
ar
X

iv
:a

lg
-g

eo
m

/9
70

90
27

 v
1 

  2
5 

Se
p 

19
97

On Mirror Symmetry Conjecture

for

Schoen’s Calabi-Yau 3 folds

Shinobu Hosono1

Department of Mathematics, Faculty of Science,
Toyama University, Toyama 930, Japan

E-mail:hosono@sci.toyama-u.ac.jp

Masa-Hiko Saito2

Department of Mathematics, Faculty of Science,
Kobe University, Rokko, Kobe, 657, Japan

E-mail:mhsaito@math.s.kobe-u.ac.jp

Jan Stienstra

Department of Mathematics, University of Utrecht,
Postbus 80.010, 3508 TA Utrecht, Netherlands

E-mail:stien@math.ruu.nl

Abstracts

In this paper, we verify a part of the Mirror Symmetry Conjecture for Schoen’s Calabi-Yau 3-fold,

which is a special complete intersection in a toric variety. We calculate a part of the prepotential

of the A-model Yukawa couplings of the Calabi-Yau 3-fold directly by means of a theta function

and Dedekind’s eta function. This gives infinitely many Gromov-Witten invariants, and equivalently

infinitely many sets of rational curves in the Calabi-Yau 3-fold. Using the toric mirror construction

[Ba-Bo, HKTY, Sti], we also calculate the prepotential of the B-model Yukawa couplings of the mirror

partner. Comparing the expansion of the B-model prepotential with that of the A-model prepotential,

we check a part of the Mirror Symmetry Conjecture up to a high order.

1 Introduction

Let W be a generic complete intersection variety in P1×P2×P2 which is defined by two equations
of multi-degrees (1, 3, 0) and (1, 0, 3) respectively. A generic W is a non-singular Calabi-Yau 3-fold,
which we call Schoen’s Calabi-Yau 3-fold [Sch]. The purpose of this paper is to verify a part of the
Mirror Symmetry Conjecture for Schoen’s Calabi-Yau 3-folds.

1Partly supported by Grants-in Aids for Scientific Research, the Ministry of Education, Science and Culture,
Japan

2Partly supported by Grants-in Aids for Scientific Research (B-09440015), the Ministry of Education, Science
and Culture, Japan
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In [COGP], Candelas et al. calculated the prepotential of the B-model Yukawa couplings of
the mirror of generic quintic hypersurfaces X in P4 and under the mirror hypothesis they gave
predictions of numbers of rational curves of degree d in X . Their predictions have been verified
mathematically only for d ≤ 3, that is, for numbers of lines, conics and cubic curves (cf. e.g. [E-S]).
On the B-model side one can compute as many coefficients as one wants and thus conjecturally
count curves of any degree. However it is very hard to calculate the Gromov–Witten invariants
directly on the A-model side. In this paper we calculate, (directly on the A-model side), a part
of the prepotential of Schoen’s Calabi-Yau 3-fold W which gives infinitely many Gromov–Witten
invariants of W .
The main strategy of our verification is as follows:

• We will calculate a part of the prepotential of the A-model Yukawa couplings (for genus
zero) of Schoen’s Calabi-Yau 3-fold by using a structure of fibration h : W −→ P1 by abelian
surfaces. The theory of Mordell-Weil lattices [Man1, Sh1, Sa] allows us to calculate that
part of the prepotential coming from sections of h. Under very plausible assumptions, we
can count the “numbers of pseudo-sections”, which makes it possible for us to obtain a very
explicit description of the 1-sectional part of the A-model prepotential (cf. Theorem 4.2) in
19 variables by using a lattice theta function for E8 and Dedekind’s eta function.

• According to Batyrev-Borisov [Ba-Bo] we can construct a mirror partner W ∗ of W . The
prepotential of the B-model Yukawa couplings of W ∗ can be defined by means of period
integrals of W ∗. Following the recipe in [HKTY, Sti] we expand the B-model prepotential in
3 variables by using the toric data. These 3-variables correspond to 3 elements of the Picard
group of W coming from line bundles on the ambient space P1 × P2 × P2.

• By identifying the 3 variables with the corresponding 3 variables on the A-model side we
have two expansions which should be compared. By a simple computer calculation we can
verify the conjecture up to a high order.

To state the results for the A-model side let fi : Si −→ P1 (i = 1, 2) be two generic rational
elliptic surfaces. Then Schoen’s generic Calabi-Yau 3-fold can be obtained as the fiber product
h : W = S1 ×P1 S2 −→ P1. A general fiber of h is a product of two elliptic curves. Hence after
fixing the zero section the set of sections of h becomes an abelian group. In this case the group
of sections MW (W ) is a finitely generated abelian group and admits a Néron-Tate height pairing.
Let B be the symmetric bilinear form associated to the Néron-Tate height pairing. According to
Shioda, we call the pair (MW (W ), B) of the group and the symmetric bilinear form a Mordell-
Weil lattice. Under the genericity condition for W and a suitable choice of a Néron-Tate height
we can easily see that the Mordell-Weil lattice is isometric to E8 × E8. (Cf. [Sa]). There is a
very suitable set of 19 generators [F ], [Li], [Mj] (0 ≤ i, j ≤ 8) for the Picard group of W . We
introduce the parameters p, qi, sj corresponding to these generators. The divisor class [F ], which is
the class of the fiber, has a special meaning in our context. A homology class η is called k-sectional
if the intersection number ([F ], [η]) = k. Let ΨA denote the prepotential of the A-model Yukawa
couplings of W and ΨA,k its k-sectional part for k ≥ 0. Then we have an expansion like

ΨA = topological part +

∞
∑

k=0

ΨA,k.

Our main theorem can be stated as follows. For detailed notation, see Section 4.
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Theorem 1.1 (cf. Theorem 4.1, 4.2). Assume that Conjecture 5.1 in Section 5 holds. Then for
a generic Schoen’s Calabi-Yau 3-fold W the 1-sectional prepotential is given by

ΨA,1(p, q0, · · · q8, s0, · · · , s8)

=
∑∞

n=1
1

n3 · (p ·
∏8

i=1(qi · si))
n ·A(nτ1, nz1, . . . , nz8) · A(nτ2, ny1, . . . , ny8).

where

A(τ, x1, . . . , x8) = Θroot
E8

(τ, x1, . . . , x8) · [
∞
∑

m=0

p(m) · exp(2πmiτ)]12.

Here p(m) denotes the number of partitions of m.

(For the definition of the various notations see Theorem 4.1).
Since we can prove ΨA,0 ≡ 0 (cf. [Sa]) and ΨA,k, k ≥ 2 consists of terms divisible by p2, we obtain
an asymptotic expansion of ΨA with respect to p:

ΨA = topological term + p ·
8

∏

i=1

(qisi) ·A(τ1, z) ·A(τ2,y) +O(p2)

where z = (z1, · · · , z8),y = (y1, · · · , y8).
In Section 9 we show that Θroot

E8
has a very simple expression in terms of the standard Jacobi theta

functions.
On the other hand on the B-model side there are only 3 parameters involved in the calculation,
because the Batyrev-Borisov construction can only deal with generators of the Picard group of
W coming from the ambient toric variety P1 × P2 × P2. One can easily find the corresponding
parameters p = U0, U1 = exp(2πit1), U2 = exp(2πit2) on the A-model side and one can obtain the
following expansion:

Ψres
A (p, t1, t2) = topological term + p ·A(3t1, t1γ) · A(3t2, t2γ) +O(p2),

where γ = (1, 1, 1, 1, 1, 1, 1,−1). We also obtain an expansion of the B-model prepotential

ΨB(p, t1, t2) = topological term + p ·B(t1) ·B(t2) +O(p2).

Therefore in this context the mirror symmetry conjecture can be stated as

Ψres
A (p, t1, t2) ≡ ΨB(p, t1, t2).

From the above asymptotic expansion, we come to a concrete mathematical conjecture:

A(3t, tγ) ≡ B(t).

At this moment we can calculate both sides up to high order of U = exp(2πit) by using computer
programs. One can find the expansion of A(t) up to the order of 50 at the end of Section 6 and
also the expansion of B(t) at the end of Section 7.
The rough plan of this paper is as follows. In Section 2 we recall a basic property of Schoen’s
Calabi-Yau 3-fold and its toric description. In Section 3 we recall the Mordell-Weil lattice which
will be essential in the later sections. In Section 4 we first recall the definition of Gromov-Witten
invariants and the A-model prepotential. We calculate the Mordell-Weil part of the prepotential
in terms of the lattice theta function Θroot

E8
and state the main theorem (Theorem 4.2). Section 5
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is devoted to counting the pseudo-sections in W . We also prove Theorem 4.2 here. In Section 6
we restrict the parameters of the A-model prepotential in order to compare the expansion with
that of the B-model prepotential of the mirror. A table for the coefficients {an} of A(3t, tγ) is
given up to order 50(cf. Table 2 in Section 6). In Section 7 after recalling the formulation of
the mirror symmetry conjecture we calculate the B-model prepotential of the mirror of Schoen’s
example following the recipe of [HKTY, Sti]. We expand the function B(t) whose coefficients {bn}
should coincide with {an} if the mirror symmetry conjecture is true. We check the coincidence up
to order 50.
In Appendix I (Section 8) we derive the equation of the mirror according to the Batyrev-Borisov
construction [Ba-Bo]. In Appendix II (Section 9) we give a formula for the theta function of the
lattice E8.

Let us mention some papers which are related to our work. In the paper [D-G-W], Donagi,
Grassi and Witten calculate the non-perturbative superpotential in F -theory compactification to
four dimensions on P1 × S, where S is a rational elliptic surface. It is interesting enough to
notice that the supperpotential in their case is also described by the lattice theta function for
E8. It is interesting that they also mention the contribution of Dedekind’s eta function η(τ) to
the superpotential, though we do not know any direct relation between F -theory and the Type II
theory. In [G-P], Göttsche and Pandharipande calculated the quantum cohomology of blowing-
ups of P2. Their calculation for the blowing-up of 9-points in general position on P2 is certainly
related to our calculation for the rational elliptic surfaces. Moreover, in [Y-Z] S.-T. Yau and Zaslow
describe the counting of BPS states of Type II on K3 surfaces. In the paper, they treated rational
curves with nodes, which may have some relation to our treatment of pseudo-sections.

2 Schoen’s Calabi-Yau 3-folds

Let fi : Si −→ P1 (i = 1, 2) be two smooth rational surfaces defined over C. In this paper we
always assume that an elliptic surface has a section.
In [Sch] C. Schoen showed that the fiber product of two rational elliptic surfaces

W = S1 ×P1 S2

ւ p1 p2 ց
S1 ↓ h S2

f1 ց ւ f2
P1

becomes a Calabi-Yau 3-fold after small resolutions of possible singularities of the fiber product. In
what follows we consider such Calabi-Yau 3-folds which satisfy the following genericity assumption.

