ON MIXING AND PARTIAL MIXING

BY

N. A. Friedman and D. S. Ornstein ${ }^{1}$

1. Introduction

Let (X, Q, m) denote the unit interval with Lebesgue measure, and let τ be an invertible ergodic measure preserving transformation on $X . \quad \tau$ is mixing if

$$
\begin{equation*}
\lim _{n} m\left(A \cap \tau^{n} B\right)=m(A) m(B), \quad A \text { and } B \text { in } \mathbb{Q} \tag{1.1}
\end{equation*}
$$

Given $\alpha>0, \tau$ is partially mixing for α if

$$
\begin{equation*}
\lim _{n} \inf m\left(A \cap \tau^{n} B\right) \geqq \alpha m(A) m(B), \quad A \text { and } B \text { in } \mathbb{Q} \tag{1.2}
\end{equation*}
$$

In [3], a transformation τ is constructed such that τ is partially mixing for $\alpha=\frac{1}{8}$ but τ is not mixing. It is easily verified that τ is mixing if and only if τ is partially mixing for $\alpha=1$.

The results in this paper are in two parts. The first result is concerned with mixing transformations. Let τ be mixing, $f \in L_{1}$, and let $\left(k_{n}\right)$ be an increasing sequence of positive integers. Define f_{n} and $E(f)$ as

$$
f_{n}(x)=(1 / n) \sum_{i=1}^{n} f\left(\tau^{k_{i}}(x)\right), \quad E(f)=\int f d m
$$

In [1], Blum and Hanson proved that f_{n} converges to $E(f)$ in the mean. In §4, we construct an example such that for a. e. $x, f_{n}(x)$ does not converge pointwise.

The second result concerns partial mixing transformations. In $\S 5$, it is shown that given $\alpha \in(0,1)$, there is an explicit construction of a transformation τ such that τ is partially mixing for α but τ is not partially mixing for any $\alpha+\varepsilon, \varepsilon>0$.

Both of the above results are based on a construction given in §3. Some preliminary results are given in §2. We shall utilize notation and terminology n [2].

2. Preliminaries

In [2], [3], the S operator was defined for a tower with columns of equal width. The definition will now be extended to the case where the columns generally have unequal widths. Let

$$
T=\left\{C_{j}: 1 \rightarrow j \rightarrow q\right\} \quad \text { where } C_{j}=\left(I_{j, k}: 1 \rightarrow k \rightarrow h_{j}\right)
$$

The intervals in C_{j} have the same width $w_{j}(T)$. The top of T is

$$
A(T)=\bigcup_{j=1}^{q} I_{j, h_{j}}
$$

Received June 1, 1969.
${ }_{1}$ Research supported by a National Science Foundation grant.
and the base of T is

$$
B(T)=\bigcup_{j=1}^{q} I_{j, 1}
$$

hence,

$$
\begin{equation*}
m(A(T))=m(B(T))=\sum_{j=1}^{q} w_{j}(T) \tag{2.1}
\end{equation*}
$$

A subtower T_{*} of T is a copy of T if there exists $\alpha \in(0,1]$ such that $w_{j}\left(T_{*}\right)=$ $\alpha w_{j}(T), 1 \leq j \leq q$, and the h_{j} are the same. In this case, we also denote T_{*} as αT. Note that given $\alpha \in(0,1), T$ can be decomposed into two disjoint copies αT and $(1-\alpha) T$.

We shall now define $S(T)$ where T is as above. The transformation τ_{T} will be extended so as to map a subinterval of the top interval of each column onto a subinterval of the base interval of each column where the length of each subinterval is proportional to the corresponding widths. Let $p_{j}=w_{j}(T) /$ $m(B(T)), 1 \leq j \leq q$. Hence (2.1) implies

$$
\sum_{j=1}^{q} p_{j}=1
$$

We decompose the left half of $I_{j, h_{j}}$ into q disjoint subintervals $E_{j, l}$ where $m\left(E_{j, l}\right)=p_{l} w_{j} / 2,1 \leq j, l \leq q$. We also decompose the right half of $I_{l, 1}$ into q disjoint subintervals $F_{l, j}$ where $m\left(F_{l, j}\right)=p_{l} w_{j} / 2,1 \leq j, l \rightarrow q . \quad E_{j, l}$ is now mapped linearly onto $F_{l, j}, 1 \leq j, l \leq q$. The extension is measure preserving since $m\left(E_{j, l}\right)=m\left(F_{l, j}\right), 1 \rightarrow j, l \rightarrow q$. We also have

$$
\sum_{j=1}^{q} p_{l} w_{j} / 2=w_{j} / 2, \quad \sum_{j=1}^{q} p_{l} w_{j} / 2=w_{l} / 2
$$

Thus, τ_{T} is extended to half of $A(T)$ and τ_{T}^{-1} is extended to half of $B(T)$. Let the corresponding tower be denoted by $S(T)$. As in [2], $S(T)$ consists of a bottom copy T_{0} of T and a copy of T above each column in T_{0}.

