

PURDUE UNIVERSITY

DEPARTMENT OF STATISTICS

DIVIION OF MATHEMATICAL SCIENCES

$$
\begin{array}{llll}
79 & 12 & 4 & 095
\end{array}
$$

and
Wen-Tao Huang, Academia Sinica, Taiwan
D. Incroduction and Summary

There is a large body of literature on tho mixture of distributions going over about the last eighty years. Since Pearson [84] considered the estimation of the parameters of the mixture of two normal densities in 1894, many more papers have appeared related to the problem of statistical inference about the parameters of mixture and probabilisti- propertios of mixture densities. In i960, Teicher [120] started the study of goneral considerations of identifiability of mixtures of distributions. Since then the interest in the mathematical uspoces of mixtures has rocuived an incroasing amount of attention, and the apprach to the statistical inferenco of mixtures has also seen more devolopment. Rotently, the studies of mixtures and related topics in statistics and probability havo devoloped even more so, that these can be classified as a now area. for this reason, the present authors docided to roview (survoy) some of the literature dealing Whth some aspects of this arca wich soomed inportant to them. Thw topics covered reiate to probabilistic propertios, estimation, hypothoses cesting. and multiple dacision (seloction and ranking) procedures.

[^0]The applications of mixtures of distributions can be found in many fields such as ecology, taxonomy, fishery, biology, plant and animal hreeding, psychology and engincering, etc. In biology it is often desired to measure certain characteristics in natural populations of some particular species. The distribution of such characteristics may vary markedly with age of the individuals. Age is difficult to ascertain in samples from populations. In such cases the biologist observing the population as a whole is dealing with a mixture of distributions, the mixing in this case is done over a parameter depending on the unobservable variate "age". In agriculture remotely sensed unlabelled observations from several crops are available and sometimes along with some labelled observations informatior is also available about the distribution of individual crop population. On the basis of such information one wishes to estimate the acreage of a particular crop or all crops as proportion of the total acreago.

In statistical applications of mixtures, the mixture of densities can be used to approximate some parametor(s) associated with a density. For example, the coefficiont of skewness of Fisher's transformation $z=\frac{1}{2} \log \left(\frac{1+r}{1-r}\right)$ of the correlation coefficient decreases nore rapidly than the excess of its kurtosis when the sample size increases. The usual normal approximation for its distribution can be improved by mixing it with logistic distribution. The resulting mixture approximation which can be used to estimate the probabilities and the percentiles, compares favorably in both accuracy and simplicity (see (78]).

In this papor we restrict ourselves to probabilistic properties, esti* mation, hypotheses testing and maltiple decisions. In Section 1 wo review these in rosults concorning probabilistic properties of mixing distributions including the identifiability, scale mixture, infinite divisibility, atomoness
and perfectness. In Section 2 we survey results on estimation theory which include the method of moments, method of maximum likelihood estimation, method of least squares, Bayesian estimation method, and method of curve fitting. lor the hypotheses testing problem, we give those results which provide tests for hypothesis whether an observed sample is mixed from two samples with certain unknown proportion; we also give those results which test if the mean of the mixture population is equal to some known value. Nll these are treated in Section 3. And finally in the last section (Section 4) we study some selection problems of mixture populations. We use the subset selection formalation when the sample size is small and also study the case of larie sample using the indifference zone approach.

At the end of the paper we have given a reasonably comprehensive and usoful bibllography concerning the topics discussod in this paper and also tho ropic of experimontal dosigns. This last topic is not discussed in this paper and hence the papors dealing with it aro marked with a lin the bibliography.

1. Probabilistic Proporties

Let $G(0)$ be cumiative distribution function. Let $F i x, 0)$ be cumulative distriubtion function in for each 0 on the support of C. Assume $\mathrm{F}(x, 0)$ is Borel measurable in 0 for overy x. then, $H_{G}(x)$ defined by $H_{G}(x) \notint_{0}^{\infty} F(x, \theta) d f(\theta)$ is a distribution function, which is called a g-mixture of F and G is reforred to as a ixing distribution. When 6 is a discretc distribution, $H_{6}(x)$ is called a finite mixture and G is referred to as a finite mixing distrihution.
 cach point of 9 is containod in $\sigma(0)$. Let g denoto a class of mixing distri.

$G \in \mathscr{G}$. Let M denote a mapping from \mathscr{S} to such that for each $G \in \mathscr{S}$, $M(G)=\int_{-\infty}^{\infty} F(x, \theta) \mathrm{dG}(\theta)$. Class $\mathscr{\mathscr { C }}$ is called identifiable if M is one-to-one so that one can identify some unique mixing distribution G_{0} when a certain $\mathrm{H}_{0} \in \mathscr{\mathscr { L }}$ is given.

1^. Identifiability of Mixtures
Sone basic properties of mixture was studied by Robbins in 1948 [95]. Teicher [120] extended and generalized this work. Teicher [121] initiated the study of identifiability problem. In [12l], location and scale parameter mixtures are considered, i.0. when $\theta \mathrm{is}$, respectively, the location and the scale parametor of $F(x, \theta)$ Sufficient conditions for the identifiabilities of when θ is, respectively, the location and scale parameter, are given. It is also shown by Toicher [121] that d is identifiable if $\mathcal{P}(x, \theta), \theta \in \theta$) is an additively closed family, i.e. $F\left(x, \theta_{1}\right) * F\left(x, \theta_{2}\right)=F\left(x, e_{1}+\theta_{2}\right)$, the operation is the usual convolution. In [122] necessary and sufficient conditions for identifiability of finite mixtures are given: Important distribstions such as normal and gama are show to be identifiable under finite mixing. Some suffictent conditions are also givon for the cless of binowial distributions to be identifiable.

These results are largoly extended by yeko.: tiniterragins [127]. They consider the genoral case of p-dimensional distributions. Using the methods of linear algebra, the authors obtaln a nocessary and safficient condition for identifiahility of finite mixtures. This condition is very useftil sinee It is oasy tc chech.: They conelude that the family of p-dimonsional Gaussian distributions, the fanily of Cuachy distritutions, the family of non-dogenerate nexative binomial distributions, the family of products of n exponential dise fributions (for fixed integer n), and tile union of the family of p-variate

Gaussian and the family of products of n exponential distributions are all identifiable. Using a result given by [122], Mohanty [76] showed that the finite mixture of Laguerre distributions is also identifiable. Chandra [14] has proved some results given by Teicher [122] and Yakowitz and Spragins [127] by some other methods. Recently, Blum and Susarla [9] gave a short and clear set of equivalent conditions for identifiability. Let $A:\{F(x, \cdot): x \in R\}$. Denote $C_{0}(3)$ the Banach space of continuous functions on which vanish at ∞ and the norm is given by the sup norm. Blum and Susala [9] showed that if $A \subset C_{0}(9)$, then $\$$ is identifiable if, and orly if A generates $C_{0}(9)$ in the sup norm.

1B. Scalo Mixtures
When the mixture is defined in the form $H_{G}(x)=\int_{0}^{\infty} P\left(\frac{x}{\theta}\right) d G(0)$, the mixture is called the scale mixture. This kind of mixture has special interest both In probability theory and statistics. It is easy to see that the density and the associated charactoristic function of $H_{G}(x)$ can be written, respectively, 35

$$
h_{G}(x)=\int_{0}^{\infty} \frac{1}{\theta} f\left(\frac{x}{g}\right) d G(\theta), \quad \omega_{H}(t)=\int_{0}^{\infty} \omega_{f}(t \theta) d G(0)
$$

 distribution) where X, Y and Z are, respectively, associated with $F_{X}(x)$, $G_{y}(0)$ and $H_{2}(x)$. It is interesting to note that the class of seale mixtures is closed under the operation of scale mixing, f.e. if FES, the class of seale nixtures, then $H \in S$ where $\left.\|(x)=\int_{0}^{\infty} P f_{0}^{x}\right) d G(\theta)$ where $G(0)$ is some distrilution function on $(0, \omega)$, Define $\mathbb{m}_{x} \times\left\{H_{z}: z=d^{x y}\right\}$. Then, we have for $i=0$, $0 \leq p \leq 1, F_{1}, F_{2} \in \dot{E}_{x}-p F_{1}(a x)+(1-p) F_{2}(a x) \in$ 土 $_{x}$. The conditions for the ideatifiability in the case of scaie mixture can be put in another form in torms of mont conditions which is given by keilson and stentel [6*)
as follows. If $X \neq 0$ a.s. and $E|X|^{\epsilon}<\infty$ for some $\in>0$ and if $E|z|^{\epsilon}<\infty$, then $\mathrm{E} \mathrm{Y}^{\epsilon}<\infty$ and there exists one-to-one correspondence between Z and Y ($\mathscr{\mathscr { L }}$ and \mathscr{G}). Now, if we assume x to be a normal with mean 0 , or, the kernel of the mixture, i.e. $F(x, \theta)$ is the normal distribution function with mean 0 ; we can characterize the class of mixtures. Let $\mathscr{W}(\downarrow)$ denote the class of scale mixtures (variance mixtures) of normal distribution with mean 0 . From the Bernstein's representation theorem for completely monotone functions (see [37 p. 415]) we can conclude that $f \in(\phi)$ if, and only if, $\mathscr{H}_{f}(t)$, the characteristic function of f, is an even function and $\varphi_{f}(\sqrt{ })$ is completely monot one on $(0, \infty)$. We recall that $h(x)$ is completely monotone on ($0, \infty$) if $(-1)^{n} h^{(n)}(x) \geq 0$ for $x>0$ and $n=0,1,2, \ldots$ Accordingly, by checking the conditions, it can be seen that the Cauchy distributions, the laplace distributions, student t-distributions and the symetric stable distributions are all in the class $\boldsymbol{p}(6)$. This was obtained by kelker [66]. Also, losistic and double exponential distributions betong to ${ }^{2} /(\$)$ (ll). To charactorige $\Phi(\$)$ in another type, we restate a result of Schoenberger [104] as follows: (Edeft if, and only if there oxists a function such that $f_{f}(t)=v\left(t^{2}\right)$ and for $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right), \psi_{f}(t)=0\left(|t|^{2}\right), a p-d i m e n s i o n a l$ characteristic function for cach p ($p, 1,2, \ldots$). It was shown in [64] that iff) is closed under the multiplication cf densities with suitable renorming if the product is integrable. If z has density $f_{2}(*)$ which is symoeric about 0 , Nohanty [76] showed that a necessary and sufficient condition for $z=N V$, where
 for $2, y$. He aiso found some special correspordence between z and y, if $f_{z}(2)=e^{-2}\left[\frac{1}{\left.1+e^{-2}\right]^{2}}\right.$ is logistic, then $G_{y}(y)=2 \sum_{1}^{m}(-1)^{k-1} k^{2} y^{-3} \exp \left(-k / 2 y^{2}\right)$ i.e. $\frac{1}{2} Y$ is the asymptotic distribution of the well-known Rolmogorov's gooiness of fit statistic. This rosult is useful for monte carlo studies. It was
also found that if Z is double exponent, then $\frac{1}{2} Y^{2}$ is exponential. Finally, it is interesting to ask how broad is the classs $\varnothing(\$)$. For given $\alpha_{1}, \alpha_{2}\left(\frac{1}{2}<\alpha_{1}<\alpha_{2}\right)$, let $F \in \mathscr{U}(\phi)$ with $F\left(x_{1}\right)=\alpha_{1}$ and $F\left(x_{2}\right)=\alpha_{2}$. Let $\mathscr{L}\left(\Phi ; x_{1}, x_{2}, \alpha_{1}, \alpha_{2}\right)=\left\{H(x): H\left(x_{1}\right)=\alpha_{1}, H\left(x_{2}\right)=\alpha_{<}, H(x) \in \mathscr{L}(\phi)\right\}$. Then, Efron and 01 shen [35] showed that, there exists an $F^{*} \in \mathscr{L}\left(\Phi ; x_{1}, x_{2}, \alpha_{1}, \alpha_{\text {, }}\right)$ such that $F^{*}\left(x^{\prime}\right)=\max H\left(x^{\prime}\right)$ for $x^{\prime} \in\left(x_{1}, x_{2}\right)$ and $F^{*}\left(x^{\prime \prime}\right)=\min H\left(x^{\prime \prime}\right)$ for $x^{\prime \prime} \notin\left(x_{1}, x_{2}\right)$ where the maximum and minimum are over the set $H\left(\$; x_{1}, x_{2}, a_{1}, a_{2}\right)$.

If X is considered to be a gamma distribution of order a $(0<\alpha<\infty)$, we denote the class of mixture by $\mathscr{\mathscr { M }}_{G}(\alpha)$. Then, we note that $\mathscr{\mathscr { M }}_{G}(\alpha) \subset \mathscr{\mathscr { y }}_{G}(\beta)$ for $a<B$. When $a=1, \mathscr{L}_{G}^{(1)}$ is the mixture of exponential density and for $f_{z} \in \mathscr{W}_{G}(1), f_{z}(x)$ is completoly monotone. $\mathscr{L}_{G}(1)$ plays a key role in stochastic processes rovorsible in time. Kingman [67] showed that any density Six) on ($0, \infty$) can be approximated arbitrarily closely by a finite mixture of exponential densities and this mixture is in $\mathbb{W}_{\mathrm{G}}^{(1)}$. Let $\mathcal{W}_{\mathrm{G}}^{\mathrm{S}}(\mathrm{a})$ denote the clase of mixtures of $\Gamma_{a}+r_{a}^{D}$ where r_{a} denotes the gama of order a and
 $\lim \tilde{G}_{6}^{(a)}=\boldsymbol{y}(0)(\sec [64))$.

Another important property concerning mixure is the infinite divisibility. Ne recall that a random variable x is infinitely divisible (A.d.) f f, for any positive intager n, there exist indopendently identically distributod randam variables $x_{1}, x_{2}, \ldots, x_{n}$ such that $X_{d} x_{1}, x_{2}, \ldots * x_{n}$. It has been ghown (al) that in many familios of i.d. distribution functions, the property of i.d. is preserved under the operation of mixing. Furthermore, for cortain families, this property still holds even when $\begin{gathered}\text { axing and convolution are aplied ropeatedly. }\end{gathered}$ To find such a class, define \mathcal{S}_{0} to be set of all real positive charactoristic functions that are log-convex on ($0, \infty$). Then it is shown in $\left\{04 \mid\right.$ that \mathcal{S}_{0} is closed under (a) wixing (b) raising to positive power (c) scaling (d) multio pilcation and thus (c) any combinatior of (a). (b). (c) and (d).

For the scale mixing of normal distributions, Kelker [66] showed that if the mixing distribution is non-degenerate and finite, i.e. $G(b)=1$ for some finite b, then $H_{G}(x)$ is not i.d.. On the other hand, we note that $H_{G}(x)$ is i.d. if $G(x)$ is i.d. (see [64]).

Following the notation $\mathscr{L}_{G}(1)$ introduced earlier, that is, the class of mixtures with mixand a standard exponential density, it is shown [64] that each eiement in $\mathbb{W}_{G}(1)$ is i.d. Also, each element in ${\underset{W}{G}}_{(1)}^{S}$ is i.d.

Now we consider the yower mixture. Let $\varphi_{X}(t)$ be an infinitely divisible characteristic function. We define $\phi_{Z}(t)=\int_{0}^{\infty}\left\{\varphi_{X}(t)\right\}^{9} d G_{y}(\theta)$ as the power mixture of $\varphi_{X}(t)$ (or equivalently X). Then, it is easily seen that $\phi_{2}(t)$ is i.d. and the class $\mathscr{H}(X)$, the set of all power mixtures of $\varphi_{x}(t)$, is closed under mixing and convolution (5ce [64]).

It is interesting to note that all scale mixture of Cauchy distributions are l.d. (see [66]). For the scale mixing steutel [116] characterizes a big class which are i.d.. He state it as follows, If $\varphi(t)$ is i.d., then $\forall(\theta)=\frac{\theta}{\theta}=\log \theta(\theta)$ is an $1 . d$. characteristic function for $\theta>0$ and $\theta_{i}(t)=\int_{0}^{9} u(\theta) d G(\theta) \cdot$ is also 1.d.

1c. Sow Other Properties
Let ($x, 0, P$) be a probability space. A set $A \in$ wis called atom of P if for each $B C A$ such that $B \in \mathbb{E}$ either $P(B)=0$ or $P(B)=P(A)$. P is called atomic if each positivo measurable set contains an rom. P is nonatomic otherwise. The atomic or non-atomic properties of the mixture measures are not always preserved. In [90] an example was given where the mixture of a non-atomic messure is atomic. However, on a real line or a subset of a real line a, if the probability measure $P(x, \cdot)$ is non-atomic for cach x. then the aixture 1 s always non-atomic for any probability
measure $G(\theta)$. For other more general cases, three sufficient conditions were given in [90] for the non-atomicness of the mixture when the mixand measure is non-atomic.

The perfectness of a probability measure was first discussed in the book [42]. This concerns the approximation of a measurable set by a closed or open set. For a probability space $(X, \mathcal{A}, P), P$ is called perfect if for every \mathcal{O}-measurable real-valued function f on X and every subset S of the real line for which $f^{-1}(S) \in \mathscr{L}$, there is a linear borel set TCS such that $P\left(f^{-1}(S)=P\left(f^{-1}(T)\right)\right.$. To check the porfectness of P, Sozonov [101] showed that P is perfect if, and only if, for each P-measurable real. valued function f on X there is a linear Borel set $A_{f} C(X)$ such that $P\left(f^{-1}\left(A_{f}\right)\right)=1$. Accordingly, it is easy to see that a discrete measure is perfect. We call a mixture measure perfect or non-perfect according to whether the mixing measure is perfect or not. Rodine $\{97\}$ eonjecturad that perfect mixtures of perfect neasures are perfect. it was shown to be false by Ramechandran [89]. However, it is true that the perfect mixtures of dis= crete masures (thus perfect) are arfect (sec (s91), In general, perfect mixture of non-perfect measures can be perfect. The perfectness of the alxturc and mixand measures does not guarantee the perfoctness of the mixing measure (see [89]).