Assumption 2.1 1. The rational elliptic surfaces fi : Si −→ P1 (i = 1, 2) are generic in the
sense that the surfaces Si are smooth and every singular fiber of fi is of Kodaira type I1, that
is, a rational curve with one node. Then one can see that each fibration fi has exactly 12
singular fibers of type I1. (cf. [Kod]).

2. Let Σi ⊂ P1 be the set of critical values of fi. Then we assume that Σ1 ∩ Σ2 = ∅.
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Under Assumption 2.1 the fiber product W = S1×P1 S2 becomes a nonsingular Calabi-Yau 3-fold.
The following facts are well-known. (See [Kod] or [Man1]).

Lemma 2.1 Let S1, S2,W be as above.

1. All fibers of h : W −→ P1 have vanishing topological Euler numbers. Hence we have e(W ) =
2(h1,1(W ) − h2,1(W )) = 0.

2. A generic rational elliptic surface with section is obtained by blowing-up the 9 base points
of a cubic pencil on P2. Let π1 : S1 −→ P2 and π2 : S2 −→ P2 be the blowing-ups and
Ei, i = 1, · · · , 9 and E′

j , j = 1, · · · , 9 the divisor classes of the exceptional curves of π1 and π2

respectively. Set Hi = π∗
i (OP2(1)). Then we have

Pic(S1) = ZH1 ⊕ ZE1 ⊕ · · · ⊕ ZE9, (1)

Pic(S2) = ZH2 ⊕ ZE′
1 ⊕ · · · ⊕ ZE′

9. (2)

3. Let F1 and F2 be the divisor classes of the fibers of f1 and f2 respectively. Then we have

F1 = 3H1 −
9

∑

i=1

Ei, F2 = 3H2 −
9

∑

i=1

E′
i (3)

4. We have the following isomorphism of groups.

Pic(W ) ≃ p∗1(Pic(S1)) ⊕ p∗2(Pic(S2))/Z[p∗1(F1) − p∗2(F2)] (4)

Hence the Picard number of W is h11(W ) = 19. Also h21(W ) = 19 because e(W ) = 0.

2

We now show that Schoen’s Calabi-Yau 3-fold W can also be realized as a complete intersection
in the toric variety P1 ×P2 ×P2. Let z0, z1, x0, x1, x2, y0, y1, y2 be the homogeneous coordinates
of P1 × P2 × P2 and let

a0(x0, x1, x2), a1(x0, x1, x2), b0(y0, y1, y2), b1(y0, y1, y2)

be generic homogeneous cubic polynomials. Then we can assume that the generic rational elliptic
surfaces S1 and S2 in Lemma 2.1 are obtained as hypersurfaces in P1×P2 as in the following way.

S1 = {P1 = z1 · a0(x0, x1, x2) − z0 · a1(x0, x1, x2) = 0} ⊂ P1 × P2

S2 = {P2 = z1 · b0(y0, y1, y2) − z0 · b1(y0, y1, y2) = 0} ⊂ P1 × P2

We have the natural morphisms

Si ⊂ P1 × P2

fi ւ ց πi

P1 P2 ,

where f1 = (p1)|Si
, πi = (p2)|Si

. Moreover, one can easily see that W = S1 ×P1 S2 can be obtained
as a complete intersection in the toric variety P1 × P2 × P2 of types (1, 3, 0), (1, 0, 3):

W =

{

[z0 : z1] × [x0 : x1 : x2] × [y0 : y1 : y2] P1 = 0
∈ P1 × P2 × P2 P2 = 0

}
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3 Mordell-Weil lattices

The purpose of this section is a review of results on Mordell-Weil lattices which is needed to
calculate a part of the prepotential of the A-model Yukawa couplings of Schoen’s Calabi-Yau
3-folds. For more complete treatments the reader may refer to [Man1], [Sh1], [Sa].
We keep the notation and assumptions of the previous section, that is, let fi : Si −→ P1 be rational
elliptic surfaces and let h : W = S1 ×P1 S2 −→ P1 be the fiber product.
Let MW (Si), i = 1, 2 and MW (W ) denote the set of sections of fi and h respectively. Since the
exceptional curves of the blowing-ups πi : Si −→ P2 are the images of sections of fi, we denote by
e1 and e′1 the sections of f1 and f2 respectively such that e1(P

1) = E1 and e′1(P
2) = E′

1. We take
e1 and e′1 as zero sections of f1 and f2 respectively. Then MW (S1) and MW (S2) become finitely
generated abelian groups with the identity elements e1 and e′1 respectively. The group MW (Si) is
called the Mordell-Weil group of the rational elliptic surface fi : Si −→ P1.
Take the line bundles

L0 = E1 + F1 ∈ Pic(S1), M0 = E′
1 + F2 ∈ Pic(S2).

Note that these line bundles are symmetric 3 and numerically effective and (L0)
2 = (M0)

2 = 1.
Hence L0 and M0 are nearly ample line bundles and E1 (resp. E′

1) is the only irreducible effective
curve on S1 (resp. S2) with (L0, E1)S1

= 0 (resp. (M0, E
′
1)S2

= 0). (Here (C,D)Si
denotes the

intersection pairing of curves on the surface Si. Later we sometimes identify this pairing with the
natural pairing H2(Si) ×H2(Si) −→ Z via Poincaré duality. ) Thanks to Manin [Man1] we can
define Néron-Tate heights with respect to 2L0 and 2M0, that is, quadratic forms on MW (Si) by

Q1(σ1) = (2L0, σ1(P
1))S1

, Q2(σ2) = (2M0, σ2(P
1))S2

(5)

for σ1 ∈MW (S1) and σ2 ∈MW (S2).
Let Bi denote the positive definite symmetric bilinear form associated to the quadratic form Qi,
i.e. Bi(σ, σ

′) = 1
2{Qi(σ + σ′) −Qi(σ) −Qi(σ

′)}.
According to Shioda [Sh1] we call (MW (Si), Bi) the Mordell-Weil lattice of fi : Si −→ P1. Noting
that our Néron-Tate height coincides with Shioda’s [Sh1] we can show the following proposition.

Proposition 3.1 Under Assumption 2.1 in § 2, we have the following isometry of lattices.

(MW (Si), Bi) ≃ E8, (i = 1, 2)

where E8 is the unique positive-definite even unimodular lattice of rank 8.

2

Next we consider the Mordell-Weil groupMW (W ) of h : W −→ P1, whose zero section corresponds
to (e1, e

′
1) (cf. (6)). From a property of the fiber product we have the following isomorphism:

MW (W )
∼
−→ MW (S1) ⊕MW (S2) (6)

σ 7→ (σ1, σ2) = (p1 ◦ σ, p2 ◦ σ)

Since the Picard group Pic(W ) can be described as in (4), we will use the following notation for
the line bundles on W pulled back by p1 and p2:

[F ] = p∗1(F1) = p∗2(F2),
[H1] = p∗1(H1), [L0] = p∗1(L0), [Ei] = p∗1(Ei), (i = 1, · · · , 9),
[H2] = p∗2(H2), [M0] = p∗2(M0), [E′

j ] = p∗2(E
′
j), (j = 1, · · · , 9).

3A line bundle on a fibration of abelian varieties is called symmetric if it is invariant under the pull-back by the
inverse automorphism z → −z.
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We can easily see that [J0] := [L0] + [M0] is a symmetric numerically effective line bundle on W .
It defines a Néron-Tate height on MW (W ) as follows. For each σ ∈MW (W ) we set

QW (σ) := ([2J0], [σ(P1)])W . (7)

Here ( , )W denotes the natural pairing H2(W ) × H2(W ) → Z. Note that the zero section
of MW (W ) is 0W = (e1, e

′
1) and QW (0W ) = 0. From this we obtain the Mordell-Weil lattice

(MW (W ), BW ) where BW denotes the symmetric bilinear form associated to QW . Moreover we
obtain the following relation for each section σ ∈MW (W ):

QW (σ) = ([2J0], [σ(P1)])W

= (2L0, [σ1(P
1)])S1

+ (2M0, [σ2(P
1)])S2

= Q1(σ1) +Q2(σ2). (8)

Therefore we find the following

Proposition 3.2 The Néron-Tate height with respect to [2J0] on MW (W ) gives a lattice structure
on MW (W ) which induces the isometry:

(MW (W ), BW ) ≃ (MW (S1), B1) ⊕ (MW (S2), B2) ≃ E8 ⊕ E8.

2

There are natural maps

j : MW (Si) −→ H2(Si)
σ 7→ j(σ) = [σ(P1)] = the homology class of the curve σ(P1)

j : MW (W ) −→ H2(W )
σ 7→ j(σ) = [σ(P1)].

For each section σi ∈ MW (Si), we can always find a birational morphism ϕi : Si −→ Si which
contracts only the image of the section σi(P

1). This implies the following lemma.

Lemma 3.1 The maps j are injective.

2

Note that the maps j are not homomorphisms of groups.4

Next we will choose other generators of Pic(Si). These generators will be used for defining the
parameters in which we will expand the prepotential of the A-model Yukawa coupling of Schoen’s
Calabi-Yau 3-folds. Let (MW (Si), Bi) be the Mordell-Weil lattices of Si, which are isometric to
the lattice E8. We choose a set of simple roots {α1, α2, · · ·α8} of E8 whose intersection pairing
will be given by the following Dynkin diagram.

4However, Shioda [Sh1] obtained a way to modify the map j to obtain a natural homomorphism. See [Sh1] or
[Sa].
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α1 ��

��
α2 ��

��
α3

��
��
α8

��
��
α4 ��

��
α5 ��

��
α6 ��

��
α7

Figure 1.

We also choose a1, · · · , a8 ∈ MW (S1) (resp. b1, · · · , b8 ∈ MW (S2)) corresponding with the roots
of MW (S1) (resp. MW (S2)) so that the numbering of the roots is the same as in Figure 1.
For each section σ ∈MW (Si), one can define a translation automorphism Tσ : Si −→ Si:

Si
Tσ−→ Si

fi ց ւ fi

P1.

Pulling back the line bundles L0 andM0 by the translation automorphisms Tai
and Tbj

respectively,
we define the line bundles

Li = T ∗
ai

(L0) ∈ Pic(S1), Mj = T ∗
bj

(M0) ∈ Pic(S2), (9)

for 1 ≤ i, j ≤ 8.
Then for each section σi ∈MW (Si) we have

(Li, j(σ1))S1
= (T ∗

ai
(L0), j(σ1))S1

= (L0, j(σ1 + ai))S1
=

1

2
Q1(σ + ai)

(Mi, j(σ2))S2
= (T ∗

bi
(M0), j(σ2))S2

= (M0, j(σ2 + bi))S2
=

1

2
Q2(σ2 + bi)

Now it is easy to see the following:

Lemma 3.2 1. The classes F1, L0, L1, · · · , L8 ( resp. F2,M0,M1, · · · ,M8) are generators of
Pic(S1) (resp. Pic(S2)).

2. Pic(W ) is generated by [F ], [L0], · · · , [L8], [M0], [M1], · · · , [M8].

3. For σ ∈MW (W ) set σi = σ ◦ pi. Then we have

([F ], j(σ))W = 1

([Li], j(σ))W = 1
2Q1(σ1 + ai),

([Mi], j(σ))W = 1
2Q2(σ2 + bi).

