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Abstract. In this paper we extend the notion of generalized quasi-Einstein
manifold and name it mized generalized quasi-Einstein manifold MG(QE),,].
We prove the existence of such manifolds. We also introduce the notion
of generalized quasi umbilical hypersurface of a Riemannian manifold and
show that such a manifold is a mixed generalized quasi Einstein manifold.
Finally, we obtain the relation between the manifolds with mixed gener-
alized quasi constant curvature and the mixed generalized quasi-Einstein
quasi conformally flat manifolds.
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§ 1. Introduction

In a recent paper [4] U. C. De and G. C. Ghosh have defined the generalized the
quasi-Einstein manifolds. A non-flat Reimannian manifold M is called a generalized
quasi-Finstein manifold if its Ricci tensor S of type (0,2) is non-zero and satisfies the

condition
S(X,Y)=ag(X,Y) +bA(X)A(Y) + cB(X)B(Y),

where a, b, ¢ are certain non-zero scalars and A, B are two non-zero 1-forms such that
g(X,U) = A(X),9(X,V) = B(X), g(U, V) =0,
i.e., U and V are orthogonal vector fields on M.
In the present paper, we extend the notion of generalized quasi-Einstein manifold.

Definition 1. A non-flat Riemannian manifold is called a mized generalized
quasi-Finstein manifold if its Ricci tensor S of type (0,2) is non-zero and satisfies
the condition

11 S(X,Y)= ag(X,Y)+bK(X)K(Y)+ cL(X)L(Y)+
(1.1) +d[K(X)L(Y) + L(X)K(Y)],

where a, b, ¢, d are non-zero scalars,

9(X,U) = K(X) and g(va):L(X)7 g(U,V) =0,
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K, L being two non-zero 1-forms, and U,V are unit vector fields corresponding to the
1-forms K and L respectively. We denote this type of manifold by MG(QE),. If
d = 0, then the manifold reduces to a G(QE),.

In this paper we introduce as well another notion which generalizes the notion of a
manifold of generalized quasi-constant curvature [4]. A Riemannian manifold is said
to be a manifold of generalized quasi-constant curvature [4] if the curvature tensor R
of type (0,4) satisfies the condition

R(X,Y, Z,W) = plg(Y, 2)g(X, W) — g(X, Z)g(Y, W)
+4lg(X, W)T(Y)T(Z) - (X, 2)T(Y)T(W)
(X)T(W) = g(Y, W)T(X)T(Z)]

+9(Y, 2)T )~
+5[g(X,W)D(Y)D(Z) — (X, Z)D(Y)D(W)
+9(Y, Z)D(X)D(W) — 9(Y W)D(X)D(Z)],

)
(

where p,q,s are scalars, T and D are non-zero l-forms. Here p and p are unit
orthogonal vector fields such that

9(X, p) = T(X)andg(X, p) = D(X),  g(p,p) =0.

Definition 2. A Riemannian manifold is said to be a manifold of mixed generalized
quasi-constant curvature if the curvature tensor R of type (0,4) satisfies the condition

R(X,Y,Z, W)= plg(Y,2)9(X, W) — g(X )( W)
[9(X, W)A(Y)A(Z ) W)A(X)A(Z)
(Y, Z2)A(X)A(W) — g( ) (Y)A(W)]
[9(X,W)B(Y)B(Z) - ( W)B(X)B(Z)
(1.2) +9(YZ) (X)B(W) - g(X, Z)B(Y)B(W)
+t[{A(Y)B ( )+ B(Y)A(Z )}g(X W)
—{A(X)B(Z) + B(X)A(Z)}g(Y, W)
HAX)B(W) + B(X)A(W)}g(Y, Z)
—{AY)B(W) + B(Y)A(W)}g(X, Z)],

where p, q, s,t are scalars. A, B are non-zero 1-forms. Here p and p are orthonormal
unit vector fields corresponding to A and B.

9(X,p) = A(X) and g(X,p) = B(X),  g(p,p) =0.