We denote $\tau(T)=\lim _{n} \tau_{S^{n}(T)}$. As in [2], it follows that $\tau(T)$ is an ergodic measure preserving transformation on T^{\prime}. If T is an M-tower, then $\tau(T)$ is mixing. (T^{\prime} is the union of the intervals in T.)

Given a tower T and $\alpha \epsilon(0,1)$, let αT denote a copy of T as above. Note that if A is a union of intervals in T and $B=(\alpha T)^{\prime}$, then

$$
\begin{equation*}
m(A \cap B)=m(A) \alpha=m(A) m(B) / m\left(T^{\prime}\right) \tag{2.2}
\end{equation*}
$$

Thus if $T^{\prime}=X$, then A and B are independent sets.
Given disjoint towers T_{1} and T_{2}, let $T_{1} \cup T_{2}$ denote the tower consisting of the columns in T_{1} and the columns in T_{2}. We do not require that the columns have the same width.

Let T_{1} and T_{2} be towers with q columns. We say the towers are similar if there exists $\alpha>0$ such that $w_{j}\left(T_{1}\right)=\alpha w_{j}\left(T_{2}\right), h_{j}\left(T_{1}\right)=h_{j}\left(T_{2}\right), 1 \leq j \leq q$. In particular, a copy of T is similar to T. However, a tower similar to T need not be a copy of T since it may not be a subtower of T. We note that if T_{1} is similar to T_{2}, then $S^{n}\left(T_{1}\right)$ is similar to $S^{n}\left(T_{2}\right), n=1,2, \cdots$.

The following result follows from the definition of the S operator.
(2.3) Lemma. Let T_{1} and T_{2} be similar towers, and let $T_{3}=T_{1} \cup T_{2} . \quad$ Let $\tau_{1}=\tau\left(T_{1}\right)$ and $\tau_{2}=\tau\left(T_{3}\right)$. Let I and J be intervals in T_{1}. Then

$$
m\left(\tau_{2}^{n} I \cap J\right) \geq m\left(\tau_{1}^{n} I \cap J\right)-2 m\left(T_{2}^{\prime}\right)
$$

Let T_{1} be a tower, and let C be a column. We shall utilize C to form a tower $T_{1}(C)$ such that $T_{1}(C)$ is similar to T_{1}. Furthermore, $\tau_{T_{1}(C)}$ will be an extension of τ_{c} and $T_{1}(C)$ will be unique up to similarity. Let T_{1} have q columns with heights H_{j} and widths $W_{j}, 1 \leq j \leq q$. Let h denote the height of C and $H=\min _{1 \leq j \leq q} H_{j} . \quad$ We assume there exists a positive integer K such that $H>K h$. Let n_{j} denote the largest positive integer such that $n_{j} h \leq H_{j}$, $1 \leq j \leq q$. Thus $n_{j} \geq K, 1 \leq j \leq q$. Define w_{i} as

$$
\begin{equation*}
w_{i}=w(C) W_{i} / \sum_{j=1}^{q} n_{j} W_{j}, \quad 1 \leqq i \leqq q \tag{2.4}
\end{equation*}
$$

where $w(C)$ denotes the width of C. Now (2.4) implies

$$
\begin{array}{ll}
\sum_{j=1}^{q} n_{j} w_{j}=w(C) & \\
w_{i} / w_{j}=W_{i} / W_{j}, & 1 \leq i, j \leq q \tag{2.6}
\end{array}
$$

By (2.5), we can decompose C into $\sum_{j=1}^{q} n_{j}$ columns where n_{j} columns have width $w_{j}, 1 \leq j \leq q$. We stack the columns of width w_{j} to form a single column of height $n_{j} h$. If $n_{j} h<H_{j}$, then we add $H_{j}-n_{j} h$ additional intervals of width w_{j} to obtain a column c_{j} of height H_{j} and width w_{j}. Let $T_{1}(C)=$ $\left\{c_{j}: 1 \leq j \leq q\right\} . \quad T_{1}(C)$ is similar to T_{1} by (2.6). Let μ denote the total amount of additional measure needed to form $T_{1}(C)$. Then (2.5) implies

$$
\begin{equation*}
\mu<h \sum_{j=1}^{q} w_{j} \leq h w(C) / K \tag{2.7}
\end{equation*}
$$

Let T be a tower, and let C be a column. We can choose p sufficiently large so that if $T_{1}=S^{p}(T)$, then μ in (2.7) can be made arbitrarily small.

