is estimated
adaptively in the same time with the unknown clock parame-
ters, and provided that a large number of samples are available,
the resulting estimator will be MMSE and very robust to any
type of network delay distributions. However, its computational
complexity is high in general for WSNs characterized by re-
duced memory, energy and computational power. Nonetheless,
it can be implemented in traditional computer networks and its
applicability depends on the complexity-performance tradeoff
regime that we want to operate on.

To illustrate the performance of proposed estimators with re-
spect to the existing state-of-the-art estimators, we have per-
formed comparisons with the parametric and non-parametric
bootstrap-bias correction (PBC and NBC, respectively) estima-
tors. The procedures for building the bootstrap bias correction
estimators are detailed in the Appendix (for interested readers,
[22] and [23] are excellent references).

The results of the findings are as follows. In the symmetric
exponential model drawn in Fig. 5 for , the MLE exhibits
the best performance among those estimators. Notably, in the
case that there is no bias, applying a bias correction might re-
sult in slight deterioration in MSE performance compared to the
MLE. However, in the asymmetric exponential model drawn in
Fig. 6 for and , PBC and MVUE present almost
the same performance, though PBC is slightly better than the
MVUE at the cost of much higher computational complexity.

These findings are very important in the context of WSNs
where the energy resources are limited and the number of syn-
chronization packet exchanges is rather small. Even in the tra-
ditional centralized or ad-hoc networks, it should be noted that
for an fairly close to , the MLE gives better results no matter
by how much magnitude is increased. In addition, when the
topology of the network does not remain constant for longer pe-
riods of time as in ad-hoc networks, different delay environ-
ments are present during different synchronization cycles and
choosing between the MVUE and the MLE according to each
situation yields a better solution.

Based on the above observations, it should be emphasized that
the problem under study provides a very illustrative example
about the worth of the MLE in real world scenarios. It is not
only relatively easier to derive, but it also performs outstand-
ingly well in comparison to other laboriously obtained optimal
(in some sense) estimators. This represents another justification
for the widespread usage of MLE in engineering applications.

As a final remark, note that the primary interest of this
research was on deriving the estimates for the clock offset but
as a byproduct, the estimates of both fixed and variable link
delays have also been obtained in (6) and (10), where their
BLUE-OS matches again the MVUE. This outcome is also
helpful since end-to-end delay measurements are frequently
used in analyzing network performance. For example, packet
delay statistics are important in examining the performance and
reliability of the Internet, but it has no mechanism for providing
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Fig. 3. MSE of the MLE (1) and the MVUE (7) for asymmetric unknown delays with different values of � .

Fig. 4. MSE of the Gamma MLE and the MVUE (7) for unknown delays with
different values of � .

feedback on network congestion to end-systems at the IP layer.
Moreover, these results are also useful for end-system protocols
and applications that behave adaptively based on their control
on the observed network performance. Lastly, the estimates of
fixed and mean variable delays are also important in other areas
such as continuous-media applications, e.g., audio and video
applications need to coup with the delay jitter perceived at the
receiver for smooth playout of the original stream. For better
performance of such applications, determining the correct
amount of buffering, and the reconstruction of the original
timing plays a significant role.

VII. CONCLUSIONS AND FUTURE WORK

This paper targets the clock synchronization problem in a
general two-way timing packets exchange scenario. The best

Fig. 5. MSE for Symmetric Exponential Delay Model �� � � � ��.

linear unbiased estimate (using order statistics) of the clock
offset between two nodes has been derived for both symmetric
and asymmetric exponential link delay circumstances. The
MVUE is then obtained, and it is shown to coincide with the
best linear unbiased estimate using order statistics in each
case. However, it matches the MLE only in the symmetric link
delay situation. Finally, the maximum likelihood estimator is
established to outperform the MVUE in the region around the
point of symmetry, thus establishing its authority as the most
extensively employed estimation scheme for practical settings.

As a future work, the MMSE estimator, if realizable, is a nice
problem to tackle so that a uniformly better solution can be ob-
tained. Another possible direction might be to devise an efficient
method for selecting between the above mentioned estimators to
enhance the overall performance.
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Fig. 6. MSE for Asymmetric Exponential Delay Model �� � �� � � ��.

APPENDIX

A. Nonparametric Bootstrap

Step 0. Conduct the experiment to obtain the random sample
and calculate the estimate from the

sample .
Step 1. Construct the empirical distribution , which

puts equal mass at each observation
.

Step 2. From , draw a sample ,
called the bootstrap resample.

Step 3. Approximate the distribution of by the distribution
of derived from the bootstrap resample .

B. Parametric Bootstrap

Suppose that one has some partial information about . For
example, is known to be the exponential distribution but with
unknown mean . This suggests that we should draw a resample
of size from the exponential distribution with mean where

is estimated from rather than from a non-parametric esti-
mate of . We use the exponential distribution in the sug-
gested bias correction through parametric bootstrapping. The
parametric bootstrap principle is almost the same as the above
nonparametric bootstrap principle, except some steps.

C. Bootstrap Estimate of Bias

Let us suppose that an unknown probability distribution
assumes the data by random sampling,

. We want to estimate a real-valued parameter .
For now we will assume the estimator to be any statistic

. The bias of as an estimate of is defined to be
the difference between the expectation of and the value of the
parameter

(17)

A large bias is usually an undesirable aspect of an estimator’s
performance. We can use the bootstrap to assess the bias of any
estimator . The bootstrap estimate of bias is defined to
be the estimate obtained by substituting for

(18)

For most statistics that arise in practice, the ideal bootstrap esti-
mate must be approximated by Monte Carlo simulations.
We generate independent bootstrap samples ,
evaluate the bootstrap replications , and approx-
imate the bootstrap expectation by the average

(19)

The bootstrap estimate of bias based on the B replications
, is (2) with substituted for

(20)

D. Bias Correction

The usual reason why we want to estimate the bias of is to
correct so that it becomes less biased. If is an estimate of

, then the obvious bias-corrected estimator is

(21)

Taking equal to gives

(22)
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