2. Estimation

 discrete, then $H(x)$ is given by $H(x)=\sum_{i=0}^{\infty} \theta_{i} P\left(x, a_{i}\right)$. When the sumbition Is finite, $H(x)$ is called finite wixture. In this section, we stuly the problam of estimating $G(a)$ based en independent ouservations from $I 1(x)$. Howeter, for the most part we will discuss the case of finite mixtures. For the case of finite mixturos, the stuly is tiven for the estimation of
0_{i} and α_{i}. The methods for estimation can be classified as the method of moments, method of maximum-likelihood estimation, the minimum square method, Bayesian estimation method and the method of curve fitting. In this problem, all mixture distributions are assumed to be identifiable so that the estimations of parameters make sense. Some important classes of continuous and discrete distributions which are identifiable have been mentioned in Section 1A.

2A. Method of Moments
In 1894 K . Pearson [84] studied the dissection of asymptotic and symnetric frequency curves into two components of normal frequency distributions. This maty be the earliest paper that investigated the estimation of parameters in the finite mixture case by the use of the mathod of moments. Let $9\left(x, u, q^{2}\right)$ denote the normal edf with mean u and variance g^{2}. The mixture is given by $H(x)$ a a $\left(x, H_{1}, a_{1}^{2}\right)+(1-a)\left(x, \mu_{2}, \sigma_{2}^{2}\right)$. K. Parson $[84]$ computed the first five moments and by equating the population momonts to the sumpe moments he obtained a nonte (9th degree) equation. Solving for these equations he finally obtained the estimates for $\alpha, H_{1}, \sigma_{1}, H_{2}$ and o. . Howtor, the estimates are not unique. He used the data of 1000 crabs frow Naples. For study of the frequency distributions of the breadth of forehead of crabs, assuminy the crabs were from two differont specios, he considered the ratio of the forehead to the body-length as the abscissae of the curve. Applying the wethod he developed, he arrived at two sets of solutions. This lack of uniqueness of solutions botherod Pearson and he suggested choosing the set of estimates which resulted in the closest arroowent between the sixth central moment of the samplo and the corresponding moment of the aixture wich axe supposed to be fitted. Charlior in 1906 [16]
suggested a somewhat simpler but still laborious, solution of the moment equations involving a cubic and the ratio of two other polynomials. Burrau in 1934 [13] computed certain functions of the moments which are expressed in terms of the five parameters to be estimated. In the same year Stromgren [117] computed some tables and charts to aid calculation of solutions of some equations which are derived using some given function of moments. Again in the same year of 1934, Pollard [86] considered the dissection of a symmetric density into three components of normal density. Under some assumption Pollard was able to reduce eight parameters to five. Since the density is assumed symmetric so that odd moments are zero. Since five equations are needed for the five unknown parameters, the first eight moments are computed. Pearson's solution [84] are not applicable in this case. However, the development is analogous.

Instead of moment equations, one might expect the application of tech. niques involving iteration for maximum likelihood oquations. This has been done, in fact, by Rao [91] for special case $\sigma_{1}=\sigma_{2}$. This assumption simplifies the problem considerably, However, the calculations involved are still quite cumbersome.

In 1967, Cohen [21] again derived the nonic oquation which was first obtained by Pearson. Cohen considerably reduced the total computational effort otherwise required. Some special cases consldered by Cohen are $\sigma_{1}=\sigma_{2}=0$ or $\theta_{1}=\theta_{2}=\theta$. Some conditional maximum likelihocd and conditional chi-square estimates were also discussed. An example was provided to illustrute the proceduro proposed for tha estimates. llowever, the problem of lack of uniqueness of squations still remalned. Another solution to the example givon by corin [22] was provided by lawkins [50].

In general, multiple solutions for the estimate of parameters are possible. When multiple solutions occur, either solution would be the one of interest and should be examined with an eventual choice of a preferred solution in mind. And when a clear decision can not be made on the basis of any tests, a larger sample should be taken if conditions so permit. Even if some tests are pussible, the confidence of conclusion of the estimates are far weakened. Having multiple solutions for estimate is one of the shortcomings for the application of the method of moments.

Later 'Rao [92] considered the same problem for the special case of equal variances and his results led to a simple set of equations having a unique solution. Rao's method was later programmed for computer's use by Hasselbled [48] i. 1 was found to work very well.

Gregor [43] based on the idea of Doetsch [30] as provided by Medgyessi [73] constructed an algorithm which can be used to find the mean of each component with the aid of a fourier transformation of the given density function. The mothod of reduction of variances was utilized to determine the unknown viriance and frequencies of the components (using the continued fraction approximation for the error function). To test the goodness of fit Kolmogorov-smirnov test statistics were used.

Day [27] considered the estimate of the proportion of mixture a by the method of moments when weh comonent is a multivariate normal with comon variance matrix. for tho unduariate case, some simulation results showed the estimate beharereasonably nearly as well as maxinim likelihood estimate. Howevor, when the dimonsionality of the component is larger, the est imates appear poor.

John [56] considered a related but different model of problem. It was assumed that the sample of size N was the result of mixing a random sample of size N_{1} from a p-variate normal population with mean ${ }_{-1}$ and the covariance matrix \ddagger with an independent random sample of size N_{2} from another p-variate normal population with mean ${ }_{2}$ and covariance matrix $\$$. It was desired to estimate $N_{1}, N_{2}, \mu_{1}, \mu_{2}$ and \ddagger. The method of moments was considered for the case $\mathrm{p}=1$. It has been shown that in this case there is an unique of the solution for the estimates. The same method proposed can be applied to the general case of $p>1$. Asymptotic normality of the moment estimates was also studies by John [56]. For $p=2$, an example was worked out using the proposed method.

When the components are other than normal, Mendenhall and Hader [75] considered the exponential populations. Rider [93] also considered the same case with less restrictions. He derived the ostimates by the method of moments. It was shown that the estimate obtained were consistent. However, it is not clear that the estimates always exist. Cohen [20] considered the cases of mixture of the Poisson distributions and a mixture of one Polsson and one binomial. In the former case, he considored the estimates based on the first two sample moments and the zoro sample frequency. Again, he considored the mixture of truncated Polsson distributions with missing zero classes. For the latter case, he used the technique of factorial moments. As the author pointed out, in practice, the more difficult and most important problem is to dotermine which components are appropriate to fit the data. Rider [94] also considered the case of Poisson mixture, and computed asymptotic variances. When the components are binomial, Blischke [5] used the technique of fuctorial moments to obtain some relations amang moments and paramctors. First three moments wore compured to obtain threc equations so that a unique solution is possible for thre e unknown paramoters. However,
the estimates obtained by Blischke [5] have the unpleasant property of assuning complex as well as indeterminate values with positive probability, though this probability tends to zero as sample size increases to infinity. He also showed that the moment estimates $\underset{\sim}{\hat{\theta}}=\left(\hat{p}_{1}, \hat{p}_{2}, \hat{\alpha}\right)$ are asymptotically normal and consistent. Blischke also considered asymptotic relative efficiency (ARE) of the moment estimates $\hat{\theta}=\left(\hat{p}_{1}, \hat{p}_{2}, \hat{\alpha}\right)$. The ARE of $\hat{\theta}$ is defined as the ratic of $\sigma_{\theta^{*}}^{2} / \sigma_{\hat{\theta}}^{2}$ where $\sigma_{\theta^{*}}^{2}$ is the Cramer-Rao lower bound of θ^{*} which is the maximum likelihood estimate. When the components of the estimates $\hat{\theta}$ are considered jointly, e joint asymptotic relative efficiency (JARE) of $\hat{\theta}$ relative to the maxiy M likolihood estimate θ * was also considered defined by the square of the ratio of the areas of the ellipse of concentration of the respective asyaptot'c nurmal distributions. It was proved that the joint asymptotic efficiency is iven by $\operatorname{det}\left(\Sigma_{\theta^{*}}\right) / \operatorname{det}\left(\varepsilon_{\hat{\theta}}\right)$ whero $\Sigma_{\dot{\theta}}$ is the convariance matix of θ. For some special values of r_{1}, P_{2} and a, Blischke [5] computed both ARE ard JARE and it was found that neither ARE nor JARE are monotone with respect to n. Howover, for thn inmiting case, they always attain the value 1.

When the number of binomial compone. is is larger than 2, Blischke [7] sonsiderod a general case of x binomia: comnonents with $2 \mathrm{r}-1$ paranters to he estimated. He also applied the mothod of moments to obtain the first estimate. Then, he considerid anothor afficient estimate based on the moment estiontes. This construction of altomarive ustimate was made at the sugftution of to Cham [69]. By Nayman's linear\{zation technique BAN estimates were also constructed. Asymptotic rolative efficiency ard soint asyaptotic relative officioncy of the monent esthates were discussed by Blischke [\dagger]. A sumorical oxample for the comparisons of the mothod of ment and other two altornarive ostikates wis given.

The results for the mixture of r binomials can also be obtained for a number of other distributions. For example, they are applicable to mixtures on p (with known k) of negative binomialy and hence to its special cases, the Pascal and geometric distributions. As regards other cases, Bliss and Fisher [8] , Shenton and Wallington [107] and Katti and Jurland [62] have discussed the negative binomial which is a compound Poisson distribution. Sprott [115] and Katti and Gurland [61] discussed the case of the Poisson-binomial distributions which is the Poisson mixture of parameter n of binomial. The case of the Poisson-negative binomial was studied by Katti and Gurland [60], For the Neyman contagious distributions (see [30]) Shenton [105] discussed efficiency of the moment estimates. And for a two parameter beta-distribution mixture on parameter p of binomial which is the so-called negative hyporgeometric by Shenton [106] the moment estimates were studied by Skellan [108]. Mosimann [77] studied the mixture of multinomials. Palls [36] considerod a mixture distribution of two Woibull distribution each with difforent scale and difforent shapo parameter. Momont ostimates were proposed and some graphical illutration and a numerical example were given by Palls [36]. For sone vther details reference should be mado to B1ischko [S] and Isaenko and Urbakh [55].

Moment estimates are usually not considered very officient excopt for some cascs such as the normal, binomial and Poisson distributions. Methods more officient such as the mothod of maximu likelthood are more dosirable. However, In many cases, such as for example when more unknown parameters noed to be estimated, the maximum likelihood equations are found complicated and almost intractable. Undor this situation, one may still consider the moment ostimates.

For some further studics on the efficiency of moment estimates reference should be made to [105], [106], [115], [5], [7], |39], |48|, |11:3| and [51].

2B. Methods of Maximum Likelihood
In many cases, maximum likelihood estimates are considered to be more $\underset{\beta}{\text { efficient than the moment estimates. For the problem of estimating of }}$ parameters in the distribution of mixtures most authors treated it by the method of moments in the early years. In 1966, Hasselblad first considered the estimation problem by the method of maximum likelihood. The population from which we sample oboys a density function which is a mixture of k normal densitios. Taking logarithms of the likelihood functions and differentiating with respect to each parametors μ_{i} (moan), σ_{i}^{2} (normel variance) and α_{i} (mixture proportion) $i=1,2, \ldots, k$, and oquating them to zoro Hasselblad [48] obtained $3 k-1$ independent equations with $3 k-1$ unknown parameters. By substitution of some equal quantity in some equation into another equation, he obtained the first iteration scheme. A rough estimate from the truncation method is used as an initial guess for this scheme. The idea of the generalized stcopest descont method proposed by coldstein was applied. It can be shown that the direction traveled by the procedure at each iteration possesses positive inner product with respect to the gradient. For an alternative treatment of the $3 k-1$ equations, Hasselblad [48] applied the Newton foration method, and finally he obtained a matrix equation of an iteration scheme. The investigation of the variances of the estimates are important. Hassolblad [48] gave the explicit formala for the second partials of logarithms of the likelihood-function and from these, the information matrix and thus tho variance-covariance antrix of the estimates wes approximated. Some details of the asymptotic variances of the estimates of
the means, proportions and standard deviations were also given. However, it should be pointed out that the solutions are limited to grouped data in which all class intervals are of equal width. And, in practice, these results obtained would not be likely to show satisfactory unless some conditions should be met, for exmple, grouping intervals should be narrow, a large sample must be available, and when $k=2$, it is desired to have sample size 1000 or more and when k is large, even larger sample sizes are needed. When the separation between component means are insufficient and unable to obtain k distinct sample modes, the estimates obtained are very likely to be unreliable.

For the same problem, Beflicodian [4] showed that the maximum likelihood estimates for the component mean μ_{i} and component variance σ_{i}^{2} are, in fact, respectively, a weighted sample mean $\dot{u}_{i}=\sum_{j=1}^{n} \dot{w}_{i j} X_{j}$ and the weighted sample variance $\dot{\sigma}_{i}^{2}=\hat{w}_{i j} x_{j}^{2}-\hat{u}_{i}^{2}$ for $i=1,2, \ldots, k$ where $\hat{w}_{i j}$ are the values of $w_{i j}$ obtained by replacing u_{i}, σ_{i}^{2} and a_{i} by $\hat{u}_{i}, \hat{\sigma}_{i}^{2}$ and $\dot{\alpha}_{i}$ and $w_{i j}$ satisfios $w_{i j}=f_{i}\left(x_{j}\right) / n f\left(x_{j}\right), i, 1,2, \ldots, k, j=1,2, \ldots, n$. Furthermore, $w_{i j}{ }^{\prime 3}$ setisfy $\sum_{j=1}^{k} \hat{a}_{j} i_{j i}=\frac{1}{n} \quad(i=1,2, \ldots, n)$
$\therefore \sum_{j=1}^{n} \hat{w}_{1 j}=1 \quad(i=1,2, \ldots, k)$,
where $f_{i}(x)$ and $f(x)$ are, respectively, the densities of ith component and the mixture distribution. If fact, these alse have been obtained by wolfo [126]. He considered the case of multivariate normal density $f_{i}\left(\underset{i}{ }, 0_{i}\right)$ for each component and he introduced the so-called "probability of momborship" of a vector x in type i which is defined as $P(1 \mid x)=\frac{a_{1} f_{j}\left(x, \theta_{i}\right)}{f(x)}$ whore $f(x)$ is the mixture density. He, furthermore, obtained that the ML of \hat{a}_{i}, \dot{u}_{i} and \hat{f}_{i} are given by

$$
\begin{gathered}
\hat{\alpha}_{i}=\frac{1}{n} \sum_{j=1}^{n} \hat{p}\left(i \mid{\underset{-x}{j}}^{n}\right), \quad \hat{\mu}_{i j}=\frac{1}{n \hat{n}_{i}} \sum_{r=1}^{n} \hat{r}\left(i \mid{\underset{\sim}{x}}_{r}\right) X_{r j} \quad \text { and } \\
\hat{\sigma}_{i j}(s)=\frac{1}{n \hat{\alpha}_{i}} \sum_{r=1}^{n} \hat{P}\left(s \mid x_{r}\right)\left(x_{i r}-\hat{\mu}_{s i}\right)\left(x_{j r}-\hat{\mu}_{s j}\right)
\end{gathered}
$$

where $\mu_{i j}$ and $x_{i j}$ are the j-th component of $\underset{\sim}{\mu}$ and ${\underset{\sim}{i}}$ and $\sigma_{i j}(s)$ is the (i,j) element in t_{s} which is the covariance of the s-th component. These results are more general than that of Behboodian [4]. It is obvious that $\hat{w}_{i j}$ are the functions of observations $x_{1}, x_{2}, \ldots, x_{n}$. To solve for $\hat{w}_{i j}$, one has to solve the simultaneous functional equations which are rather complicated. However, the relations among $\hat{u}_{i}, \hat{\sigma}_{i}^{2}$ and $\hat{\alpha}_{i}$ are given which are useful for the computations of some quantities when some other quantities are obtained.

In 1969, Day [27] considered the mixture of two p-multivariate normal populations with equal covariance matrix ψ. There are $\frac{1}{2} p^{2}+\frac{5}{2} p+1$ unknown parameters which are to be astimated. As usual, taking logarithms and differentiating in turn with respect to each unknown parameter and oquating to zero, a set of equations are obtainod. By introducing the quantity $P\left(1 \mid x_{y}\right)$, the probability that observation x_{j} comes from the component i, Day was able to express the maximum likelihood estimates of unknown parameters in torms of the estimates of $P\left(i \mid x_{j}\right)$, denoted by $\hat{P}\left(i \mid x_{j}\right)$ wilich can be simply expressed in terms of some quantities which are functions of \dot{a} and the ostimated Mahalanobis distance in torms of the maximum likelihood estimatos. Finally, an iterative scheme was set up. If the initial guesses are close to the real values satisfying the scheme, it can be shown that the sequences generated by the iterative process converge to the solutions. However, solutions may not be unique. For example, when $p \geq 3$, and the Mahalanobis distance between the two components $\Delta^{2}=\left(\mu_{1}-\underline{\mu}_{2}\right) \psi^{-1}\left(\mu_{1}-\mu_{2}\right)$ is small. say less than 2 and the sample size is samll, the solutions are nearly
multiple. In this situation, one has to check up at each local maximum to determine where the over-all maximum lies. And this is some shortcoming. By repeating the iterative process from enough different starting points, all the local maxima can be found. However, the maximum likelihood estimates are invariant under linear transformation. This property is helpful for the simulation study. These estimates are, of course, asymptotically mimimum veriance unbiased for $\Delta>0$. Instead of estimating the mean and variance, it seens more interesting to estinate the generalized distance Δ. The asymptotic variance of $\hat{\Delta}$ is given by $r(\Delta) / n$ where $\left\{r(\Lambda)^{-1}\right\}=$ $\mathbf{E}\left\{\left(\frac{\partial \log f(x)}{\partial \Delta}\right)\right\}^{2}$. When Δ is small, Day showed that $\left(r(\Delta)^{-1}\right)=$ $\frac{3}{2} \alpha^{2}\left(1-\alpha^{2}\right)(1-2 \alpha)^{2} \Delta^{4}+0\left(\Delta^{6}\right)$ ignoring the correlation of \hat{a} and $\hat{\Delta}$. When Δ is large, $\left(r(\Delta)^{-1}\right)$ is approximated by $\alpha(1-\alpha)\left(1+2 \alpha(1-\alpha) \Delta^{2}\right)\left(1+\alpha(1-\alpha) \alpha^{2}\right)^{-2}$. For more than 2 coaponents, it is proposed that tho analogous iterative process can be doveloped.