Let T be an M-tower, and let $\delta>0$. Since $\tau=\tau(T)$ is mixing, there exists a positive integer $N(T)$ such that

$$
\begin{equation*}
m\left(\tau^{n} I \cap J\right) \geq(1-\delta) m(I) m(J) / m\left(T^{\prime}\right), \quad n \geq N(T) \tag{2.8}
\end{equation*}
$$

where I and J are intervals in T.
Let T be a tower, and let I be an interval. Given $\alpha \epsilon(0,1)$, we say αI is in T if there exists a set A consisting of a union of intervals in T such that $A \subset I$ and $m(A)=\alpha m(I)$.

3. Construction

Let V_{1} be an M-tower, $\alpha \epsilon(0,1), \delta_{1}>0, \delta_{2}>0$, and $\eta>0$. Decompose V_{1} into disjoint copies $V_{2}=\alpha V_{1}$ and $V_{3}=(1-\alpha) V_{1}$. Assume V_{1} has q columns with rational widths and α is rational. Then V_{2} and V_{3} each have q columns with rational widths. Denote the columns of V_{3} as C_{j} with widths a_{j} / b, $1 \leq j \leq q$ (a_{j} and b are integers). Then $S_{a_{j}}\left(C_{j}\right)$ is a column with width $1 / b, 1 \leq j \leq q$. (We form $S_{a_{j}}\left(C_{j}\right)$ by dividing C_{j} into a_{j} copies and stacking
them.) We then stack the $S_{a_{j}}\left(C_{j}\right)$ to form a single column V_{4}; hence

$$
\left.V_{4}=\prod_{j=1}^{q} S_{a_{j}}\left(C_{j}\right) \quad \text { (note that } V_{3}^{\prime}=V_{4}^{\prime}\right)
$$

Let r be a positive integer, and let $V_{5}=S_{r}\left(V_{4}\right)$. Let $V_{6}=S^{p}\left(V_{2}\right)$, and let $V_{7}=V_{6}\left(V_{5}\right)$ as defined in §2. Note that p can be chosen sufficiently large with respect to r and η so that if μ denotes the measure added to form V_{7}, then $\mu<\eta$. Let $V_{8}=V_{6} \cup V_{7} . \quad V_{7}$ is similar to V_{6}, and V_{7} is an M-tower. Thus V_{8} is an M-tower, and the columns in V_{8} have rational widths.

Let $N_{1}=N\left(V_{1}, \delta_{1}\right) . \quad$ (See (2.8).) If $\tau_{1}=\tau\left(V_{1}\right)$, then I and J in V_{1} imply

$$
\begin{equation*}
m\left(\tau_{1}^{n} I \cap J\right) \geq\left(1-\delta_{1}\right) m(I) m(J) / m\left(V_{1}^{\prime}\right), \quad n \geq N_{1} \tag{3.1}
\end{equation*}
$$

Since αI and αJ are in V_{2} and V_{2} is a copy of V_{1}, it follows that if $\tau_{2}=\tau\left(V_{2}\right)$, then

$$
\begin{equation*}
m\left(\tau_{2}^{n} I \cap J\right) \geq\left(1-\delta_{1}\right) \alpha m(I) m(J) / m\left(V_{1}^{\prime}\right), \quad n \geq N_{1} \tag{3.2}
\end{equation*}
$$

Since $V_{6}=S^{p}\left(V_{2}\right)$, we have $\tau_{2}=\tau\left(V_{2}\right)=\tau\left(V_{6}\right)$. Let $\tau_{3}=\tau\left(V_{8}\right)$. Hence Lemma 2.3 implies that if E and F are intervals in V_{6}, then

$$
\begin{equation*}
m\left(\tau_{3}^{n} E \cap F\right) \geq m\left(\tau_{2}^{n} E \cap F\right)-2 m\left(V_{7}^{\prime}\right) \tag{3.3}
\end{equation*}
$$

Since αI and αJ are in V_{6}, (3.2) and (3.3) imply

$$
\begin{equation*}
m\left(\tau_{3}^{n} I \cap J\right) \geq\left(1-\delta_{1}\right) \alpha m(I) m(J) / m\left(V_{1}^{\prime}\right)-2 m\left(V_{7}^{\prime}\right), \quad n \geq N_{1} \tag{3.4}
\end{equation*}
$$

