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ON MIXTURES OF DISTRIBUTIONS: A SURVEY

AND SOME NEW RESULTS ON RANKING AND SELECTION*

by

Shanti S. Gupta, Purdue University

and

Wen-Tao Huang, Academia Sinica, Taiwan

0. InrLoduction and Summary

j There is a large body of literature on tho mixture of distributions

going over about the last eighty years. Since Pearson (841 consisdered

the estimation of the parameters of the mixture of two normal densities

in 1894, many more papers have appeared related to tho problem of statis-

tical inference about the parameters of mixture and probabilisti- properties

of mixture densities.- In i1960,Toicher 1120] started the study of general

considerations of identifiability of mixtures of distributions. Since then

the interest in the mathematical aipoets of mixtures has rocoivod an in-

creasing amount of attention, and the approach to the statistical inforchnce

of mixtures has also seen more developmeont. kotont!y, the studies of mix-

tures and related topics in statistics and probaibility have developed-oven

more soothat these can be classified as a now area. For this reason, the

*present authors decided to review (survey) some of the literatilre dealing

with smom aspects of this area which seemed important to thoem. Th4y topics

covered relate to probabilistic proportiog, estimation, hypotheses testing,

and mualtiple decision (selection and rankzing) procedures.

*This researe was supported by he Ofcof Naval gosearch Contract

N00014-7S-C-O4SS at ;urdue University.iW
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The applications of mixtures of distributions can be found in many

fields such as ecology, taxonomy, fisherybiology, plant and animal breed-

ing, psychologyand engineering, etc. In biology it is often desired to

measure certain characteristics in natural populations of some particular

species. The distribution of such characteristics may vary markedly with

age of the individuals. Age is difficult to ascertain in samples from

populations. In such cases the biologist observing the population as a

whole is dealing with a mixture of distributions, the mixing in this case

is done over a parameter depending on the unobservable variate "age". In

agriculture remotely sensed unlabelled observations from several crops are

available and sometimes along with some labelled observations informatior

is also available about the distribution of individual crop population. On

the basis of such information one wishes to estimate the acreage if a par-

ticular crop or all crops as proportion of the total acreage.

In statistical applications of mixtures, the mixture of densities can

be used to approximate some parameter(s) associated with a denisity. For

I olr
example, the coefficient of skewness of Fisher's transformation z y log (T•1

of the correlation coefficient decreases more rapidly than the excess of its

kurtosis when the sample size increases. The usual normal approximation

for its distribution can be improved by mixing it with a logistic dis-

tribution. The resulting mixture approximation which can he used to estimate

the probabilities and the percentiles, compares favot'ablv in both accuracy

and simplicity (see .[781).

In thi1 papoer we restrict ourselves to probabilistic properties, esti-

ration, hypotheses testing and multiple decisions. In Section I we review

these =in results concerning probabilistic properties of mixing distributions

including the identifiability, scale mixture, infinite divisibility, atosicaess

.. ............................



3

and perfectness. In Section 2 we survey results on estimation theory which

include the method of moments, method of maximum likelihood estimation, method

of least squares, Bayesian estimation method, and method of curve fitting. For

the hypotheses testing problem, we give those results which provide tests for

* hypothesis whether an observed sample is mixed from two samples with certain

unknown proportion; we also give those results which test if the mean of the

mixture population is equal to some known value. All these are treated in

Section 3. And finally in the last section (Section 4) we study some selection

problems of mixture populations. We use the subset selection formulation

when the sample size is small and also study the case of largo sample using

the indifference zone approach.

At the end of the paper we have given a reasonably comprehensive and

useful bibliography concerning the topics discussed in this paper and also

the topic of experimental designs. This last topic it. not discussed in

this paper and hence the papers dealing with it are marked with a i n: the

bibliography.

.1. Probabilistic Properties

Let G(O) be a cumulative distribution function. Let Fix.) be a cumulative

distriubtion function in x for each 0 on the support of G. Assume P(*,0) is

Borel measurable in 0 for evary x. then,1%(x) defined by H;(x) f Xndt(O)

is a distribution function, which is called a 4-mixture of P and G is referred

to as a ixling distribution. When G is a discrate distribution, ItC(X) Is

called a finite mixture and C is referred tu as a finite mixing distribution.
le|•t the d~mi, ~iist 0 0 1; klt ~l b ty() at,.t; sg ,twlvat-elsen 41,b' 4 ,•auh'|t that

each point of 9 is contained in o(•). Let ydenote a class of mixing distri-

Wb.tions on (9, o(a)), Let denote the class of all G-mixture of I for all

'I __::_ • •_: :
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_W~. Let M denote a maping from'tsuhhafoechE9

m(G.) =f P.(x,O)dG(O). Class Wis called Identifiable If M is one-to-one

so that one can identify some uni~que mixing distribution G0 when a certain

H EW'is given.
0

IA. Identifiability of Mixtures

some basic properties of mixture was studied by Robbins in 1948 19S].

iToichor [1201 extended an d generalized this work. Teicher 1121] initiated

the study of identifiabil-ity problem. -in (121), location and scale parameter

mixtures are considered, i.e. when-0 is, respectively, the location and the

scale parameter of,,F(x,0)., SUfficient conditions for the identifiabilities,

of Wwhon 0 is, respectively, the-location and scale parameter, are given.

It is also shown by Teicher 111211 that Afis, Identifiable if (P(x,e), 0 r= l is

an additively closed family, i.eo. F(x, 1*T(, 2  x0 1 0) the operation

is the usual convolution. In (1221 nece~ssaryland sufficient conditions for

identifiability of finite mixtures ar. gien Ioatdtibutios such

as n1ortuil and g~amma are show~n to be-identifiable under finite mixing. Some

sufficient conditions are also givenfor .the clikssm of. binomiai itiuin

to he Identifiable.

'Those results tire largely extended by.Y~ik*.'~i t4 :ýT$tns 1127). They

consider the goneral ealse of p-dimensional distributions. litsin& thte methods

of I Inear algebra, the authors obtain a necossary f~n itffIion condition

ror identiffability of finite mixtures. This condition is very Mafl ico

it is. emqy to check'.- They concludv that the family of p-dimonsiiofal W iusslan

distributions, the family of Cauc~hy distributions, the family of non-degenerate

nlegative binovial distributions, the family of products of is exponential dis-

tributions (for fixed integer i), aOd the untion of the family of' P-variate

IA



• ,:"-

Gaussian and the family of products of n exponential distributions are all

identifiable. Using a result given by [122], Mohanty [76] showed that the

finite mixture of Laguerre distributions is also identifiable. Chandra [14]

has proved some results given by Teicher [122] and Yakowitz and Spragins [127]

by some other methods. Recently, Blum and Susarla [9] gave a short and clear

set of equivalent conditions for identifiability. Let A - {F(x,.): x ER).

" Denote CO(9) the Banach space of continuous functions on@ which vanish at

Sand the norm is given by the sup norm. Blum and Susala [9] showed that it

A C Co()), then jfis identifiable if, and only if A generates CO(9) in the

sup norm.

1B. Scale Mixtures

When the mixture is defined in the form Htx) W Ft()dG(O). the mixture

is called the scale mixture. This kind of mixture has special interest 'both

in probability theory and statistics. It is easy to see that the density

* •. and the associated characteristic function of HW(x) can he wrritten, ret)Qectivety.

h W fx fa(t) . f f (tQdt;(O).
0 0

In terms of random variables, we denote them by Z -,XY ( md ueans equality in

.distribution) where X, Y and Z are, respectivelv. associated with F (x). (1 (0)
y.

and HW(x). It is interesting to note that the class of scale mixtures I•

closed under the operation of scale mixing, i.e. if PFe$, the tlas% of 4ael

mixtures, then I Ere 11(x) lie P)d(O) where G(O) i1, somo distrihution
0

function on (0,-) .-- efinej 4(tt: d -dxy). Then, we havw for u .

0- p 1 1. Pi, F2 E M0 p F I(aa&) . (I - p)t.(ax) EMf. The "nditions for

* the identifiability in the ca•s'of scale mixture can be put in another form In

torms of moment conditions which is given by Keilson and Stoutel 1641

j.
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as follows. If X / 0 a.s. and E IX1 <- for some E > 0 and if E[ZI < W1

then EyE< and there exists one-to-one correspondence between Z and Y

(•'andW). Now, if we assume X to be a normal with mean 0, or, the kernel of

the mixture, i.e. F(x,0) is the normal distribution function with mean 0; we can

characterize the class of mixtures. Let M'(ý) denote the class of scale

mixtures (variance mixtures) of normal distribution with mean 0. From the

Bernstein's representation theorem for completely monotone functions (see

[37 p. 415]) we can conclude that frejW(') if, and only if, pf(t), the

characteristic function of f, is an even function and (Pf (VT) is completely

monotone on (0,c,). Wve recall that h(x) is completely monotone on (o,-)

if (-l)h1) (x) W .0 for x > 0 and n - 0,1,2,. .... Accordingly, by checking

the conditions, it can be seen that the Cauchy distributions, the Laplace

distributions, student t-distributions and the symmetric stable distributions

are all in the c)ass l(o). 11Tis was obtained by Kelker [66). Also, logistic

and double exponential distributions belong to If(+) (Ill). To characterize

••(€) in another typo, we restate a result of Schoonborger [104' as follows:
S..... ) I if, and only if there exists a function 0 such that (Pf(t) '(t2l

and for to- (tjt2,.... . •y(t) • i(ttl), a p-dimensional characteristic

function for each p (p * 1,2,...). It was shown in (641 that 4go) is closed

under the multiplication cf densities with suitable renotring if the product

is intograble. It Z has density fZ(t) which is symumetric about 0, ,Mohanty

(761 showed that a neces-sary and sufficient condition for Z N Y, where
S-~d k

N denotes theoero mean normal random variable, is that for somak fVd )

for 0 ' 0. Hte also found some special corrces•.ndonce between Z and V, It

(.f.(z a' ' - 2 is logistic, then Gy(Y) • 2 1 (Y)kl k O X xp(Ik/2yI

* i.e. Y Y is the asymptotic distribution of the well-known Kolmogorov's goodness

of fit statistic. This result is useful for "meto Carlo studlis. It was

Ix
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1 y2also found that if Z is double exponent, then f is exponential. Finally,

it is interesting to ask how broad is the classs &/((t). For given
1

L, Ia 2 (_2 < aI < a 2), let F E s'(V) with F(xl) = a, and F(x 2) = a2. Let

40(€; xI, x2, aI, a2 ) = {H(x): H(xI) = aI, H(x2 ) = a,, H(x) E 'f(¢)}. Then,

Efron and Olshen [351 showed that, there exists an F* E 4/(,; xI, x2 , a1, a..)

such that F*(x')= max H(x') for x'e (xI, x2 ) and F*(x")= min H(x")for

Sx" 4 (xI, x2 ) where the maximum and minimum are over the set H(ý; xv, x2 , a, a2 ).