When the component multivariate densities $f_{i}(x)$ are all spocified, there are $k-1$ proportion parameters which ramain unknown and need to be estimated. Peters and Coberily [85] gavo a necessary condition that if a is a maxime likelihood estiate (MLE) then a satisfies a finad point *quation $\hat{\alpha} \quad G(\hat{\alpha})$ whero for componentwise $k\left(\alpha_{j}\right)$ is the sum of the rat los of each component of sensity the density of the mixture. In ortor 1.0 to find this fixed point, some properties of a and foro found th wa: :". shown thit C is local contraction at a if tho rank of $M=\left(f_{j}\left(x_{j}\right)\right)_{n \times k}$ is k and \dot{a} is a MU and is an interior point. In fact, if \hat{g} is an interior polnt stach that $\hat{\theta}=1$ im $G^{n}(\hat{B})$, then \hat{B} is a MLA. When $k=2$, and B Is an interior point in its domain, $\mathrm{G}^{\mathrm{n}}(\mathrm{B})$ cenvorges to the MLE. It should be
pointed out that the fixed point $\underset{\sim}{\hat{B}}$ satisfying $\hat{\underset{\sim}{B}}=\boldsymbol{G}(\underset{\sim}{\hat{B}})$ is not unique. A method is suggested to choose a starting point which is based on the maximum-likelihood classifier. An example was used to show the iterations needed for the accuracy of $0.5 \times 10^{-i}(i=2,3,4)$ starting from 7 different points. For the accuracy 0.5×10^{-4}, the iterations for the worst case never exceed 70.

For a finite mixture of k exponential families with r unknown parameters in each component density, there are $r k+k-1$ parameters including the $k-1$ unknown proportions to be estimated. Hasselblad [49] derived a set of equations for the successive substitutions iteration scheme. For a practical computation, an initial estimates are necessary and three methods for these estimates are proposed, However, one of them is the initial guess. This can often be made by the mode of the sample or other information obtained directly from data. It was found that the initial estimates is relatively unimportant as long as it is in the admissible range. For some special distributions such as Poisson, binomial, and exponential, exact iterative procedures were given and a numerical oxamplo for each case was provided. Asymptotic variances for the Poissen example were derived. Por the binomial case, with $k=2$; the moment estimates proposed by Blischice [7] was applied to the same data giver in the example, and sowe comparisons between the NLL and the moment estimates wero made. It was found that the MLt estimate are suporior than the moment estizates in some sense for the small sample study of size 100 . The MLE always lies in the admissible range whenever the initial guexs is in the same range with is not the ease for the mome astimates. Also the variance of the NLA is semalier than that of the mome estimates, Howover, the asymptotic variance mey be very large if the subpepulations ane not well soparated. Therofore sample sizes of 1000 or more
are always desirable for the MLE. It can be expected that the moment estimates may be very bad when sample sizes are small. Day [27] has shown that when the components are multivariate normal, the moment estimates are essentially useless.

The joint asymptotic relative efficiency comparisons in [15] and [118] show that the MLE are mach more efficient than the moment estimates, especially, when $\Delta \equiv\left|\mu_{2}-\mu_{1}\right| / \min \left(\sigma_{1}, \sigma_{2}\right) \leq 2$. Hosmer [53] used Monte Carlo simulation to study the MLE for $\Delta \leq 3$ with $\sigma_{1} \neq \sigma_{2}$ and with relatively small sample size $n \leq 300$. This is interesting because both [49] and [27] suggested large sample size as strongly desirable, especially, when the two components are not well-separated. Using the iterative procedure proposed in [48], Hosmer used a stopping time $N=i$ whenever $\mid L\left(\oint^{(i+1)}\right)$ $L\left(\phi^{(i)}\right) \mid \leq 10^{-4}$ and took $\dot{\phi}=\Phi^{(i+1)}$. Otherwise, he suggested $N=999$ with $N \geq 10$. In the preceding L is the likelihood function, $\Phi=\left(\alpha_{1}, \mu_{1}, \alpha_{1}, \mu_{2}, \sigma_{2}\right)$, and $\psi^{(0)}$ is the initial estimate. There is a strong indication that the initial guess i $^{(0)}$ doos not seem to have much effect on the MLE $\%$. With sample size $n=100$, and $\psi^{(0)}=(0.3,0,1,1,1.5)$, for oach of 10 dif. ferent samples, was computed using three quite difforent initial guesses. In 7 of the 10 samplos the values of obtained by starting with the three different guesses were the same and in two other sumples 2 of the 3 initial gueses concluded the same \ddagger. The three values of wero significantly different in only one sample. for the true parameters $=\left(0.3,0,1, \mu_{2}, 1.5\right)$. $U_{2}=1,2,3$, simalations for the NLE obtained from 10 samples of sizo 100 and for true parameters $=(0.3,0,1,3,1.5)$, simulations for MLF obtained from 10 samples of size 300 indicate that the MEl may not be accurate onough to provide useful estimates. Hence, the poor behavior of the estimates of the parameters for these examplos considered shows that tho MLE, though much
more efficient than the moment estimates and perhaps the best method available, may be still highly unsatisfactory for even the moderate sample sizes.

The main difficulty in the problems of estimation of mixture is that the data are mixed. When two components are not well separated, some of the data can be from either component with high probability. If the data can be identified the component of origin or when the data contain information about the mixing proportion, the problem may be easier, and, the sample size may be reduced and the estimates still give the same information for the unknown parameter. For this interesting conjecture, Hosmer [53] did the study by using the Monte Cario method. First, he classified the data into three types. The first type data is mixed and it is called model 0 (MO) sample. A sample where the component of origin of each observation is known with certainty will be called known data. Two types of known data are possible according to whether or not the known data cont ins imformation about the mixing proportion. A sample which contains both mixed and known data and whre the known data contains no information about the mixing proportion Will be referred to as a model 1 (M) sample, es for example, in the case when 20 male fish and 20 fomalo fish are arbitrarily taton. A nodel 2 (N 2) sample will be referrod to the case when the sample contains both mixed and known data, and information about the mixing proportion is contained in the relative numer of observations from the two components in the known data, An examplo of sample would be the case where 100 fish are taken and then the fish are classified os male and female. Let n denoce the sample size of Me sample and let denoto the sample size of M1 or ME smple. Let the proportion of m to n be denoted by $x=\frac{\pi}{\pi}$. The intent in considering MI or M2 samples is that one needs only a small amount of knom date to improve on the NO sample. The Honte Carlo study followed the same assumptions
given in [53] which have been mentioned above except that $\sigma_{2}=2.25$ instead of $\sigma_{2}=1.5$. In this study r was restricted to be $0.1,0.2$ and 0.3 with each value of n and Φ. For given n, MO sample was generated as a mixed sample. The known samples for the Ml sample were generated by starting with the first observation generated for the mixed sample and noting the population of origin of each observation successively until exactly rn/2 were obtained from each component. These observations became the known sample and the remaining $n(1-r)$ observations the mixed sample. The known samples for M2 sample were constructed by noting the population of origin of the first $n r$ observations for the mixed sample. Tho observations from the first component formed one known sample and the observations from the second component formed the other known sample. For $n=100$ and $\phi=(0.5,0,1,1,2.25)$, 10 samples were generated and the $\mathrm{MO}, \mathrm{M} 1$ and M 2 estimates were computed from each sample. The mean, variance and mean squared orror of these estimates were tabulated. The cases for $n=100$, and for $H_{2}-2, u_{2}=3$ and for $n=300, \psi_{2}=3$, respectively, were also tabulated. From these Monte cario results, it is noted that for most parametors, and for various sample sizes considered and the different values of the ratio r, the $M 1$ and M2 estimates tend to have smaller variance and mean squared error than those of wo. The variances and the mean square errors of M1 and M2 ostitates tend to docrease as r increases. When $n: 100$ and $m 0.1$, the Ml estiatates seem to have smaller variances and wean square erroxs than those of M2. It is found that the estimates obtained using both the mated and known data were more accurate tina ithose eomputed frow the sanll suples. The conjecture that, if the components are not well separated and if part of the mixed sample can be correctly clasaified or If the mixed sauple can be supplemented by sall
 the Honte Carlo resalits.

As another direction for the study of statistical properties of the estimates for the parameters in the mixture density, Tubbs and Coberly [125] did the study of the so-called sensitivity of the estimates for the mixing proportions. They considered the three bivariate normal mixture and applied the Monte Carlo method. When the original data from each components were shifted (in location and direction), the variations of the estimates for the mixing proportion suggested that the estimates were sensitive. Four kinds of estimate were considered. They were MLE, moment estimate (ME) minimum chi-square estimate, (MCE), and the classification estimate (CE), the last being simply the proportion of the sample which is classified into the ith class by the maximum-likelihood elassifier. Mean square errors for each kind of estimates were plotted in [12S]. It is interesing to note (based on the Monte Carlo result) that the ordering of the four estimates, according to the degree of sensivity, would bo (CE, MLE) \geq MCE \geq ME, However, it is also apparent that the particular type of shift deviation from the model would result in a different ordering. Hence, if the suspected deviation is known to be of one particuiar type or direction, apecialized experiment should be done to investigate the sensitivity.under that aiternative.

2C. Wethod of Loast Squares, Bayesian Approach and Some Other Hothods
It is known from previous sections that samples of sall site do not, In fact, mrovide sood solutions either for method of mants or for method
 of these mothods are cumbersome and some difficulties such as lack of uniqueness may occur. Therefore, it is desired to study some other methods for estigation. Host of results desectibed in this section are rostricted to the estimation of mixing distribution. In 1968 Choi and sulgren [19] considered
the case of estimating the mixing \therefore etribution when the component densities are completely specified. Let $H_{n}(x)$ denote the enpirical distribution associated with the observed sample x of size n. If the mixing proportion $\underset{\sim}{a}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ is used they considered the integral squared errors given by $S_{n}(\alpha) \equiv \int\left(H_{\alpha}(x)-H_{n}(x)\right)^{2} d H_{n}(x)$ where $H_{\alpha}(x)$ is the $c d f$ of the mixture associated with $\underset{\sim}{\alpha}$. "In fact, they considered the case of finite mixture and showed that there exists the solution $\underset{\sim}{\hat{\alpha}}\left(=\underset{\sim}{\hat{\alpha}} \underset{\sim}{\hat{\sim}}(\underset{\sim}{x})\right.$ which minimizes $S_{n}(\alpha)$ for all $\underset{\sim}{\alpha}$ in the admissible drmain. This $\underset{\sim}{\underset{\sim}{\alpha}}$ is then used as the estimate of the mixing proportion. It has been shown that $\underset{\sim}{x}$ converges to the true unknown value of $\underset{\sim}{\alpha}$ with probability one if continuity conditions are assumed for H in θ_{i} (parameter in mixand density) and $\alpha_{i}(i=1,2, \ldots, k)$, Furthermore, asymptotic ,ormality is also shown for the estimate $\underset{\sim}{\hat{a}}$ if non-singularity condition holds for the matris $\left(E\left(H\left(x, \theta_{i}\right) H\left(x, \theta_{j}\right)\right)\right), i, j=1,2, \ldots, k$. Rate of convergence of $\underset{\sim}{\alpha}$ is shown to be $0(\ln n / \sqrt{n})$ for all $n \geq n_{0}$ with probability one. These asymptotic properties are very helpful for the study of the estimates. In 1969, Choi [18] considered the case of estimating the mixing proportion and unknown parameters in the componeat donsities when the functiona: form of the component distribution is specified. He used the same criturion of the integral squared orrors. The same optimat asymptotic properties are shown to hold if some othor extra conditions on the first and socond dorivatives of $H(x, \alpha)$ with respect to $\alpha_{i}(1=1,2, \ldots, k)$ are satisfiod. It should be noted that the parameters to be estimated in this situation are given by $G=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$ when θ_{i} 's are the paramocers in the ith compononi distribution. Some Monte Carlo studios aro made in [19]. Each compunent is assumed to be a univariate normal density with comon variance 1. The number of components ranges from 2 to s. Sample size sanged botwoon 10 and 400 . Simula ions woro repeatod 500 timos and man
square errors were computed. It was found that mean square errors are small wherl sample sizes are at jeast as large as 200 and the mean square erro's were not largely effected by the number of components. The result of Choi [18] can be extended to the case of continuous mixing distribution by taking a sequence of distributions as its approximation. The criterion of errors considered by [19] and [18] in fact can be extendec to bestome $\int\left(H_{\alpha}(x)-H_{n}(x) \cdot d W(x)\right.$ where $W(x)$ is some weight function. As Bartlett and Macbonald [2] have studied, a good choice of $\%(x)$ is not easy. The special case $k=2$ hias been studied in [2] and for $k \geq 3$, the situation, is quite complicated. The criterion of errors considered in [19] is, in fact, the Cramér-Von Mises type or Nolfowitz distance between two saxple functions. If this distance is defined to be the Kolmogorov type $\sup _{x}\left|\left\|_{a}(x)-\right\|_{n}(x)\right|$, then the solutions $\underset{\sim}{a}\left(={\underset{\sim}{a}}^{a}(x)\right)$ so minimizo this distance have been considered by Deely and Druse [28]. This paper is related to the empirical Bayes approach of Robbins [95]. They considered the problem of estimating the general mixing distribution $G(\alpha)$ by choosing a sequence of. discrete didtributions $\left\{G_{n}(a)\right\}$, where for each $n, G_{n}(\alpha)$ depends on the sample X_{n} of size n, such that $G_{n}(a)$ converges weakly to $G(a)$ with probability one. For each n, an admisibible $\hat{G}_{n}(a)$ is chosen so that the minimum of the uniform distance betwoon $H_{G_{n}}(a)(x)$ and $H_{n}(x)$ is attained. Por each sample sizo $n_{\text {, }}$ a sequence $\left\{\hat{G}_{n}(a)\right\}$ is obtained to approximate the real $G(a)$. Under same mild
 with problility one. The existance of such $\hat{C}_{n}(0)$ for each n is guaranteed and its computntion involves a linear programing problom. To be wore general, suppose dis any motric for the topology of weak convergence of probabilitios on the sample syace (see Parthsarthy [83]). Let 5 denote the set of ali mixing distribution function $G(a)$ dofined on a, the parateter
space. For the topology of weak convergence, suppose \mathscr{C} is compact and for a sequence $\left\{\mathscr{G}_{i}\right\}_{1}^{\infty}$ of subclasses of \mathscr{S} satisfies $\bigcup_{1}^{\infty} \mathscr{G}_{i}=\mathscr{G}$. If $\hat{G}_{n}(\alpha)$ is so chosen such that for each $n, \hat{G}_{n}(\alpha) \in \mathscr{G}_{n}$ and $d\left(H_{G_{n}}(\alpha), H_{n}\right)$ attains its infimum for all $G_{n_{1}}(\alpha) \in \mathscr{G}_{n}$, then it is shown [14] that $\hat{G}_{n}(\alpha)$ converges weakly to $G(\alpha)$ with probability one if $F(x, \alpha)$ is continuous with respect to a, The results in [28] can thus be obtained by taking some special metric satisfying some conditions. Some other conditions for the weak convergence of $\hat{G}_{n}(x)$ have also been studied in [14]. Using another approach, Blum and Susarla [9] considered a partition of parameter space Ω. A step function G_{n} is constructed such that on each division of the partition, the constant value is given according to some weight which are controlled by the local maximum and minimum values of the mixture density on this division. When the mixture density $h_{G}(\cdot)$ is unknown, an estimate $\hat{h}_{n}(\cdot) \pm \epsilon_{n}$ $\left(=\hat{h}_{n}\left(\cdot, x_{1}, x_{2}, \ldots, x_{n}\right)\right)$ sitisfying $\sup _{x} \hat{h}_{n}(x)-h_{0}(x) \mid-0$ a, s. is usod to replace $h_{G}(\cdot)$ If same conditions similar tce continuity in both x and θ are satistied by the component density $f(x, 0)$, then the wak convergence of \hat{G}_{n} to the real gixing distribution $G(x)$ holds almost surely. Furthermore, When θ is a location or scale prameter, it has been shown that $\left|h_{G_{n}}(x)=h_{G}(x)\right|+0$ a.s. and $E\left(h_{G_{n}}(x)-h_{G}(x)\right)^{2}=O\left(n^{-c}\right)^{\prime}$ whore $c_{1}=\min (2 c, 1.2 c)$ for some constant c satisfying $\epsilon_{n} \cdot n^{-c}$. The construction of \hat{C}_{n} is possible by Inear programing though not simple. Ono question may be raised how the partition of \mathbb{Q} is takon so that for practics application, the convergonce of \hat{G}_{n} would be more reasonable. Comparison with methods given by [28] and [18] the (uizi-ianeal property of the woak convergence of the $\dot{\hat{f}}_{n}$ are all satisfied. Howover, tho computational foasibility of tho Choi's mothod [18] is not cloarly ostablishod.

If the obscrvations from the mixture population are restricted to the positive integer value, Rolph [98] first considered Bayes estimation of $G(a)$. Some assumptions were made by Rolph. Ω is a finite interval and considering $f(x, \alpha)$ as a function of α, say, $q_{x}(\alpha)$ for a fixed x, $q_{x}(\alpha)=\sum_{i=0}^{\infty} a_{i}(x) \alpha^{i}$ (In fact, continuity of q in α is sufficient). Then, the unconditional mass function (mixture mass function) can be expressed as a summation of sequence of ith moment of $G(\alpha)$. Properly putting some prior distribution of the set \mathscr{S} of distributions defined on Ω, consider the Bayes estimate \hat{G} which minimizes the risk associated with some loss function $\mathrm{L}(\hat{\mathrm{G}}, \mathrm{G})$. Under some conditions, the Bayes estimate of G is just the expectation of the posterior distribution. The Bayes estimate \hat{G} is thus determined by taking the distribution with ($\hat{m}_{1}, \hat{m}_{2}, \ldots$) as its moments where each \hat{m}_{i} is the expected ith moment under the posterior distribution. Consider the loss function of the form $\sum_{1}^{\infty} \gamma_{i}\left(m_{i}(\hat{G})-m_{i}(G)^{2}\right)$ where $m_{i}(G)$ Is the ith moment of G. Suppose \bar{G}_{t} and \underline{G}_{t} are the two boundaries where distributions having ($\hat{m}_{1}, \hat{m}_{2}, \ldots, \hat{m}_{t-1}$) as their momonts then, the estimate \hat{G}_{n} is defined as the convex combination of \bar{G}_{t} and \underline{G}_{t}. It has been shown that the sequence $\left(\hat{G}_{n}\right)\left(\hat{G}_{n}=\hat{G}_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$ is consistent. Relaxing the restriction to $\{$ being a half-line, Mosden [74] chose the prior distribution on the set of distribution on Ω in another way. Using some restits of [98] Meoden [74] was able to show that the Bayes estimate under Ais set-up was consistent. These mathematical constructions and proof are complete; howover, the practical computation for the estinate is not so easy and clearcut and still needs more investigetion.