Let $N_{1}^{*}=N\left(V_{8}, \delta_{2}\right)$ where we also assume $N_{1}^{*}>N_{1}$. Since $\tau_{3}=\lim _{t \rightarrow \infty} \tau_{s t_{V_{8}}}$, we can choose t sufficiently large so that if $V_{9}=S^{t} V_{8}$ and $\tau=\tau_{V_{9}}$, then

$$
\begin{equation*}
m\left(\tau^{n} I \cap J\right) \geq\left(1-\delta_{1}\right) \alpha m(I) m(J) / m\left(V_{1}^{\prime}\right)-2 m\left(V_{7}^{\prime}\right), \quad N_{1} \leq n \leq N_{1}^{*} \tag{3.5}
\end{equation*}
$$

In (3.5), I and J are in V_{1}.

4. Mixing

We shall now construct a mixing transformation in stages utilizing the construction in §3 inductively. At each stage most of the space is mixed. However, at the $n^{\text {th }}$ stage, the transformation is defined on a small part of the space B_{n} so that certain Cesaro averages oscillate.

Let T_{1} be an M-tower, and let $\left(\alpha_{n}\right),\left(\varepsilon_{n}\right)$ and $\left(\eta_{n}\right)$ be sequences of positive numbers such that $\alpha_{n} \uparrow 1, \varepsilon_{n} \backslash 0, \sum_{n=1}^{\infty} \eta_{n}<\infty$, and $\sum_{n=1}^{\infty}\left(1-\alpha_{n}\right)=\infty$. Let $V_{1}=T_{1}$ in $\S 3$, and let $T_{1, i}=V_{i}, 2 \leq i \leq 9$, correspond to $\alpha=\alpha_{1}, \delta_{1}=\varepsilon_{1}$, $\delta_{2}=\varepsilon_{2}$, and $\eta=\eta_{1}$. Let $\tau=\tau_{T_{1,9}}, N_{1}=N\left(T_{1}, \varepsilon_{1}\right)$ and $N_{1}^{*}=N\left(T_{1,8}, \varepsilon_{2}\right)$. Thus (3.6) implies that if I and J are in T_{1}, then

$$
\begin{equation*}
m\left(\tau^{n} I \cap J\right) \geq\left(1-\varepsilon_{1}\right) \alpha_{1} m(I) m(J) / m\left(T_{1}^{\prime}\right)-2 m\left(T_{1,7}^{\prime}\right), \quad N_{1} \leq n \leq N_{1}^{*} \tag{4.1}
\end{equation*}
$$

Let $T_{2}=T_{1,9}$ and $N_{2}=N\left(T_{2}, \varepsilon_{2}\right)$. Consider $V_{1}=T_{2}$ in §3, and let $T_{2, i}=V_{i}, 2 \leq i \leq 9$, correspond to $\alpha_{2}, \varepsilon_{2}, \varepsilon_{3}$ and η_{2}. Note that $T_{2,6}=S^{p_{2}}\left(T_{2,2}\right)$ where we can choose p_{2} arbitrarily large. Now $T_{2,2}=\alpha_{2} T_{2}$
and $T_{2}=S^{t_{1}}\left(T_{1,8}\right)$ for some positive integer t_{1}. Thus we can choose p_{2} sufficiently large so that if $\tau=\tau_{T_{2,6}}$ and I and J are intervals in $T_{1,8}$, then

$$
\begin{equation*}
m\left(\tau^{n} I \cap J\right) \leq\left(1-\varepsilon_{2}\right) \alpha_{2} m(I) m(J) / m\left(T_{1,8}^{\prime}\right), \quad N_{1}^{*} \leq n \leq N_{2} \tag{4.2}
\end{equation*}
$$

Note that (4.2) also holds for I and J in T_{1}.
Let $N_{2}^{*}=N\left(T_{2,8}, \varepsilon_{3}\right)$ and $\tau=\tau_{T_{2,9}}$. Thus (3.5) implies that if I and J are in T_{2}, then

$$
\begin{equation*}
m\left(\tau^{n} I \cap J\right) \geq\left(1-\varepsilon_{2}\right) \alpha_{2} m(I) m(J) / m\left(T_{2}^{\prime}\right)-2 m\left(T_{2,7}^{\prime}\right), \quad N_{2} \leq n \leq N_{2}^{*} \tag{4.3}
\end{equation*}
$$