If X is considered to be a gamma distribution of order a (0 < a <)

we denote the class of mixture byW(a). Then, we note that A(•(a)c a,($) for

a < S. When a =,•' (1) is the mixture of exponential density and for

fz E jG(1), f (x) is completely monotone. MW(1) plays a key role in

stochastic processes reversible in time. Kingman 167] showed that any density

jfx) on (0,-) can be approximated arbitrarily closely by a finite mixture

of exponential densities and this mixture is in jW_(I). Lot denote

the class of mixtures of r D where r denotes the gamma of order a aod

r denotes the dual of ra. Then, for a < , C C •.(S) and

ltm e4l*l) • M(#) (see (641).
ato..

Another Important property concerning moiture is the infinite divisibility.

We recall that a random variable X is infitnitely divisihl• f.dJ. if, for otny

positive integer n, there exist independently identically distributod random

variables XIX ,I.,,,Xn such that X dXI * X ... * Xn. It has been shownftl1

-that in many families of i.d. distribution functions, the property of i.d.

is preserved under the operation of mixing. Furthermore, for certain families,

this property still holds even when mixing and convolution are applied repeatedly.

*To find such a class, define to be a set of all real positive characteristic

3 functions that are log-convex on (0,-), Then it is shotot in 1641 that Is

closed under (a) mixing (b) raising to a positive power (c) scaling (d) multi-

gplication and thus (e) any combinatioi. of (a), (h), (c) and Md).

-f _ _ :
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For the scale mixing of normal distributions, Kelker [661 showed that

if the mixing distribution is non-degenerate and finite, i.e. G(b) = 1 for

some finite b, then HI(x) is not i.d.. On the other hand, we note that HG(x)

is i.d. if G(x) is i.d. (see [64]).

Following the notation Yj(l) introduced earlier, that is, the class

of mixtures with mixand a standard exponential density, it is shown [64]

that each etement in ý0G(l) is i.d. Also, each element in WGS() is i.d.
Now we consider the power mixture. Let ( X(t) be an infinitely divisibleix

characteristic function. lie define Yt) f fO•(t) dGy(0) as the power

mixture of 0X (t) (or equivalently X). Then, It is easily seen that Z~t)

is i.d. and the class W(X), the set of all power mixtures of Vx (t), is

closed under mixing and convolution (see [64]).

It is interesting to note that all scale mixture of Cauchy distributions

are i.d. (see (661). For the scale mixing Steutol [116] characterizes a big

class which are i.d.. We state it as follows. If V(t) is i.d., then
= 0

1 V - - is an i.d. characteristic function for 0 > 0 and

0.(t) f ý(O)dG(3) is also i.d..

IC, Som Other Properties

Lot (X, af, P) be a probability space. A set A E .SOis called atom of

P if for each 6 C A such that B E Wfeither P(S) 0 or P(B) a P(A). P j!

called atomic if each positive measurable set cowntains an atom. P is non-

atomc. otherwise. The atomic or non-atomic properties of the mixture

weasures are not always preserved. In 1901 an example was given where the

Mixture of a non-atomic measure is atomic. tHowever, on a real line or a

subset of a real line a, if the probability measure P(x.) is non-atomic

for oach x. then the mixture i% always non-atomic for any probability

A . : . .
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measure G(8). For other more general cases, three sufficient conditions

were given in (90] for the non-atomicness of the mixture when the mixand

measure is non-atomic.

The perfectness of a probability measure was first discussed in the

book (42]. This concerns the approximation of a measurable set by a closed

or open set. For a probability space (X, a€, P), P is called perfect if

for every %.measurable real-valued function f on X and every subset S of

the real line for which f_ (S) E .(, there is a linear Borel set T C S such

that P(cf 1 (S) = P(f I(T)). To chock the perfectness of P,Sozonov [l101

showed that P is perfect if, and only if, for each .S-measurable real-

valued function f on X there is a linear Borel set Af C f(X) such that

P(f (Af)) a 1. Accordingly, it is easy to see that a discrete measure

is perfect. We call a mixture measure perfect or non-perfect aceo~ding to

whether the mixing measure is perfect or not. Rodine 197] conj"ctured that

perfect mixtures of perfect measures are perfect. It was shown to be false

by Ramachandran (99]. However, it is true that the perfect mixtures of dis-

crete measures (thus perfect) are •rfect (svv ijo). In general, perfect

mixture of non-perfect measures can be perfect. The perfee¢ ness of the

mixture and mixand measures does not guarantee the perfectness of the mixiog

measure (see [S9]).

i • .•, itimatiou

Let 11(x) J P(xa)dG((a) We the mixture distribution. If 6(a) is

discrete, then 01(i) is given by 11(x) 1 0 P(x,ai) W~hen the sumat•Ion

is finito, 11(x) is called finite mixture. In this section, we study the

probhlt of estimati•g G(a) based an independent observation-s from t(zx).

4 • However, for the most part we will discuss the ease of finite mixtures.

for the case of finite mixtures, the study is tCiwt for the estimation of

-. II -fill II
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0. and a.. The methods for estimation can he classified as the method of
I I

moments, method of maximum-likelihood estimation, the minimum square method,

Bayesian estimation method and the method of curve fitting. In this

problem, all mixture distributions are assumed to be identifiable so that

theestimations of parameters make-sense. Some important classes of con-

tinuous and discrete distributions which are identifiable have been mentioned

in Section IA.

2A. Method of Moments

In 1894 K. Pearson (84] studied the dissection of asymptotic and sym-

metric frequency curves into two components of normal frequency distributions.

Mhis maybe the earliest paper that investiguted the estimation of parameters

in the finite mixture case by the use of the mnthod of moments. Let

2 2'ý(x, u, oa) denote the normal cdf with mean u and variance oa, The mixture

22Is given by It(x) c * (x, 14, ) a (I-() 0 (x, j 2 , a 2. K. Pearson (84] o c-

puted the first five moments and by equating the population moments to the

sample Moments he obtained a ntonic (9th degree) equation. Solving for these

equations he finally obtainted the estimates for a. ul '1 02

and o,, 1towever, the estimates are not unique. He used the data of 1000

crabs from Naples. for study of the frequency distributions of the breadth

of forehead of crabs, asumaing the crabs were from two different species, ho

considered the ratio of the forehead to the body-length as the abseissae oxf

the curve. Applying the method he developed, he arrived at two sets of

'olutios. Thhs lack of uniqueness of solutions bothered Pearson and he

suggested choosing the set of estimates which resulted in the closest

agreosout between the sixth central moment of the sample and the correspmoding

eontn of the ailture which are supposed to be fitted. Charlier in 190 1161

49



suggested a somewhat simpler but still laborious, solution of the moment

equations involving a cubic and the ratio of two other polynomials. Burrau

"in 1934 [13] computed certain functions of the moments which are expressed

in terms of the five parameters to be estimated. In the same year Stromgren

[117] computed some tables and charts to aid calculation of solutions of

some equations which are derived using some giver function of moments. Again

-. in the same year of 1934, Pollard [86] considered the dissection of a sym-

metric density into three components of normal density. Under some assump-

tion.Pollard was able to reduce eight parameters to five. Since the density

is assumed symmetric so that odd moments are zero. Since five equations are

needed for the five unknown parameters, the first eight moments are computed.

Pearson's solution [841 are not applicable in this case. However, the dev-

elopment is analogous.

Instead of moment equations, one might expect the application of tech-

niques involving iteration for maximum likelihood equations. This has been

! done, in fact, by Rao [91] for special qase0.1 2 a This assumption .st-

plifies the problem considerably', However, the calculations- involved are..

still quite cumbersome.

In 1967, Cohen (211 again derived, the nonic,.equation which-was first

obtained by Pearson. Cohen considerably reduced the. total .computati.onal I

effort otherwise required. Sqmo special cases considered by .Cohen are

a, I 2 a or 01 U 02 e 0. Some conditional iuaximum-likelihood, and con-
1. 2I • ditional chi-square estimates wore also discussed. An example wao pro-

vided to illustrute the procedure propoeod for'thq ostimates. llowever,

the problem of. lack of uniqueness of sqlutions still eo'•ianod. Another

' solution to the example given by CO':.n (21) was piroyided by Hawkins [S40.

• • -
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In general, multiple solutions for the estimate of parameters are possible.

When multiple solutions occur, either solution would be the one of interest

and should be examined with an eventual choice of a preferred solution in

mind. And when a clear decision can not be made on the basis of any tests,

a larger sample should be taken if conditions so permit. Even if sfte tests

are possible, the confidence of conclusion of the estimates are far weakened.

Having multiple solutions for estimate is one of the. shortcomings for the

application of the method of moments.

Later 'Rao [921 considered the same problem for the special case of

equal variances and his results led to a simple set of equations having a

unique solution. Rao's method was later programmed for computer's use by

lHasselbled [48] i. J was found to work very well.

Gregor [43j based on the idea of Doetsch (30] as provided by Medgyessi

[731 constructed an algorithm which can be used to find the mean of each

component with the aid of a Fourier transformation of the given density

"function, The mothod*-of reduction of variances was utilized to determine

"the unknown vi~rlunce and frequencies of the components (using the continued

fraction approximattion for tho error function). To test the goodness of

-fit l•olmogorov-Smirnv test stat.ýstics were used.

Day (27] considered tho estiiate of the proportion of mixture a by

the method of moments When each composenn isa multivariate normal with

common variance matrix. For tho: uni Hate case, so,.. simulation results

showed the estimate ,beh&ao.reasonably nearly as we I."a- *4x imu likelihood

. estimate. Nowover, when thi dimewaio4aj~iy of the Coapoaent s ilargehr,.

the estimates appoar '"aor.

• - "" "r < ' ? " -, .
A. ,C ."A.

.' .- _ . . . .., . . , . ,:• ,P !
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John [56] considered a related but different model of problem.

It was assumed that the sample of size N was the result of mixing a

random sample of size N from a p-variate normal population with mean

and the covariance matrix t with an independent random sample of size

N from another p-variate normal population with mean p2 and covariance22
matrix t. It was desired to estimate NI, N2 , is PI 2 and t. The method of

moments was considered for the case p = 1. It has been shown that in this

case there is an unique of the solution for the estimates. The same method

"proposed can be applied to the general case of p > 1. Asymptotic normality

of the moment estimates was also studies by John (56]. For p 2, an ex-

ample was worked out using the proposed method.

When the components are other than normal, Mendenhall and Hader (751

considered the exponential populations. Rider 193] also considered the same

case with less restrictions. He derived the estimates by the method of

moments. It was shown that the estimate obtained were consistent. However,

it is not clear that the estimates always exist. Cohen (20] considered the

cases of mixture ntf the Poisson distributions and a mixture of one Poisson

and one binomial. In the former case, he considored the estimates based

on the first two sample moments and the zero sample frequonvy. Again, he

* considored..,the mixture of truncated Poisson distributions with missing zero

classes. For the latter case, he used the technique of factorial moments.

As the author pointed out, in practice, the more difficult and most important

problem is to determine which components are appropriate to fit the data.