2

Moreover, in order to see the relation between the A-model and the B-model later, we have to
express H1 and H2 by F1, {Li} and F2, {Mj}. Obviously, we only have to see the case of H1.

8



Recall that the exceptional curves {Ei} in (1) are the images of sections of f1. We denote by
ei ∈MW (S1) the section corresponding to Ei; hence we have ei(P

1) = Ei. In particular, e1 is the
zero section of f1 : S1 −→ P1. As for the system of roots, one can take the following elements:

a1 = e2, a2 = e3 − e2, a3 = e4 − e3, · · · , a7 = e8 − e7,

and

a8 = e2 + e3 −
1

3

9
∑

i=2

ei.

Here all sums are taken in the Mordell-Weil group. We denote by (σ) ∈ H2(S1,Z) the divisor class
of the curve σ(P1) ⊂ S1. Since L0 = E1 + F1 = (e1) + F1, we see that

Li = T ∗
ai

(L0) = T ∗
ai

((e1) + F1) = (−ai) + F1.

Moreover we can see the following relation. (For divisor classes (−ai) one may refer to [Sa]).

L0 = E1 + F1

L1 = (−a1) + F1 = 2E1 − E2 + 3F1

L2 = (−a2) + F1 = E1 + E2 − E3 + 2F1

L3 = (−a3) + F1 = E1 + E3 − E4 + 2F1

L4 = (−a4) + F1 = E1 + E4 − E5 + 2F1

L5 = (−a5) + F1 = E1 + E5 − E6 + 2F1

L6 = (−a6) + F1 = E1 + E6 − E7 + 2F1

L7 = (−a7) + F1 = E1 + E7 − E8 + 2F1

L8 = (−a8) + F1 = 1
3

∑9
i=1Ei − (E2 + E3) + 4

3F1.

Recall also the relation (3):

F1 = 3H1 −
9

∑

i=1

Ei.

From these linear relations one easily derives the following:

Lemma 3.3 One has the following relation in Pic(S1):

H1 = 2F1 + 5L0 − 2L1 − L2 + L8. (10)

2

4 The prepotential of the A-model Yukawa couplings and

its 1-sectional part

In this section we summarize a result in ([Sa]) on the Mordell-Weil part of the prepotential of the
A-model Yukawa coupling of Schoen’s Calabi-Yau 3-folds. The main theorems are Theorem 4.1
and Theorem 4.2.
Following Section 3.3 in [Mo-1], we define the (full) A-model Yukawa coupling for a Calabi-Yau
3-fold X as a triple product on H2(X,Z):

ΦA(M1,M2,M3) = (M1,M2,M3) +
∑

06≡η∈H2(X,Z)

Φη(M1,M2,M3)
qη

1 − qη
. (11)
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Here M1,M2,M3 are elements of H2(X,Z) ∼= Pic(X) and Φη(M1,M2,M3) is the Gromov-Witten
Invariant for η ∈ H2(X,Z) and M1,M2,M3.
Moreover, we have (cf. Section 3.2, [Mo-1]):

Φη(M1,M2,M3) = n(η)(M1, η)(M2, η)(M3, η). (12)

Here (Mi, η) denote the natural pairing of Mi ∈ H2(X) and η ∈ H2(X) and n(η) denotes the
number of simple rational curves ϕ : P1 −→ X with ϕ∗([P

1]) = η. A more precise definition by
J-holomorphic curves can be found in [McD-S1] and Lecture 3 of [Mo-1].

The full Yukawa coupling ΦA has the prepotential ΨA defined by

ΨA = (topological term) +
∑

06≡η∈H2(X,Z)

n(η) Li3(q
η), (13)

where

Li3(x) =

∞
∑

n=1

xn

n3
(14)

is the trilogarithm function.
In general it is very difficult to calculate the prepotential of the A-model Yukawa coupling. Even for
Schoen’s Calabi-Yau 3-fold, we can not calculate the full prepotential, but by using the structure of
its Mordell-Weil lattice, we can calculate a part of the prepotential ΨA whose summation is taken
just over the homology 2-cycles of sections of h : W −→ P1. Later we will extend the summation
to all homology classes of pseudo-sections (see Section 5). (Cf. [Sa]).

Definition 4.1 For Schoen’s generic Calabi-Yau 3-fold W we define the Mordell-Weil part of the
prepotential of the A-model Yukawa coupling by

ΨA,MW (W ) =
∑

σ∈MW (X)

n(j(σ)) Li3(q
j(σ)). (15)

Here again j(σ) denotes the homology class of the image σ(P1).

Definition 4.2 We define the k-sectional part of the prepotential of the A-model Yukawa coupling
by

ΨA,k =
∑

06≡η∈H2(X,Z), (F,η)=k

n(η) Li3(q
η). (16)

Recall that we denote by [F ] the divisor class of the fiber of h : W −→ P1.

Obviously, we have the expansion

ΨA = topological term +

∞
∑

k=0

ΨA,k. (17)

We are interested in calculating the functions ΨA,MW (W ) and ΨA,1.

10



Remark 4.1 We will find a difference in ΨA,MW (W ) and ΨA,1, which will be explained in the
next section by introducing the notion pseudo-section.

We first recall a result in [Sa] on the calculation of ΨA,MW (W ) by using the theta function of the
Mordell-Weil lattice. We need to introduce the special formal parameters in order to get explicit
expansions of ΨA,MW (W ).
Let fi : Si −→ P1 be two generic rational elliptic surfaces and let h : W −→ P1 be the Calabi-
Yau 3-fold as in Section 2. Then from Lemma 3.2 Pic(W ) is generated by [F ], [L0], · · · , [L8],
[M0], [M1], · · · , [M8]. We introduce formal parameters p, qi, sj for 0 ≤ i, j ≤ 8 corresponding to
these generators:

[F ] ↔ p, [Li] ↔ qi, [Mj] ↔ sj . (18)

By using the formal parameters we can associate to σ ∈MW (W ) the monomials

qσ =

8
∏

i=0

q
([Li],j(σ))W

i , sσ =

8
∏

i=0

s
([Mi],j(σ))W

i . (19)

and
T σ = p([F ],j(σ))W · qσ · sσ = p · qσ · sσ. (20)

Here ( , )W : H2(W ) × H2(W ) −→ Z is the natural pairing. Note that all line bundles
[F ], [Li], [Mj ] are numerically effective. Hence all exponents in T σ are non-negative. Now we
can expand ΨA,MW (W ) in the parameters p, qi, sj .

Theorem 4.1

ΨA,MW (W )(p, q0, · · · q8, s0, · · · , s8)

=
∑∞

n=1
1

n3 · (p ·
∏8

i=1(qi · si))
n · Θroot

E8
(nτ1, n · z) · Θroot

E8
(nτ2, n · y) (21)

Here, we set

z = (z1, . . . , z8), y = (y1, . . . , y8),

exp(2πiτ1) =

8
∏

i=0

qi, exp(2πizi) = qi for 1 ≤ i ≤ 8 (22)

exp(2πiτ2) =

8
∏

i=0

si, exp(2πiyj) = sj for 1 ≤ j ≤ 8 (23)

and

Θroot
E8

(τ, z1, · · · , z8) =
∑

γ∈E8

exp(2πi((τ/2)Q(γ) +B(γ,

8
∑

j=1

zjαj)), (24)

where {α1, · · · , α8} is the root system of E8 as in Figure 1 and B is the symmetric bilinear form
on E8.

11



The following lemma is easy but essential to calculate the prepotential.

Lemma 4.1 For each section σ ∈ MW (W ) the contribution of the homology 2-cycle j(σ) =
[σ(P1)] to the Gromov-Witten invariant (12) is one, that is, n(j(σ)) = 1

Proof. According to Lemma 3.1 MW (W ) can be considered as a subset of H2(W,Z) via the map j.
Moreover the rational curve C = σ(P1) ⊂ W has the normal bundle OP1(−1) ⊕OP1(−1). Hence
we have n(j(σ)) = 1. 2

Proof of Theorem 4.1. Recalling the isomorphism (6), one can write σ ∈ MW (W ) as (σ1, σ2) ∈
MW (S1) ⊕MW (S2) ≃ E8 ⊕ E8. Since Q1(ai) = Q2(bj) = 2 for 1 ≤ i, j ≤ 8 we obtain from
Lemma 3.2

([Li], [σ(P1)])W =
1

2
Q1(σ1 + ai) =

1

2
Q1(σ1) +B1(σ1, ai) + 1, (25)

([Mj ], [σ(P1)])W =
1

2
Q2(σ2 + bj) =

1

2
Q2(σ2) +B2(σ2, bj) + 1. (26)

Therefore one has

qσ =

8
∏

i=0

(qi)
(1/2)Q1(σ1+ai)

= (

8
∏

i=0

(qi))
(1/2)Q1(σ1) · (

8
∏

i=1

(qi)
B1(σ1,ai)) · (

8
∏

i=1

qi)

= (

8
∏

i=1

qi) · exp(2πi((1/2)Q1(σ1)τ1 +

8
∑

i=1

ziB(σ1, ai)),

and a similar expression for sσ. From these formulas one can obtain

(T σ)n = (p · qσ · sσ)n

= (p

8
∏

i=1

(qi · si))
n× (27)

× exp(2πin((τ1/2)Q1(σ1) +B1(σ1, z) + (τ2/2)Q2(σ2) +B2(σ2,y))

where we set z =
∑8

i=1 ziai and y =
∑8

i=1 yibi. Therefore, if we take the summation of (T σ)n over
σ = (σ1, σ2) ∈ E8 ⊕ E8, we obtain the following formula:

∑

σ∈MW (W )

(T σ)n

= (p

8
∏

i=1

(qi · si))
n · Θroot

E8
(nτ1, n · z) · Θroot

E8
(nτ2, n · y) (28)

12



Now thanks to Lemma 4.1, we can calculate the prepotential as follows:

ΨA,MW (W ) =
∑

σ∈MW (W ) Li3(T
σ)

=
∑

σ∈MW (W )(
∑∞

n=1
(T σ)n

n3 )

=
∑∞

n=1
1

n3 × [
∑

σ∈MW (W )(T
σ)n)]

=
∑∞

n=1
1

n3 · (p
∏8

i=1(qi · si))
n×

×Θroot
E8

(nτ1, n · z) · Θroot
E8

(nτ2, n · y).

This completes the proof of Theorem 4.1. 2

For the 1-sectional part ΨA,1 of the prepotential, we can show the following theorem, whose proof
can be found in Section 5.

Theorem 4.2 Assume that Conjecture 5.1 in Section 5 holds. Then, under the same notation as
in Theorem 4.1, for a generic Schoen’s Calabi-Yau 3-fold W the 1-sectional prepotential is given
by

ΨA,1(p, q0, · · · q8, s0, · · · , s8) (29)

=
∑∞

n=1
1

n3 · (p ·
∏8

i=1(qi · si))
n ·A(nτ1, n · z) · A(nτ2, n · y),

where

A(τ,x) = Θroot
E8

(τ,x) · [
∞
∑

m=0

p(m) · exp(2πmiτ)]12. (30)

= Θroot
E8

(τ,x) · [
1

∏

n≥1(1 − exp(2πniτ))
]12 (31)

Here p(m) denotes the number of partitions of m.