§ 2. Preliminaries

We consider a mixed generalized quasi-Einstein manifold with associated scalars
a,b,c and d and associated 1-forms K and L. From (1.1), we get

r=na+b+c,

where r denotes the scalar curvature of the manifold. Since U and V are orthogonal
unit vector fields, therefore g(U,U) = 1,g(V,V) =1,¢9(U,V) = 0. Putting X =Y =
U in (1.1), we obtain S(U,U) = a+b. Substituting X =Y = V in (1.1) we further get
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S(V,V) =a+c. It is known that in an n-dimensional (n > 2) Riemannian manifold
the covariant quasi conformal curvature tensor is defind as [3]

C(X,Y,Z, W)= dR(X,Y,Z,W)+0b[S(Y,Z)g(X,W)—S(X,Z)g(Y,W)
(2.3) +9(Y, 2)g(QX, W) — g(X, W)g(QY, W)]
—nlnty +20[g(Y, Z2)g(X, W) — g(X, Z)g(Y,W)],

n

where 3 3
g(CX,Y)Z,W)=C(X,Y,Z, W)

g(R(va)Za W) - R(Xv Y, Z, W)

The conharmonic curvature tensor is denoted by H(X,Y, Z, W) and in a M™(n > 2)
it is defined as,

ot H(X,Y,Z,W)= R(X,Y,Z,W) - [g(X,W)S(Y,Z) — g(X, Z)S(Y, W)
z4 +9(Y, 2)S(X, W) — g(Y,W)S(X, Z)],

where @ be the symmetric endomorphism of the tangent space at each point corre-
sponding to the Ricci-tensor S, and

(2.5) 9(QX,Y) = S(X,Y), VX,YeT M.

§ 3. Existence theorem of a mixed generalized quasi-Einstein
manifold

We can state the following:

Theorem 3.1. If the Ricci tensor S of a Riemannian manifold satisfies the
relation

S(X,W)S(Y, Z) — S(Y,W)S(X, Z) =
(3.6) ulSY,W)g(Z,X) + 5(Z, X)g(Y, W)
+/8[g(X7 W)g(}/a Z) 79(Y7 W)g(Z7X)]a

where W, 3 are non-zero scalars, then the manifold is a mized generalized quasi-
FEinstein manifold.

Proof. Let U be a vector field defined by

(3.7) 9(X,U) = T(X), VYXeTM.
Putting X =W = U in (3.6), we obtain

SU,0)S(Y,Z) - S(Y,U)S(U,Z) = ul[S(Y,U)g9(Z,U) + S(Z,U)g(Y,U)]
+Blg(U,U)g(Y,Z) — g(Y,U)g(Z,U)].
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Now using (2.5) and (3.7) in the above equation, we get
as(y,2) - T(QY)T(QZ) = pT(QY)T(Z) + T(QZ)T(Y)]
+ollUPg(Y, 2) = T(V)T(2)],

where S(U,U) =@ and T(QY) = g(QY,U) = S(Y,U). Therefore
S(Y,2) = aT(QY)T(QZ) + na[T(QY)T(Z) + T(QZ)T(Y)]
+pallUPg(Y, Z) - T(YV)T(Z)].

Taking a = £ and T(QY) = P(Y), we get

S(Y.2) = apllUPg(Y,Z)] + (—ap)T(Y)T(Z) + aP(Y)P(Z2)

(3.8)
+ou[T(Y)P(Z) + P(Y)T(Z)].

Therefore in view of (3.8) we can conclude that the manifold is a mixed generalized
quasi-Einstein manifold. O

§ 4. Example of a mixed generalized quasi-Einstein manifold

A manifold of mixed generalized quasi-constant curvature defined by (1.2) is a
mixed generalized quasi-Einstein manifold. Putting X = W =e; in (1.2), where {e;}
is an orthonormal basis of the tangent space at each point of the manifold, and taking
summation over i, 1 < ¢ < n, we obtain

S(Y,Z) = [p(n—1)4q+s+2t]g(Y, Z) + q(n — 2)A(Y)A(Z)
+s(n—2)B(Y)B(Z) + t(n — 2)[A(Y)B(Z) + B(Y)A(Z)).

Hence the manifold is a mixed generalized quasi-Einstein manifold.

¢ 5. Hypersurfaces of the Euclidean space

Let M™ be a hypersurface of the Euclidean space E™t! and the metric tensor §
of M™ is induced by E"*!. The Gauss equation of M™ in E"*! can be written as

(5'9) g(R(X’ Y>27 W) = g<H<X’ W),H(Y, Z)) - g(H(Yv W)7H(X’ Z)),

where R is the Riemannian curvature tensor corresponding to the induced metric g,
H is the second fundamental tensor of M™ (orthonormal to M™) and X,Y,Z, W are
vector fields tangent to M™. If A¢ is the (1,1) tensor corresponding to the normal
valued second fundamental tensor H, then we have [2]

(5.10) 9(Ae(X),Y) = g(H(X,Y),8),

where ¢ is the unit normal vector field and X, Y are tangent vector fields. Let H¢ be
the symmetric (0,2) tensor associated with A¢ in the hypersurface defined by

(5.11) §(Ae(X),Y) = He(X,Y).
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A hypersurface of a Riemannian manifold (M™, g) is called quasi-umbilical [2], if its
second fundamental tensor has the form

(5.12) He(X,Y) = ag(X, ) + fu(X)w(Y),

where w is a 1-form.The vector field corresponding to the 1-form w is a unit vector
field, and «, 3 are scalars. If « = 0 (resp.f = 0 or & = 8 = 0) holds, then M™ is
called cylindrical (respectively umbilical or geodesic).