Propertios of consistency or weak convergence are important and dosirable and fundamental for our study of estimation of mixing distribution.

The above properties may not hold when sample size is small. Paying attention to the small sample property, Boes [11] considared the possibility of some estimates to attain the Cramer-Rao bound. Restricting to the case of finite mixture, he obtained the necessary and sufficient conditions for the attainment of the Cramer-Rao lower bound for the parameter α when $k=2$. A uniformly minimum variance estimator of a was obtained which was also shown to be consistent [11]. When $k \geq 3$, some jointly efficient estimates were obtained by Boes [11]. By an estimate $\hat{\theta}(\underline{x})=\left(\hat{\theta}_{1}(\underline{x}), \hat{\theta}_{2}(\underset{\sim}{x}), \ldots, \hat{\theta}_{k}(\underline{x})\right)$ jointly efficient for $\underset{\underline{\theta}}{ }=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$ in some set U, we mean the ellipsoid of concentration of $\hat{\theta}(\underset{\sim}{x})$ centered at Q, coincides with the minimum ellipsoid of concentration. Again, by considoring the risk defined by $R(\hat{\theta}, \underline{\theta})=\sum_{1}^{k-1} a_{i} \operatorname{Var} \hat{\theta}_{i}$, where $\hat{\theta} \in U:$ set of all unbiased estimate of $\theta=\left(\theta_{1}, \theta_{2}, \ldots \theta_{h}\right)$ and for some constancs $a_{1}, a_{2}, \ldots a_{k-1}$. Then, it is obvious that $R(\dot{\theta}, \theta) \geq \sum_{1}^{k-1} a_{i} I^{\text {ji }}(\theta)$ where $\left(I^{i j}(\theta)\right)=\left(I_{i j}(\theta)\right)^{-1}$ and $I_{i j}(\theta)=E\left[\left(\frac{\partial}{\partial \theta_{i}} \ln h\right)\left(\frac{\partial}{\partial \theta_{j}} \ln h\right)\right]$ and where h denotes the likelihood function. Denoting $L(\theta) \backsim \sum_{1}^{k} a_{i} I^{1 i}(\theta)$, by $\theta^{0}=$ efficient estimate of $\hat{\theta}$, we mean $R\left(\underline{0}, \theta^{0}\right) \times L(\theta)$. Let $\Omega^{0}=\left(\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)\right.$: $\left.\theta_{1} \geq 0, \sum_{1}^{k-1} \theta_{i} \pm 1\right)$. Boos $[12]$ has shown that if θ^{*} is a point in 8_{0}^{0} for which $L(\theta)$ attains its maximum, then the θ-officiont estimate $\hat{\theta}\left(\theta^{*}\right)=\left(\hat{\theta}_{1}\left(\theta^{*}\right), \hat{\theta}_{2}\left(\theta^{*}\right) \ldots \ldots \hat{\theta}_{k}\left(\theta^{*}\right)\right)$ is a minimax unbiased estimate for θ in the sense that $\sup R\left(\hat{\theta}\left(\theta^{*}\right), \theta\right) \leq \sup R(\hat{\theta}, \theta) \vee \hat{\theta} \in U$. This is a very desirable rosult if ${ }^{*}$ such a minimax unbiased estimate can be found. Some examples worc given by boes. It is interesting to mention an examplo to soe the simplicity of the estimate. If $k=3$ and oach component is uniform such that $f_{1}=\frac{1}{2}$ in $(0,2), f_{2}=\frac{1}{2}$ in $(2,4)$ and $f_{3}=\frac{1}{2}$ in (1,3). For some (any) constants a_{i} it is soon that the minimax unbiased ostimuto is given
by $\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)=\left(\frac{1}{2}+\frac{N_{1}-N_{3}}{n}, \frac{1}{2}+\frac{N_{4}-N_{2}}{n}\right)$ where $N_{i}=$ number of observations falling in ($i-1, i], i=1,2,3,4$.

Finally, by the approach of curve fitting, Preston [88] proposed to fit the mixing distribution by piece-wise polynomial arcs. Here it is assumed that each component density is discrete. The estinations given in [28], [98] and [74] are all step function approximations to the mixing distribution. Hence, polynomial approximation would be more proferable and accurate if the approximations are appropriate. Let $\hat{G}(a)$ denote the polynomial approximation of $G(\alpha)$. Preston [88] considered the estimate of form $\hat{G}(\alpha)=\sum_{i=1}^{m} \sum_{j=0}^{r} a_{i j} \ell_{i j}(\alpha)$, where

$$
\ell_{i j}(\alpha)=\left\{\begin{array}{cl}
0 & \alpha<\beta_{i} \\
{\left[\left(\alpha-\beta_{i}\right) /\left(\beta_{i+1}-\beta_{i}\right)\right]^{j}} & \beta_{i} \leq \alpha<\beta_{i+1} \\
1 & \beta_{i+1} \leq \lambda
\end{array}\right.
$$

$\left(q_{i 0}\left(\beta_{i}\right)=1\right)$. $\left(a_{i j}\right\}$ are sequence of parameters and β_{i} are constants. Hence $\hat{G}(a)$ is a polynomial of degree r. Denoting $L_{i j}(x)=\sum_{s \leq x} \int P(s, a) d l_{i j}(a)$, we have $\dot{H}(x)=\sum_{i=i}^{m} \sum_{j=0}^{r} a_{i j} L_{i j}(x)$. Honce, if $\hat{G}(\alpha)$ is an estimate of $G(a), \hat{H}(x)$ should bo an outimate of $H(x)$. Using the observed sample to form an oupirical distribution function $H_{n}(x)$ as another estiante of $H(x)$, the paranoters $\left(a_{i j}\right)$ to be deteruinod are thus so chosen that $\hat{H}(x)$ is as close to $H_{n}(x)$ as possiblo. Tuke the Kolmogorov type of criterion, $D\left(H_{n}, \hat{H}\right) \equiv{\underset{x}{x}}^{x}\left|H_{n}(x)-H(x)\right|$, $\left.\mid a_{i j}\right)$ aro chosen that $D\left(H_{n}, \hat{H}\right)$ is minimized subject to the constraint that $\hat{G}(a)$ is a distribution function. Some special case that $\hat{\boldsymbol{G}}(0)$ is a step function, piecowisc linear, piece-wise quadratic, hive been discussed. To study the goodnass of the ostimate $\hat{G}(a)$ for $G(a)$, a criterion $K(\varphi)=\Sigma\left\{\varphi(x)=\varphi_{G}(x)\right) h(x)$ is
defined. It is shown that $\hat{G}(\alpha)$ is good from an enuirical Bayes point of view if $E\left(K\left(\varphi_{G}\right)\right)$ (the expectation is taken with respec to random sample) is small. Some numerical examples are studied and D and K are computed. However, for the practical and general purposes, a good choice of location of β_{i} is not clearly established. It is also obvious that if $H_{n}(x)$ is not close to $H(x)$, the estimate $\bar{G}(\alpha)$ would also be unreliable. Asymptotic properties of $\hat{G}(a)$ are not given though it may be consistent or weakly convergent.

3. Testing Statistical Hypothesis

Most papers concerning the inferences about mixture densities are related to the estimation of parameters. In practical situation, it is desirable to know whether an observed sample is from a population which is a mixture of two known populations. Generally, we may be interested in knowing whether the distribution function of one population is a mixture of the distribution functions of the other two populations. This kind of inference is quite different to that of estimation. On the other hand, wa may, sometimes, wish to know whether the mean of a mixture population is equal to some known valtes. This is the standard hypothesis testing problem.

Thoms [124] in 1969 considered the problem whether one population is a mixture of two other populations. Let the three populations be denoted. respectively, by π_{1}, π_{2}, and π_{3} and the associated cdf be donoted by $F_{1}(x), F_{2}(x)$ and $F_{3}(x)$. Let the nth random observation from x_{i} be denoted. liy $X_{\text {in }}(i, 1,2,3)$. let N_{i} denote the rank of $X_{i f}$ in the sumple

[124] proposed a $0-1$ valued statistic t which is defined by

$$
t\left(R_{1}, R_{2}, R_{3}\right)= \begin{cases}0 & \text { if }\left(R_{1}, R_{2}, R_{3}\right) \text { is an even permutation of }(1,2,3) \\ 1 & \text { otherwise }\end{cases}
$$

It has been shown that if π_{3} is really a mixture of π_{1} and π_{2}, then $E(t)=\frac{1}{2}$. It. was pointed out that, in fact, the mixture can be extended to $k(k \geq 3)$ components and with the same definition, the result holds. Suppose n_{1} samples, n_{2} samples and n_{3} samples are drawn respectively from π_{1}, π_{2}, and π_{3}. Define a symmetrized U statistic by

$$
\begin{equation*}
t_{n}^{*}=\frac{1}{n_{1} n_{2} n_{3}} \sum_{i, j, k} t\left(R_{1 i}, R_{2 j}, R_{3 k}\right) \tag{3.1}
\end{equation*}
$$

where the sumation is over all possible values of i, j and k and $n=$ $\min \left(n_{1}, n_{2}, n_{3}\right)$. Then, t_{n}^{*} is asymptotically normal. In fact, it has been shown [124] that $\left(t_{n}^{*}-\frac{1}{2}\right) \sqrt{n}+\mathbb{C}(0,1)$, the standard normal, if $F_{1} \notin F_{2}$, Hence, t_{n}^{*} can be used for the test of the null hypothesis that F_{3} is a mixture of F_{1} and F_{2}. However, it is to be noted that the mixture of F_{3} is not a nocessary condition for $E(t)=\frac{1}{2}$.

Now consider tho following situation of null and alternative hypotheses; $H_{0}: F_{3}(x)=a F_{1}(x)+(1-\alpha) F_{2}(x)$ for all x for some $0<a<1$. $H_{1}: F_{3}(x)=$ $a F_{1}(x)+(1-a) F_{2}(x)$ has a nondegenerato solution at $x=a$ and no other finite solutions. Then, under H_{1}, it can be shown that

$$
E(t)>\frac{1}{2} i f ; \text { and }\left(\neg^{t y} \text { if. } f_{5}(a)-a f_{1}(a)-(1-a) f_{2}(a)>0\right.
$$

while $E(t)=\frac{1}{2}$ under H_{0}. It can also be shown that $\operatorname{var}\left(t_{n}\right)+0$ under H_{0} and H_{1}. Hence, the two-sided test

$$
\text { Reject } H_{0} \text { if }\left|t_{n}-\frac{1}{2}\right| \geqslant E(b)
$$

is consistent for testing H_{0} against H_{1} for som significanco level b.

Let $R_{j}(1)$ denote the number of $X_{1 j}$'s less than or equal to $X_{2 j}$ and let $R_{j}(3)$ be the number of $X_{3 r}$'s less than or equal to $X_{2 j}$ and let $S_{r}(i)(i=1,2)$ denote the number of $X_{i j}$'s less than or equal to $X_{3 r}$. Then the statistic t_{n}^{*} defined by (3.1) can be expressed as

$$
t_{n}^{*}=\frac{1}{n_{1} n_{3}} \sum_{r=1}^{n_{3}} S_{r}(1)+\frac{1}{n_{2} n_{3}} \sum_{j=1}^{n_{2}} R_{j}(3)-\frac{1}{n_{1} n_{2}} \sum_{j=1}^{n_{2}} R_{j}(1)
$$

From this and some other relations the proportion a can then be estimated by

$$
\begin{equation*}
\hat{\alpha}=\left(n_{1} \sum_{j=1}^{n_{2}} R_{j}(3)-\frac{1}{2} n_{1} n_{2} n_{3}\right) /\left(n_{2} \sum_{r=1}^{n_{3}} S_{r}(1)+n_{1} \sum_{j=1}^{n_{2}} R_{j}(3)-n_{1} n_{2} n_{3}\right) . \tag{3.2}
\end{equation*}
$$

Also, let $\delta=P_{y}\left\{X_{1}<X_{2}\right\}$, then $\delta=\int_{-\infty}^{\infty} F_{1}(x) d F_{2}(x)$ and δ can be estimated by

$$
\begin{align*}
& \hat{\delta}=\sum_{j=1}^{n_{2}} R_{j}(1) / n_{1} n_{2} \tag{3.3}\\
& \text { Let } \theta_{1}=\int_{1}(x) F_{2}(x) d F_{i}(x) \quad \because \quad(i=1,2) .
\end{align*}
$$

Then, the probabilities 28_{1} and 28_{2} can, similarly, be estimated by considering these triples $\left(x_{1 i}, x_{1 r}, x_{2 j}\right)$ and $\left(x_{11}: x_{2 s}, x_{2 j}\right)$, respectively, where $1 \notin \mathrm{x}, \mathrm{j} \neq 3$.

Let $\mathrm{Fin}^{(x)}$ denote the empirical distribution functions associated with $\pi_{1}(i=1,2,3)$. Suppose \hat{a} is sulculated such that
(3.5) $E(a-a)=0\left(n^{-1}\right)$
(3.6) $E(\hat{a}-a)^{2} \frac{v}{n}+a\left(n^{-2}\right)$.

Define
$\left.(3.7) \psi_{n}^{2}=n f^{\infty} \hat{n} F_{1 n}(x)+(1-\hat{a}) P_{2 n}(x)-F_{3 n}(x)\right)^{2} d F_{3 n}(x)$
(3, 8$) \quad{ }_{n}^{\prime 2} n \int_{2}^{m}\left(n f_{\ln }(x)+(1-\dot{a}) F_{2 n}(x)-F_{3 n}(x)\right)^{2} d F_{3}(x)$

Then, it is shown by Thomas [124] that under the hypothesis that $F_{3}(x)$ is a mixture of $F_{1}(x)$ and $F_{2}(x)$, for any $\in>0$,
(3.9) $\lim _{n \rightarrow \infty} P_{r}\left\{\left|\tau_{n}^{2}-\tau_{n}^{\prime}{ }^{2}\right|<\epsilon\right\}=1$.

By (3.6) - (3.8), we have, ignoring the terms $0\left(\mathrm{n}^{-1}\right)$

$$
\begin{gather*}
E\left(r_{n}^{\prime 2}\right)=\frac{1}{3}+\frac{4}{3} v^{2}-\frac{1}{2} \alpha(1-\alpha)(1+2 \alpha)-\alpha(1-\alpha)(1-2 \alpha) \delta \tag{3.10}\\
\\
-2\left(v^{2}-\alpha^{2}(1-\alpha)\right) B_{1}-2\left(v^{2}-\alpha(1-\alpha)^{2}\right) B_{2} .
\end{gather*}
$$

Now suppose $F_{3}(x)=\alpha(x) F_{1}(x)+(1-\alpha(x)) F_{2}(x)$. Thomas [124] considered the following hypotheses

$$
\begin{aligned}
& H_{0}: \alpha(x)=\alpha, \text { for all } x, 0<\alpha<1 \\
& H_{1}: \alpha(x) \neq \text { constant. }
\end{aligned}
$$

Using the estimate of α given by (3.2), Thomas [124] was able to show that

$$
\operatorname{Var}\left(\tau_{n}^{\prime 2}\right)=O(1)
$$

whore $T_{n}^{\prime 2}$ is defined by (3.8) and thus under H_{1}, for any $c>0$

$$
\lim _{n \rightarrow \infty} p_{r}\left\{\left|D_{n}\right|>c\right\}=1
$$

where U_{n} is the difference between the estimates of the two sides of (3,10). The criticul region: Roject H_{0} if $\left|D_{n}\right| \geqslant c s 0$ proposed by Thoms [124] is thus consistent and asymptotically unblased. Note the troatmont of tosts is non-paramotric.

For a parametric consideration, Johnson [58] studied the same problem that an observed sample was consistent with it being from a mixture of two
symmetrical populations. Hence, for his case, he assumed F_{1} and F_{2} are specified and both have symmetrical densities with means μ_{1} and μ_{2} and common variance σ^{2}. Let X_{j} denote the j th observation from π_{3}. Johnson [58] considered the statistic

$$
\begin{equation*}
\hat{\alpha}_{x}=\left(\bar{x}_{n}-\mu_{2}\right) /\left(\mu_{1}-\mu_{2}\right) \tag{3.11}
\end{equation*}
$$

which can be easily shown to be unbiased for a. For some given a define

$$
Y_{j}= \begin{cases}1 & \text { if } X_{j}<a \tag{3.12}\\ 0 & \text { otherwise }\end{cases}
$$

Let $p_{i}=P_{r}\left\{X_{1}<a \mid \mu_{i}\right\} \quad(i=1,2)$.
Consider another statsitic

$$
\begin{equation*}
\hat{a}_{y}=\left(\bar{y}-p_{2}\right) /\left(p_{1}-p_{2}\right) \tag{3.13}
\end{equation*}
$$

which can also be seen to be unbiased for a. If \dot{a}_{x} and \dot{a}_{y} differ greatly, this may be regarded as evidence that X_{i} are not distributed as a mixture of the two given components. Along this approach, Johnson [58] was able to show that $n \operatorname{Var}\left(\hat{\alpha}_{x}-\hat{a}_{y}\right)$ was independent of unknown a, and, therefore, the statistic $\left(\dot{a}_{x}-\dot{a}_{y}\right)\left(\operatorname{Var}\left(\hat{a}_{x}-\dot{a}_{y}\right)\right]^{-1 / 2}$ shouid have approximately in standard noral distribution. However, this approximation is too rol and inaccurate. For some special normal components, ho used $\sqrt{n}\left(\dot{\alpha}_{x}-\dot{a}_{y}\right) v^{-1 / 2}$ as a test statistic which is approximately standard normal for largo n, where $V=n \operatorname{Var}\left(\dot{a}_{x}-\dot{a}_{y}\right)$ can be, in fact, calculated. Some computations of the test were also made for some special cases. Anothor cest hased on the statistic $U_{i}=\left|x_{1}-\frac{1}{2}\left(\mu_{1} \rightarrow \mu_{2}\right)\right|$ was proposed. It was noted that U_{i} always has the same distribution whether X_{1} comes from or ${ }_{2}$. The number of $X_{i}{ }^{\prime s}$ between u_{1} and u_{2} have a binomial distribation with paramoters n and $\geqslant\left(\left|\mu_{1}-\mu_{2}\right| / 0\right)-\frac{1}{2}$ if u_{3} is really a mixture of two normal components.