Remark 4.2 In order to identify the theta function Θroot
E8

(τ, z) in (24) with the theta function
ΘE8

(τ,w) of (108) in Appendix II we should apply the linear transformation w −→ z, for w =
∑8

i=1 wiǫi and z =
∑8

i=1 ziαi. Fix an embedding E8 ⊂ R8, that is, αi should have coordinates in
R8. For example, we can choose

α1 =
1

2
(ǫ1 + ǫ8) −

1

2
(ǫ2 + ǫ3 + ǫ4 + ǫ5 + ǫ6 + ǫ7)

α2 = ǫ2 − ǫ1 α3 = ǫ3 − ǫ2 α4 = ǫ4 − ǫ3 α5 = ǫ5 − ǫ4
α6 = ǫ6 − ǫ5 α7 = ǫ7 − ǫ6 α8 = ǫ1 + ǫ2

(Note that the numbering of roots is the same as in Figure 1.)

Remark 4.3 In expansion (17), we see that each term of the expansion of ΨA,k for k ≥ 2 is
divisible by p2. Moreover we can see that ΨA,0 ≡ 0. (Cf. [Sa]). Therefore, Theorem 4.2 shows that
if we expand the full A-model prepotential ΨA in the variables in p, qi, sj , we have the following
expansion:

ΨA(p, q0, · · · q8, s0, · · · , s8)

= topological term + (p ·
8

∏

i=1

(qi · si)) · A(τ1, z) ·A(τ2,y) +O(p2). (32)
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5 Counting Pseudo-Sections and Proof of Theorem 4.2

In Section 4, we see differences between the two prepotentials ΨA,MW (W ) and ΨA,1. Looking at
the formulas (21) and (30) one can observe that ΨA,MW (W ) and ΨA,1 are essentially produced by
the functions

ΨA,MW (W ) ↔ Θroot
E8

(τ,x) (33)

ΨA,1 ↔ A(τ,x) = Θroot
E8

(τ,x) · [
∞
∑

m=0

p(m) · exp(2πmiτ)]12 (34)

As we see in Section 4 the geometric meaning of the function Θroot
E8

is clear, that is, it is the
generating function of the contributions of pure sections of h : W −→ P1. However, the meaning
of the factor

[
∞
∑

m=0

p(m) · exp(2πmiτ)]12 = exp(πiτ) · η(τ)−12

was mysterious at least in the geometric sense.5 In this section, we give a geometric explanation of
this factor assuming one very plausible Conjecture 5.1, and we give a proof of Theorem 4.2. Our
answer seems to be very simple and natural at least in a mathematical sense.
For this purpose we give the following:

Definition 5.1 We call a 1-dimensional connected subscheme C of W a pseudo-section if C ⊂W
has no embedded point and

([F ], C)W = 1, (35)

and the normalization C̃red of the reduced structure Cred is a sum of P1s.

Example 5.1 The image σ(P1) of a section σ ∈MW (W ) is a pseudo-section.

Example 5.2 Both rational elliptic surfaces fi : Si −→ P1(i = 1, 2) have 12 singular fibers of
type I1 (in Kodaira’s notation [Kod]):

D1, D2, · · · , D12 ⊂ S1, (36)

D′
1, D

′
2, · · · , D

′
12 ⊂ S2. (37)

We set di = f1(Di) ∈ P1 and d′i = f2(D
′
i) ∈ P1, the supports of the singular fibers. By Assump-

tion 2.1 in Section 2, the points d1, · · · , d12, d
′
1, · · · , d

′
12 are distinct on P1. Take any σ ∈MW (W )

and set σ1 = p1 ◦ σ ∈MW (S1), σ2 = p2 ◦ σ ∈MW (S2). Hence σ(P1) ⊂W|σ2(P1). Now we take a
singular fiber D1 ⊂W|σ2(P1) ≃ S1, then

σ(P1) +D1 ⊂W|σ2(P1) ⊂W

is a pseudo-section. Since we have

([Li], D1)W = (Li, D1)S1
= (Li, F1)S1

= 1 (38)

([Mj ], D1)W = (Mj, σ2(d1))S2
= 0, (39)

5 The similar factor are also discussed in the papers [D-G-W] and [Y-Z].
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we obtain

([Li], σ(P1) +D1)W = ([Li], σ(P1))W + 1, (40)

([Mj ], σ(P1) +D1)W = ([Mj ], σ(P1))W . (41)

Example 5.3 More generally, to a pure section of h : W −→ P1 we can add many rational curves
coming from singular fibers of type I1 and also with multiplicity. Fix a section σ ∈MW (W ) and
set σ1 = p1 ◦ σ, σ2 = p2 ◦ σ as before. Consider the following (reduced) closed points:

σ1(d
′
i) ∈ S1, σ2(di) ∈ S2. (42)

Moreover, we set

D′[σ1, d
′
i] = p−1

1 (σ1(d
′
i)) ⊂W|σ1(P1)(≃ S2) ⊂W (43)

D[σ2, di] = p−1
2 (σ2(di)) ⊂W|σ2(P1)(≃ S1) ⊂W (44)

Note that D′[σ1, d
′
i] and D[σ2, di] are reduced rational curves each of which has one node as its

singularities. From (38), (39) it is easy to see that

([F ], D[σ2, di])W = 0, ([Li], D[σ2, di])W = 1, ([Mj ], D[σ2, di])W = 0, (45)

([F ], D′[σ1, d
′
i])W = 0, ([Li], D

′[σ1, d
′
i])W = 0, ([Mj], D

′[σ1, d
′
i])W = 1. (46)

We denote by I(ki, σ2(di)) an ideal sheaf on S2 such that the quotient sheaf

OS2
/I(ki, σ2(di))

is supported on the point σ2(di) and lengthOS2
/I(ki, σ2(di)) = ki. We call such an ideal I(ki, σ2(di))

a punctual ideal of colength ki supported on σ2(di). And similarly for I(k′j , σ1(d
′
j)). For each of

1 ≤ i ≤ 12 (resp. 1 ≤ j ≤ 12), let I(ki, σ2(di)) (resp. I(k′j , σ1(d
′
j))) be a punctual ideal of colength

ki (resp. k′j) supported on σ2(di) (resp. σ1(d
′
j)). We denote by

D[I(ki, σ2(di))] (resp.D′[I(k′j , σ1(d
′
j))])

the one-dimensional subscheme of W defined by the pullback of the ideal sheaf I(ki, σ2(di)) (resp.
I(k′j , σ1(d

′
j))) via p2 (resp. p1). Note that

D[I(ki, σ2(di))]red = D[σ2, di], D′[I(k′j , σ1(d
′
j))]red = D′[σ1, d

′
j ].

Now we take the following subscheme of W :

C = σ(P1) +

12
∑

i=1

D[I(ki, σ2(di))] +

12
∑

j=1

D′[I(k′j , σ1(d
′
j))]. (47)

This one dimensional subscheme C in (47) is actually a pseudo-section.

Definition 5.2 The pseudo-section C in (47) is called of type

(σ, k1, · · · , k12, k
′
1, · · · , k

′
12) ∈MW (W ) × (Z+)24.
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Proposition 5.1 Every pseudo-section C of h : W −→ P1 can be written as in (47).

Proof. Since ([F ], C)W = (F1, (p1)∗C))S1
= (F2, (p2)∗C))S2

= 1, it is easy to see that there are
sections σi ∈MW (Si),

(p1)∗(C) = σ1(P
1) + fibers, (p2)∗(C) = σ2(P

1) + fibers.

Then by definition of a pseudo-section, we can easily see that C can be written in the form of (47)
where σ corresponds to (σ1, σ2). 2

Fix a type µ = (σ, k1, · · · , k12, k
′
1, · · · , k

′
12) ∈MW (W )×(Z+)24 of a pseudo-section of h : W −→ P1.

We would like to count the “number”n(µ) of rational curves which gives the correct contribution to
the Gromov-Witten invariant in the formula (12). Since a pseudo-section of type µ is a non-reduced
subscheme of W if some ki or k′j is greater than 1, it is not easy to determine n(µ). Of course, the
Gromov-Witten invariant should be defined as the number of J-holomorphic curves with a fixed
homology class after perturbing the complex structure of W to a generic almost complex structure
J ([Mo-1], Theorem 3.3). However at this moment we do not know how to perturb the almost
complex structure and how a pseudo-section C of type µ arises as a limit of J-holomorphic curves.
(Different J-holomorphic curves for generic J may have the same limit in our complex structure
of Schoen’s Calabi-Yau 3-fold W .)
Here we propose the following:

Conjecture 5.1 The contribution n(µ) of all pseudo-sections of type µ is given by

n(µ) = e(Hilbµ
W ) = Topological Euler number of (Hilbµ

W ), (48)

where Hilbµ
W is the Hilbert scheme parameterizing pseudo-sections C ⊂W of type µ.

Let C2 be the complex affine space of dimension 2 and denote by Hilbk(C2, 0) the Hilbert scheme
parameterizing the punctual ideal sheaves I ⊂ OC2 of colength k supported on the origin 0 ∈ C2

Lemma 5.1 Fix a type µ = (σ, k1, · · · , k12, k
′
1, · · · , k

′
12) of pseudo-section. Then we have a natural

isomorphism of schemes

Hilbµ
W ≃

12
∏

i=1

(Hilbki(C2, 0)) ×
12
∏

j=1

(Hilbk′

j (C2, 0)) (49)

Proof. From the definition of pseudo-section C of type µ in (47), we have the natural morphism ϕ
from Hilbµ

W to

Hilb(σ(P1) ⊂W ) ×
12
∏

i=1

(Hilbki(S2, σ2(di))) ×
12
∏

j=1

(Hilbk′

j (S1, σ1(d
′
j))).

of W defined by

ϕ(C) = ϕ(σ(P1) +

12
∑

i=1

D[I(ki, σ2(di))] +

12
∑

j=1

D′[I(k′j , β[σ1, d
′
j ])])

= (σ(P1), I[ki, σ2(di)], I[k′j , α[σ1, d
′
j ]).
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(Here Hilb(σ(P1) ⊂ W ) denotes the connected component of the Hilbert scheme which contains
the subscheme σ(P1) of W . )
Noting that C is connected and σ(P1) ⊂W has no deformation (in particular Hilb(σ(P1) ⊂W ) =
1pt) , we can easily see that ϕ is an isomorphism and obtain (49). 2

The following important lemma is a kind suggestion of Kota Yoshioka.

Lemma 5.2 The Hilbert scheme Hilbk(C2, 0) is irreducible scheme of dimension k − 1 and

e(Hilbk(C2, 0)) = p(k)

where p(k) denotes the number of partitions of k.