Rider (94) also considered the case of Poisson mixture, awl computed

"aksymptotic variances. When the components are binomial, Blischke (S1 used

the techotiquo of factorial ammnts to obtain some relations awmog m~ents

and parameters. Pirst three momwilts wore computed to obtain three equations

So that a unique solution is possible for thre t unk-nown parameters. However,

- ,7777 77'
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the estimates obtained by Blischke [5) have the unpleasant property of

4ssunming complex as well as indeterminate values with positive probability,

though this probability tends to zero as sample size increases to infinity.
A

He also showed that the moment estimates 0 (pl, P21 a) are asymptotically

normal and consistent. Blischke also considered asymptotic relative efficiency
' A A * A

(ARE) of the moment estimates a). (P, p2, )" The ARE of 0 is defined as the

2 2 2ratic ot a0,/16 where f,, is 'he Cramiur-Rao lower bound of e* which is the

maximum likelihood estimate. 'When the components of the estimates 0 are

considered jointly, r joint asymptotic relative efficiency (JARE) of e relative

to the maxii ,n likelihood estimate 0* was also considered defined by the square

of the ratio of the arpas of the ellipse of concentration of the respective

asy•nptotc itormal distributions. ft was proved that the joint asymptotic

efficiency is -iven by det(t 0o)/det(Zt) where E is the convariance mdtrix

of 0. Por some speclai valv.s of r,. P2 and a, Blischke 151 computed both

AIRE ard JARE and it was found that neither ARE nor JARE are monotone with

respect to n. However, i•or the !:miting case, they always attain the value 1.

When the number of binomial componets is larger than 2, Blischke (7]

considered a general case of r binomial coo.nonents with 2r-l para•tors to

he estimated. He also applied the method of moments to obtuin the first

estimate. Then, he considered another -fficient estimate based on the moment

estivotes. -This construc.tion of alternwaive estimate was made at the sugution

tf Le Cam [691. Sy Nsymans linearization technique BAN estimates were also

constructed. Asyi. totic relative efficiency ard loint asymptotic relative

efficiency of the moment estimates weor discussed by Blischke [~J. & nui-

arical exasplo for. the covmarisons of the method of maent and other two

Sitornativo Ostinates w,3 given.
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The results for the mixture of r binomials can also be obtained for

a number of other distributions. For example, they are applicable to

mixtures on p (with known k) of negative binomialy and hence to its special

cases, the Pascal and geometric distributions. As regards other cases,

Bliss and Fisher (8] , Shenton and Wallington [107] and Katti and •urland

[62] have discussed the negative binomial which is a compound Poisson dis-

tribution. Sprott (115] and Katti and Gurland (611 discussed the case of

the Poisson-binomial distributions which is the Poisson mixture of parameter

n of binomial. The case of the Poisson-negative binomial was studied by

Katti and Gurland (60]. For the Neyman contagious distributions (see 1301)

Shenton [10S] discussed efficiency of the moment estimates. And for a two

parameter beta-distribution mixture on parameter p of binomial which

R! •is the so-called negative hypergeometric by Shenton [106] the moment estimates

I ~were studied by Skollan [108]. Nosimann (77] studied the mixture of multi-

nomials. Falls (36] considered a mixture distribution of two Weibull dis-

tribution each with different scale and different shape parameter. Moment

estimates were proposed and some graphical illu. tration and a numerical

example were given by Palls (36]. For some uthor details reference should

*:• be made to Blischke [15 and lsaenko and Urbakh [SS].

Noment estimates are usually not considered very efficient except for

some cases such as the normal, binomial and Poisson distributions. Methods

more efficient such as the method of maximum likolihood are more desirable.

However, in many cases, such as for example when more unknown parameters

need to be estimated, the maxi" likelihood equations are found complicated

and almost intractable. Under this situation, one may still consider the

moment estimates.

a
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For some further studies on the efficiency of moment estimates

reference should be made to [1051, [1061, [1151, [S], 171, 1391, 1481. jI13,1

and [511.

2B. Methods of Maximum Likelihood

In many cases, maximum likelihood estimates are considered to be more

efficient than the moment estimates. For the problem of estimating of

parameters in the distribution of mixtures most authors treated it by the

method of moments in the early years. In 1966, Hasselblad first considered

the estimation problem by the method of maximum likelihood. The population

from which we sample obeys a density function which is a mixture of k normal

densities. Taking logarithms of the likelihood functions and differentiating

with respect to each parameters ui (mean), oa (normal variance) and a.

(mixture proportion) i a , 2,...,k, and equating them to zeroHasselblad

[481 obtained 3k-1 independent equations with 3k-i unknown parameters. By

substitution of some equal quantity in some equation into another equation,

he obtained the first iteration scheme. A rough estimate from the truncation

method is used as an initial guess for this scheme. The idea of the gen-

oralized steepest descent method proposed by Goldstein was applied. It

can be shown that the direction traveled by the procedure at each iteration

possesses a positive inner product with respect to the gradient. For an

alternative treatment of the 3k-I equations, flasselblad 1481 applied the

Newton iteration method, and finally he obtained a matrix equation of an

iteration scheme. The investigation of the variances of the estimates are

important. Hasselblad (481 gave the explicit formula for the second partials

of logarithlms of the likelihood-function and from these, the information

matrix and thus tho variance-covariance matrix of the estimates was ap-

proximated. Some details of the asymptotic variances of the estimates of

. . .-.-. : ,
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the means, proportions and standard deviations were also given. However,

it should be poeited out that the solutions are limited to grouped data in

which all class intervals are of equal width. And, in practice, these results

obtained would not be likely to show satisfactory unless some conditions should

be met, for exsmple, grouping intervals should be narrow, a large sample must

be available, and when k = 2, it is desired to have sample size 1000 or more

and when k is large, even larger sample sizes are needed. When the separation

between component means are insufficient and unable to obtain k distinct

sample modes, the estimates obtained are very likely to be unreliable.

For the same problem, Hchboodian (4] showed that the maximum likelihood

estimates for the component mean pi and component variance oa are, in fact,
n 1

respectively, a weighted sample mean ui a Z wi1 X ad the weighted sample
j j

'22 ^2
variance 2 wjj X uj ifor i* 1,~ 2,...,k whore wjj are the values of

912 ^2
WiJ obtained by replacing uV, and a by ui, ai and a and wij satisfies

wjj u f (x )/nf(x) i It, 2,...,k, j 1, 2,...,n. Furthermore,

, 's satisfy E w (i 1. 2,...,n) and
iij Jul11 -

• . E w lj 1 (i - I , 2,...,k),

where f1 (x) and f(x) are, respectively, the densities of ith component and

J' the mixture distribution. In fact, these also have been obtained by Wolfe

[1261. lie considered the case of multivariate normal density fi(x, Oil

for each component and he introduced-the alled."pioiability of membership"

i ,i aifi( x,Q 1 )

of a vector x in type I which-is defined as P(iji) - -- ew. flx)

is the mixture density. He, furthermoreobtained that the ML' of*A and

are given by
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n n
. = F- 1 P(ijx.), P -- r l '11 r Xr and

Ii ijF ( Ir rl 1j=l it a r=l
~ -.1

n

a .(S) =E 1 P(Slxr) CX.r-iisi) C. Xjr-sj)
ij) na. r-=1 r ir si

1

where P.. and x.. are the J-th component of P and x." and a.. (s) is the (ij)

element in which is the covariance of the s-th component. These results

are more general than that of Behboodian (4]. It is obvious that wij are the

fntnctions of observations xl, X2,...Xn. To solve for wij, one has to solve

the simultaneous functional equations which are rather complicated. However,

the reations among anig nd &i are given which are useful for the computationsthan areton

of some quantities when some other quantities are obtained.

In 1969, Day 1271 considered the mixture of two p-multivariato normal

populations with equal covariance matrix t. There are + I. 1 unknown

parametors which are to be estimated. As usual, taking logarithms and dif-

* t'erentiating in turn with respect to each unknown parameter and oauating to zero,

a set of equations are obtained. By introducing the quantity P(ijxj), the

probability that observation x comes from the component I, Day was able to

express the maximum likelihood estimates of unknown parameters in terms of

the estimates of P(ilxj), denoted by P x which can be simply expressed

in terms of some quantities which are functions of 0 and the estimated

tMahalanobis distance in terms of the maximum likelihood estimates. Finally,

an iterative scheme was set up. If the initial guesses are close to the

real values satisfying the schem, it can be shown that the sequences

generated by the iterative process converge to the solutions. However,

solutions may not be unique. For oxample, when p 13 , and the Mahalanobis

distance between the two components A2  -( - •2), is small,

say less than 2 and the sample size is small, the solutions are'nearly

A
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Smultiple. In this situation, one has to check up at each local maximum

to determine where the over-all maximum lies. And this is some shortcoming.

By repeating the iterative process from enough different starting points,

all the local maxima can be found. However, the maximum likelihood

estimates are invariant under linear transformation. This property is

helpful for the simulation study. These estimates are, of course,

asymptotically mimimum variance unbiased for -A > 0. Instead of estimating

the mean and variance, it seems more interesting to estimate the generalized

distance A. The asymptotic variance of A is given by r(A)/n where {r(A)

E(log f(x))2 When A is small, Day showed that (r(A)'I1  =

3 a2 (1-a 2)(l-2a)2 A4 + O(A 6) ignoring the correlation of; a and A. When A
2l

Sis large, (rCA)"1is approximated by ca(l-a) (1÷2(l-a)AM )(lO(1-ca') a .

For moret than 2 components, it As proposed that the analogous iterative

process can be developed.

When the component multivariate densities f (x) are all specified,

there are k-I proportion parameters which remain unknown and need to be

• estimated. Peters and Cobetly (85) gave a necessary condition that if a

is a Maximm likelihood estimate (NLI) then a satisfies a fixod point

Squation G() where for cowponentwiso kG(ca). is the sum of the ratio-,

of each component of ;onstty to the density of the mtxture. fit or1.(,r It.

'to.find this fixed point, some properties of • and V. wore found. It ,w•-v

showeit that G is'a local contraction at ii if the rank of M (f

is k'nd a Is-a MU-E sod is an interior point. In fact, if B is an interior

point Mwh that -, its, G(B , then 0 is a NM,. When k • 2, and fa I. %n

i... interior point An its domain, Gn(B) converges to the MLE. It should be

" " " " " "" •'"" ; t " ,''" " •'- ÷ •''"" -•" " . . "" '• " "4
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pointed out that the fixed point B satisfying 0 G(O) is not unique.

A method is suggested to choose a starting point which is based on the

mfiximum-likelihood classifier. An example was used to show the iterations

needed for the accuracy of 0.5 x 101 (i = 2, 3, 4) starting from 7

different points. For the accuracy 0.5 x 10-4, the iterations for the

worst case never exceed 70.

For a finite mixture of k exponential families with r unknown parameters

in each component density, there are rk + k - 1 parameters including the k-1

unknown proportions to be estimated. Hasselblad [49] derived a set of

equations for the successive substitutions iteration scheme. For a practical

computation, an initial estimates are necessary and three methods for these

estimates are proposed. However, one of them is the initial guess. This

can often be made by the mode of the sample or other information obtained

directly from data. It was found that the initial estimates is relatively

unimportant as long as it is in the admissible range. For some special

distributions such as Poisson, binomial, and exponential, exact iterative

procedures were given and a numerical example for each case was provided.