Let us now consider we have T_{1}, \cdots, T_{k-1}. For each $i, 1 \leq i \leq k-2$, we have

$$
\begin{align*}
& m\left(\tau^{n} I \cap J\right) \geq\left(1-\varepsilon_{i+1}\right) \alpha_{i+1} m(I) m(J) / m\left(T_{i, 8}^{\prime}\right), \\
& N_{i}^{*} \leq n \leq N_{i+1}, I \text { and } J \text { in } T_{i}, \tau=\tau_{T_{i+1, \varepsilon}} \tag{4.4}\\
& m\left(\tau^{n} I \cap J\right) \geq\left(1-\epsilon_{i+1}\right) \alpha_{i+1} m(I) m(J) / m\left(T_{i+1}^{\prime}\right)-2 m\left(T_{i+1,7}^{\prime}\right) \tag{4.5}\\
& \quad N_{i+1} \leq n \leq N_{i+1}^{*}, I \text { and } J \text { in } T_{i+1}, \tau=\tau_{T_{i+1,9}}
\end{align*}
$$

Let $T_{k}=T_{k-1,9}$ and $N_{k}=N\left(T_{k}, \varepsilon_{k}\right)$. Consider $V_{1}=T_{k}$ in §3, and let $T_{k, i}=V_{i}, 2 \leq i \leq 9$, correspond to $\alpha_{k}, \varepsilon_{k}, \varepsilon_{k+1}$ and η_{k}. Note that $T_{k, 6}=$ $S^{p_{k}}\left(T_{k, 2}\right)$ where we can choose p_{k} arbitrarily large. Now $T_{k, 2}=\alpha_{k} T_{k}$ and $T_{k}=S^{t_{k-1}}\left(T_{k-1,8}\right)$ for some positive integer t_{k-1}. Thus we can choose p_{k-1} sufficiently large so that if $\tau=\tau_{T_{k, 8}}$ and I and J are intervals in $T_{k-1,8}$, then (4.6) $m\left(\tau^{n} I \cap J\right) \geq\left(1-\varepsilon_{k}\right) \alpha_{k} m(I) m(J) / m\left(T_{k-1,8}^{\prime}\right), \quad N_{k-1}^{*} \leq n \leq N_{k}$.

Let $N_{k}^{*}=N\left(T_{k, 8}, \varepsilon_{k+1}\right)$ and $\tau=\tau_{T_{k, 8}}$. Thus (3.5) implies that if I and J are in T_{k}, then

$$
\begin{equation*}
m\left(\tau^{n} I \cap J\right) \geq\left(1-\varepsilon_{k}\right) \alpha_{k} m(I) m(J) / m\left(T_{k}^{\prime}\right)-2 m\left(T_{k, 7}^{\prime}\right), \quad N_{k} \leq n \leq N_{k}^{*} \tag{4.7}
\end{equation*}
$$

Thus (4.6) and (4.7) imply (4.4) and (4.5) hold for k. Hence the induction step is complete.

We thus obtain a sequence of towers $\left(T_{k}\right)$ such that $\tau_{T_{k}}$ extends $\tau_{\tau_{k-1}}$. The construction implies

$$
m\left(T_{k}^{\prime}\right) \leq m\left(T_{1}^{\prime}\right)+\sum_{i=1}^{k-1} \eta_{i}
$$

Since $\sum_{n=1}^{\infty} \eta_{n}<\infty$, we can consider $X=\bigcup_{k=1}^{\infty} T_{k}^{\prime}=[0,1)$. We define τ as $\tau=\lim _{k} \tau_{T_{k}}$. The properties of (ε_{k}) and (α_{k}) imply that

$$
\lim _{k}\left(1-\varepsilon_{k}\right) \alpha_{k} / m\left(T_{k}^{\prime}\right)=1
$$

Also, $\lim _{k}\left(1-\alpha_{k}\right)+\eta_{k}=0$ implies $\lim _{k} m\left(T_{k, 7}^{\prime}\right)=0$. Thus (4.4) and (4.5) imply that if I and J are intervals in T_{k} for some k, then

$$
\lim _{n} \inf m\left(\tau^{n} I \cap J\right) \geq m(I) m(J)
$$

Since the intervals in $T_{k}, k=1,2, \cdots$, generate a, an approximation argu-
ment implies

$$
\begin{equation*}
\lim _{n} \inf m\left(\tau^{n} A \cap B\right) \geq m(A) m(B), \quad A \text { and } B \text { in } a . \tag{4.8}
\end{equation*}
$$

Thus (4.8) implies τ is partially mixing for $\alpha=1$, hence τ is mixing.
We now consider the column $T_{n, 4}$ which is formed from $T_{n, 3}=\left(1-\alpha_{n}\right) T_{n}$. Let $B_{n}=T_{n, 3}^{\prime}=T_{n, 4}^{\prime} . \quad\left(T h u s m\left(B_{n}\right)=\left(1-\alpha_{n}\right) m\left(T_{n}^{\prime}\right)\right.$.)