Proof. The irreduciblity of Hilbk(C2, 0) is due to Briançon [B]. Moreover Hilbk(C{x, y}) has a
natural S1-action induced by (x, y) → (ta ·x, tb · y) for any weight (a, b). Then for a general choice
of a weight (a, b) its fixed points set becomes just the set of monomial ideals of length k. Now a
standard argument shows that the topological Euler number of Hilbk(C2, 0) is equal to the number
of fixed points, and it is an easy exercise to see that the number of monomial ideals of C[x, y] with
colength k is equal to p(k). 2

From Lemma 5.1 and Lemma 5.2, we obtain the following result.

Corollary 5.1 Let µ and n(µ) as in Conjecture (5.1), then we have

n(µ) = e(Hilbµ
W ) = (

12
∏

i=1

p(ki)) · (
12
∏

j=1

p(k′j)) (50)

2

Lemma 5.3 Let µ = (σ, k1, · · · , k12, k
′
1, · · · , k

′
12), µ

′ = (σ′, l1, · · · , l12, l′1, · · · , l
′
12) be two types of

pseudo-sections. Then a pseudo-section C of type µ and C′ of type µ′ have the same homology
class in H2(W ) if and only if

σ = σ′,

12
∑

i=1

ki =

12
∑

i=1

li,

12
∑

j=1

k′j =

12
∑

j=1

l′j . (51)

Proof. The “only if” part is obvious. Lemma 3.1 shows that the first equality in (51) is necessary.
Moreover noting that [D[I(ki, σ2, di)]] is homologous to ki · (p2)

−1(σ2(di)) and [D′(I[k′j , σ1, d
′
j)]]

is homologous to k′j · [(p1)
−1(σ1(d

′
j))] we have the other implication. 2

Let η ∈ H2(W ) be such that ([F ], η)W = 1, then in order to have non-vanishing contribution n(η),
η must be the class of a pseudo-section, so write η as (σ,m ·p−1

2 (1pt), np−1
1 (1pt)). We call η of type

(σ,m, n).

Proposition 5.2 For η ∈ H2(W ) with ([F ], η)W = 1 of type (σ,m, n), we have

n(η) = n(σ,m, n) := (
∑

k1+···+k12=n

12
∏

i=1

p(ki))(
∑

k′

1
+···+k′

12
=m

12
∏

j=1

p(k′j)). (52)

Here ki and k′j run over the non-negative integers.
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Proof. From Lemma 5.3 and the remark above, we have

n(η) =
∑

µ

n(µ)

where the summation is taken over the types µ = (σ, k1, · · · , k12, k
′
1, · · · , k

′
12) of pseudo-sections

such that

n =

12
∑

i=1

ki, m =

12
∑

j=1

k′j .

Combining this with (50), we obtain the assertion (52). 2

Proof of Theorem 4.2

Let us fix a homology class η ∈ H2(W ) with ([F ], η) = 1 of type (σ, n,m). From (45), (46) it is
easy to see that

([F ], η)W = 1, (53)

([Li], η)W = ([Li], j(σ))W + n (54)

([Mj ], η)W = ([Mj ], j(σ))W +m. (55)

We introduce parameters z0 = log q0, y0 = log s0. Note that we have set in Theorem 4.1

τ1 =

8
∑

j=0

zj, τ2 =

8
∑

j=0

yj .

Moreover just for notation in the proof, we set vl = exp(2πiτl) for l = 1, 2. Recalling the definition
of T σ (cf. (20)), we have

T η = exp(2πi(t0[F ] +

8
∑

i=0

zi[Li] +

8
∑

j=1

yj [Mj], η)W )

= p · exp(2πi(
8

∑

i=0

zi[([Li], j(σ))W + n] +
8

∑

i=0

yj [([Mj ], j(σ))W +m]))

= T σ · (v1)
n · (v2)

m (56)

Then we have

ΨA,1(p, q0, · · · q8, s0, · · · , s8)

=
∑

η∈H2(W ),([F ],η)=1

n(η) Li3(T
η)

=
∑

σ∈MW (W ),n≥0,m≥0

n(σ, n,m) · Li3(T
σ · (v1)

n · (v2)
m)

=

∞
∑

N=1

[
∑

σ∈MW (W ),n≥0,m≥0

n(σ, n,m) ·
(T σ)N · (v1)Nn · (v2)Nm

N3
]
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=
∞
∑

N=1

1

N3
· [

∑

σ∈MW (W )

(T σ)N ] · [
∑

n≥0,m≥0

n(σ, n,m)(v1)
Nn · (v2)

Nm].

(57)

Note that the last equality follows from the fact that n(σ, n,m) does not depend on σ.
On the other hand, from equality (52) we have

[(

∞
∑

k=0

p(k)(v1)
k)(

∞
∑

k′=0

p(k′)(v2)
k′

)]12 =
∑

n≥0,m≥0

n(σ, n,m)(v1)
n · (v2)

m.

Moreover as in the proof of Theorem 4.1 we can see that

[
∑

σ∈MW (W )

(T σ)N ] = (p

8
∏

i=1

(qi · si))
NΘroot

E8
(Nτ1, N · z) · Θroot

E8
(Nτ2, N · y).

Combining these equalities with (57), we obtain the proof of Theorem 4.2. 2

6 The restricted A-model Prepotential

In order to compare the prepotential of the A-model Yukawa coupling of W with the B-model
Yukawa coupling of the mirror partner W ∗, which we obtain in Section 7, we need to take a special
restriction of the variables of the prepotential, that is, we have to specify the parameters which
correspond to the line bundles which are induced from the ambient space P1 × P2 × P2. Let
ι : W →֒ P1 × P2 × P2 be the natural embedding. Then we set

[F ] = π∗
1(OP1(1)), [H1] = π∗

2(OP2(1)), [H2] = π∗
3(OP2(1)), (58)

and introduce corresponding parameters as follows:

[F ] ↔ p = U0 = exp(2πit0),

[H1] ↔ U1 = exp(2πit1), (59)

[H2] ↔ U2 = exp(2πit2).

Now we consider the following restricted prepotential

Ψres
A = topological term +

∑

06=η∈H2(W )

n(η) Li3(U
η) (60)

where

Uη = exp(2πi(t0[F ] + t1[H1] + t2[H2], η)W ) (61)

= p([F ],η)W · (U1)
([H1],η)W · (U2)

([H2],η)W . (62)

Moreover, we can define the k-sectional part and the Mordell-Weil part of the restricted prepotential
by

Ψres
A,k =

∑

06≡η∈H2(X,Z), (F,η)=k

n(η) Li3(U
η), (63)
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Ψres
A,MW (W ) =

∑

σ∈MW (W )

Li3(U
j(σ)), (64)

respectively.

Proposition 6.1

Ψres
A,MW (W )(p, t1, t2) =

∞
∑

n=1

pn

n3
· ΘE8

(3nt1, nt1γ) · ΘE8
(3nt2, nt2γ) (65)

Ψres
A,1(p, t1, t2) =

∞
∑

n=1

pn

n3
·Ares(nt1) · A

res(nt2) (66)

where
γ = (1, 1, 1, 1, 1, 1, 1,−1)

and

Ares(t) = ΘE8
(3t, t · γ) · (

∞
∑

n=0

p(n) exp(2πin(3t))12 (67)

= ΘE8
(3t, t · γ) ·

exp(3πit)

[η(3t)]12

= ΘE8
(3t, t · γ) ·

1

[
∏

m≥1(1 − exp(2πim(3t)))]12
.

Proof. From Relation (10), we obtain for every σ ∈MW (W )

([H1], j(σ))W = (H1, j(σ1))S1

= (2F1 + 5L0 − 2L1 − L2 + L8, j(σ1))S1

= 2 + 1/2(5Q1(σ1) − 2Q1(σ1 + a1) −Q1(σ1 + a2) +Q1(σ1 + a8))

=
3

2
Q1(σ1) +B1(σ1,−2a1 − a2 + a8),

and a similar equation for ([H2], j(σ))W . Then from Remark 4.2, we see that

γ = −2a1 − a2 + a8 = −[(ǫ1 + ǫ8) − (ǫ2 + ǫ3 + ǫ4 + ǫ5 + ǫ6 + ǫ7)] +

−(ǫ2 − ǫ1) + (ǫ1 + ǫ2)

= ǫ1 + ǫ2 + ǫ3 + ǫ4 + ǫ5 + ǫ6 + ǫ7 − ǫ8

Therefore we see that

U j(σ) = exp(2πi(t0 + ([H1], j(σ))W t1 + ([H2], j(σ))W t2))

= p · exp(2πi(
3t1
2
Q1(σ1) +B1(σ1, t1γ)) exp(2πi(

3t2
2
Q2(σ2) +B2(σ2, t2γ)))

Then as in the proof of Theorem 4.1, we can obtain Assertion (65). The proof of Assertion (66) is
similar. 2
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Now we consider the expansion of (65) and (66) with respect to the variable p.

Ψres
A,MW (W ) = p · ΘE8

(3t1, t1γ) · ΘE8
(3t2, t2γ) +O(p2) (68)

ΨA − topological term = Ψres
A,1 +O(p2) = p · Ares(t1) ·A

res(t2) +O(p2) (69)

Let us define sequences of positive integers {cn} and {an} by

ΘE8
(3t, tγ) =

∞
∑

n=0

cm exp(2πmit) =

∞
∑

n=0

cmU
m (70)

Ares(t) =

∞
∑

n=0

am exp(2πmit) =

∞
∑

n=0

amU
m. (71)

Let us also expand functions as follows:

p · ΘE8
(3t1, t1γ) · ΘE8

(3t2, t2γ) =
∑

n1≥0,n2≥0

M1,n1,n2
· p · (U1)

n1(U2)
n2 (72)

p ·Ares(t1) · A
res(t2) =

∑

n1≥0,n2≥0

N1,n1,n2
· p · (U1)

n1(U2)
n2 . (73)

The proof of the following proposition follows from (72), (73) and Proposition 6.1.

Proposition 6.2 1.

M1,n1,n2
= cn1

· cn2
, N1,n1,n2

= an1
· an2

(74)

2. Let f : S −→ P1 be a generic rational elliptic surface as in section 2. Then in the ex-
pansion (70) the coefficient cm is the number of sections of f : S −→ P1 with degree
(H, [σ(P1)])S = m, that is,

cm = ♯{ σ ∈MW (S) | (H, [σ(P1)])S = m },

where H is the class of the total transform of a line on P2.

3. The integer M1,n1,n2
(resp.N1,n1,n2

) is the number of sections σ ∈ MW (W ) (resp. pseudo-
sections η) of h : W −→ P1 with bidegree (n1, n2) where ni = ([Hi], j(σ))W (resp. ni =
([Hi], η)W ) is the degree with respect to [Hi].

2

Remark 6.1 The factorization property of M1,n1,n2
and N1,n1,n2

in (74) follows from the fact
that sections and pseudo-sections of h : W −→ P1 can be split as in (6), (47).