Asymptotic variances for the Poisson example were derived. For the binomial

case, with k a 2, the moment estimates proposed by Blischke (7] was applied

to the same data given, in the example, and some comparisons between the

WE and the moment estimates:were made. It was found that the t4LE estimate

are superior than thd mowent estimates in some sense for the small saple

study of size 100. The Hl always lies in the admissible range whenever

the initial auis 1- -n the same range which is not the case for the moment

-'stimatds. Also the .variance of the Nl' is smaler than that of the moment

."- 'etimates, Ilowaver, the asymptotig va•iance may he very large if the sub-
pe iulations are: not well separated. Therore sample sizes of 1000 or more

I. ...

-; .. " "' . . . -
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are always desirable for the MLE. It can be expected that the moment

estimates may be very bad when sample sizes are small. Day [271 has

shown that when the components are multivariate normal, the moment

estimates are essentially useless.

The joint asymptotic relative efficiency comparisons in [15] and

[118] show that the MLE are much more efficient than the moutent estimates,

especially, when A - IP2 - Pl1 /min (a,, a2) < 2. Hosmer [53] used Monte

Carlo simulation to study the HLE for A < 3 with a1 0 a2 and with relatively

small sample size n <_ 300. This is interesting because both (49] and [27]

suggested large sample size as strongly desirable, especially, when the

two components are not well-separated. Using the iterative procedure

proposed in '[48], Hosmer used a stopping time N = i whenever IL(Q{i 1l) -

LO _0 and took 4 *(i1). Otherwise, he suggested N = 999 with

N > 10. In the preceding L is the likelihood function,f a (t, Ul, 01) u2l 02),

and #(0) is the initial estimate. There is a strong indication that the

initial guess 4(0) does not seem to have much effoet on the MLE . With

sample size n 1 100, and 0 a (0.3, 0, 1. 1, 1.5), for each of 10 dif-

ferent samples, was computed using three quito different initial guesses.

In 7 of the 10 samples the values of 4 obtained by starting with the three

different guesses were the same and in two other samples 2 of the 3 initial

gueses concludod the same ;. The three values of 4 were significantly dif-

ferent in only one sample. Por the true parameters 0 -0.3 , 1, Ip2, 1.5),

2 1, 2, 3, simulations for the RML obtained from 10 samples of size 100

and for true parameters * - (0.3. 0, 1, 3, I.S), simulations for MLA obtained

from 10 samples of size 300 indicate that the MLE may not be accurate enough

to provide useful estilmtes. Hence, the poor behavior of the estimates of

the prameters for these examples considerld shows that the 14111, though such

., 49. . ..
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more efficient than the moment estimates and perhaps the best method available,

may be still highly unsatisfactory for even the moderate sample sizes.

The main difficulty in the problems of estimation of mixture is that

the data are mixed. When two components are not well separated, some of

the data can be from either component with high probability. If the data can

be identified the component of origin or when the data contain information

about the mixing proportion, the problem may be easier, and, the sample size

may be reduced and the estimates still give the same information for the

unknown parameter. For this interesting conjecture, Hosmer [53] did the

study byusing the Monte Carlo method. First, he classified the data into

three types. The first type data is mixed and it iscalled model 0 (MO)

sample. A sample where the component of origin of each observation is known

with certainty will be called known data. Two types of known date are pos-

sible according to whether or not the known data contains imformation about

the mixing proportion. A sample which contains both mixed and known data

and whore the known data contains no information about the mixing proportion

will be referred to as a model I (MI) sample, as for example, in the case

when 20 male fish and 20 female fish are arbitrarily taken. A model 2 (M42)

sample will be referred to the case when the sample contains both mixed and

knoun data, and information about the mixing proportion is contained in the

relative numbeTof observations from the two components in the known data.

An exmplo of M2 sample-would be the case where 100 fish are taken and then

the fish arc classified as male and female. Let n denote the sample size of

MW sample und lot a denote the sample size of 91 or W2 wwple. Let the

proportion of m to n be denoted by r Z , The Intent in considering NI or1'I

M2 saples is that one needs only a small mount of known data to imptove

on the MO sample. The Monte Carlo study followed the same assumptions

††††††††††††††††††††††††
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given in [53] which have been mentioned above except that a2 = 2.25 instead

of a2 = 1.5. In this study r was restricted to be 0.1, 0.2 and 0.3 with

each value of n and *. For given n, MO sample was generated as a mixed

sample. The known samples for the Ml sample were generated by starting with

the first observation generated for the mixed sample and noting the pop-

ulation of origin of each observation successively until exactly rn/2 were

* obtained from each component. These observations became the known sample

* t and the remaining n(l-r) observations the mixed sample. The known samples

for .42 sample were constructed by noting the population of origin of the

first nr observations for the mixed sample. The observations from the

first component formed one known sample and the observations from the second

component formed the other known sample. For n 100 and 0 (0.3, 0, 1, 1, 2.25,

10 samples were generated and the MO, Ml and ,42 estimatos were computed from

each sample. The mean, variance and mean squared error of these estimates

were tabulated. The cases for n a 100, and for u• " 2, u, • 3 and for
2: 4

n • 300, 12 3, respectively, were also tabulated. From those Monte Carlo

results, it is noted that for most parameters, and for various staple sizes

considered and the different values of th"- ratio r, the Ml and M2 esttimtes

tend to have smaller variance and mean squared error than toose of WO. The

variances and the mean square errors of M rand W4 estimates tend to dverease

* as r increases. When n.- 100 and r a 0.1, the MI estimates seem to have

simailer variances and mean square errors than those of W2. It Is found that

t"e estimates obtained using both the 4.xod and knom data woed Moro accurate

than those camputed from th. sanil samples, The conjecture that. it the

coalkentS are not well separated and if part of the mixed sample can be

, correctly ¢lassi.fied or If the mixed saple can be supplemented by z small

"Vsa Cle of known data, the es imates would tic- more accurate, vaw4. ilaispurretd loy

A the Monte Carlo results.
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As another direction for the study of statistical properties of the

estimates for the parameters in the mixture density, Tubbs and Coberly [!25]

did the study of the so-called sensitivity of the estimates for the mixing

proportions. They considered the three bivariate normal mixture and applied

the Monte Carlo method. When the original data from each components were

shifted (in location and direction), the variations of the estimates for

the mixing proportion suggested that the estimates were sensitive. Four

kinds of estimate were considered. They were MILE, moment estimate (ME)

minimum chi-square estimate, (NICE), and the classification estimate (CE),

the last being simply the proportion of the sample which is classified into

the ith class by the maximum-likelihood classifier. Mean square errors for

each kind of estimates were plotted in (12$]. It is interesting to note

(based on the Monte Carlo result) that the ordering of the four estimates,

according to the degree of sensivity, would be (CE, MiLE) I NICE > ME, How-

ever, it is also apparent that the particular type of shift deviation-from

the model would result in a different ordering. Hence, if the suspected

deviation is known to be of one particular type or direction, a specipli:ed

experimnt should be done to investigate the sensitivity under that alternative.

2C. Method of Least Squares, Bayesian Approach and Some Other Imthods

it is known from previous sections that samples of smill size to not,

in fact, !trovide good solutions either for method of nomonts or for method

of maximum likelihood. B•eides, the computations of estimates using either

of these methods are cuen orsose and some difficulties such as lack of unique-

nets may oc•ur. Therefore, it is desired to study some other methods for

estimatioi. Most of results *Acurihed in this tection are trvtricted to the

estimation of sixing distribution. In. 1968 ChOi and -ulgtron (191 considered

4
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the case of estimating the mixing "_:-tribution when the component densities

are completely specified. Let Ifn (x) denote the empirical distribution as-

sociated with the observed sample x of size n. If the mixing proportion

(a 1 , a2,..., ak) is used they considered the integral squared errors
22

given by Sn(a) E f (H (x) - H (x)) 2dHn (x) where H (X) is the cdf of the mix-

ture associated with a. 'In fact, they considered the case of finite mixture

and showed that there exists the solution a(= a (x)) which minimizes S (a)
- -n- n.

for all a in the admissible dcmain. This a is then used as the estimate of

the mixing proportion. It has been shown that a converges to the true un-

known value of a with probability one if continuity conditions are assumed

for H in e. (parameter in mixand density) and a, (i = 1, 2,.... k). Further-

- more, asymptotic ,ormality is also shown for the estimate a if non-singularity

"; condition holds for the matri. (E(H(x,6i)H(x, 0.))), ij 1, 2,...,k. Rate

of convergenct of u is shown to be 0(2 n/rW) for all n > n with probability

"one. These asymptotic properties are very helpful for the study of the

estimates. In 1969, Choi (18] considered the case of estimating the mixing

proportion and unknown parameters in the comnone;it densities when the functional

form of the component distribution is specified. He used the same criterion

of the integral squared errors. The same optimal asymptotic properties are

shown to hold if some other extra conditions on the first and second deriv-

atives of li(x,a) with respect to a, (i = 1,2,...,k) are satisfied. It

should be noted that the parameters to be estimated in this situation are

given by G - (a 1 , a2 , ... ,a$, 01, ... $0 k) when 01Is are the parameUters in

the ith component distribution. Some Monte Carlo studies are made In (19).

Hiach compvnent is assumed to he a univariato normal density with comon

variarce I. The number of components ranges from 2 to S. Sample size

S.angd lotwteoo 10 and '400. Simula' ions wore repeated 500 times and mean

W2WOWW ýi"Y ý
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scqare errors were computed. It was found that mean square errors are

small when sample sites are at least as large as 200 and the mean square

erro:s were not largely effected by the number of components. The result

of Choi [18] can be extended to the case of continuous mixing distribution

bytaking a sequence of distributionsas its approximation. The criterion

of errors considered by -19] and [181 in fact can be extendea to bizrme
( f (H (x) -. in(X) .d (x) where IW(x) is some weight function. As Bartlett

a n.

and MacDonald [21 have studied, a good choice of W(x) is not easy. The

special ca.se k = 2 has been studied in [2] and for k > 3, the situation,

is quite complicated. The-criterion of-errors considered in [19] is, in

fact, the Cramer-Von Mises type or Wolfowitz distauce between two sample

functions. If this distance is defined to be the. KolmoRorov type

"hupbllo(x) o n(X)i, then the solutions t(= a (x)). to minlmizo this dist(|'cc

have been considered by Doely and Druse [281. This.poper is related to the

empirical Bayos approach of Robbins [95]. They considered ttre problem of.

estimating the general mixing distribution G(a) by choosing a sequence of.

discrete didtributions {G (a)), whore for each n, Gn(a) depends on the sample

X of size n, such that G (a) converges weakly to G(a) with probability one.