Comparisons of powers based on the two proposed tests has been made by Johnson [58] and it is shown that the latter test is more powerful. These tests are all based on simple statistics of observations. The choice of a defined by (3.12) and the distribution of the test statistics may be needed for some further studies.

For the problem of testing whether the mean of the mixture density is equal to some prefixed value, Blumenthal and Govindarajulu [10] considered that $F_{3}(x)$ with mean θ is a mixture with proportion a of two normal components $F_{1}(x)$ and $F_{2}(x)$ which have different means but common variance, They considered the hypothesis $H_{0}: \theta=0$ vs $H_{i}: \theta>0$. A Stein's two-stage procedure was proposed. First one computes the sample variance S_{n}^{2} of sample of size $m(\geq 3)$ from π_{3} which is defined by

$$
S_{m}^{2}=\frac{1}{m-1} \sum_{i=1}^{m}\left(x_{i}-\bar{x}^{2}\right)
$$

then, one takes a second sample of size $N-m$, where

$$
N=\max \left\{m,\left[\frac{S_{m}^{2}}{2}\right]\right)
$$

[x | donotifg the greatest integer value of x not oxceeding x and z denotes sewe specified constant: Then one computes T w $\sqrt{N} \bar{X}_{N} / S_{w}$ where \bar{X}_{N} is the total sample observed. The critical region proposed for rejecting H_{0} is:
$T>t_{i-1,1-a}$ whero $t_{a, a}$ denotes the 100 a percentile of the t-distribution with d.f.. Let R denote the randow unobservable number of observations among $x_{1}, x_{2}, \ldots, x_{m}$ which come from x_{1}. Let u_{1}, w_{2} and a^{2} denote, respectively, the wean of $F_{1}(x)$ and $F_{2}(x)$ and their comon variance. Then, it was shown that

$$
\begin{aligned}
& (a-6-6)]+O(1 /(n-m))
\end{aligned}
$$

where $\Delta=\left(\left(\mu_{2}-\mu_{1}\right) / \sigma\right), \delta=\left(1+\Delta^{2} \alpha(1-\alpha)\right)^{1 / 2}, a=s t-\theta \sqrt{n}$ and $c=\Delta^{2} \alpha(1-\alpha)(2 \alpha-1) / 6 \delta^{4}$ given that $R=r, S_{m}^{2}=s$ and $N=n$. If $(m z)^{1 / 2} / \sigma<1$, then the cdf of T was to be $\phi(\xi)-\left[\xi \varphi(\xi)\left(1+\xi^{2}\right) / 8 \delta^{4}(m-1)\right]$ $\left[2+4 \Delta^{2} \alpha(1-\alpha)+\Delta^{2} \alpha(1-\alpha)(2 \alpha-1)^{2}\right]+\left[\Delta^{3} \sqrt{2}\left(2+\xi^{2}\right) \varphi(\xi) \alpha(1-\alpha)(2 \alpha-1) / 3 \sigma \delta^{4}\right]$ with error term $0\left[\max \left(m^{-1.5}, m^{-0.5} / \sigma\right)\right]$ where $\xi=(t-(\theta / \sqrt{2}))$ and $\phi(x)$ and $\varphi(\alpha)$ denote, respectively, the standard nomal edf and its density. Based on this distribution, the sizes of the Stein two-stage test were computed for some special given values of m, Δ, α and the first kind of orror. The test is good in the sense that the size is small comparing to the one expected. However, in many situations, the values of a or even the values of Δ are unknown, and when this is the case, the two-stage test can not be carried out.

As it has been pointed out in part A of section 2 that on many occasions. a Cifficulty that the statistician is confronted with for the estimation of the parametors in the nixture deasity is that it is anknown if the obsorved sample is mixed consisting of some other sauples with specified or unspecified densities. This is a quostion that has been studied in this section.

4. Miltiple Decision (Selection and Manking) Probless for Mixture of Distributions

 such chat in a sample an individual observation cowes from with probability $a_{i}(1,1,2, \ldots, k)$. Let $f_{i}(x)$ denote the density function of a random $a b-$ servation from 1 . Then the density of random observation from is tiven by a finte alxture $f(x)=\frac{k}{z} a_{i} f_{1}(x)$. in some situations, based on samiling frow we are interosted in selecting some ${ }_{j}$ so thet the associated a_{j} is
the largest among all probabilities $\alpha_{i}(i=1,2, \ldots, k)$. We call this kind of selection proilem the first kind of selection in finite mixture. When the density $f_{i}(x)$ is degenerate at a certain point with probability mass one, this special situation becomes the problem for the selection of the most probable event in k categories i.e. the multinomial cell selections problem. On the other hand, suppose there are k populations, say, "i, $\pi_{2}^{\prime}, \ldots, \pi_{k}^{\prime}$ such that the density of a random observation from π_{i} is given by a finite mixture $g_{i}(x)=\sum_{1} \alpha_{i r} f_{r}(x)(i=1,2, \ldots k)$, where each component density $f_{r}(x)$ is fixed, may be specified or unspecified. By sampling from each population, we are intorested in selecting some m_{j} so that the associated parameter $a_{j r}$ is the largest (or smallest) among all $a_{1 r}, a_{2 r}, \ldots a_{k r}$ for some profixed r. For convenience without loss of generality, we may take $r=1$, that is in the mixture, we put the component $f_{r}(x)$ under main consideration In the firs. place so that wo may consider the selection of the largest (satallext) j_{j}, ve call this hind of selection the second kind of selection In finite mixtures. When $m=2$ and $f_{1}(x)$ and $f_{2}(x)$ are both degenerate with different values, the second selection problem becomes the ususi selection of the best coin (see Cupta and Sobel [47]). It is to be noted that both kinds of selection oceur in the compound decision probleas as proposed by Robbins $\{96]$ in wich aixing distributions correspond to some prior disw tributions. in this zection we restrict ourselves to the second kind of selection. first of all, we consider the case when the saple size is siball and thon consider the lurge sazple size situation. In this section, all component densities will be assumed identifiable.

4A. San11 sample Size Case

In this part we inpose no restriction on the parameter space. Based on the given stiples of size n from each population we wish to select subset
of populations which includes the one we desire most with high probability which is pre-assigned before the experiment is carried out. This approach is called the subset selection formulation. One can refer to Gupta [46] for nore details.
a) Procedures based on discriminant points

Suppose $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ are k populations such that the cumulative distribution function of π_{i} is a mixture of two components given by

$$
G_{i}(x)=\alpha_{i} F\left(x-\theta_{1}\right)+\left(1-\alpha_{i}\right) F\left(x-0_{2}\right) \quad i=1,2, \ldots, k
$$

for some unknown $\alpha_{i} \in(0,1)$ with $\theta_{1}<\theta_{2}$.
Let $\Omega=\left\{\underset{\sim}{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right): 0<\alpha_{i}<1\right\}$.

Let $X_{i 1}, X_{i 2}, \ldots, X_{i n}$ denote n independent observations from π_{i}. To select a subset of populations containing the one associated with the largest α_{i}, we consider the fullowing rule $R\left(x_{U}\right)$, which is based on somo fixed point x_{0}, which selects a non-empty subset of populations when samples are taken. For a given point x_{0}, let N_{i} denote the number of observations from π_{i} that are less than or equal $t \cdot x_{0}$. We defino $R\left(x_{0}\right)$: Select π_{i}, if and only if

$$
N_{i} \geq \max _{1 \leq j \leq k} N_{j}-c
$$

for some positive constant c.
Suppose θ_{1} and θ_{2} are known; without loss of generality we may assume $\theta_{1}=0$ and $\theta_{2}=\Delta$. If F is specified, set $F_{1}\left(x_{0}\right)=P\left(x_{0}-\Delta\right)$. Then, since the random variable N_{1} is a binomial randow variable with paramoter n and $p_{i} \equiv a_{i} F\left(x_{0}\right)+\left(1-\alpha_{i}\right) p_{1}\left(x_{0}\right)$ it follows that $p_{i} \leq p_{j}$, if, and only if, $\alpha_{i} \leq \alpha_{j}$, Since $G_{i}(x)$ is stochastically increasing with rospoct to α_{i},
the probability of a currect selection $1 C S$ correct selection means selection of any subset which includes the population with the larger α_{i}) is thus minimized in the set $\{(\alpha, \alpha, \ldots, \alpha): 0 \leq \alpha \leq 1\}$ (see Desu [29]). We thus conclude,
Theorem 1. $\quad \inf _{\alpha \in \Omega} \mathrm{P}_{\underset{\sim}{\alpha}}\left\{\operatorname{CS} \mid R\left(x_{0}\right)\right\}=\inf _{0 \leq \alpha \leq 1} \sum_{\mathrm{r}=0}^{\mathrm{m}} H^{k-1}\left(c+\mathrm{r} ; \mathrm{c}, \mathrm{x}_{0}\right) \mathrm{h}\left(\mathrm{r} ; \alpha, x_{0}\right)$
where $H\left(i ; \alpha, x_{0}\right)=\sum_{r=0}^{i} h\left(r ; \alpha, x_{0}\right)$ and

$$
h\left(r ; a, x_{0}\right)=\binom{n}{r}\left[\alpha F\left(x_{0}\right)+(1-\alpha) F_{1}\left(x_{0}\right)\right]^{r}\left[\alpha\left(1-F\left(x_{0}\right)\right)+(1-\alpha)\left(1-F_{1}\left(x_{0}\right)\right)\right]^{n-r} .
$$

To choose x_{0}, we see that when F is symmetric about 0 , the best choice of x_{0} is given by $x_{0}=\frac{\Delta}{2}$. If F is not symetric, by a geometrical argument, it is clear that it suffices to choose x_{0} in $(0, \Delta)$ so that the right hand side of Theorem 1 attains its maximum. When Δ is unknown, we need to consider the infimum of the right hand side of Theorem 1 for all $A>0$ and then choose some $x_{0}>0$ so that a supromum is attainod.
 fiable cumulative distributions function, $1=1,2, \ldots, k$. If for any $\overbrace{i}>\hat{0}_{j, i} p_{j}=1$, there exists x_{0} such that $F_{1}\left(x_{0}\right)>\sum_{i=2}^{m} \beta_{i} F_{i}\left(x_{0}\right)$ and for this $x_{0} \sum_{r=2}^{m} a_{r}\left(x_{0}\right)=\sum_{1 r}^{m} \alpha_{1}\left(x_{0}\right)$ if. and only if $a_{31}>a_{11}$ Then, for the selection of sewo papulatiors associated with the largest a_{11}, we have

$$
\begin{gathered}
G_{i}(x)=\alpha_{i 1} F_{1}(x)+\left(1-\alpha_{i 1}\right) F_{1 i}(x) \text { where } \\
F_{l i}(x)=\sum_{j=2}^{m} \delta_{i j} F_{i}(x) \text { with } \delta_{i j}>0, \sum_{j=2}^{m} \delta_{i j}=1 .
\end{gathered}
$$

By given conditions, we have $\alpha_{j 1}>\alpha_{i 1}$ if, and only if, $p_{j}>p_{i}$ where $p_{i}=\alpha_{i 1} F_{1}\left(x_{0}\right)+\left(1-\alpha_{i 1}\right) F_{1 i}\left(x_{0}\right)$ which is the associated parameter of the binomial random variable N_{i}. The problem thus becomes the selection of the largest p_{i} which is discussed in Gupta and Sobel [47] and Gupta, Huang and Huang [44], For $k=2$ the infimum takes place at $p=\frac{1}{2}$ and for $k \geq 3$ asymptotic results and lower bounds are obtained.

We note that when $F_{i}(x)=F\left(x-\theta_{i}\right)$ with $\theta_{1}>\theta_{2}>\ldots>\theta_{k}$ the conditions in the corollary are satisfied if $\alpha_{j r} /\left(1-\alpha_{j 1}\right)>\alpha_{i r} /\left(1-\alpha_{i l}\right)$ for $r=2,3, \ldots, m$. The optimal choice of x_{0} is impossible unless F and θ_{i} s are specified. For a detailed discussion of the computation c reference should be made to Gupta and Sobel [47] or Gupta, Huang and Huang [44].

Corollary 2; If $G_{i}(x)-\alpha_{1}\left(x ; \theta_{1}, \sigma_{1}^{2}\right)+\left(1-\alpha_{i}\right) \phi\left(x ; \theta_{2}, \sigma_{2}^{2}\right)$ where $\oplus\left(x ; \theta, \sigma^{2}\right)$ denotes the normal cdf with mean θ ard variance σ^{2}, thon i) if $\theta_{1}<\theta_{2}$ and $a_{1}=\sigma_{2}$, the best choice of x_{0} is given by $\left(\theta_{1}+\theta_{2}\right) / 2$, ii) If $\theta_{1}=0$ and $\theta_{2}=\Delta>0$, the bost choice of x_{0} is the real root in the interval $(0,0)$ of the equation

$$
\left(\sigma_{2}^{2}-\sigma_{1}^{2}\right) x_{0}^{2}+2 \sigma_{1}^{2} \Delta x_{0}-\sigma_{1}^{2} \Delta^{2}-2 \sigma_{1}^{2} \sigma_{2}^{2}\left(\sigma_{n} \sigma_{2}-\ln \sigma_{1}\right)=c,
$$

1ii) if θ_{1} and θ_{2} are unknown and $\sigma_{1} \leq \sigma_{2}$, thon for any x_{0},
inf $\dot{p}_{\underline{a}}\left(\operatorname{CS} \mid R\left(x_{0}\right)\right)=B(\dot{K}, n, c)$ which is the same expression as on right hand side of Corollary 1.

The proof of Corollary 2 is straightforward and hence omitted.
Next, we consider the case of a mixture of three identifiable cdf's.
Suppose

$$
\begin{aligned}
& G_{i}(x)=\alpha_{i} F_{1}(x)+\beta_{i} F_{2}(x)+\gamma_{i} F_{3}(x) \text { where } \\
& 0<\gamma_{i}=1-\alpha_{i}-\beta_{i}, 0<\alpha_{i}, \beta_{i}<1, \quad i=1,2, \ldots k
\end{aligned}
$$

We consider a rule which is based on two discriminant points, say, x_{0} and $x_{1}\left(x_{0}<x_{1}\right)$. Let N_{i} denote the number of samples from π_{i} which lie in $\left(x_{0}, x_{1}\right)$. For the selection of the largest B_{i}, we propose the following rule:

$$
\begin{aligned}
& R\left(x_{0}, x_{1}\right): \text { Select } \pi_{i} \text { iff } \\
& N_{i} \geq \max _{j} N_{j}-d
\end{aligned}
$$

Then, wo have the following theorem:

Theorom 2: If $F_{i}(x)=F\left(x-\theta_{i}\right)$ with $\theta_{1}<\theta_{2}<\theta_{3}$ and F is symmetric about 0 , thon, for $x_{0} \in\left(\theta_{1}, \theta_{2}\right)$ and $x_{1} \in\left(\theta_{2}, \theta_{3}\right)$ with $x_{0}-\theta_{1}=\theta_{3}-x_{1}$.

$$
\inf _{\underset{\alpha}{ } p_{a}\left\{\operatorname{CS} \mid R\left(x_{0}, x_{1}\right)\right\}=B(k, n, d) ~}^{\text {. }}
$$

Proof: N_{i} is a binomial random vari ble with parameter $\left[F_{1}\left(x_{1}\right)=F_{3}\left(x_{1}\right)\right.$ * $\left.\left.F_{3}\left(x_{0}\right)\right]-F_{1}\left(x_{0}\right)\right] a_{1}+\left[F_{2}\left(x_{1}\right)-F_{3}\left(x_{1}\right)+F_{3}\left(x_{0}\right)-F_{2}\left(x_{0}\right)\right] B_{i}+\left[F_{3}\left(x_{1}\right)-F_{3}\left(x_{0}\right)\right]$. The conditions of the choices of x_{0} and x_{1} and the symetry of F imply the coofficiont of α_{i} vanishos and the coefficient of β_{i} is strictly positive. Hence, $p_{i}<p_{j}$ if, and only if, $\beta_{i}<\beta_{j}$. This complotes the proof,

There are (uncountably) any choices of x_{0} and x_{1}, the discriminant points. Howover, the ones that maximize $F\left(x_{1}-\theta_{2}\right)-F\left(x_{1}-\theta_{3}\right)+F\left(x_{0}-\theta_{3}\right)-$ $\left.F\left(x_{0}\right)-\theta_{2}\right)$ with $x_{0}-\theta_{1}-\theta_{3}-x_{1}$ would be optinal in the sense that the
infimum of the probability of a correct selection (with respect to the parameter space) is maximized.