Remark 6.2 Note that the sequences {cm} and {am} are connected to each other by the formula:

∞
∑

n=0

amU
m = [

∞
∑

n=0

cmU
m][

∞
∑

k=0

p(k)U3k]12.
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The number am can be considered as the number of pseudo-sections C of a generic rational elliptic
surface f : S −→ P1 of degree m with respect to the divisor class [H ]. The term

[

∞
∑

k=0

p(k)U3k]12

is nothing but the contribution of 12 singular fibers of type I1, when we count the contribution of
one singular fiber of type I1 with multiplicity k as p(k).

Here we will expand ΘE8
(3t, tγ) and Ares(t) in the variable U = exp(2πit) and give the table

of coefficients cn and an up to order 50. (See also the last remark of Section 7). We can use
Proposition 9.1 to obtain the following expansion.
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Table. 1

ΘE8
(3t, tγ) =

∑

m≥0

cmU
m.

n cn

0 9
1 36
2 126
3 252
4 513
5 756
6 1332
7 1764
8 2808
9 3276

10 4914
11 5616
12 8190

n cn

13 8892
14 12168
15 13104
16 17766
17 18648
18 24390
19 25200
20 33345
21 33516
22 43344
23 43092
24 55692
25 54684

n cn

26 68922
27 68796
28 86580
29 84168
30 103824
31 101556
32 127647
33 121212
34 148878
35 143964
36 178776
37 170352
38 205380

n cn

39 197136
40 241920
41 227556
42 276948
43 262080
44 319410
45 298116
46 357912
47 341460
48 410958
49 382356
50 458208

Table 2. (Table for {an}).

Ares(t) =
∑

m≥0

amU
m = (

∑

n≥0

cnU
n) · (

∑

k≥0

p(k)U3k)12.

n an

0 9
1 36
2 126
3 360
4 945
5 2268
6 5166
7 11160
8 23220
9 46620

10 90972
11 172872
12 321237
13 584640
14 1044810
15 1835856
16 3177153

n an

17 5421132
18 9131220
19 15195600
20 25006653
21 40722840
22 65670768
23 104930280
24 166214205
25 261141300
26 407118726
27 630048384
28 968272605
29 1478208420
30 2242463580
31 3381344280
32 5069259342
33 7557818940

n an

34 11208455370
35 16538048640
36 24282822798
37 35487134928
38 51626878470
39 74779896240
40 107861179482
41 154945739844
42 221711362038
43 316042958880
44 448856366490
45 635216766732
46 895854679650
47 1259213600736
48 1764210946995
49 2463949037340
50 3430694064888
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7 The prepotential of the B-model Yukawa coupling

In this section we study the prepotential of the B-model Yukawa coupling for the mirror W ∗ of
Schoen’s example in the sense of Batyrev-Borisov [Ba-Bo] and compare it with the prepotential for
the A-model Yukawa coupling of W . Formula (80) gives this B-model prepotential ΨB explicitly.
In order to determine the B-model prepotential we will basically follow the recipe of [HKTY, Sti]
which uses only the toric data of the A-model side. However in order to give an intuitive picture
of the mirror W ∗ we will put here the orbifold construction of the mirror W ∗ of Schoen’s example
and the Picard-Fuchs equations of the periods of a holomorphic 3-form of W ∗.
Based on the Batyrev-Borisov mirror construction (cf. [Ba-Bo], [HKTY]) for complete intersection
Calabi-Yau manifolds in toric varieties we can derive the following

Proposition 7.1 The family of mirror Calabi-Yau 3-folds of W is obtained by the orbifold con-
struction with group Z3 × Z3 from the subfamily Wα0,α1,β0,β1

of W :

Wα0,α1,β0,β1
=

{

[z0 : z1] × [x0 : x1 : x2] × [y0 : y1 : y2] ∈ P1 × P2 × P2 | P1 = P2 = 0
}

where
P1 = (x3

0 + x3
1 + x3

2 + α0x0x1x2)z1 + α1x0x1x2z0 ,
P2 = (y3

0 + y3
1 + y3

2 + β0y0y1y2)z0 + β1y0y1y2z1

and the group Z3 × Z3 is generated by

g1 : ([z0 : z1], [x0 : x1 : x2], [y0 : y1 : y2])

7→ ([z0 : z1], [x0 : ωx1 : ω2x2], [y0 : y1 : y2]), (75)

g2 : ([z0 : z1], [x0 : x1 : x2], [y0 : y1 : y2])

7→ ([z0 : z1], [x0 : x1 : x2], [y0 : ωy1 : ω2y2]),

with ω = e2πi/3. That is, the mirror W ∗ is

W ∗ = Wα0,α1,β0,β1
/(Z3 × Z3).

Proof. See Section 8, Appendix I. 2

In the equations P1 and P2 above we have kept four parameters α0, α1, β0, β1 for symmetry reasons.
However only three of them are essential because of the scaling of the variables z0, z1. After the
orbifoldization this three parameter deformation describes a three dimensional subspace in the
complex structure (B-model) moduli space of W ∗. The full complex structure moduli space has
dimension 19. Under the mirror symmetry the three dimensional subspace will be mapped to
the subspace in the complexified Kähler moduli space parameterized by (t0, t1, t2) in (59). The
B-model calculations are local calculations based on the variation of the Hodge structure for the
family W ∗ about the Large complex structure limit (LCSL). A mathematical characterization of
LCSL is given in [Mo-2]. Here we simply follow a general recipe applicable to CICYs in toric
varieties to find a LCSL and write the Picard-Fuchs differential equations [HKTY]. We find that
the origin of the local coordinate system u = (u0, u1, u2) with u0 = α1β1

α0β0
, u1 = − 1

α3

0

and u2 = − 1
β3

0
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is a LCSL, and that the Picard-Fuchs (PF) differential operators about this point are

D1 = (3θu1
− θu0

)θu1
− 9u1(3θu1

+ θu0
+ 2)(3θu1

+ θu0
+ 1)

+u0θu1
(3θu2

+ θu0
+ 1) ,

D2 = (3θu2
− θu0

)θu2
− 9u2(3θu2

+ θu0
+ 2)(3θu2

+ θu0
+ 1)

+u0θu2
(3θu1

+ θu0
+ 1) ,

D3 = θ2u0
− u0(3θu1

+ θu0
+ 1)(3θu2

+ θu0
+ 1) ,

(76)

with θui
= ui

∂
∂ui

. We note that if we set u0 = 0 in (76), the operators D1 and D2 reduce to
the PF equations for the Hesse pencil of elliptic curves. Local solutions about u = 0 have several
interesting properties. To state these, we denote the three elements [F ], [H1] and [H2] in the Picard
group Pic(W ) by J0, J1 and J2, respectively. By the notation Kijk (i, j, k = 0, 1, 2) we denote the
classical intersection numbers among the corresponding divisors. Then the nonzero components
are calculated, up to obvious permutations of the indices, by

K012 = 9 , K112 = K122 = 3 . (77)

Proposition 7.2 1. The Picard-Fuchs equation (76) has only one regular solution, namely

Ω(0)(u) :=
∑

m0,m1,m2≥0

(m0 + 3m1)! (m0 + 3m2)!

(m0!)2 (m1!)3 (m2!)3
um0

0 um1

1 um2

2 (78)

2. All other solutions of (76) have logarithmic regular singularities and have the following form
in terms of the classical Frobenius method

Ω
(1)
i (u) :=

∂

∂ρi
Ω(u, ρ)|ρ=0 ,

Ω
(2)
i (u) :=

1

2

∑

j,k=0,1,2

Kijk
∂

∂ρj

∂

∂ρk
Ω(u, ρ)|ρ=0 ,

Ω(3)(u) := −
1

3!

∑

i,j,k=0,1,2

Kijk
∂

∂ρi

∂

∂ρj

∂

∂ρk
Ω(u, ρ)|ρ=0 ,

(79)

with

Ω(u, ρ) :=

∑

m0,m1,m2≥0

(1 + ρ0 + 3ρ1)m0+3m1
(1 + ρ0 + 3ρ2)m0+3m2

(1 + ρ0)2m0
(1 + ρ1)3m1

(1 + ρ2)3m2

um0+ρ0

0 um1+ρ1

1 um2+ρ2

2

and Kijk being the coupling in (77). The notation (x)m represents the Pochhammer symbol:
(x)m := x(x+ 1) · · · (x+m− 1) . 2

Now we are ready to define the B-model prepotential and the mirror map:

Definition 7.1 We define the B-model prepotential by

ΨB(u) =
1

2

(

1

Ω(0)(u)

)2
{

Ω(0)(u)Ω(3)(u) +
∑

i

Ω
(1)
i (u)Ω

(2)
i (u)

}

. (80)
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Definition 7.2 We define the special coordinates on the B-model moduli space by

tj =
1

2πi

Ω
(1)
j (u)

Ω(0)(u)
, Uj := e2πitj (j = 0, 1, 2) . (81)

Then U0, U1, U2 are functions of u0, u1, u2 and Uj = uj + higher order terms. The inverse map
(u0(U), u1(U), u2(U)) is called the mirror map.

Conjecture 7.1 (Mirror Conjecture) The B-model prepotential ΨB(u) combined with the mir-
ror map has the expansion

ΨB(u(U)) =
(2πi)3

3!

∑

i,j,k=0,1,2

Kijktitjtk +
∑

n0,n1,n2≥0

Nn0,n1,n2
Li3(U

n0

0 Un1

1 Un2

2 ) (82)

where Nn0,n1,n2
is the number of rational curves ϕ : P1 7→W with (Ji, ϕ∗([P

1])) = ni, (i = 0, 1, 2).
In our context, we can state the conjecture in more precise form as follows:

Ψres
A (U0, U1, U2) = ΨB(u(U0, U1, U2)) (83)

where Ψres
A (U0, U1, U2) is the restricted A-model prepotential defined in (60).