For each n, an admils•Able G (a) is chosen so that tLe minimum of the uniform

d 'ýtance betwoon 11 (X) and H (x) is attained. For each sample size n, a

sequence fG ia)) is obtained to approximate the real G(a). Under some mild

conditions, it has boon shown that G;o(a)46(e) at any continuity point of G

with probbility one. The existance of such •n(a) for eath n is guaranteed

and its computation involves a linear progratming problem. To be more

Sgeneral, suppose d is any metric for the topology of weak convwrgence of

probabilities an the sample sýaco (see Parthsarthy (831). Let JF denote

tie set of a!, mixing distribution function G(a) defined on a). tho parameter

"M4
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space. For the topology of weak convergence, suppose y is compact and

for a sequence of subclasses ofysatisfies U i ,W . If G (a)
n

is so chosen such that for each n, a (a) E. n and d(H[ (a)' H attains its
n n

Sinfimum for all G t(a) E -W., than it is shown [14] that G n(a) converges

weakly to G(G) with probability one if F(x,a) is continuous with respect

to a, The results in [28] can thus be obtained by taking some special

metric satisfying some conditions. Some. other conditions for the weak

convergence of G (1) have also been studied in [14]. Using another approach,

. Blum and Susarla [9.] considered a partition of parameter. ispace $1. A step

. - -.function Gn is constructed such that on each division of the partition, the

constant value is given according to:some Weight :which are controlled by

the local maximum and minimum-Values--of the mixture6..dnsity on this division.

When:the infxture 4densityhG(.h is unknown, an estimate h. ±En

...- h("hi(..x xs up-h (x) h (x)-.0 as. is used to

replace, hG(. If some conditions, similar to-continuity in both x and 0

are satisfied by the. component density f(x,O), then the weak convergence of

G to the ieal•mixingdiatribution G(x) holds almost surely. Furthermore,

4-•i when-e is a location or scp.!c parameter, it has been shown that

2Iha ) -W 1 40 a~s. and (h () - hW) O(n where Cl m min (2c, 1-?c)

n n

for some constant c satisfying En n'a" The construction of ( is possible
n n

by linear programaing though not simple. One question may be raised how

the partition of $0 is taken so that for practical application, the convergence

of would ho more reasonable. Cospari'on with mithods given by 1281 and

1181 the tua,'�;:-.ntal property of the weak convergence of the arc al

satisfied. laowver, the computational fonsibility of the Choi's method (181

is not clearly established.

IJ
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If the observations from the mixture population are restricted to the

positive integer value, Rolph [98] first considered Bayes estimation of

G(a). Some assumptions were made by Rolph. a2 is a finite interval and

considering f(x,a) as a function of a, say, q (a) for a fixed x,

qx~ = Z ai(x)ai (In fact, continuity of q in a is sufficient). Then, the
i=O

unconditional mass function (mixture mass function) can be expressed as

a summation of sequence of ith moment of G(a). Properly putting some prior

distribution of the set JW of distributions defined on a, consider the Bayes

estimate G which minimizes the risk associated with some loss function

L(G, G). Under some conditions, the Bayes estimate of G is just the

expectation of the posterior distribution. The Bayes estimate G is thus

determined by taking the distribution with (ml, m 2 ,...) as its moments

where each ai is the expected ith moment under the posterior distribution.

Consider the loss function of the form Z Yi(mi(G) - ml(G) 2) where mi(G)

is the ith moment of G. Suppose .G and G are the two boundaries where

distributions having (ml, m2 #...mt-I) as their moments then, the estimate

G is defined as the convex combination of G and G It has been shown

that the sequence ( ) (G - C(xs, x2 xn))is consistent. Relaxing
11 a n 1 2'"~'n)s

the restriction to , being a half-line, Me~den [741 chose the prior

'distribution on the set of distribution on a in another way. Using some

resitdts of [981 .Modon [741 was able to show that the Bayes estimate under

his set-up was consistent. These mathematical constructions and proof are

complete; however, the practical computation for the estimate is not so

easy and clearcut and still needs more investigation.

Proeties of conSistency or weak convergence are important and

des ,irable and fundoewntal for our study of estimation of mixing distribution.

I
" i
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The above properties may not hold when sample size is small. Paying

attention to the small sample property, Boes [11] considered the pos-

Sibility of some estimates to attain the Cramer-Rao bound. Restricting

to the case of finite mixture, he obtained the necessary and sufficient

conditions for the attainment of the Cramer-Rao lower bound for the

parameter a when k = 2. A uniformly minimum variance estimator of a was

obtained which was also shown to be consistent [11]. When k > 3, some

jointly efficient estimates were obtained by Boes [11]. By an estimate

(xM = (01(x), 02(x),..., (x))jointly efficient for 0 = (01, 02 ,...,0k)

in some set U, we mean the ellipsoid of concentration of •(x) centered at

9, coincides with the minimum ellipsoid of concentration. Again, by con-
k-l

sidering the risk defined by R(i0,) = Z a. Var 0 where0 E U set of11

all unbiased estimate of 0 = (O 02, 3- 0k) and for some constants
k-1

alt a2,...ak .k Then, it is obvious that R(,2,) > E ai QI(8) where

i (ii()) (* I OWI and 1I(6) - E [(- h) an •h)] and where h denotes

i~J

k
the likelihood function. Denoting L(0) t r a1 I (0), by 4 efficient

estimate of 0, we mean R(6,0 0) L(0). Let O (0 e (G1, e2...,0k):

k-I
et 0, E 61 :j 1). Boes [12J has shown that if 0* is a point iq fi

for which L(Q) attains its maximum, then the 0*-efficiont estimate

( (l(0.*), 02(Q*)....,(O )) is a minimax unbiased estimate for 0
0SLin the sense that sup R (e(0'),0) 1 Sup R(O0,) ¥ 6e U. This is a very

desirable result if'such a mininax unbiased estimate can be found. Some

examples were given by 0Oes. It is interesting to mention an example to

see the simplicity of the estizate. If k a 3 and each compouent is unlform

such that fI a I in (0,2), f 2 a I in (2,4) and f 1 in (1,3). For some

(any) constants a it is soon that the minimax unbiased ostimato Is given

• -&= '.-s; .'''"-' '? " - • •- -• • • : • : - -- • • • • •f , ... ,. ... . .i . ., .
'' - ". . . . .. , :'•t, , . . .. ",
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"^ N1-N3  1 N -N
by (0 ) = + - , - -+ ) where N. number of observations

falling in (i-1, i], i = 1, 2, 3, 4.

Finally, by the approach of curve fitting, Preston [88] proposed to

fit the mixing distribution by piece-wise polynomial arcs. Here it is

assumed that each component density is discrete. The estimations given in

[28], [98] and [74] are all step function approximations to the mixing dis-

tribution. Hence, polynomial approximation would be more preferable and

accurate if the approximations are appropriate. Let G(ca) denote the poly-

nomial approximation of G(a). Preston [88] considered the estimate of form
m r
Ei) a..O (cia), where

0 a<

Ziji(00 [(-0.i)/( M i+l- a) 1] 1 a i+l

o(%iO ) = 1). { )aij} are sequence oV parameters and Oi are constants. Hence

G(a) is a polynomial of degree r. Denoting L1 j (x) u [ f F(s,m)dtii (a), we have

m r
11(x) aij Li(x). Hence, if G(a) is an estimate of G(m), A(x) should

is! j-O

be an eatimate of II(x). Using the observed sample to form an emirical dis-

tribution function H (x) as another estimate of H(x), the parameters (ai ) to

be determined are thus so chosen that H(x) is as close to HN (x) as possible.
n

Toke the Kolmoiorov type of criterion. DO JO mxIH(x-1H)I. (a,) are

chosen that D(Hn, 1) is minimized subject to the constraint that G(a) is a

distribution function. Some special case that G(a) is a step function. piece-

witse linear, piece-wise quadratic, have been discussed. To study the goodness

of the estimate G(a) for G(a), a criterion K(V) Z E ((s) " qG(z)) h(x) is

.I' " ' ' :
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defined. It is shown that G(a) is good from an ei:iuirical Bayes point of

view if E(K(tp)) (the expectation is taken with respec to random sample) is

small. Some numerical examples are studied and D and K are computed. How-

ever, for the practical and general purposes, a good choice of location of

•. is not clearly established. It is also obvious that if H (x) is not
3. n

close to 11(x), the estimate G(a) would also be unreliable. Asymptotic

properties of G(a) are not given though it may be consistent or weakly con-

* vergent.

3. Testing Statistical Hypothesis

Most papers concerning the inferences about mixture densities are

related to the estimation of parameters. In practical sit-

uation, it is desirable to know whether an observed sample is from a pop-

ulation which is a mixture of two known populations. Generally, we may

be interested in knowing whether the distribution function of one

population is a mixture of the distribution functions of the other two

populations. This kind of inference Is quite different to that of

estimation. On the other hand, we may, sometimes, wish to know whether

the mean of a mixture population is equal to some known values. This is

the standard hypothesis testing problem.

Thomas [124] in 1969 considered the problem whether one population is

a mixture of two other populations. Let the three populations be denoted,

respectively, by wv, '2' and w3 and the associated cdf be denoted by

Pl(x), W 2 (x) and P$(x). Lot the nth random observation from v be denoted

Xhy (I v 1, 2, 31. Let R1 donote the rank of X In the sample

iK{1| 1.. 1K "We Will ,1otc X ly X1 wheol tiher I0t tftllto,•tn. Tom
III -2.. . .31 .

} • . ..... .,•,,..•.• ,•:: • • •,.• •... ... .I
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[1241 proposed a 0-1 valued statistic t which is defined by

0 if (R1,R2 ,R3) is an evenpermutation of (1,2,3),t(R 1,R2,R3) =
1 otherwise.

It has been shown that if n3 is really a mixture of it and i2 thent 1 2$
E(t)=-. It was pointed out that, in fact, the mixture can be extendedT
to k(k > 3) components and with the same definition, the result holds.

Suppose n1 samples, n2 samples and n3 samples are drawn respectively from

11,' 2, and ,3 . Define a symmetrized U statistic by
1

(3.1) t* =t R
123 i,j,k ii 2jR3k

where the summation is over all possible values of i, j and k and n =

min (n,, n2 , n3) Then, t* is asymptotically normal. In fact, it has
21 n

been shown (124] that (t* - 1r)rn -1-(O,l), the standard normal, if F1 $ F2 .

Hence, t* can be used for the test of the null hypothesis that F3 is a

mixture of F1 and F2 . However, it is to be noted that the mixture of F3

is not a necessary condition for E(t) - 1

Now consider thu following situation of null and alternative hypotheses;

HO: F3(x) a %Fi(x) + (1-a)F 2 (x) for all x for some 0 < a < 1. HI: P3 (x) F

C aFP(X) + (l-aL)F 2 (x) has a nondegenorate solution at x - a and no other

finite solutions. Then, under HV, it can be shown that

I

! ~E(t) v if,, and (•V if. f$(a) -. ofl(a) - (1-a)f(a>0

while. E(t) - under IfO. It can also be shown that var(tV) * 0 under No and

It1. Hence, the two-sided test

i nject "or in It* 1 fo s (b)

is consistent for testing H0 against HI for soaw significance level b.

1 ~~~~ ~ .. . ..1.. . . . . • " " . . . . . . . . . . . . . . . " " ' -• • ' * , ~ • . -j i ' '. • : , . .• . ,. . . . . .
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Let R.(l) denote the number of X 's less than or equal to X
3 1 2

and let R.(3) be the number of X I's less than or equal to X and let3r 2j

S (i) (i = 1, 2) denote the number of X I's less than or equal to X3r.