Corollary 3: If $G_{i}(x)=\alpha_{i} \Phi\left(x ; \theta_{1}, \sigma^{2}\right)+\beta_{i} \Phi\left(x ; \theta_{2}, \sigma^{2}\right)+\gamma_{i} \Phi\left(x ; \theta_{3}, \sigma^{2}\right)$ with $\theta_{1}<\theta_{2}<\theta_{3}$. Then, the optimal choices of x_{0} and x_{1} are those which $\operatorname{maximize} \int_{-\left(\theta_{3}-x_{1}\right)}^{\left(x_{1}-\theta_{2}\right)} \varphi\left(t ; 0, \sigma^{2}\right) d t$ and minimize $\int_{-\left(\theta_{2}-x_{0}\right)-\left(\theta_{3}-\theta_{2}\right)}^{\left.-\theta_{2}\right)} \varphi\left(t ; 0, \sigma^{2}\right) d t$ with the restriction $x_{0}-\theta_{1}=\theta_{3}-x_{1}$.
Proof: Proof follows from Theorem 2 and by noting that $\int_{x_{0}}^{x_{1}} \varphi\left(t ; \theta_{2}, 1\right) a t$ $\int_{x_{0}}^{x_{1}} \varphi\left(t ; \theta_{3}, 1\right) d t=\left(\int_{-\left(\theta_{3}-x_{1}\right)}^{x_{1}-\theta_{2}}-\int_{-\left(\theta_{2}-x_{0}\right)-\left(\theta_{3}-x_{2}\right)}^{-\left(\theta_{2}-x_{0}\right)} \varphi(t ; 0,1) d t\right.$
b) Selection Procedures Based on Sample Means

We assume $G_{i}(x)=\alpha_{1} F_{1}(x)+\left(1-\alpha_{1}\right) F_{2}(x)$ such that $F_{1}(x)<F_{2}(x)$ for all x. For tho subsot solection of populations associated with the largest a_{j}, we propose

$$
R_{1}: \text { Select } x_{1} \text { if, and only if } \dddot{x}_{i} \geq \max _{j} \vec{x}_{j}=c
$$

Then, we have the following
Theoren 3: $\inf _{a} P_{a}\left(C S \mid R_{1}\right)=\inf _{0 \leq a \leq 1} \int_{-\infty}^{\infty} H^{k-1}(x+c, a) d H(x, a)$
where

$$
n(x, a)=r \cdot\left(\begin{array}{l}
n \\
j
\end{array} a^{j}(1-a)^{n-j} F_{1}^{\#} \cdot F_{2}^{(n-j)}(n x)\right. \text { with }
$$

$F_{i}^{*}(x)$ being the r convolutions of $p_{i}(x)$.
Proof: Since $G_{i}(x)$ is a stochastically increasing fanily of distributions with respect to a_{i}, hence $P_{q}(C S \mid R)$ attains its infimum in the set $\{(a, a, \ldots, a): 0 \leq a \leq 1)$. Wo also note that

$$
\begin{aligned}
P_{r}\left\{\bar{X}_{i} \leq x\right\} & =\sum_{j=0}^{n} P_{r}\left\{\stackrel{s}{\sum_{1}} Y_{i}+\underset{1}{n-s} Z_{j} \leq n x \mid s=j\right\} P\{s=j\} \\
& =\sum_{j=0}^{n}\binom{n}{j} \alpha_{i}^{j}\left(1-\alpha_{i}\right)^{n-j} F_{1}^{* j} * F_{2}^{*}(n-j)(n x)
\end{aligned}
$$

where Y_{i} and Z_{j} are independent random observations corresponding to F_{1} and F_{2} respectively.

Corollary 3: If $F_{i}(x)=\Phi\left(x ; \theta_{i}, \sigma_{i}^{2}\right)(i=1,2)$ with $\theta_{1}>\theta_{2}$ and $\sigma_{1} \leq \sigma_{2}$, then,

$$
\inf _{\alpha} p_{\alpha}\left\{\operatorname{cs} \mid R_{1}\right\}=\inf _{0 \leq \alpha \leq 1}\left[\sum_{j=0}^{n} \sum_{i=0}^{n}\binom{n}{j}\binom{n}{i} \alpha^{i+j}(1-\alpha)^{2 n-i-j} \phi\left(t\left(\theta_{1}, \theta_{2}, \sigma_{1}, \sigma_{2}, c\right)\right)\right]
$$

where $t\left(\theta_{1}, \theta_{2}, \sigma_{1}, \sigma_{2}, c\right)=\left[(i-j)\left(\theta_{2}-\theta_{1}\right)+n c\right]\left(j \sigma_{1}^{2}+(n-j) \sigma_{2}^{2}\right)^{1 / 2} /\left[(i+j) \sigma_{1}^{2}+\right.$ $\left.(2 n-i-j) \sigma_{2}^{2}\right]$.

4B. Results for the Case of Large Sample Size
For convenience, we define some notation first. For a prefixed integer m , we define

$$
\begin{equation*}
\left.\langle 0,1\rangle^{m}=\left\{\left(a_{1}, a_{2}, \ldots, a_{m}\right): a_{i}\right\rangle 0, \sum_{1}^{m} a_{i}=1\right\} \tag{4.1}
\end{equation*}
$$

Lot $F_{1}(x ; \theta), F_{2}(x ; \theta), \ldots, F_{m}(x ; \theta)$ be m identifiable cdf's. We denote

$$
\begin{align*}
& \text { (4.2) } \quad F(x ; \theta)=\left(F,(x ; \theta), F_{2}(x ; \theta), \ldots, p_{m}(x ; \theta)\right) \tag{4.2}\\
& \text { (4.3) } \quad a_{i}=\left(a_{11}, a_{12}, \ldots, a_{i m}\right), a_{i} \in\langle 0,1\rangle
\end{align*}
$$

A finite mixture with m component $F(x ; \theta)$ is defined to be the inner product of cortaiti $a \in<0,1\rangle^{m}$ and $F(x ; \theta)$ i.e.

$$
\begin{align*}
G(x ; \underset{\sim}{\alpha}) & =\underset{\sim}{\alpha} \cdot \underset{\sim}{F}(x ; \theta) \tag{4.4}\\
& =\sum_{i=1}^{m} \alpha_{i} F_{i}(x ; \theta)
\end{align*}
$$

Let $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ be k populations such that π_{i} has $\operatorname{cdf} G\left(x ; \alpha_{i}\right)$ for some unknown but fixed parameter $\underset{-i}{{\underset{\sim}{i}}^{i}} \in\langle 0,1\rangle^{\mathfrak{m}}$. Let $X_{i 1}, X_{i 2}, \ldots, X_{i n}$ ien n independent observations from $\pi_{i}, i=1,2, \ldots, k$. Let $G_{i n}(x)$ denote the associated empirical distribution. Let λ denote a real-valued continuous function on $<0,1\rangle^{m}$. Let $\lambda_{[1]}(\underline{\sim}) \leq \lambda_{[2]}(\underline{q}) \leq \ldots \leq \lambda_{[k]}(\underline{\alpha})$ denote the ordered values of $\lambda\left({\underset{\sim}{\alpha}}_{1}\right), \lambda\left({\underset{\sim}{\alpha}}_{2}\right), \ldots, \lambda\left({\underset{\sim}{\alpha}}^{\alpha}\right)$.

Based on n independent observations from ench population, we are interested in selecting $t(1 \leq t \leq k-1)$ populations, say, $\pi_{r},{ }_{1} r_{2}, \ldots \pi r_{t}$
 $\lambda_{[k-t+1]}(\alpha)$. We call these populations the t best.

We approach the problom using tho indifference zono formulation. for given $\Delta(>0)$, we define

$$
\begin{equation*}
\Omega(\lambda ; \Delta)=\left\{\left(a_{-1}, a_{-2}, \ldots, a_{k}\right): g_{-} \in\langle 0,1\rangle, \lambda_{1 k-t+1}(\underline{a}) \geq \lambda_{[k-t \mid}(\underline{a})+\Delta\right\} \tag{4.5}
\end{equation*}
$$

Also, for convenience, wo define the k-cartiesian product
(4.6) $\left.\left.a=\langle 0,1\rangle^{m} x<0,1\right\rangle^{m} \times \ldots \times<0,1\right\rangle^{m}$.

For specified $f(x ; i)$ and λ, we consider our problea on the configuration $a(\lambda ; 0)$ for given A using tho indifference 2 ono approach.

Let $H(x)$ be some specifisd cdf. Lot X be sample of size n from a population with density $\underline{a}_{0} \cdot f(x ; \theta)$ for some $a_{0}{ }_{F}\langle 0,1\rangle$ and let $G_{n}(x)$ denote the associated ompirical distribution. For a $\in\langle 0,1\rangle^{\mathrm{m}}$, we dofine

$$
\begin{equation*}
S(\underset{\sim}{a} ; H)=\int_{-\infty}^{\infty}\left(\underset{\sim}{\alpha} \cdot \underset{\sim}{F}(x ; \theta)-G_{n}(x)\right)^{2} d H(x) \tag{4.7}
\end{equation*}
$$

for some given value of θ.
a) Continuous Case

We assume that the parametric form of each component $F_{i}(x ; \theta)$ is continuous in x for each θ and also that it is continuous in θ for each x. If n independent observations are drawn from a population with mixture density $G\left(x ;{\underset{\sim}{\alpha}}_{0}\right)$ for unknown ${\underset{-}{0}}^{\in}\langle 0,1\rangle^{m}$, the value ${\underset{\sim}{a}}_{n}$ which minimizes $S(\underset{\sim}{\alpha} ; H)$ seems a good estimate for ${ }_{-0}$ in the least squares sense. It is to be noted that $\hat{\alpha}_{\mathrm{n}}$ is a statistic and is a function of $H(x)$. A good choice in some sense for the weight function $H(x)$ is not simple. Bartlett and Macdonaid [2] study some special case for $m=2$. For $m \geq 3$, the situation is complicated. A natural and reasonable choice of $H(x)$ would be $G_{n}(x)$ which is the associated cmpirical function. This choice has been studied in [19] and [18]. For an alternative choice of $H(x)$ consider $G(x ; a)=\underline{a} \cdot F(x ; \theta)$ which has been studied in [70]. For a fixad $p(0 \leq p \leq 1)$, wo take

$$
(4,8) \quad H(x)=p \underline{a} \cdot F(x ; \theta)+(1-p) G_{n}(x)
$$

Associated with each T_{i}, wo dofino, analogous to (4.7),

$$
\begin{equation*}
S_{i}(\underline{q} ; p)=\int_{-\infty}^{\infty}\left(\underline{a} \cdot F(x ; \theta)-G_{i n}(x)\right)^{2} d H(x) \tag{4,9}
\end{equation*}
$$

where $H(x)$ is defined by $(4,8)$ and $G_{i n}(x)$ is the eupirical distribution function corresponding to $\mathbb{E}_{1}(1=1,2, \ldots, k)$. Define \dot{a}_{1} to be such that (4.10) $s_{1}\left(\hat{G_{i}} ; p\right) \quad \inf _{a \in<0,1>} s_{1}(\alpha ; p)$. The existenco of a_{i} can be shown to hold. For a fixed $p(0 \leq n \leq 1)$, wo define a solection rulo R_{p} as follows.

Take n independent observations from each π_{i} and compute ${\underset{\sim}{i}}^{i}={\underset{\sim}{i}}\left(X_{i 1}\right.$, $\left.X_{i 2}, \ldots, X_{i n}\right)$ which is defined by (4.10) and (4.9). Let $\lambda_{[1]}(\underset{\sim}{\hat{\alpha}}) \leq \lambda_{[2]}(\underset{\sim}{\alpha}) \leq$ $\ldots \leq \lambda[k](\underset{\sim}{\hat{\alpha}})$ denote the ordered values of $\lambda\left(\hat{\underline{q}}_{1}\right), \lambda\left(\hat{\alpha}_{2}\right), \ldots, \lambda\left(\hat{\sim}_{k}\right)$. $R_{p}:$ Select π_{i} if, and only if $\lambda\left(\ddot{\sim}_{i}\right) \geq \lambda_{[k-t+1]}(\hat{\alpha})$.

A random mechanism is used to break the ties. By a correct selection (CS) we mean a set of t populations associated with the t largest values $\lambda\left({\underset{\sim}{\alpha}}_{1}\right)$, $\lambda\left({\underset{\sim}{\alpha}}_{2}\right), \ldots, \lambda(\underset{\sim}{\alpha})$ is selected.

Definition 1 A selection procedure R is consistent with respect to λ if
$\lim _{\Delta \rightarrow 0} \lim _{n \rightarrow \infty} \inf _{\alpha \in \Omega(\lambda ; \Delta)} P_{\underline{\alpha}}\{C S \mid R\}=1$
Definition 2 A selection procedure R is asymptotically strongly monotone with respect to λ if $\lambda(\underset{-1}{(\alpha)})<\lambda\left(\alpha_{j}\right)$ and for any $\in>0$ implies

$$
\lim _{n \rightarrow \infty} \sup _{\underline{G} \in \Omega(\lambda ; \Delta)} P_{\underline{g}}\left\{n_{i} \text { is selected } \mid R\right\}-\in<\lim _{n \rightarrow \infty} \inf _{\alpha \in \Omega(\lambda ; \Delta)} P_{\underline{\alpha}}\left\{\pi_{j} \text { is solected } \mid R\right\}
$$

Theorem $4 R_{p}$ is consistent and asymptotically strongly monostone with respect to a continuous λ.

Proof: (a) We show that $\hat{a}_{i}+a_{i}$ with probability one for each $i=1,2, \ldots, k$. Now, by the Clivenko-Cantelli theorem, for $\in>O, I N(E)$ sucil that, whenover $n \geq N(E)$.

$$
\begin{aligned}
& \left.P_{r} \|\left[p g_{i} \cdot f(x ; \theta)+(1-p) G_{i n}(x)\right]-G_{i n}(x) \mid<\in\right\}-P_{r}\left(p \mid G_{i} \cdot P(x ; 0)\right. \\
& \left.\quad-G_{i n}(x) \mid<e\right)=1
\end{aligned}
$$

Replacing $d F_{n}(x)$ by $d\left(p H_{i} \cdot F \cdot(1-p) G_{i n}(x)\right)$ and follow the same argumat as given in the proof of Theorem 2 in [19] the result follows.
(b) Consistency of R_{p}

Since λ is concinuous it follows thus $\lambda\left(\hat{a}_{i}\right) \cdot \lambda\left({\underset{\sim}{i}}^{\boldsymbol{\alpha}}\right)$ with probubility one.

Now, by the Egoroff's theorem, for $\in>0$ and $\delta>0$ there exists $N_{i}(\in, \delta)$, A_{i} and B_{i} such that the sample space is decomposed to be $A_{i} \cup B_{i}$ with B_{i} the complement of A_{i} and $P\left(B_{i}\right)>1-E$ and on $B_{i},\left|\lambda\left(\hat{\alpha}_{i}\right)-\lambda\left(\alpha_{i}\right)\right|<\delta$ whenever $n \geq N_{i}(\epsilon, \delta)$ uniformly in ${\underset{\sim}{i}} \in\langle 0,1\rangle^{m}$, i.e. $N_{i}(\epsilon, \delta)$ is independent of ${\underset{\sim}{i}}_{i}$. Note that $\lambda\left({\underset{\sim}{\alpha}}_{i}\right)$ depends on n. Set $N=N_{1}(\epsilon, \delta)+\ldots+N_{k}(\epsilon, \delta)$ and set $B=\bigcap_{i=1}^{k} B_{i}$. Then, $P(B)>1-\epsilon$, and on B, whenever $n \geq N$,
$\max _{1 \leq i \leq k}\left|\lambda\left(\hat{\alpha}_{i}\right)-\lambda\left(\alpha_{i}\right)\right|<\delta$ uniformly for each $\left(\alpha_{1}, \alpha_{2} ; \ldots \alpha_{k}\right) \in \Omega$. Now, for any $p * \in(0,1)$, and any given $\Delta>0$, choose $\delta=\frac{\Delta}{3}$ and $\in=1-p *$. Since on $\Omega(\lambda ; \Delta), \lambda_{[k-t+1]}-\lambda_{[k-t]} \geq \Delta=30$. Hence, we conclude that

$$
{\underset{\underline{q}}{ }}\left(\lambda\left(\hat{\underline{\alpha}}_{r_{i}}\right)>\lambda_{[k-t]}(\hat{\alpha}), i=1,2, \ldots, t \mid \lambda\left({\underset{\sim}{r}}_{i}\right)>\lambda_{[k-t]}(\underset{\sim}{c})\right)>p^{*}
$$

$V \underset{\sim}{x} \in \Omega(\lambda, \Delta)$. Hence, wo have shown that for every $\Delta>0_{0}$ $\lim _{n^{\rightarrow \infty}}^{\inf } \underset{\sim}{\operatorname{in}(\lambda ; \Delta)} P_{a}\left(C S \mid R_{p}\right\}=1$. This is the consistency of R_{p}.
(c) Suppose $\lambda\left(\alpha_{i}\right)<\lambda\left(\alpha_{j}\right)$.
(i) If $\lambda\left(\alpha_{1}\right) \leq \lambda(k-t]^{(a)}$ and $\lambda\left(\underline{a}_{-j}\right) \geq \lambda_{[k-t+1]}(\underline{a})$. Thon, take $\geq \frac{2}{3}$ and go through the arguments given in the provious part (b), we can concilude
 $n \geq N_{0}=N_{0}(\Delta)$ for some N_{0}. on the other hand, for asch $n \geq N_{0}$ (W_{1} is selected $\left.\mid R_{p}\right) \in\left(\right.$ solection is not correct $\left.\mid R_{p}\right) \cdot$ Hence, P_{i} if is selectedi R_{f} !

(ii) Suppose both $\lambda\left({\underset{\sim}{\alpha}}_{i}\right)$ and $\lambda\left({\underset{\sim}{\alpha}}_{j}\right)$ are no larger than $\lambda[k-t] \underset{\sim}{(\alpha)}$. Then, for $\epsilon>0$ and by the arguments in (b), there exists a subset of sample space B and an integer N_{0} such that $P\{B\}>1-\frac{E}{2}$ and for $n \geq N_{0}$ and on B, $\max _{1 \leq i \leq k}\left|\alpha_{i}-\hat{\alpha}_{i}\right|<\frac{\Delta}{3}$. Let E denote the event $\left\{\pi_{i}\right.$ is selected $\left.\mid R_{p}\right\}$. Then $E=E \cap B+E \cap B^{C}$. Hence $\sup _{\underline{\alpha}} P_{\underline{\alpha}}(E) \leq \sup _{\alpha} P_{\underline{\alpha}}(\mathbb{C} \cap B)+\sup _{\underline{\alpha}} p_{\underline{\alpha}}\left\{E \cap B^{C}\right\}$ $\leq \sup _{\alpha} P_{\alpha}\{E \cap B\}+\frac{E}{2} \operatorname{since} P_{\alpha}\left\{E \cap B^{c}\right\} \leq ?_{\alpha}\left\{B^{c}\right\}<\frac{E}{2} \quad \forall \alpha \in \Omega(\lambda ; \Delta)$. Noting that, for any $\alpha \in\left\{(\lambda ; \Delta), P_{\alpha}\{E \cap B\}=0\right.$ since, on $B \hat{\alpha}_{-i}<\alpha_{[k-t+1]}-\frac{\Delta}{3}$.
(iii) If $\lambda(\underset{\sim}{\alpha})$ and $\lambda(\underset{\sim}{\underset{\sim}{\alpha}})$ are both no less than $\lambda_{[k-t+1]}(\underline{\sim})$, the argument is analogous to the case of (ii). The proof is complete.