Now for a fixed integer k, (2.2) implies

$$
m\left[B_{n+1} \cap\left(T_{n}^{\prime}-\bigcup_{j=k}^{n} B_{j}\right)\right]=\left(1-\alpha_{n+1}\right) m\left(T_{n}^{\prime}-\bigcup_{j=k}^{n} B_{j}\right)
$$

For fixed k, the sets $B_{n+1} \cap\left(T_{n}^{\prime}-\bigcup_{j=k}^{n} B_{j}\right)$ are disjoint. Hence their measure tends to 0 . Since $\sum_{n=1}^{\infty}\left(1-\alpha_{n}\right)=\infty, \lim _{n \rightarrow \infty} m\left(T_{n}^{\prime}-\bigcup_{j=k}^{n} B_{j}\right)=0$. Since this happens for each fixed k and since $m\left(T_{n}^{\prime}\right) \rightarrow 1$, we get that $m\left(\lim _{n} \sup B_{n}\right)=1$.

Let I denote a base interval in a column in T_{1} which has at least two intervals. Thus $x \in I$ implies $\tau(x) \notin I$. Let f denote the characteristic function of I. We shall define an increasing sequence of positive integers
$k_{1,1}, k_{1,2}, \cdots, k_{1, a_{1}}, k_{2,1}, k_{2,2}, \cdots, k_{2, a_{2}}, \cdots, k_{n, 1}, k_{n, 2}, \cdots, k_{n, a_{n}}, k_{n+1,1}, \cdots$ such that the average of f along the sequence oscillates for a.e. x.

In order to define $k_{n, 1}, k_{n, 2}, \cdots k_{n, a_{n}}$ we consider the column $T_{n, 4}$. The interval I chosen above is scattered in T_{n} as certain intervals in certain columns in T_{n}. Now $T_{n, 4}$ was formed from $T_{n, 3}$ which is a copy of T_{n}. Thus some intervals in $T_{n, 4}$ are contained in I and some are not. Let p_{n} be the number of intervals in $T_{n, 4}$ not contained in I.

Let $d_{n}=\sum_{i=1}^{n-1} a_{i}$ and choose $j_{n, 1}$ so that

$$
d_{n} / j_{n, 1}<1 / n
$$

Proceed to choose $j_{n, i}, 2 \leqq i \leqq p_{n}+2$, inductively so that

$$
\left(d_{n}+j_{n, 1}+\ldots+j_{n, i}\right) / j_{n, i+1}<1 / n, \quad 1 \leqq i \leqq p_{n}+1
$$

Let K_{n} be the height of $T_{n, 4}$; hence we can write

$$
T_{n, 4}=\left(I_{n, 1}, I_{n, 2}, \cdots, I_{n, K_{n}}\right)
$$

There are p_{n} intervals in $T_{n, 4}$ that are not contained in I and we list these as

$$
I_{n, i_{l}}, \quad 1 \leqq l \leqq p_{n}
$$

Let $x \in I_{n, i_{l}}$ and let t_{l} be the smallest positive integer such that $\tau^{t_{l}}(x) \in I_{n, i} \subset I$. If $i_{l}=K_{n}$, then take x such that $\tau(x) \in I_{n, 1}$. This is possible since we shall have $T_{n, 5}=S_{r_{n}}\left(T_{n, 4}\right)$ where r_{n} is chosen below. Hence most of $I_{n, K_{n}}$ is mapped to $I_{n, 1}$. By definition of τ on $T_{n, 4}, t_{l}$ is well defined and satisfies $t_{l}<K_{n}$, $1 \leqq l \leqq p_{n}$.