In this section we define generalized quasi-umbilical hypersurface of a Riemannian
manifold.

Definition 5.1. A hypersurface of a Riemannian manifold (M™, g) is called gen-
eralized quasi-umbilical if its second fundamental tensor has the form

He(X,Y) = ag(X,Y) + fw(X)w(Y) +76(X)5(Y),

where «, 3,y are scalars. The vector fields corresponding to 1-forms w and § are unit
vector fields. If « = 8 =~ = 0, M™ is called geodesic. f a =y=0ora=0=0M"
is called cylindrical. Also M™ is called umbilical when 5 =~ = 0.

Now from (5.10), (5.11) and (5.12), we get
(5.13) 9(H(X.Y),&) = ag(X,Y)g(&,€) + Buw(X)w(Y)g(&,€).
Since ¢ is the only unit normal vector, (5.13) reduces to
(5.14) H(X,Y) = ag(X,Y){ + fuw(X)w(Y)E.

Let us suppose that the hypersurface is generalized quasi-umbilical. Then in view of
(5.14) we have

(5.15) H(X,Y) = ag(X,Y)§ + fw(X)w(Y)E +70(X)o(Y)E.

From (5.9) and (5.15) it follows that

IRX,Y)ZW) = o*{g(X,W)g(Y,Z) — g(Y,W)g(X, 2)}
+af{g(X, W)w(Y)w(Z) + g(Y, Z)w(X)w(W)
—9(V, W)w(X)w(Z) = g(X, Z)w(Y)w(W)}

(5.16) +ar{g(X, W)i(Y)é(2) + g(Y, 2)6(X)o(W)
—g(Y,W)8(X)6(2) — g(X, 2)6(Y)o (W)}
+O{w(X)w(W)d(Y)(Z) + w(Y)w(Z)d(X)5(W)
—w(YV)w(W)d(X)d(Z) — w(X)w(Z2)6(Y)5(W)}

(
)

On contraction to (5.16) we get

S(,2) = [a2(n—2) + af +anlg(Y, Z) + [(n — 2)af + Brlw(Y)w(2)
+(n = 2)va + BV )O(Z) = BAw(Y)O(Z) + 6(Y w(Z)),
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which shows that the manifold is a mixed generalized quasi-Einstein manifold. Thus
we can state the following theorem

Theorem 5.1. A generalized quasi-umbilical hypersurface of a Euclidean space is
a mized generalized quasi-Finstein manifold.

§ 6. Relations between structures.
Since MG(QE),, is quasi-conformally flat, from (2.3) we have
R(X,Y, Z,W) = L% +20[g(Y, Z)9(X, W) — g((X, Z)g(Y,W)]
(6.17) —E[S(Y, Z)g(X, W) = S(X, Z)g(Y, W)

Using (1.1) in (6.17) we get
(6.18)

R(X,Y.Z,W) = [Az5 = 229V, Z)g(X, W) = g(X, Z)g(Y, W)]
29X, W)AY)A(Z) - g(Y.W)A(X)A(Z)
+9(Y, Z)A(X)A(W) — g(X, 2)A(Y)A(W)]
—%lg(X, W)B(Y)B(Z) - g(Y,W)B(X)B(Z)
+9(Y, Z)B(X)B(W) — g(X, Z) B(Y)B(W)]
—RH{AY)B(Z) + B(Y)A(Z)}g(X, W)
—{AX)B(Z) + B(X)A(Z)}g(Y, W)
+HAX)B(W)+ B(X)A(W)}g(Y, Z)

—{AY)B(W) + B(Y)A(W)}g(X, Z)].

—_ —
~—_

o~

From (6.18) we can state the following

Theorem 6.1. A quasi conformally flat mized generalized quasi-Einstein manifold
18 a manifold of mized generalized quasi-constant curvature.

From (2.4) and Theorem 6.1 we can also have the following

Corollary 6.1. A conharmonically flat mized generalized quasi-Einstein manifold
is a manifold of mized generalized quasi-constant curvature.
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