Then the statistic t* defined by (3.1) can be expressed as
n n nn3  n2 2

1 E S (1) -+ 1 1 R_(3) - r R.(1).
n nln- n =l r n2 n- j=l 3 nln2  j=l i

From this and some other relations the proportion a can then be estimated

by
Sn2 n3 n

21 T 3  T 2

(3.2) a (n 1 Rj(3) -- nln n )/(n r Sr(1) + n f R.(3) - n nn.).
1 j 2123)/2 Z r 1I 12 3)

j~lr=l J.l

Also, let 6 P 1 < X then 6 = f F (x)dF (x) and 6 can be estimated

by.~n2

(3.) • 3) r R (1)/nlIn 2*

Jul

(3.4) Let 1 • f x F 2(x) dPi(x) (i-l,2).

-nThen, the probabilities 201 and 202 can, similarly, be estimated by con-

L.1 sidering these triples (X1 i, X1r, Xj) and (Xll X~s, Xv), respectively,
.I •W .... , .~s X

where I # r, jjI s.

SLet Pin(X) denote the empirical distribution functions associated with

Si(i.1 1. 2. 3). Suppose a Is alctulated such that

(3.S) a) =

(3.6) 6 2, v ,
n

Define -

- n t (x) I (-,) P2n(x) - X) d X)

~ n 2

P(-) ,8(X) (1-;) F(- (x)) 2 dr 3 (x)1 , __ _ _ .-.
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Then, it is shown by Thomas [124] that under the hypothesis that F (x)

is a mixture of Fl(x) and F (x), for any E > 0,

• 2_~ 21 e} l
(3.9) lim Pr ,2 2 1

n--1

By (3.6) - (3.8), we have, ignoring the terms O(n")
*I

2)= + 4 v2 _ 1
(3.10) E( = - 3 - - a(1-ci)(1+2a) - a(1-a)(1-2a) 6

-2(v2 a2 (1-a))8 1 - 2(v - a(I-ac2) 2 .

Now suppose F3 (x) = o(x) Fl(X) + (1-CI(x)) F2 (x). Thomas [124] considered

the following hypotheses

"HO: 0 i(x) = a, for all x, 0 < a < 1

H a(x) , constant.

Using the estimate of a given by (3.2), Thomas (124] was able to

show that

Var(Tr) 0(0)

n

whore n is defined by (3.8) and thus under H,, for any c > 0

liur r (IDII > c} ) 1

where is the difference between the estimates of the two sides of (3.10).

The critical region: Reject iif ID.I > c so proposed by Thomas (1241
0

is thus consistent and asymptotically unbiased.' Note the treatment of tests

is non-paraimotric.

For a parametric consideration, Johnson (S8] studied the sam problem

that an observed sample was consistent with it being from a mixture of two

II
* N '* .

S•" :.. .. ... ... ....... . . . , " - . • , • - ,• 'r . __•' ' '* • , • •' +'• . . . ..... .. . .. . .. ... . ..
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symmetrical populations. Hence, for his case, he assumed F1 and F2

are specified and both have symmetrical densities with means P and u2 and

common variance a2. Let Xj denote the jth observation from w V Johnson [58]

considered the statistic

(3.11) ax = (Xn - u2)/(u -

which can be easily shown to be unbiased for a. For some. given a define

(3.12) i. =I if X. < a

0 otherwise.

Let pi =PrX1 < al i (1= 1, 2).

Consider another statsitic

(3.13) Oy (Y P2)/(Pl P2)

which can also be seen to be unbiased for a. If aX and ay differ greatly,

this may be regarded as evidence that X are not distributed as a mixture

of the two given components. Along this approach, Johnson (581 was able to

show that n Var(0 - a ) was independent of unknown ct, and, therefore, the
xy

statistic (ax - a )[Var(; " /12 should have approximately a standardX >, X y] sol
normal distribution. However, this approximation is too rot ih and in-

-1/2
accurate. For some ipecial normal components, he-used /n(ci - cy)V

as a test statistic which is approximately standard normal for large n,

where V * n Var(*x - ýt ) cwt be, in fact, calculated. Soe computations

of the test were also made for some special cases. Another test hba-d on

the statistic U - f(Ol 112)1 wat! proposed. It was noted that U.

a lways has the same distribution whether Xi comes from or. •°R" The

nmwber of Xi's between v I and P 2 have a binomial distribution with parameters

n and #P- u2 1/o) _ if 1i. roally a sixture of two normal components.

Si... ....
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Comparisons of powers based on the two proposed tests has been made by

Johnson [58] and it is shown that the latter test is more powerful. These

tests are all based on simple statistics of observations. The choice of

a defined by (3.12) and the distribution of the test statistics may be

needed for some further studies.

For the problem of testing whether the mean of the mixture density

is equal to some prefixed value , Blumenthal and Govindarajulu [10] con-

sidered that F3 (x) with mean 0 is a mixture with proportion a of two

normal components FP(X) and F2 (x) which have different means but common

variance. They considered the hypothesis HO: 0 = 0 vs H.: 0 > 0. A

Stein's two-stage procedure was proposed. First one computes the sample

variance S2 of sample of size m(_ 3) from ir which is defined byn3

S2  1 2m -1 Z (xi -ji-

then, one takes a second sample of size N-m, where

S2

. N , max {l, [x (m, 1,

fxj denotrnig the greatest integer value of x not exceeding x and z denotes

some specified constant; Then one computes T & /S, where is the total

sample observed. The critical region proposed for rejecting H0 is:

T > t 1 . where tc denotes the lOOa percentile of the t-distribution with

4d.f., Let R denote the random unobservable number of observations among

iX10 1,...,X which come from *1 Let u2 and 0 2 denote, respectively,

the mean of FI (X) and Ftx) and their common variance. Then, it was shown that

( tIl.S 4) #(A/-6) (ai/6v) *(a/la) (c(42  (al/)Z)

(a a - 0)] ' OCI/(A - 0))

4
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where A = ((p- u/O)I = ( + A2 a(-a))/2, a s t

and c = A a(1-a)(2a-l)/66 given that R r, s and N n. If

(Mz)1/2/a < 1, then the cdf of T was to be *(C) - [ (•)c1+2)/864(m_1)]

[2+4 A2a(!-a) + a (l-aI) (2a-l) ] + [A 3z (2+4 2 ) o(ý) a(1-c) (2a-)/3c64]

with error term O[max (m-1 .', re0 .5O/a)] where ( =t - (0//rz)) and 0(x)

and p(a) denote, respectively, the standard normal cdf and its density.

Based on this distribution, the sizes of the Stein two-stage test were computed

* for some special given values of m, 4, a and the first kind of error. The

test is good in the sense that the size is small comparing to the one ex-

pected. However, in many situations, the values of a or even the values

of A are unknown, and when this is the case, the two-stage test can not

be carried out.

As it has been pointed out in part A of Section 2 that on many occasions,

a difficulty that the statistician is confronted with for the estimation of

the parameters in the mixture density is that it is unknown if the observed

sample is mixed consisting of some other samples with specified or unspec-

ified densities. This is a question that has been studied in this section.4
t 4. NWltiple Decision (Selection and Ranking) Probleas for Wixturv of

D1 stributions

Suppose a population V consists of k subpopulatlons, say, V10 V

such that in a sample An individual observation comes from v, with probability

a., (i , .. ,k). Let f(x) denote the density function of a random ob-

servation from v:i Then the density of i random observation fi it is given

by a finite mixture fix) t £ ci fa(x).-'In sowe situations, based on sAMPling

from w, eO are inte,4ested In sOltcting .sme W so that the associated a. -is

41..
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the largest among all probabilities a. (i 1, 2,...,k). We call this

kind of selection problem the first kind of selection in finite mixture.

When the density fi(x) is degenerate at a certain point with probability

mass one, this special situation becomes the problem for the selection of

the most probable event in k categories i.e. the multinomial cell selections

problem. Oh the other hand, suppose there are k populations, say, wl,

I•,... ,i• such that the density of a random observation from v! is given by

a finite mixture gi(x) - £1 fir rx) (i = 1, 2,...k), where each component

density f r(x) is fixed, may be specified orunspecified . By sampling from

each population, we are interested in selecting some w! so that the associated
3

parameter ajr is the largest (or smallest) among all air' 0 2r",..kr for some

prefixed r. For convenience without loss of generality, we may take r - 1,

that is in the mixture, we put the component fr (x) under main consideration

in the fi•s' place so that we may consider the selection of the largest

(smallest) Wil' (e call this kind of seleotion the second kind of selection

in finite mixtures. When m - 2 and fY(x) and f 2 (x) are both degenerate with

different values, the second selection problem becomes the usual selection

of the best coin (see Gupta and Sobel (471). It is to be noted that both

kinds of selection occur in the compound decision problems as proposed by

Robbins 1961 iti which mixing distributions correspond to some prior dis-

tribntions. 1n this section we restrict ourselves to the second kind of

selection. First of all, we consider the case when the sample size is %*all

and then consider the 1lrge smple size situation. in this section, all

coonment densities will be assumd identifiable.

4A. Saull Sa&ple Size Case

In this part we impose no restriction on the parameter space. Basea on

the given samples of size n fmro each population we wish to select a subset

.
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of populations which includes the one we desire most with high probability

which is pre-assigned before the experiment is carried out. This approach

is called the subset selection formulation. One can refer to Gupta [46]

for more details.

a) Procedures based on discriminant points

Suppose ir1 ,.. 2' k are k populations such that the cumulative dis-

tribution function of w . is a mixture of two components given by
1

G.(X) = a. F(x- + F(x- i = 1, 2,...,k-1 x-01) (l-ai) F~-0 2) "

for some unknown a. E (0,I) with 01 < 02.

Let {a- (alpa 2 ,.,ak): 0 < a. < I}.

Let Xil Xi2 ,...,Xin denote n independent observations.from 7r.. To

select a subset of populations containing the one associated with the

largest ai, we consider the fkllowing rule R(xo), which is based on some

fixed point x0, which selects a non-empty subset of populations when sam-

• ples are taken. For a given point x0O let Ni denote the number of ob-

servations from w that are less than or equal t.) x0 . We define R(xo):
.0'

Select wi, if and only if

Ni > max N- c
l<J<kJ

* for some positive constant c.

Suppose eI and 02 are known; without loss of generality we may assume

01 0 and 02 e A. If F Is specified, set FI(XO) P(Xo-A). Then, since

the random variable N1 is a binomial random variable with parameter n and

! P F(x0) + (l-c*) P (xo) it follows that Pi. pJ if, and only if,
pi a. 0 1 1

a. • -3.,Since G (x) is stochastically increasing with respect to

;k,:

Ai?

r :
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the probability of a correct selection (CS: correct selection means

Iýection of any subset which includes the population with the larger a.)

i thus mhkimized in the set {(a,a... ,a): 0 < a < 1} (see Desu [29]).