Hemark 1 Let $t_{1}, t_{2}, \ldots, t_{m}$ be positive integers such that each t_{i} is mo larger than $k-1$. Let $\eta\left(t_{1}, t_{2}, \ldots, t_{m}\right)=\left\{\left(a_{1}, a_{2}, \ldots, a_{k}\right): a_{\left\{k-t_{i}+1\right]}^{(i)}\right.$ $\left.>\alpha_{\left[k-t_{i}\right]}^{(i)} 1=1,2, \ldots, m\right)$ where $a_{[j]}^{(i)}$ denoces the $j-$ th largest value of the 1 -th component of $a_{1}, a_{2}, \ldots, a_{k}$ and wo denote $a_{r} \cdot\left(a_{r}^{(1)}, a_{r}^{(2)} \ldots a_{r}^{(m)}\right)$. If for each we aro desired to select the t_{i} lag gest in the 1 -th component simultaneously, then, using the statistics $\left(\hat{a}_{-1}, \hat{a}_{2}, \ldots, \dot{a}_{k}\right)$ which are defined by (4.10), associated with the $i-$ th component, we select these populations Which have the t_{1} largest values in the 1 -th component of $\left(a_{1}^{(1)}, a_{2}^{(1)}, \ldots, a_{k}^{(1)}\right)$
 consistent thad asymontcally strongly monoton on $a\left(t_{1}, t_{2}, \ldots t_{k}\right)$.

Definition 3 A selection pracedure R is consistent of order $o(A(A))(0(A(A)))$
 $H=0(A(A j) \quad \because \quad n=0(A(A))$

Theorem 5. R_{p} is consistent of order $O\left(\Delta^{\delta}\right)$ with respect to λ if λ sati<fies lifpschitz condition. $\left(-\frac{1}{2}<\delta<0\right)$.

Proof: Wo note that, by the Glivenko-Cantelli theorem that $\sup _{x} \mid G_{i}(x)-$ $G_{i n}(x)+o(1) \mid>0$ WPI as $n \rightarrow \infty$ for each i. For any fixed i, let $\dot{S}({\underset{\sim}{i}} ; p)$ denote the $m-1$ equations for which each equation is differentiated with respect to $\alpha_{i j}, j=1,2, \ldots m-1$, where $\alpha_{i}=\left(\alpha_{i 1}, \alpha_{i 2}, \ldots, \alpha_{i m-1}, 1-\sum_{j=1}^{m-1} \alpha_{i j}\right)$. Then, the first element of $\dot{S}\left({\underset{\sim}{i}}^{i} ; p\right)$ for $j=1$ becomes

$$
\begin{aligned}
& \frac{1}{n} \sum_{j=1}^{n} F_{1}\left(x_{i[j]} ; \theta_{i}\right)\left\{\sum_{r=1}^{m} a_{i r} F_{r}\left(x_{i}[j] ; \theta_{r}\right) \frac{j}{n}+\frac{1-p}{2 n}\right\} \\
& \leq \sup _{x}\left|G_{i}(x)-G_{i m}(x)+o(1)\right| \frac{1}{n} \sum_{j=1}^{n} F_{1}\left(x_{i}(j] ; \theta_{1}\right)
\end{aligned}
$$

where $X_{i[l]} \underline{\sim}^{\ldots \leq X_{i[m]}}$ are order statistics from π_{i}. Apply the analogous arguments in [19], we have $\left|\lambda\left(\hat{a}_{i}\right)-|({\underset{a}{i}})| \leqslant 0\left(n^{\delta-1 / 2}\right)\right.$ for all but finite n with probability $1(0<\&<1 / 2)$ aince λ satisfios lipschitz condition. Now, take $\left|\lambda\left(\dot{q}_{i}\right)-\lambda\left(u_{i}\right)\right| \Delta \Delta$ and let $A \rightarrow 0$. Then, as $n \rightarrow \infty, \Delta+0$ and we have $n=0\left(\Delta^{\frac{-2}{1-25}}\right)$. This means as $\Delta+0$, the rate of divergence of n is to the $1^{\frac{2}{1-26}}$
order $\left(\frac{1}{A}\right)^{1-26}$. In order that $\inf _{a(\lambda ; L)} P_{a}(C S \mid A)+1$ it suffices to take $n=\left(\frac{1}{\Delta}\right)^{\frac{1}{2}-s} \operatorname{as} \Delta+0$.
 where is some integer. This mons mi sawples are drawn from ach population. And for cach subgroup of n samplos, we obtain an ostimate a_{i} for the population ${ }^{\prime}$. If n is large, $\lambda\left(a_{i}\right) * a_{i 1}$, and $t w$, we propose the following rule R_{p}.
$R_{p}^{\prime}:$ Select π_{i} if $\bar{a}_{i l} \geq \bar{\alpha}_{j 1}$ for all $j \neq i$, where $\overrightarrow{\underline{a}}_{i l}$ is the first component of $\bar{\alpha}_{i}$.

Theorem 5. If n is large, $t=1$ and $\lambda\left(\alpha_{i}\right)=\alpha_{i 1}$, the projection function, then we have

$$
\inf _{\inf (\lambda ; \Delta)} p_{\alpha}\left\{C S \mid R_{p}^{-}\right\} \geq \int_{-\infty}^{\infty} \pi_{j=2}^{k} \Phi\left(\delta_{j} z+\frac{\sqrt{r} \Delta}{\sigma} j d \phi(z)\right.
$$

where $\$(x)$ denotes the standard normal distribution and

$$
\sigma_{j}^{2}=2 \int_{-\infty<\infty<y<\infty} C_{j}(x)\left[1-G_{j}(y)\right] d B_{j}(x) d B_{j}(y)
$$

where

$$
B_{j}(x)=F_{1}\left(x_{i} \theta_{1}\right) G_{j}(x)-\int_{-\infty}^{\infty} F_{1}\left(x ; \theta_{1}\right) d G_{j}(x)
$$

for $j a 1,2, \ldots, k$ and

$$
o_{[i]} \leq \sigma_{[2]} \leq, \cdots \leq \sigma_{[k]}, \delta_{j}{ }^{\square} \alpha_{[1]^{/ \sigma_{[j]}}}
$$

Proof: It has beon shown in [18] that is astw.totically norinal and hence, the first component of \hat{a}_{i}, say $\hat{\underline{a}}_{i 1}$ is asimptotically normal with mean $a_{i 1}$ and variance

$$
a_{i}^{2}=2 \int_{-\infty<x<y<\infty} G_{i}(x)\left[1-G_{i}(y)\right] d B_{1}(x) d B_{i}(y)
$$

where

$$
\theta_{i}(x)=F_{1}\left(x ; \theta_{1}\right) G_{i}(x)-\int_{-\infty}^{*} F_{1}\left(x ; \theta_{1}\right) d G_{i}(x)
$$

Hence, when 11 is large amel t - 1, we have for aise(λ; Λ)

$$
\begin{aligned}
P_{\underline{\alpha}}\left\{\operatorname{CS}\left\{R_{p}^{-}\right\}\right. & \left.=P_{\alpha}\left\{\bar{\alpha}_{k 1} \geq \bar{\alpha}_{j}\right], j=1,2, \ldots, k-1 \mid \alpha_{k 1}=\max _{1 \leq j \leq k} \alpha_{j 1}\right\} . \\
& =P_{\underline{\alpha}}\left\{\frac{\sqrt{r}\left(\bar{\alpha}_{k 1}-\alpha_{k 1}\right)}{\sigma_{k}} \geq \frac{\left.\sqrt{r} \bar{\alpha}_{i 1}-\alpha_{j 1}\right) \sigma_{j}}{\sigma_{j} \sigma_{k}}+\frac{\sqrt{r}\left(\alpha_{j 1}-\alpha_{k 1}\right)}{\sigma_{k}}\right\} \\
& \geq P_{\underline{a}}\left\{z_{k} \geq \bar{Z}_{j}\left(\frac{\sigma_{j}}{\sigma_{k}}\right)-\frac{\sqrt{r} \Delta}{\sigma_{k}} j=1,2, \ldots, k\right\}
\end{aligned}
$$

(where $z_{1}, z_{2}, \ldots z_{k}$ are iid standard normal)

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \prod_{j=1}^{k-1} \phi\left(\frac{\sigma_{k}}{\sigma_{j}} z+\frac{\sqrt{r} \Delta}{\sigma_{j}}\right) d \phi(z) \\
& \left.\geq \int_{j=1}^{\infty} \prod_{j-1} \phi\left(\sigma_{j} z+\frac{\sqrt{r} \Delta}{\sigma_{[j+1]}}\right) d \phi(z) \text { (by a loama in }[A 5]\right)
\end{aligned}
$$

where $j^{a} a_{[1]} / \sigma_{[j+1]} a_{[1]}{ }^{a}[2]-\cdots{ }^{\Omega}{ }^{a}[k]$. This completes the proof.

Asymptotle relative effieiency of R_{p} with respect to R_{B}
We assume $=2, t=1$ and 1 is the projection function. In this ase whave $G_{1}(x)=a_{1} F_{1}\left(x, 0_{1}\right)+\left(1-o_{1}\right) F_{2}\left(x ; \theta_{2}\right)$ for $1 \in 1,2, \ldots, k$ and wo denote a_{1} instead of g_{1}, Suppose $F_{1}\left(x ; \theta_{1}\right.$ and $F_{2}\left(x_{0} \theta_{2}\right)$ are not spectestos. hovever, we assuse thore oxists sowe point x_{n}, known, such that $F_{1}\left(x_{0} ; 0_{1}\right)$ (F, $\left.F_{2} ; 0_{2}\right)$. Assume $F_{1}\left(x_{0} ; 0_{1}\right) \Rightarrow F_{2}\left(x_{0} ; \theta_{2}\right)$. Then, we see that $a_{1} \Rightarrow a_{j}$ if, and only if $G_{i}\left(x_{0}\right) \rightarrow G_{j}\left(x_{0}\right)$. Hence, selecting the best is equivalent to selecting the population asoeiated with the largost $\left.G\left(x_{0} ;{ }^{\prime}\right)^{\prime}\right)$ value.

For a diven $1,1 \pm 1 \pm k$, and $j .1 \pm j \pm n$, desine

$$
\gamma_{i j} \equiv \begin{cases}1 & \text { if } x_{i j} \pm x_{0} \\ 0 & \text { othorwise }\end{cases}
$$

and define

$$
\hat{G}_{i}\left(x_{0}\right)=\sum_{j=1}^{m} Y_{i j}
$$

Then, it is obvious that $\hat{G}_{i}\left(x_{0}\right)$ is a binomial random variable with cdf $B\left(n ; \hat{G}\left(x_{0}\right)\right)$.

We define a selection procedure R_{B} as follows:
R_{B} : Select the population π_{i} which is associated with the largest $\vec{i}_{i}\left(x_{0}\right)$.
When n is large, we use the normal approximation. Let $F_{1}\left(x_{0} ; \theta_{1}\right)$ $F_{2}\left(x_{0} ; \theta_{2}\right)=d>0$. Then, by the result of [114], we have asymptotically $n \approx c^{2}\left(p^{*}\right)\left(1-\Delta^{2} d_{0}^{2}\right) / 2 \Delta^{2} d_{0}^{2}$ when $\Delta \rightarrow 0$ and $p^{*}+1$. Again, by the Foller's inequality, we see that $\Phi(z) \approx 1-\frac{1}{\sqrt{2 \pi} z} e^{-\frac{z^{2}}{2}}$. We obtain $c^{2}\left(p^{*}\right)=\left(\frac{1}{1-p^{*}}\right)^{2}$. Let n_{1} and n_{2} denote, respectively, the sample sizes associated with R_{p} and R_{B} when $\inf _{\alpha \in \Omega(\lambda ; 1)} P_{\alpha}\{\operatorname{CS}\}=p *$ is satisfied for both rules. Wo define the asymptotic relative efficiency of R_{p} with respect to R_{B} by $\operatorname{ARE}\left(R_{p} ; R_{B}\right)=$ $\frac{n_{1}\left(P^{*}, \Delta\right)}{n_{2}\left(P^{*}, \Delta\right)}$ as $P^{*}+1$ and $\Delta+0$. It follows from the provious result and the result in Treorem 4 we have

$$
\operatorname{ARE}\left(R_{p} ; R_{B}\right)=\lim _{\substack{\Delta \rightarrow 0 \\ p^{\star+1}}} \frac{2\left(1-p^{\star}\right)^{2} \Delta^{1.5+\delta} d_{0}^{2}}{1-\Delta^{2} d_{0}^{2}}=0
$$

However, if we take 1-F* $=\Delta \rightarrow 0$, we have an alternative effieleney defined by

$$
\operatorname{ARE}^{-}\left(R_{p} ; R_{B}\right) \equiv \lim _{\substack{\Delta \rightarrow 0 \\ \Delta=1-p^{*}}} \frac{n_{1}\left(P^{*}, \Delta\right)}{n_{2}\left(P^{*}, \Delta\right)}=\lim _{\Delta \rightarrow 0} \frac{2 \Delta^{\delta+3.5} d_{0}^{2}}{1-\Delta^{2} d_{0}^{2}}=0
$$

This shows that R_{p} is good compared to R_{B}.
b) Discrete casc

In this case, we denote $F_{1}, F_{2}, \ldots, F_{m}$ as discrete distributions such that the outcomes from each distribution with cdf F_{i}, for some i, san be classified into $s(\geq 2)$ states. Let the probability that an outcome from F_{i} belongs to state \& denoted by $\mathrm{p}_{\mathrm{i} \ell}$. We assume $\mathrm{F}_{1}, F_{2}, \ldots,{ }^{\mathrm{F}} \mathrm{m}$ are all specified and $p_{i \ell}$ are all given.

For ${\underset{\sim}{i}} \in\langle 0,1\rangle^{m}$ we define a mixture distribution G_{i} by $G_{i}=\alpha_{i 1} F_{1}(x)+$ $x_{i 2} F_{2}(x)+\ldots+\alpha_{i n} F_{m}(x)$. Then, $G_{i}(x)$ is also a discrete discribution such that the probability of an outcome belonging to state j is given by

$$
g_{i j}=\alpha_{i 1} p_{1 j}+\alpha_{i 2} p_{2 j}+\ldots+\alpha_{i m} p_{m j} \quad \text { for } j=1,2, \ldots, s .
$$

We assume that there oxists a lowor bound g_{0} such that $g_{i j} \geq g_{0} \geq 0$ for all $i=1,2, \ldots, k, j=1,2, \ldots, s$. Let n samples be drawn from π_{i} and let n_{j} denote the number of outcomes which belong to state j. For any $a=$ ($a_{1}, a_{2}, \ldots, a_{m}$) we define the Natusita distance (seo [71]) as follows. (1.11) $S_{i}(\underline{a})=\left(\sum_{j=1}^{s}\left(\sqrt{g_{i}}-\left(\frac{n_{j}}{n}\right)^{2}\right)^{1 / 2}\right.$
where $g_{i}=\sum_{i u 1}^{m} a_{i} p_{i j} \cdot s_{i}(a)$ is thus a function on $\langle 0,1\rangle^{m}$.
Let \dot{a}_{i} denote a value in $\leqslant 0,10^{n}$ such that $s_{1}\left(\hat{u}_{i}\right)$ attains its infimum. For given ir and λ, to select the t best with respect to λ, we propose the following selection procedure.
 $\lambda\left(\dot{a}_{Y_{1}}\right), d\left(\dot{a}_{r_{2}}\right) \ldots \lambda\left(\dot{\alpha}_{t}\right)$ are the thargast values of
$\left({\underset{\sim}{*}}_{1}^{*}\right), \lambda\left(\stackrel{\rightharpoonup}{a}_{2}\right), \ldots, \lambda\left(\hat{a}_{k}\right)$, which are sefined by (4.11).
We use a random mechanism in case of tios.

Theorem 6. The selection procedure R is consistent and asymptotically strongly monotone with respect to λ if λ is continuous.

Proof: It has been shown in [71] that for our case ${\underset{\sim}{\alpha}}_{i} \rightarrow \underset{\sim}{\alpha}$ with probability one in the usual sense of convergence of a sequence of vectors. Therefore, $\lambda\left(\hat{\alpha}_{i}\right) \rightarrow \lambda({\underset{\alpha}{i}})$ WP1. Appling the analogous arguements given in the proofs of Theorem 4 we can conclude the same results. This completes the proof.

References

1. Andrews, D.F. and Mallows, C.L. (1974) Scale mixtures of normai distributions J.R. Statist. Soc. B, 36, 11-102.
2. Bartlett, M.S. and MacDonald, P.D.M. (1968) "Least-squares" estimation of distribution mixtures. Nature, Lond., 217, 195-196.
*3. Beeker, N.G. (1970) Mixture designs for a model linear in the proportions. Biometrika 57, 329-338.
3. Behboodian, Javad (1970) On a mixture of normal distributions. Biometrika 57, 215-217.
4. Blischke, W.R. (1962) Moment estimators for the parameters of a mixture of two binomial distributions. Ann. Math. Statist. 33, 444-454.
5. Blischke, W.R. (1963) Mixtures of discrete distributions. Proceedings of the International Symposium on Classical and Contagious Discrete Distributions, Statistical Publishing Society, Calcutta, 351-372.
6. Blischke, N.R. (1964) Estimating the parameters of mixtures of binomial distributions, J. Amer. Stat. Assoc. 59, 510-528.
7. Bliss, C.I. and Fisher, R.A. (1953) Fitting the negative binomial distribution to biological data, Note on the efficient fitting of the negative fitting of the negative binomial. Biometrics 9, 176-200.
8. Blum, J.R. and Susarla, V, (1977) Estimation of a mixing distribution function. Ann, Prob. 5, 200-209.
9. Blumenthal, S. and Covindarajulu, \mathcal{E}. (1977) Robustness of Stein's two-stage procedure for wixturos of nonal populations. J. Amer. Statist. Assoc. 72, 192-196.
10. Boes, D.C. (1966) On the estimation of mixing distributions. inn. Math. Statsit. 37. 177-188.
11. Boes, D.C. (1967) Minimax unbiased estimator of mixing distribution for finite splxtures. Sankhyä A 29. 417420.
12. Hurrat, (arl (1934) The half-invariants of the sua of two typleal laws of errors, with an application to the problen of dissecting a froquency curve into components. Skend. Axtuarietidski., 17, 1-6.
13. Chandra, Satish (1977) On the mixtures of probability distributions. Seand. J. Statist. 4, 105-112.
14. Chane, N.C. (1971) Resolution of mixtures of normal distributions Ph.D. dissortation, University of Wisconsin.