Choose u_{n} so that
and let $j_{0}=1$. Define

$$
u_{n} K_{n}>k_{n-1, a_{n-1}}
$$

$$
k_{n, j}=\left(j+u_{n}\right) K_{n}+t_{1}, \quad j_{0} \leqq j \leqq j_{1}
$$

and

$$
k_{n, j}=\left(j+u_{n}\right) K_{n}+t_{l}, \sum_{i=1}^{l-1} j_{i}<j \leqq \sum_{i=1}^{l} j_{i}, \quad 2 \leqq l \leqq p_{n}
$$

We also define

$$
\begin{aligned}
k_{n, j} & =\left(j+u_{n}\right) K_{n}+1, \quad \sum_{i=1}^{p_{n}} j_{i}<j \leqq \sum_{i=1}^{p_{n}+1} \\
k_{n, j} & =\left(j+u_{n}\right) K_{n}, \quad \sum_{i=1}^{p_{n}+1} j_{i}<j \leqq \sum_{i=1}^{p_{n}+2} j_{i} .
\end{aligned}
$$

Let $a_{n}=\sum_{i=1}^{p_{n}+2} j_{i}$ and $b_{n}=a_{n}+u_{n}$. Let $T_{n, 4}$ have width w_{n}. Choose r_{n} so large that $b_{n} w_{n} / r_{n}<2^{-n}$. Let C_{n} denote the subcolumn $\left(1-b_{n} / r_{n}\right) T_{n, 4}$ of $T_{n, 4}$, chosen so that $C_{n}^{\prime} \cap I_{n, 1}$ is an interval with the same left endpoint as $I_{n, 1}$. In the following we consider only $x \in C_{n}^{\prime}$. Thus if $x \in I_{n, i}$ then $\tau^{j K} n(x) \epsilon I_{n, i}, 1 \leqq j \leqq b_{n}, 1 \leqq i \leqq K_{n}$.

Now f is the characteristic function of the chosen interval I and f_{v} is the $v^{\text {th }}$ Cesaro average along the sequence

$$
k_{1,1}, \cdots, k_{1, a_{1}}, k_{2,1}, \cdots k_{n, 1}, \cdots k_{n, a_{n}}
$$

Let $x \in I_{n, i_{1}}$. The choice of j_{1} guarantees that

$$
\begin{equation*}
f_{v}(x)>1-1 / n \tag{4.9}
\end{equation*}
$$

for $v=d_{n}+j_{1} . \quad$ In general, let $x \in I_{n, i_{l}}, 1 \leqq l \leqq p_{n}$. The choice of j_{1}, \cdots, j_{l} guarantees that (4.9) holds for $v=d_{n}+j_{1}+\cdots+j_{l}$.

Now consider $x \in I_{n, i} \subset I$. Recall that $x \in I$ implies $\tau(x) \notin I$. Hence the choice of $j_{p_{n}+1}$ guarantees that

$$
\begin{equation*}
f_{v}(x)<1 / n \tag{4.10}
\end{equation*}
$$

for $v=d_{n}+j_{1}+\cdots+j_{p_{n}+1}$. Lastly, the choice of $j_{p_{n}+2}$ guarantees that for

$$
v=d_{n+1}=\sum_{i=1}^{n} a_{i}=d_{n}+\sum_{i=1}^{p_{n}+2} j_{i}
$$

we have (4.9) satisfied for $x \in I_{n, i} \subset I$ and (4.10) satisfied for $x \in I_{n, i} \nsubseteq I$.
The choice of r_{n} implies $m\left(B_{n}-E_{n}\right)<2^{-n} m\left(B_{n}\right)$, where $B_{n}=T_{n, 4}^{\prime}$ and $E_{n}=C_{n}^{\prime}$. We have already shown that $m\left(\lim \sup B_{n}\right)=1$; hence $m\left(\lim \sup E_{n}\right)=1$. If $x \epsilon \lim \sup E_{n}$, then the above construction implies

$$
\lim \sup f_{n}(x)=1 \quad \text { and } \quad \lim \inf f_{n}(x)=0
$$

Thus $f_{n}(x)$ does not converge a.e.

5. Partial mixing

Let τ be partially mixing for some $\alpha>0$. We define an invariant $\bar{\alpha}(\tau)$ as

$$
\bar{\alpha}(\tau)=\sup \{\alpha: \tau \text { is partially mixing for } \alpha\}
$$

It follows at once that τ is partially mixing for $\bar{\alpha}(\tau)$. Thus τ is mixing if and only if $\bar{\alpha}(\tau)=1$.

Given $\alpha \epsilon(0,1)$, we shall construct τ so that $\bar{\alpha}(\tau)=\alpha$. The construction is
a slight modification of the construction in §3. At the $n^{\text {th }}$ stage, we have an M-tower T_{n}. We decompose T_{n} into disjoint copies ${ }_{1} T_{n, 2}=\alpha_{n} T_{n}$ and $U_{n, j}=\left(1-\alpha_{n}\right) / n T_{n}, 1 \leq j \leq n$. The method is to mix ${ }_{1} T_{n, 2}$ and unmix $U_{n, 1}$. Then mix ${ }_{1} T_{n, 2}$ with $U_{n, 1}$ and unmix $U_{n, 2}$. Then mix ${ }_{1} T_{n, 2}, U_{n, 1}$ and $U_{n, 2}$, and unmix $U_{n, 3}$, etc. Since $m\left(U_{n, j}^{\prime}\right) \leq 1 / n$, the perturbation due to $U_{n, j}$ is small. We proceed to describe the construction as follows.