We thus conclude,
m Hk-i

Theorem 1. inf P (CSIR(X = inf E H (c + r; e, xo) h(r; a, xo)
ct-S1 0 O<a< 1 r=O

i
where li(i; a, Xo) = E h(r; a, xo) and

0 r=O

Sr n. rh(r; a, x 0) ) [ 0FXo) + (1-a) F1 C(xd]r[a(1-F(xo)) + .l-a)(1-1(X "

To choose xO, we see that when F is symmetric about 0, the besx choice

of x0 is given by x0 = A-. If F is not symmetric, by a geometrical argument,

it is clear that it suffices to choose x0 in (O,A) so that the right hand

side of Theorem I attains its maximum. When a is unknown, we need to consider

the infimum of the right hand side of Theorem I for all A > 0 and then choose

some x > 0 so that a supromum is attained.
,m

Corollary1: Suppose G (x) E 1 0ir a r (x) is a finite mixture of m idonti-i ... r~

fiahle cumulative distributions function, i 1, 2....,k. If for any

mmmS"• > ' r '.S0-, ther .e exists x0 such that F,(Xo) > I; 1i Fi(x ~ n o

.,.this X a F j - - a j if and OIYiif a > Th.n, for,v "rr I r, V1 0-.

"the oeloction of 'som populatoias assocAted with the largest a -,. have

- .

.. .. . ... . .. k.-... I.

in. P " ..I . -

:S-• -- . X I,, r -0 - P•. O. .,(tl0V1
•i~~~i.•.•O pi 1- 0 •• '* ''"

~ ~ ~r .. .. , V,+ "..2"•, . .. ,

.A. ,.
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G.(x) = a.l F'(X) + (1-ail) Fli(x) whcre

m m
FliX) = E 6.. Fi(x) with 6.. > 0, E S.. = 1.
i, j=2 1 1 1) j=2 13

By given conditions, we have a > ail if, and only if, p. > pi where
ji 3 1i

Pi =ail F1 (xO) + (1-ail ) Fi (xo) which is the associated parameter of the

* binomial random variable N.. The problem thus becomes the selection of the
: " 1

largest pi which is discussed in Gupta and Sobel [47] and Gupta, Huang and

Huang [44]. For k - 2 the infimum takes place at p = and for k > 3

asymptotic results and lower bounds are obtained.

We note that when Fi(x) = F(x-0i) with el > e2 >... >k the conditions

in the corollary are satisfied• ifa jr/(l-ajl) -air/Cl-ail) for r = 2, 3, ..,,m.

The optimal choice of x0 is."impossible unless F and O's are specified. For a

detailed discussion of the computation c reference should be made to Gupta

and Sobel (47] or Gupta, Huang and Huang [44).

Corollary 2: If G() W. 01 4:(x; 0 a 2 + (2-i O(x; 0 a2 where

2 12 2
"(x; -0, a ) denotes the normal cdf with mean 0 ut.d variance a 2 then

i) if 01 c.02 and- • 02, the best choice of x0 is given by (01 /

* ii) if 1 0 and 02 - > 0. the best choice of x0 is the real root in the

interval, (0,6) of the equation

2 2 2 z2 1 z22_: IN)x 2,Alx - 6 2o102 (G 2 u a 1i)iG

iii) if 0: and 02 are unknown and a then for any xO,

mi Pf (CSIR(o) } B(k.n.c) which is the sae expression as on right hand

side of Corollary 1.
. I

V
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The proof of Corollary 2 is straightforward and hence omitted.

Next, we consider the case of a mixture of three identifiable cdf's.

Suppose

G Gi(x) = i. F (x) + 8i F 2X) + Y" F (x) where1 11 FIX i2(x 13F(

0 < 1-a = i - ai'4 0 < ai, S i < I, i = 1, 2,...k.

We consider a rule which is based on two discriminant points, say, x0 and

x (x 0 < xl). Let N. denote the number of samples from ir. which lie in

(X01, 1). For the selection of the largest 8i, we propose the following

rule:

R(xO, XI): Select wit iff

N.i ImaxN -d

Then, we have the following theorem:

i (x-) 01 2 3 and F is symmetric about

0. thon, for xo6(0 1, 82) a xlE(2 03) with x - 01 03 -X1.

inf PC {(CSIR(x x) B(kn,d).

Proof: Nf is a binomial random varitble with parameter IPF(X1) - P3 (X1 ) +

3 (xO)l P1 (xO)]i * [F 2 (xl) 0 F13(x) * (XO)- F2 (xO)]$i ÷ (x 1) - P3(x0 )].

The condLtions of the choices of x and x1 and the symmetry of F imply the

coofficient of a1 vanishes and the coefficient of-81 is strictly positive.

tHenc~, Pi < Pj if, and only if, 0i j This completes the proof.

There are (uncountably) many choices of x and x1 the discriminant

poisits. However, the ones that maximize P(xI- 02) - Pi(X - 83) + F(X0 - a

0- 02) with x0- 01 03 -x would be optimal in the souse that the

:I..I , ,"' .- ,'! :• i ,; ,. • : .. , .
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infimum of the probability of a correct selection (with respect to the

parameter space) is maximized.

Corollary 3: If Gi(x) = a. O(x; 01, a2) + 8i O(x; 20 a26 + Yi '(x; e3' a2)

with e < 2 <03. Then, the optimal choices of x0 and xI are those which

maximize f(xl- 2 ) v(t;O,a2)dt and minimize f(0 2 -x0) q(t;OGa2 )t with

-(0 3 -x 1 ) - (e 2 -xo) - (03- 2)

the restriction x- = 03 X1 *

1
Proof; Proof follows from Theorem 2 and by noting that f cp(t;e2,l)at -

F 2$
xxl xl (e2-x0) 0

f fp(t;8,l)dt = ( - ") ((t;O,l)dt

S0• Xo-(O 3 -xI) - (02 -xo)-(0 3 -x2)

Z b) Selection Procedures Based on Sample Means

We assume Gi(x) = aI Pl(X) + (l-ai) F2 (x) such that Fl(X) < P2(x) for

all x. For the subset selection of populations associated with the largest

a we propose

RI: Select wT if, and only if t -max - c

Then, we have the following

SI~l I k-iA Theorem 3: inf p (CSR) u inf nkd(x, c, 0) dH(x,U)

where

I 2 mx with

F r(x) being the r convolutions of VW(x).

Proof: Since Gi(x) is a stochastically increasing family of distributions

with respect to ai, hence Pa(CSIR) attains its infsiua in the set

((a,t&,...,O): 0 <a'C1). We also note that

Y
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n s n-s

p.{ X--i < X} E P E y. E Z. < n xls=j} Pfs=j)
j=o 1 1

n jn j-" *j (n-j)

= (',= ci(l-ajnJ F, F 2 (nx)

where Yi and Z. are independent random observations corresponding to F1

and F2 respectively.
2 

.2Corollary 3: If F.(x) = D(x;O ai) (i = 1,2) with l > 0 and a <_a

Coolar 1 1 23

then,

n n
inf P {CSIR ilf [ Z E (,N)• a'i÷(1-)'i (t(1,2, oocM
i - 0ci<a<. j=O i=O

whret(VO2 2 1/2 /(j 2
where t(0 1 ,0 2 ,iaV 2 ,c) = [(i-j)(0 2-6 1) + nc](jao + (n-J) a /2(ij) ÷

2
(2n-i-j)o ].

4B. Results for the Case of Large Sample Size

For convenience, we define some notation first. For a prefixed integer

m, we define

m

(4.1) c0,I>- ((>,2,...,u ): Gj > O, Z ci m 1) (a > 2)
1

Lot F (x;O), F2(x;O),...,FM(x;9) be m identifiable cdf's. We denote

(4.2) F(x;o) - (P1(x;o), F,(x;e),...,F(x;0)P

(4.3) -t"(I ~2""~m'9 0Im

A finite mixture with m component P(x;O) is defined to be the inner product

of cortait a. E <0,•1D and F(x;O) i.e.

I'

* '4!~~.'V
t
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(4.4) G(x;a) = a * F(x;O)

SE a. F. (x;e)14=1 1 1

Let wl V2j'" 'Vk be k populations such that ni has cdf G(x;cti) far some

1

unknown but fixed parameter a. E <0,1> Let Xil, X2, Xn t.e n

independent observations from ir., i = 1, 2,...,k. Let G. (x) denote the*in

associated empirical distribution. Let X denote a real-valued continuous

* function on <0 , 1>m. Let A[(a) X (a) A (a) denote the ordered
' ~ [1 (2] Q)(k](c)dotthorre

values of X(a X 1 (• 2 )( .,a(Ck)

Based on n independent observations from each population, we are in-

terested in selecting t (1 < t < k - 1) populations, say, w rilpi, r,,..r

1 t

such that X(crl), X(a r,...,A(cr are the - largebt namely, A

S (i(a). We call these population, the t best.

We approach the problem using thM indifference zone formulation. For

given A (>0), we define

(4.S) QCX;l • a .. a 0)0 a• 6 (O'l>'Mt(-.10 -a2#" ' k: j-6<'£' k-t+1]- (k-tlI

Aiso, for convenience, ue define the k-ctrtesian product

(4.6) a a Q0,I~ D <O,l> x...x<O,l' 1 .

For specified P(x;4) and A, we consider our problem on the configuration

Q(X;A) for given A using the indifference zone approach.

Let H(x) be some specifibd cdf. Let X be a sample of size n from a

population with density so " F(x;$) for some !,2 <0,1> and lot S(W(

denote the associated empirical distribution. For a 6 <O,1lm we dofine

Xii

7 0
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00

(4.7) S(a;H) - f (c PFx;O) - G (x)) 2 dH(x)
-a) n

for some given value of 0.

a) Continuous Case

We assume that the parametric form of each component F (x;e) is con-

tinuous in x for each 0 and also that it is continuous in e for each x. If

n independent observations are drawn from a population with mixture density

G(x;ci0 ) for unknown a E <0,1>", the value q^ which minimizes S(a;H) seems

a good estimate for a in the least squares sense. It is to be noted that

cn is a statistic and is a function of H(x). A good choice in some sense

for the weight function 11(x) is not simple. Bartlett and Macdonald (2)

study some special case for m = 2. For m > 3, the situation is complicated.

A natural and reasonable choice of H(x) would be G (x) which is the associated

empirical function. This choice has been studied in [191 and [18). For an

alternative choice of H(x) consider G(x;a) a a PF(x;e) which has been studied

in (70]. For a fixed p (0 < p'<l), we take

(4.8) 11(x) £) a . F(x;O) + (1-p) G(x).

Associated with each wi, we define, analogous to (4.7),

(4.9) S(C ;p) a f (c • P(x-8) - G ,(x)) 2dH(x)

where 11(x) is defined by (4.8) and G in(x) is the empirical distributioni "n
function corresponding to v( 1, 2,...,k). Define a to be such that

(4.10) S (0;p) " inf S (!P).