Next we briefly sketch the approach of [Sti] for calculating the B-model prepotential by using only
toric data of the A-model side. This starts from the observation that Schoen’s example W can be
embedded in P1×P2×P2 as the intersection of a hypersurface of degree (1, 3, 0) and a hypersurface
of degree (1, 0, 3). (cf. Section 2). So W is the zero locus of a (general) section of the rank 2 vector
bundle O(1, 3, 0)⊕O(1, 0, 3) on P1×P2×P2. This vector bundle can be constructed as a quotient of
an open part of C10 by a 3-dimensional subtorus of (C∗)10 acting by coordinatewise multiplication.
The subtorus is the image of the homomorphism (C∗)3 = Z3 ⊗C∗ → Z10 ⊗C∗ = (C∗)10 given by
the 3 × 10-matrix

B :=





−1 −1 1 1 0 0 0 0 0 0
−3 0 0 0 1 1 1 0 0 0

0 −3 0 0 0 0 0 1 1 1



 (84)

The open part of C10 is
⋃

(i,j,k)∈{3,4}×{5,6,7}×{8,9,10}

C10
(i,j,k) (85)

with
C10

(i,j,k) := {(x1, . . . , x10) ∈ C10 | xi 6= 0 , xj 6= 0 , xk 6= 0 }

We view {3, 4}× {5, 6, 7}× {8, 9, 10} as a collection of 18 subsets of {1, . . . , 10} and note that the
complement of the union of these 18 subsets is {1, 2}. As explained in [Sti] this bit of combinatorial
input suffices to explicitly write down the hypergeometric function from which one can subsequently
compute the B-model prepotential.
This hypergeometric function is a priori a function in 10 variables v1, . . . , v10, which correspond to
the a priori 10 coefficients in the equations P1 and P2 in proposition 7.1:

Φ := (J̄0 + 3J̄1)(J̄0 + 3J̄2) × v−1
1 v−1

2 × uJ̄0

1 u
J̄1

2 u
J̄2

3 ×

×
∑

m0,m1,m2≥0

(1 + J̄0 + 3J̄1)m0+3m1
· (1 + J̄0 + 3J̄2)m0+3m2

(1 + J̄0)m0

2 · (1 + J̄1)m1

3 · (1 + J̄2)m2

3
um0

0 um1

1 um2

2
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with
u0 := v−1

1 v−1
2 v3v4 , u1 := − v−3

1 v5v6v7 , u2 := − v−3
2 v8v9v10

and where J̄0, J̄1, J̄2 are elements in the ring

RP1×P2×P2 := Z[J̄0, J̄1, J̄2]/(J̄
2
0 , J̄

3
1 , J̄

3
2 ).

So, v1v2Φ is an element of

(

(J̄0 + 3J̄1)(J̄0 + 3J̄2)RP1×P2×P2

)

⊗ Q[[u1, u2, u3]][log u1, log u2, log u3] .

The map multiplication by (J̄0 + 3J̄1)(J̄0 + 3J̄2) on RP1×P2×P2 induces an isomorphism of linear
spaces from the ring

Rtoric := RP1×P2×P2/Ann((J̄0 + 3J̄1)(J̄0 + 3J̄2))

onto the ideal (J̄0 + 3J̄1)(J̄0 + 3J̄2)RP1×P2×P2 .
RP1×P2×P2 is in fact the cohomology ring of the ambient toric variety P1 × P2 × P2 and Rtoric

is a subring of the Chow ring of W . The classes of J̄0, J̄1, J̄2 in Rtoric correspond to the elements
J0, J1, J2 of Pic(W ) defined earlier. One easily checks that Rtoric is a free Z-module of rank 8 with
basis {1 , J0 , J1 , J2 , J

2
1 , J1J2 , J

2
2 , J

2
1J2} and that the following relations hold

J2
0 = J3

1 = J3
2 = J0J

2
1 = J0J

2
2 = 0 ,

J0J1 = 3J2
1 , J0J2 = 3J2

2 , J1J
2
2 = J2

1J2 , J0J1J2 = 3J2
1J2

Instead of Φ̄ we may as well work with

Ω(u, J) :=

∑

m0,m1,m2≥0

(1 + J0 + 3J1)m0+3m1
· (1 + J0 + 3J2)m0+3m2

(1 + J0)m0

2 · (1 + J1)m1

3 · (1 + J2)m2

3
um0+J0

0 um1+J1

1 um2+J2

2

Using the notations (77), (78), (79) and J∨
0 := 1

9J1J2 − 1
27J0J1 − 1

27J0J2, J∨
1 := 1

9J0J2, J∨
2 :=

1
9J0J1 and vol := 1

9J0J1J2 the relation between the two approaches may now be formulated as

Proposition 7.3

Ω(u, J) = Ω(0)(u) +

2
∑

i=0

Ω
(1)
i (u)Ji +

2
∑

i=0

Ω
(2)
i (u)J∨

i − Ω(3)(u)vol

2

Ω(u, J) is an element of the ring Rtoric ⊗ Q[[u1, u2, u3]][log u1, log u2, log u3] . It is 1 modulo
J0, J1, J2, u0, u1, u2 and hence its logarithm also exists in the ring Rtoric⊗Q[[u1, u2, u3]][log u1, log u2, log u3] .
Expanding log Ω(u, J) with respect to the basis {1, J0, J1, J2, J

∨
0 , J

∨
1 , J

∨
2 , vol} of Rtoric one finds

log Ω(u, J) = log Ω(0)(u) +

2
∑

j=0

logUj Jj +

2
∑

j=0

Pj J
∨
j + P vol
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with Uj as in (81) and hence logUj = 2πitj. A straightforward computation shows (see also (80)
and (82))

P = −





Ω(3)(u)

Ω(0)(u)
+

2
∑

j=0

Ω
(1)
j (u)

Ω(0)(u)

Ω
(2)
j (u)

Ω(0)(u)
−

(2πi)3

3

∑

m,j,k=0,1,2

Kmjktmtjtk





= −2



ΨB(u) −
(2πi)3

3!

∑

m,j,k=0,1,2

Kmjktmtjtk





= −2
∑

n0,n1,n2≥0

Nn0,n1,n2
Li3(U

n0

0 Un1

1 Un2

2 ) (86)

Proposition 7.4 Let the numbers Nn0,n1,n2
be defined by (86). Then

N0,n1,n2
= 0 for all n1, n2 ≥ 0 (87)

Proof. Note that modulo u0

u−J0

0 u−J1

1 u−J2

2 Ω(u, J) ≡

≡





∑

m1≥0

(1 + J0 + 3J1)3m1

(1 + J1)m1

3
um1

1









∑

m2≥0

(1 + J0 + 3J2)3m2

(1 + J2)m2

3
um2

2





and take logarithms. The logarithms involve no mixed terms J1J2. This shows P ≡ 0 mod u0. 2

As explained in [F, Sti] a theorem of Bryant and Griffiths shows

Pj = −
1

2
Uj

∂P

∂Uj

for j = 0, 1, 2. Hence

Pj =
∑

n0,n1,n2≥0

njNn0,n1,n2
Li2(U

n0

0 Un1

1 Un2

2 ) (88)

where Li2(x) :=
∑

n≥1
xn

n2 is the dilogarithm function.
It follows from (88) and (87) that we can get all numbers Nn0,n1,n2

from P0. The computations
are now greatly simplified by observing:

Lemma 7.1 In Rtoric the intersection of the Z-module with basis
{1, J1, J2, J1J2} and the ideal generated by J0, J

2
1 , J

2
2 is 0 . 2

So for studying logU1 , logU2 and P0 we may reduce modulo the ideal (J0, J
2
1 , J

2
2 ) ; i.e. replace

Rtoric by Z[J̄1, J̄2]/(J̄
2
1 , J̄

2
2 ). From now on we use J1 resp. J2 to denote the classes of J̄1 resp. J̄2

in the latter ring; so we have in particular from now on

J2
1 = J2

2 = 0
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Let

Ω̃(u, J1, J2) :=
∑

m0,m1,m2≥0

(1 + 3J1)m0+3m1
· (1 + 3J2)m0+3m2

m0! 2 · (1 + J1)m1

3 · (1 + J2)m2

3
um0

0 um1

1 um2

2

Then clearly
log Ω̃(u, J1, J2) = log Ω(0)(u) + (logU1 − log u1)J1 +

+ (logU2 − log u2)J2 + 1
9P0 J1J2

(89)

We have the following expansion of Ω̃(u, J1, J2) w.r.t. u0

Ω̃(u, J1, J2) = φ0(u1, J1)φ0(u2, J2) + φ1(u1, J1)φ1(u2, J2)u0 + O(u2
0),

where we define

φ0(w, ρ) :=
∑

n≥0

(1 + 3ρ)3n

(1 + ρ)n
3 w

n , (90)

φ1(w, ρ) :=
∑

n≥0

(1 + 3ρ)1+3n

(1 + ρ)n
3 wn.

Note

φ1(w, ρ) = (1 + 3ρ)φ0(w, ρ) + 3w
∂

∂w
φ0(w, ρ) .

This shows that modulo u2
0

log Ω̃(u, J1, J2) ≡ logφ0(u1, J1) + logφ0(u2, J2)+ (91)

+

(

1 + 3J1 + 3u1
∂

∂u1
logφ0(u1, J1)

) (

1 + 3J2 + 3u2
∂

∂u2
logφ0(u2, J2)

)

u0

Comparing (89) and (91) we see that we have proved:

Proposition 7.5 Define for j = 1, 2 the function Ūj by

log Ūj := log uj +
∂

∂ρ
logφ0(uj , ρ)|ρ=0 .

Then

logUj = log Ūj + O(u0)

1

9
P0 = 9

(

u1
∂

∂u1
log Ū1

) (

u2
∂

∂u2
log Ū2

)

u0 + O(u2
0) (92)

2

Before we can draw conclusions for the numbers N1,n1,n2
we must first analyse U0 modulo u2

0. Let

˜̃Ω(u, J0) :=
∑

m0,m1,m2≥0

(1 + J0)m0+3m1
· (1 + J0)m0+3m2

(1 + J0)m0

2 ·m1! 3 ·m2! 3
um0

0 um1

1 um2

2
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with as before J2
0 = 0. Then

log ˜̃Ω(u, J0) = log Ω(0)(u) + (logU0 − log u0)J0

Let

ξ(w, ρ) :=
∑

n≥0

(1 + ρ)3n

n! 3
wn (93)

Then
˜̃Ω(u, J0) = ξ(u1, J0) · ξ(u2, J0) + O(u0)

and hence
U0 = u0 · ψ(u1) · ψ(u2) + O(u2

0) (94)

where

ψ(w) := exp(
∂

∂ρ
log ξ(w, ρ)|ρ=0)

By combining (88), (92) and (94) we find

Corollary 7.1

∑

n1,n2≥0

N1,n1,n2
Ūn1

1 Ūn2

2 = 81

(

1

ψ(u1)
u1

∂

∂u1
log Ū1

) (

1

ψ(u2)
u2

∂

∂u2
log Ū2

)

The number N1,n1,n2
factorizes as

N1,n1,n2
= bn1

bn2
,

where the numbers bn are defined by

∑

n≥0

bnŪ
n
1 := 9

(

1

ψ(u1)
u1

∂

∂u1
log Ū1

)

. (95)

2

Corollary 7.2 Let {bn} be the sequence of integers defined by the expansion (95). We obtain the
asymptotic expansion of the B-model prepotential as follows:

ΨB(U0, U1, U2) = topological term + U0B(t1)B(t2) + O(U2
0 ) (96)

where B(t) is defined by the series

B(t) =
∑

n≥0

bn exp(2πint) =
∑

n≥0

bnU
n.

From the asymptotic expansions of (69) and (96) we obtain the following precise identity between
two functions, which actually follows from the Mirror Conjecture 7.1.

Conjecture 7.2 We will obtain the following identity

Ares(t) ≡ B(t)

or equivalently
∑

n≥0 bnU
n = ΘE8

(3t, tγ)
∏

n≥1(1 − U3n)−12

where U = exp(2πit) and γ = (1, 1, 1, 1, 1, 1, 1,−1).
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Unfortunately we are unable to prove Conjecture 7.2. However since we can explicitly expand the
right hand side of (95), we can obtain the expansion of B(t) by using a computer and compare the
result with the expansion of Ares(t).