Let T_{1} be an M-tower, and let $\left(\alpha_{n}\right),\left(\varepsilon_{n}\right)$ and $\left(\eta_{n}\right)$ be sequences of positive numbers such that α_{n} is rational and $\lim _{n} \alpha_{n}=\alpha, \varepsilon_{n} \downarrow 0$ and $\sum_{n=1}^{\infty} \eta_{n}<\infty$. At the $n^{\text {th }}$ stage, we have an M-tower T_{n}, and let ${ }_{1} T_{n, 2}=\alpha_{n} T_{n}$ and $U_{n, j}=$ $\left(1-\alpha_{n}\right) / n T_{n}, 1 \leq j \leq n$ as above. Let $V_{2}={ }_{1} T_{n, 2}$ and $V_{3}=U_{n, 1}$. Let ${ }_{1} T_{n, i}=V_{i}, 4 \leq i \leq 9$, corresponding to $\delta_{1}=\delta_{2}=\varepsilon_{n}$ and $\eta=\eta_{n} / n$. Now let $V_{2}={ }_{1} T_{n, 9}$ and $V_{3}=U_{n, 2}$. Let ${ }_{2} T_{n, i}=V_{i}, 4 \leq i \leq 9$, corresponding to $\delta_{1}=\delta_{2}=\varepsilon_{n}$ and $\eta=\eta_{n} / n$. Proceeding inductively, let $k<n$, and let $V_{2}={ }_{k} T_{n, 9}$ and $V_{3}=U_{n, k+1}$. Let ${ }_{k+1} T_{n, i}=V_{i}, 4 \leq i \leq 9$, corresponding to $\delta_{1}=\delta_{2}=\varepsilon_{n}$ and $\eta=\eta_{n} / n$. Let $T_{n+1}={ }_{n} T_{n, 9}$.

At the $n^{\text {th }}$ stage, we repeat the construction in §3 n times. This requires choosing positive integers $r_{n, k}$ and $p_{n, k}, 1 \leq k \leq n$ where $r_{n, k}$ and $p_{n, k}$ are utilized in forming ${ }_{k} T_{n, i}, 4 \leq i \leq 9$, corresponding to $\delta_{1}=\delta_{2}=\varepsilon_{n}$ and $\eta=\eta / n$. Thus the amount of measure added at the $n^{\text {th }}$ stage is less than $n \eta_{n} / n=\eta_{n}$. Hence the total measure added is finite. Thus we may consider $X=\cup_{n=1}^{\infty}$ $T_{n}^{\prime}=[0,1)$ and $\tau=\lim _{n} \tau_{T_{n}}$.

Utilizing the same technique as in $\S 4$, we can choose the parameters $r_{n, k}$ and $p_{n, k}, 1 \leq k \leq n$, so that

$$
\begin{align*}
\lim \inf m\left(\tau^{n} \cap J\right) & \geq \lim \inf \left(1-\varepsilon_{n}\right) \frac{\alpha_{n} m(I) m(J)}{m\left(T_{n}^{\prime}\right)}-2 \eta_{n} / n \tag{5.1}\\
& =\alpha m(I) m(J)
\end{align*}
$$

where I and J are intervals in T_{l} for some l. Since these intervals generate a, (5.1) implies τ is partially mixing for α. On the other hand, we can guarantee τ is not partially mixing for $\alpha+\varepsilon, \varepsilon>0$, by simply choosing $r_{n, k}=n$, $1 \leq k \leq n$.

Added in proof. U. Krengel has shown examples as in $\S 4$ hold for general mixing transformations.

References

1. J. R. Blum and D. L. Hanson, On the mean ergodic theorem for subsequences, Bull. Amer. Math. Soc., vol. 66 (1960), pp. 308-311.
2. N. A. Friedman and D. S. Ornstein, On induced transformations, Technical report, Univ. of New Mexico.
3. -O On partially mixing transformations, J. Math. Mech., vol. 20 (1971), pp. 767-775.
[^0]
[^0]: State University of New York
 Albany, New York
 Stanford University
 Stanford, California