[^1]16. Charlier, C.V.L. (1960) Researches into the theory of probability. Meddelanden frau l.unds Astron. Observ., Sec. 2, Bd. 1.
17. Charlier, C.V.L. and Wicksell, S.D. (1924) On the dissection of frcquency functions. Arkiv for Mathematik, Astronomi Och Fysik, Bd. 18, No. 6.
18. Choi, K. (1969) listimators for the parameters of a finite mixture of distributions. Ann. Inst. Statist. Math. 21, 107-116.
19. Choi, K. and Bulgren, W.G. (1968) An estimation procedure for mixtures of distribution. J. Roy. Statist. Soc. B 30, 444-460.
20. Cohen, A. Clifford (1963) Estimation in mixtures of discrete distributions. Proceedings of the International Symposium on Classical and Contrdious Discrete Distributions, Statistical Publishing Society, Calcutta, 373-378.
21. Cohen, A. Clifford (1967) Estimation in mixtures of two normal distributions. Technometrics 9, 15-28.
*22. Cornell, J.A. and Gared, I.J. (1970) The mixture problem for categorized components. J. Roy. Statist. Soc. 65, 3.39-355.
*23. Cornell, J.A. (1973) Experiments with mixtures: A review Technometries 1!. 437-456.
*24. Comell, J.A. (1975) Some comments on designs for Cox's mixture of polynomial. Technometrics 17, 25-35.
*25. Cornoll, J.A. (1977) Weighted versus unwoighted estimates using. Scheffés mixture model for symotric orror variances pattorns. Technometrics 19. 237-247.
*26. Cox, D.R. (1971) A note on polynomial response functions for mixture. Biometrika 58, 155-159.
27. Day, N.E. (1969) Estmating tho components of a mixture of normil dis. tributions. Biomotrika 56, 463-474,
28. Deely, J.J. and Kruse, R.L. (1968) Construction of sequences exinmatimh the mixing distribution. Am. Math. Statist. 32, 286-268.
29. Desu, M.M. (1970) A selection problea. Ann. Math. Statist. 41, 1569m $\mathbf{1 6 0 \%}$.
30. Doetsch, (6. (1936) Zorlegung cinot Punction in Gass'sche Fohterkurvon. Math. Zeit. 41, 283-318.
*31. Draper, N.R. and John, R.C. St. (1977) A mixture model with inverse terms. Technowetrics 19, 37-46.
*32. Draper, N.R. and John, Raiph C. St. (1977) Designs in three and four components for mixture models with inverse terms. Technometrics 19 , 117-130.
*33. Draper, N.R. and Lawrence, N.L. (1965) Mixture designs for three factors. J. Roy. Statist. Soc. B 27, 450-465.
*34. Draper, N.R. and Lawrence, W.I. (1965) Mixture designs for four factors. J. Roy. Statist. Soc B 27, 473-478.
35. Efron, Bradley and 0lshen, Richard (1978) How broad is the class of normal scale mixture? Ann. Statist. 6, 1159-1164.
36. Falls, Lee W. (1970) Estimation of parameters in compound Weibull distributions. Technometrics 12, 399-407.
37. Feller, W. (1971) An Introduction to Probability Theory and Its Applications, vol. 2 (2nd ed.) John Wiley \& Sons, Inc., New York.
38. Fisher, L. and Yakowitz, S.J. (1970) Estimating mixing distributions in metric spaces. Sankhyã, Ser. A, 32, 411-418.

3!). Fryer, J.G. and Robertson, C.A. (1972) A comparison of some methods for estimating mixed normal distributions. Biometrika 59, 639-648.
*40. Galll, 2. and Kiofer, J. (1977) Comparison of simplex designs for quadratic mixture models. Technometrics 19, 445-453.
41. Goldie, C.M. (1967) A class of infinitely divisible distributions. Proc. Cumbridge philos. Soc. 63, 1141-1143.
42. Gnedonko, B.V. and Kolmogorov, A.N. (1954) Limining Distributions for Sums of Independent Random Variables, translated from Russian by K.l. Chang, Addison-Wesley Publishing Co., Inc., Reading, Mass.
43. Gregor, J. (1060) An algorithm for the decomposition of a distribution Into Gassian components. Biomotrics 25, 79-93.
44. Gupta, Shanti S., Huang, D.Y. and Huang, W.T. (1976) On ranking and selection procedures and tests of homogencity for binomial populations. In Escaris in frohability and Statisties (S. Ikeda and othors. eds.. Tokyo), SO1-53..

14
Copta, S.S. and thank, H.T. (1974) A note on selecting a subset of sormal populations with unequal sample sizes. Sankhya, Ser. $A_{\text {, }} 36$, $549-30 \%$.
46. Cupta, Shanti 5 . (1977) Selection and ranking procedures: a brief introduction, Cowun. Statist. Theor. Nath. A 6.993-1001.
47. Gapta, S.s. and Solvel. M. (1960) Selecting a subset containing the best of severa binomal populations. Chapter $X X$ in Contributions to Probability and Statistics. Ed. by 1. Olkin, Standrod Univ. Press, Stanford, Calif., 224-248.
48. Hasselblad, V. (1966) Estimation of parameters for a mixture or normal distributions. Technometrics 8, 431-446.
49. Hasselblad, V. (1969) Estimation of finite mixtures of distributions from the exponential family. J. Amer. Statist. Assoc. 64, 1459-1471.
50. Hill, B.M. (1963) Information for estimating the proportions in mixtures of exponential and normal distributions. J. Amer. Statist. Assoc. 58, 918-932.
51. Hawkins, R.H. (1972) A note on multiple solutions to the mixed distribution problem. Technometrics 14, 973-976.
52. Hosmer, David W. Jr. (1973) On MLE of the parameters of a mixturc of two normal distributions when the sample size is small. Conmun. Statist. Al(3), 217-227.
53. Hosmer, David W. Jr. (1973) A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample. Biometrics 3.9, 761-770.
54. Ifram, A. (1970) On mixtures of distributions with applications to estimation. JASA 65, 249-254.
55. Isaenko, O.K. and Urbakh, V. Yu. (1977) Partitioning mixed probability distribtuions into their constituents. J. Soviet Math. 7, 148-161.
56. John, S. (1970) On identifying the population of origin of oach observetion in a mixture of observations froa two normal populations. Technometrics 12, \$53-563.
57. John, S. (1970) On identifying the population of origin of each observation in a mixture of observations irom two cama populations. Technomotrics, 12, 565-568.
58. Johnsin, N.L. (197\%) Some simple tests of mixtures with symmetrical components. Conmulcations in Statist. 1, 17-25.
59. Kale, B. K_{t} (1962) On the solution of likelihood aquations hy iteration processes. The mult parametric case. Blometrika 49, 479-486.
60. Katti, S.K. sind Curland, John (196i) The Poisson Pascal distribution. Biometrics 17, 527-538.
61. Katti, S.K. and Gurland, Johr (1962) Some methods of estimation for the Poisson binoaial distribution. Biometries 18, 42-51.
62. Katti, S.K. and Gurland. John (1062) Efficiency of certain methods of est imitors for the nogative binowi:al and the Neyman Type A distrilutions. Hiometriki A!, 215-226.
63. Keilson, .J. (1905) A reviow of transient behavior in regular diffusion and birtl:-death processes, Part II. J. Apll. Probability 2, 405-128.
64. Keilson, J. and Steutel, F.W. (1972) Families of infinitely divisible distributions closed under mixing and convolution. Ann. Math. Statisi. 43, 242-250.
65. Kcilson, Julian and Steutel, F.W. (1974) Mixtures of distributions, moment inequalities and measures of exponentiality and normality. Ann. Prob. 2, 112-130.
66. Kelker, Douglas (19?1) Infinite divisibility and variance mixtures of the normal distribution. Ann. Math. Statist. 42, 802-808.
67. Kingman, J.F.C. (1966) The algebra of quenes. J. App. Probability 3, 285-326.
*68. Kurotori, I.S. (1966) Experiments with mixtures of components having lower bounds. Industrial Quality Control 22, 592-596.

6!). Le(am, L. (1956) On the asymptotic theory of estimation and testing hypotheses. Proceodings of the Third Berkeley Symposium on Mathematical Statistics and Probability 1. University of California Press, 129-156.
70. AtacDonald, P.D.M. (1971) Comment on "An estimation procedure for mixtures of distributions" by Choi and Bulgren. J.R. Statsit. Soc. Ser. B, 33, 326-329.
71. Matusita, K. (1954) On the estimation by the minimum distance mothod. Ann. Inst. Statist. Math. 5, 59-65.
-72. MeLean, R.A. and Anderson, V.L. (1966) Extreme vertices design of mixture experiments. Technometrics 8, 447-454.
73. Medgyessi. P. (1961) Decomposition of Superpositions of Distribution Funetions. Publ. House of the llungarian Acadomy of Sciences, Budapest.
74. Meeden, (i. (1972) Bayes estimation of the mixing distribution, the Ilinerote ease. Ann. Math. Statist. 13, 1093-1090.
75. Mendenhall, WIIlinm and Hader, R.I. (1958) Estimation of parameters of mixed exponentially distributed failurs time distributions from censored Ilfe test data. Biometrika 45, 504-520.
76. Nohanty, N.C. (1972) On the identifiability of finite mixtures of Laguerre distributions. ItELE Trans. Inform. Theory, 18, 514-515.
77. Nostmann, James E. (1962) On the compound multinomial distribution, the multivariate $B-d i s t r i b u t i o n, ~ a n d ~ c o r r c l a t i o n s ~ a m o n g ~ p r o p o r t i o n s . ~$ Mometrika 49, 65-82.
78. Mudholker, Govind S. and Chaubey, Yogendra P. (1976) On the distribution of Fisher's transformation of the correlation coefficient. Comm. in Statist. Part B, 5, 163-172.
79. Murty, J.S. and Dao, M.N. (1968) Design and analysis of experiments with mixtures. Ann. Math. Statist. 39, 1517-1539.
80. Neyman, J. (1939) On a new class of 'contagious' distributions applicable in entomology and bacteriology. Ann. Math. Stat. 10, 35-57.
*81. Nigam, A.K. (1970) Block designs for mixture experiments. Ann. Math. Statist. 41, 1861-1869.
82. Odell, P.L. and Basu, J.P. (1976) Concerning several methods for estimating crop acreages using remoto sensing data. Commun. Statist. A 5(12), 1091-1114.
83. Parthsarthy, K. (1967) Probability measures on metric spaces Academic Press, London and New York.
84. Pearson, Karl (1894) Contributions to the mathematical thoory of evolution. Philos. Trans. Roy. Soc. London 185, 71-110.
85. Peters, Charles and Coberly, William A. (1976) The numerical evaluation of the maximum-likelihood estimate of mixture proportions. Commun. Statist. A, S, 1127-1135.
86. Pollard, Harry S. (1934) On the rolative stability of the median and arithmetric mean, with particular reference to cortain frequency distributions which can be dissocted into normal distributions. Ann. Math. Statist. 5, 227-262.
87. Proston, E.J, (1953) A graphical merhod for the analysis of statisticul distributions into two normal components. Eidmetrika, 40, 46(1-464,
88. Preston, P.f. (1971) Estimating the mixing distribution py piece-wise polymamial arcs. Austral. J. Statist. 13, 64.76.
89. Ramachendran, D. (1974) Nixtures of perfect probability measures. Ann. Prob. 2, 495-500.
90. Reo, Bhaskara, K.P.S. and Bhaskara Rao, N. (1972) Mixtures of nonutome measures. Proc. Ar"r. Math. Soc. 33, 507-510.
91. Ruc, C.R. (1948) The utilization of maltiple measuremonts in problemes of biological classification. J. Roy. Stat. Soc. $10 \mathrm{~B}, \mathrm{IS9}-20 \mathrm{~B}$,
 Join Willoy, New York, ph. 300-5014.
93. Hider, Haul R. (1001) Astimating the parameters of mixed loissom, binomial, and weibuli distributions by the method of monents. Hull. Inst. Intor. Stat. 39, 143-147.
94. Rider, Paul R. (1961) The method of moments applied to a mixture of two exponential distributions. Ann. Math. Statist. 32, 143-147.
95. Robbins, II. (1948) Mixture of distributions. Ann. Math. Statist. 19, 360-369.
96. Robbins, H. (1969) The empirical Bayes approach to statistical decision problems. Ann. Math. Statist. 35, 1-20.
97. Rodine, R.H. (1966) Perfect probability measures and regular conditional probabilities. Ann. Math. Statist. 37, 1273-1278.
98. Rolph, J.E. (1968) Bayesian estimation of mixing distributions. Ann. Math. Statist. 39, 189-1302.
99. Saxena, S.K. and Nigam, A.K. (1973) Symmetric simplex block designs for mixtures. J. Roy. Statist. Soc, B. 35, 466-472.
100. Saxena, S.K. and Nigara; A.K. (1977) Restricted expicration of mixtures by symmetric-simplex design. Technometrics 19, 47-52.
101. Sazonov, V. (1965) On perfect measures. Amer. Math. Soc. Transl. Ser. 2, 48, 229-254.
102. Scheffé (1958) Experiments with mixtures. J. Roy. Statist. Soc. B 20, 334-360.
103. Scheofé (1963) The simplex-centroid design for experimonts with mixtures. J, Roy. Statist. Soc. 8 52; 235-263.
104. Schoonberg, I.J. (1938) Metriespaces and completely monotone functions. Ann. Math. 39, 811-841.
105. Shenton, l.R. (1949) On the efficiency of the method of momants and Neyman's Type A distribution. Blometrika 36 . $450-454$.
106. Shenton, L.R. (1950) Naximum Likelihood and the efficiency of the method of moments. Biomotrika 37, 111-116.
107. Shenton, L.R. and Wallington, P.A. (1962) The bias of moment eat fatary with an application to the negative binowal distribution. Bionetrika 49. 193.204.

10S. Skellam, J.G. (1948) A probability distribution derived from the binomial distribtuion by regarding the probability of success as variable between the sets of trials. J. Roy, Stat. Soc. $10 \mathrm{~B}, 257-261$.
*109. Snee, R.D. (1971) Destgn and analysis of mixture experiments. W. Qualicy Technology 3, 159-169.
*110. Snee, R.D. (1973) Techniques for the analysis of mixture data. Technometrics 15, 517-528.
*111. Snee, R.D. and Marquard, D.W. (1974) Extreme vertices designs for linear mixture models. Technometrics 16, 399-408.
*112. Snee, R.D. (1975) Experimental designs for quadratic models in constrained mixture spaces. Technometrics 17, 149-159.
*113. Snec, R.D, and Marquard, D.W. (1976) Screening concepts and designs for experiments with mixtures. TEchnometrics 18, 19-29.
114. Sobel, M. and Huyett, M. (1957) Selecting the best one of several binomial populations. Bell system Tech. J. 36, 537-576.
115. \because Sprott, D.A. (1958) The method of maximum likelihood applied to the Poisson binomial distribution. Biometrics 14, 97-106.
116. Steutel, F.N. (1968) A class of infinitely divisible mixtures. Ann. Math. Statist: 39, 1153-1157.
117.: Stromgron, Bengt (1934) Tables and diagrams for dissecting a frequency curve into components by the half-invariant method. Skand. Aktnarietid. SkF. 17, 7-54.
118. Tan, W.Y. and Chang, W.C. (1971) Sone comparisons of the method of motments and the method of maximum likelihood in estmating parmeters of a mixture of normal densitios. Biometries 27, 489 .
119. Tan, Wi,Y, and Chang, W.C. (1972) Some comparisons of the method of moments and the dethod of maximum likelihoed in estimatins paraseters of a mixture of two normal densitios. J. Amer. Statist. Assoe, 67. 702-708.
120. Toicher, II. (1960) on the mixture of diatributions. Ann. Math. Sasist. 31, 55-73.
121. Teicher, H. (1961) ddentliability of taixturoe. Ans, Math, statet. 32. 244-248.
122. Teicher, H. (1963) Identifiability offinite dixturgs. Ann. Muth. Statist. 34. 1265-1269.
123. Thompson. W.C. and Nyers, R.A. (19as) Response surface designs for experiments with mixtures. Technometries 10. $759-750$.
124. Thoman, I:A.C. (1969) Histribution fred tests for kilud probihility distributions. Biometrika 56, 475-484.

125 Tubbs, J.D. and Coberly, W.A. (1976) An opirical vensitivity mfudy of mixture proportion estimens. Comman. Statist: A $\$(12) .1115-112 \mathrm{E}$.
126. Wolfe, J.ll. (1970) Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Res. 5, 329-350.
127. Yakowitz, S. and Spragins, J. (1968) On the identifiability of finite mixtures, Ann. Math. Statist. 39, 209-214.
secunity classification of this page man dman Entored)

Approved for public release, distribution unlimited.

 estidates, eaximem likellhood estimates, 目ayes estimetes, loast square ontiv ates; tulformiy minimum variance estimates; minax unbiased estimates, texting for mixture of distributions, ranking and selection for the wixture of discrubutions.
E

 The resulta reviewed concerning probablistir propertios of eiteure distributions anefude the identifiability, scal a ixture; frfotite wivisibility,
 she methud of moments, method of mation likesithopd oatimation, merhow of

results for hypotheses testing provide tests for hypothesis whether an observed sample is a mixture from two samples with certain unknown proportion and also provide test if the mean of the mixture population is equal to some known value. In the last section, we give some new results for selection and ranking procedures for mixtures of distributions.

[^0]: This resenteh was supported by the Office of Naval Rescarch Contract N00014-75-C-0455 at iurduc University.

[^1]: - Jenotes a refurence dealing with the topic of experimental designs whith is not discussed in this paper.