Proposition 7.6 Conjecture 7.2 is true up to order U50.

To get started on the computer one may notice:

φ0(u, 0) = ξ(u, 0) =
∑

n≥0

(3n)!

n! 3
un (97)

∂

∂u
φ0(u, ρ)|ρ=0 =

∑

n≥0

(3n)!

n! 3
3(g(3n)− g(n))un (98)

∂

∂u
ξ(u, ρ)|ρ=0 =

∑

n≥0

(3n)!

n! 3
g(3n)un (99)

where

g(n) =
n

∑

k=1

1

k
, g(3n) =

3n
∑

k=1

1

k

A simple PARI program then yields:

B(t) = 9
1

ψ(u)
u
∂

∂u
logU =

9 + 36U + 126U2 + 360U3 + 945U4 + 2268U5 + 5166U6 + 11160U7

+23220U8 + 46620U9 + 90972U10 + 172872U11 + 321237U12

+584640U13 + 1044810U14 + 1835856U15 + 3177153U16 + 5421132U17

+9131220U18 + 15195600U19 + 25006653U20 + 40722840U21

+65670768U22 + 104930280U23 + 166214205U24 + 261141300U25

+407118726U26 + 630048384U27 + 968272605U28 + 1478208420U29

+2242463580U30 + 3381344280U31 + 5069259342U32 + 7557818940U33

+11208455370U34 + 16538048640U35 + 24282822798U36

+35487134928U37 + 51626878470U38 + 74779896240U39

+107861179482U40 + 154945739844U41 + 221711362038U42

+316042958880U43 + 448856366490U44 + 635216766732U45

+895854679650U46 + 1259213600736U47 + 1764210946995U48

+2463949037340U49 + 3430694064888U50 +O(U51)

(100)

Comparing this expansion (100) with Table 2 in Section 6, we see that an = bn for n ≤ 50. 2

8 Appendix I: B-model equation

In this appendix we derive the equations stated in proposition 7.1 for the mirror W ∗ of Schoen’s
example W . We use the mirror construction of Batyrev-Borisov [Ba-Bo] by means of reflexive
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Gorenstein cones of index 2. As explained in [Sti] the story in [Ba-Bo] about split Gorenstein
cones and NEF partitions can for examples like W be reformulated in terms of triangulations of
the polytope ∆ on the mirror side; more specifically, W can be embedded in P1 ×P2 ×P2 as the
intersection of a hypersurface of degree (1, 3, 0) and a hypersurface of degree (1, 0, 3). This leads
to the matrix B in (84) and to the set {3, 4} × {5, 6, 7} × {8, 9, 10} in (85). To get the reflexive
Gorenstein cone Λ from which the mirror of Schoen’s example can be constructed one should take
a 7 × 10 -matrix A = (aij) with rank 7 and with integer entries such that A · Bt = 0 . We take

A :=





















1 0 1 0 1 1 1 0 0 0
0 1 0 1 0 0 0 1 1 1
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 0 −1





















Let a1, . . . , a10 ∈ Z7 be the columns of A. Then

Λ := R≥0a1 + . . .+ R≥0a10 ⊂ R7

The polytope ∆ is the convex hull of the points a1, . . . , a10 in R7. With {3, 4}×{5, 6, 7}×{8, 9, 10}
viewed as a collection of subsets of {1, . . . , 10} the complements of these 18 subsets are the index
sets for the maximal simplices in a triangulation of ∆.
Let SΛ denote the subalgebra of the algebra of Laurent polynomials

C[u±1
1 , . . . , u±1

7 ]

generated by the monomial um1

1 · . . . · um7

7 with (m1, . . . ,m7) ∈ Λ ∩ Z7. Giving such a monomial
degree m1 +m2 makes SΛ a graded ring. The scheme PΛ := ProjSΛ is a projective toric variety
of dimension 6. A global section of OPΛ

(1) is given by a Laurent polynomial (with coefficients
v1, . . . , v10)

s = u1(v1 + v5u4u5 + v6u
−1
4 + v7u

−1
5 + v3u3) +

u2(v2 + v8u6u7 + v9u
−1
6 + v10u

−1
7 + v4u

−1
3 )

For generic coefficients v1, . . . , v10 the zero locus of s in PΛ is a generalized Calabi-Yau manifold
of dimension 5 in the sense of [Ba-Bo]. This is one mirror of W suggested by [Ba-Bo].
As in [Ba-Bo] Section 4, one can also realize a mirror as a complete intersection Calabi-Yau threefold
in a 5-dimensional toric variety, as follows. PΛ is a compactification of the torus (C∗)7/C∗ where
C∗ := {(u, u, 1, 1, 1, 1, 1) ∈ (C∗)7}. The morphism

(C∗)7 → P1 × P1 × P3 × P3

given by

(u1, . . . , u7) 7→ ([u1 : u1u3], [u2 : u2u
−1
3 ],

[u1 : u1u4u5 : u1u
−1
4 : u1u

−1
5 ], [u2 : u2u6u7 : u2u

−1
6 : u2u

−1
7 ])

extends to a morphism PΛ → P1 × P1 × P3 × P3. The image is

V :=







[p0 : p1] × [q0 : q1] × [s0 : s1 : s2 : s3] × [t0 : t1 : t2 : t3]
∈ P1 × P1 × P3 × P3

p0q0 = p1q1, s30 = s1s2s3, t30 = t1t2t3
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As noted in [Ba-Bo] Cor.3.4 the complement of the generalized Calabi-Yau 5-fold s = 0 in PΛ is a
C-bundle over the complement in V of the complete intersection Calabi-Yau 3-fold with equations

(v1s0 + v5s1 + v6s2 + v7s3)p0 + v3s0p1 = 0

(v2t0 + v8t1 + v9t2 + v10t3)q0 + v4t0q1 = 0

This complete intersection Calabi-Yau 3-fold itself is another realization for a mirror of W .
Now note that the morphism

P1 × P2 × P2 → P1 × P1 × P3 × P3 ,

([z0 : z1], [x0 : x1 : x2], [y0 : y1 : y2]) 7→
([z0 : z1], [z1 : z0], [x0x1x2 : x3

0 : x3
1 : x3

2], [y0y1y2 : y3
0 : y3

1 : y3
2 ])

realizes V also as the quotient of P1 ×P2 ×P2 by the group Z3 ×Z3 acting as in Proposition 7.1.
This completes the proof of Proposition 7.1.

9 Appendix II: The Theta function of the E8 lattice

Let Λ be a lattice of rank d with positive definite quadratic form Q : Λ −→ Z. We can fix
an embedding Λ →֒ Rd such that the quadratic form Q is induced by the usual Euclidean inner
product ( , ). Let H = {τ ∈ C|Im(τ) > 0} be the upper half plane. We denote by w = (w1, · · · , wd)
the standard complex coordinates of Cd = Rd ⊗C. We define the theta function associated to the
lattice Λ by

ΘΛ(τ,w) =
∑

σ∈Λ

exp(2πi((τ/2)Q(σ) + (σ,w)). (101)

For certain Calabi-Yau 3-folds with a fibration by abelian surfaces one can calculate a part of the
prepotential of the Yukawa coupling arising from the sections of the fibration by using the theta
function associated to the Mordell-Weil lattice [Sa]. Since the Mordell-Weil lattice of a generic
Schoen’s example is isometric to E8 ×E8, we would like to calculate the theta function of E8 and
write it in an explicit form.
For that purpose we fix a standard embedding of D8 and E8 into R8. ([C-S] p. 117 ∼ p. 121). Let

e1, e2, · · · , e8 be the standard orthonormal basis of R8. An element of R8 is written as
∑8

i=1 xiei.
We define lattices in R8

Z8 :=

{

8
∑

i=1

xiei, xi ∈ Z

}

⊃ D8 :=

{

8
∑

i=1

xiei ∈ Z8,

8
∑

i=1

xi ≡ 0 (2)

}

,

E8 = D8 ∪ (D8 + s0), s0 =
1

2

8
∑

i=1

ei,

The inner product ( , ) induces positive definite bilinear forms on these lattices and E8 and D8

have integral bases whose intersection matrices are the Cartan matrices of E8 and D8 respectively.
The theta function for the one dimensional lattice Λ = Z with Q(n) = n2 is the Jacobi theta
function:

ϑ(τ, w) := ΘZ(τ, w) =
∑

n∈Z

exp(πin2τ + 2πinw). (102)
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We also have the following 4 theta functions (cf. [Mum1]):

ϑ0,0(τ, w) = ϑ(τ, w) (103)

ϑ0,1(τ, w) = ϑ(τ, w +
1

2
) (104)

ϑ1,0(τ, w) = exp(
πiτ

4
+ πiw) · ϑ(τ, w +

τ

2
) (105)

ϑ1,1(τ, w) = exp(
πiτ

4
+ πi(w +

1

2
)) · ϑ(τ, w +

τ + 1

2
) (106)

Proposition 9.1 Let w = (w1, w2, · · · , w8) ∈ C8.

ΘZ8(τ,w) =

8
∏

i=1

ϑ0,0(τ, wi) (107)

ΘE8
(τ,w) =

1

2

∑

(a,b)∈(Z/2Z)2

8
∏

i=1

ϑa,b(τ, wi) (108)

Proof. Straightforward exercise. See also [D-G-W]. 2

Recall γ = (1, 1, 1, 1, 1, 1, 1,−1). The above formulas show (cf.[Mum1]):

ϑ0,0(τ,−w) = ϑ0,0(τ, w) , ϑ0,1(τ,−w) = ϑ0,1(τ, w) ,

ϑ1,0(τ,−w) = ϑ1,0(τ, w) , ϑ1,1(τ,−w) = −ϑ1,1(τ, w)

and hence

ΘE8
(3t, tγ) =

1

2
{ϑ0,0(3t, t)

8 + ϑ0,1(3t, t)
8 + ϑ1,0(3t, t)

8 − ϑ1,1(3t, t)
8} (109)

Next note:

ϑ0,0(3t, t) = exp(−πit/3)
∑

m≡±1 (3)

exp(πitm2/3)

ϑ0,1(3t, t) = − exp(−πit/3)
∑

m≡±1 (3)

(−1)m exp(πitm2/3)

ϑ1,0(3t, t) = exp(−πit/3)
∑

m≡±1 (6)

exp(πitm2/12)

ϑ1,1(3t, t) = −i exp(−πit/3)
∑

m≡±1 (6)

χ(m) exp(πitm2/12)

where the summations run over m ∈ N with the indicated restrictions and χ(m) = 1 (resp. = −1)
if m ≡ ±1 mod 12 (resp. ≡ ±5 mod 12). Another useful observation is that the Jacobi product
formula for ϑ1,1(τ, w) (see [Mum1]) implies

ϑ1,1(3t, t) = −i exp(−πit/4)
∏

m≥1

(1 − exp(2πimt))

Now the computer can do its work and compute the expansion of ΘE8
(3t, tγ).
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