The existence of a~ can be shown to hold. Por a fixed p (0 c p < 1), we

define a selection rule 1R as follows.
p

..4

. " , ] i :
" " • - " • " : =- : " ; - '• i : " ,r - "\. - • ..-
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Take n independent observations from each ni. and compute a._ = •i(Xill

xi2,...,X in) which is defined by (4.10) and (4.9). Let X.[l](a) < X [21 (a) <

S..<(k]Ca) denote the ordered values of X(&Cl), X(a2),(cak)

R : Select vi if, and only if (ea.) x> "

p 1 -1 [k-t+lI]

A random mechanism is used to break the ties. By a correct selection (CS)

we mean a set of t populations associated with the t largest values X(Ca),

A( 2),...,X(ak) is selected.

Definition 1 A selection procedure R is consistent with respect to X if

lim lim inf Pa (CSIR} = I

6-oO fbi- aiEQ();A)

Definition 2 A selection procedure R is asymptotically strongly monotone

with respect to ) if X(al) < X(a and for anyE > 0 implies

n-lim ,sup P is selectedlR) - <llm inf P (wi is selectediR-
i .

Theorem 4 R Is consistent and asymptotically strongly monostone with

respect to a continuous X. 4

* Proof: (a) We show that a a with probability one for each 1 1, 21..,k.

Now, by the Clivenko-Cantelli theorem, for Eo 0, 1 N(C) such that, whenever

" (Pr -?i "- (x;o) * (l-p) Gin(xl) - Gn(x) I <e) -Prpl~i * !(X;O)

r n

Replacing dF (x) by d(P u i F * (l-p) Gin(x )and follow the, same arpumeat

as given in the proof of Theorem 2 in (191 the result follows.

(b) Consistencv of

since A Is Continuous it follows thus •( A)1 .(10. ,ithprobabiIlty one. 4

L!

I .~. i* *'.. . . . " '. * -- . /'
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Now, by the Egoroff's theorem, for E > 0 and 6 > 0 there exists N.(E,6),
1

A. and B. such that the sample space is decomposed to be A. U B with

B. the complement of A. and P(B.) > 1-E and on B., jA~a.) - A{ci4I <

whenever n > N. (E,6) uniformly in a. E <0 , 1>m i.e. N. (E,6) is independent1- i I 1

of ci... Note that X(ai) depends on n. Set N NI(E,6) +...+ Nk(E,6) and

k
set B = B B.. Then, P(B) > 1-E , and on B, whenever n > N,

II

max A(aia) - )(1y)< 6 uniformly for each (al, a2 ,...ak) EQ. Now, for
l<i<k ~'

A

any P* E (0,1), and any given • > 0, choose 6 = and E 1 1-p*. Since on

.(;A), A[k-t+l] " Ak-] >A = 36. Hence, we conclude thatfk-t ~ll k-tI

P{a (a) > (a)ti) i 1 2,...,tjx{a) • rjk 1 ()} > p*

ci -r~ (k-t]-

cV tE 9(X,A). [fence, we have shown that for. every A > 0,

lim inf P (CSIRp} = 1. This is the consistency of R

(C) suppose A(ui) A ( ."
If A(a 4 t(a) and X(aj A ](9. Then, t, n

go through the arguments given in the previous part (b), we can contludo -.

2that inf p (f is solectediR 1> inf pM(CS}R I > whenever

n > N N (6) for some NO. On the other hand, .for each n >.NO,: (it is

selectedtlRl e (selection is not correctly. Ionce, Iis ueoctodj- I.

.RV (A;A), i.e. sup p (W iS selectedi)" foro-•~ l _ V•-(;).ie (A;A) 1-

p Peach sii' N.

I ........ ,, -

0'

21k. : . • ,..•:• • .• :• .,: '" '; , / , ., .. . . .•
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(ii) Suppose both X(ai) and X(aj) are no larger than Xr kt](a). Then,

for E > 0 and by the arguments in (b), there exists a subset of sample

space B and an integer N such that P{B} > l-& and for n > N and on B,

l<i<k - c "I < Let E denote the event (i is selectedlR }. Then

E = E n B + E Bc.. Hence sup P(E) . sup Pa{E rk B) + sup Pa{E n BcI
ca a

< sup P (E (I B} + since P {E n Pc < P {_(• < V aE Q(X;A). Noting
2 2

* that,-for any acE4(X;A),P (E n B) = 0 since, on B a^ < a A
a -i (k-t+l] -

(iii) If A (ai and X(a are both no less than A(k..tl]('' the argument

is analogous to the case of (ii). The proof is complete.

Remark 1 Lot tl, t 2 ,.,.,t be positive integers such that each t. is no

p larger than k-l. Lot aZ(t1  t #~*t M) ci t

M') 1 1, 2,..,m) whore a(i) denotes the j-th largest value of0i,

the i-th component of . CI, c,..., a and we denote a ( a , , r
.k ,r r r

If for"Pachi we aroe.dosired to select the t laigest in the i-th component

simultaneously, then, using the statistics ( I which are defined

' by (4.10), assoctettd w-th the i-th component, we select these po!ulations

which have- the t1 largest values int the 14th component of (ai * 1

0i 4 . 2,.,..m). It can bo shown'that the .simultat•eous selections are also

consistert SWI ymp to ly: strongly mlotene on Q(t .t

-efin~iti 3 '-A se'A loction.pr!-eduke R is consistent of order O(A(A)) (O(A(A)I)

with respect t A iflm , P_(C$.)I$ I (tAi VAI P [flhtI 1),
. [: .. -. •o -x( A).: , • n) olE(A;A)

* I"

...... .--. . . . . .
S... . . .. . . ... . .- .... . ,• •.# : ,NW . . -.. ._
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Theorem 5. R is consistent of order O(A) with respect to A if AP
1

satisfies Lipschitz condition. (- < 6 < 0).

Proof: We note that, by the Glivenko-Cantelli theorem that supIGi(x) -
x

G. (X) + o()1-,-o WP1 as n-'= for each i. For any fixed i, let S(ai;p)

denote the m-1 equations for which each equation is differentiated with
m-i

respect to aij, j = 1, 2 .... m-l, where a = a 2,.im-l, 1 - Ol

Then, the first element of S(ai;p) for j 1 becomes

Sn m1

(X ~ ~ F F ( Xi Linn

slisupIGi(X) Gim(x) + 0(1)1 1 F I P(xrj];Ol)

where Xi . are order statistics from wi" Apply the analogous

6-1/2arguments in [191, we have 1I{•) -\(aifl < O(n" 1 for all but finite

n with probability 1 (0 c A -c 1/2) since A satisf'ios IAipschitz condition. Now,

take IX( - A(u)I A A and let A 0 O. Then, as n 4 -, A 0 0 and we have

-2

S0 (A . This means as A4 0, the rate of divergence of n is to the
2

order In order that inf P (CSIR) - I it suffices to take

. as 4 0.

Lot denote the arithmetic mean of r independent estimates of

where r Is some integer. This moans rn snmples are drawn from each population.

And for each subgroup of n samples, we obtain an estimate for. the lopulation

If n is large, X(ai)b ail, anO t -. 1, we propose the following rule

14

i . •• .: •• .. •• • •t, '•:.•,• • , ....

I ... " ,' : ,: . -,•••. : v . .. ...



R': Select it. if ai i. for all j 9 i, where is the first

component of a..

Theorem S. If n is large, t. = I and )(ai) = a, the projection function,

then we have

ArA
ilf j cslR-} > f n 0(6.z - )dO(z):aEQ(A,;A) A -co• j=2 J a (i]

.where O(x) denotes the standard normal distribut'on and

: where

8 (X). F (x;o )G.(x) -F (Ix;o )dG.(x)

for 1, 2,...,k and

r6

I [] '123 . k1, j 1 0l]iOfJ1

Proof: it has boon shown in (181 that fA is . ,totica11y normal and

hence, the first component of " Y ?i, is- uautotically norwal with.

mean c and variance

i-i e2 1 f Gi (x) (1-C (y)JdH (x)dB (yj

where

i ! BiCz) " P1(z;6llG.(x) " f-. Fl(z;e1)d01(x)-

- •

I I
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p 1.p=P{k- e ,i = 1, 2,.i..,k-ljct1 _a

P /(%kl - k) > -J i + ZP ; = P{ k - ki =k 1 k

PO 17 > Z .(L)-j-) j 1, 2,... ,k)

- -
3 k 0k

(where Z Z2,,...Zk are iid standard normal)

k-I 0k

f " z •( - -z )d* C)
-- j=l i

f 0( * Z 6 )dt(z) (by a lemma in [45])
jzl

where a U /0 0+•1'' QIk]f This completes the proof.

Asymptotic relative efficiency of Rp with respect to PR8

We a.•suso a * 2, t I 1 and A is the projection funtion. In this case

h-C have G ai Px;,0) . (I-ct) P2 (-;0 2 ) for i I, Z,..,,k and we

aohote a Instead of n|. Suppose p1(x;O0 and a(x;02 i are not specifivd.

,hotevr, we 4sguze there exists sowa point X9, known, such that .l(yOl)

(x 0: A. M.sumFe (X 0 2 (X0 ;0). Then, we soo that a1  I(

and only if (I(xO • G/p). X Nence, s.*ecting the best 'i equivalent to

Selectlng the population associated with the largest U(xO;4¶) value.

For a given 1, 1 1 ± k, and I, 1 j Jj n, define

' 0

Yt -10 otherwise

A. 7\AIC '..
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and define

A m
G i(X) 0 Y Yj.

J=l-

Then, it is obvious that G. _(xO) is a binomial random variable with cdf
A

B(n;G(xo)).

We define a selection procedure RB as follows:

RB: Select the population Tr. which is associated with the largest (X; (Xo)

When n is large, we use the normal approximation. Let F (xO;0 1) -

.F2(Xo;6 2 ) d > 0. Then, by the result of [1141, we have asymptotically

2 2 2 22
n A- c (p*) (-A d0)/2A d0 when A ÷ 0 and p* + 1. Again, by the Feller's

2
T. z1i 2i e-2 (p, 21

inequality, we see that 4(z) - 1- 1 We obtain c p 1- )p '

Let n and n denote, respectively, the sample sizes associated with 11 and
1 2

RB when inf P {CS} = P* is satisfied for both rules. We define the

asymptotic relative efficiency of R with respect to RB by ARE(R );RB)

}~ n(P*,A)

. n2 (P.,A) as P* +1 and A 4 0. It follows from the previous result and the

result in Theorem 4 we have

2 (1.p*), A1 .5*6 d

"ARE(Rp;RB) = urn 2A•O I.•-2= =oC
p**l d

However, if we take 1-P* = A * 0, we have an alternative eftficiency, dcf'itied by

nl(P*,A) 2A 6+3 5 d 2

ARE'(Rp;RB) lim ) lim 0
n B) 2

- A-+O I-A- d

This shows that R is good compared to RB.
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h) Discrete case

rn this case, we denote Fl, F2,. F as discrete distributions such
2P. .1m

that the outcomes from each distribution with cdf F., for some i, can be

* classified into s(> 2) states. Let the probability that an outcome from

F . belongs to state 2. denoted by pi.2.. We assume F,, F 2 ",F *~M are all

* Ispecified and p are all given,

For a. G <0 ,1>m we define a mixture distribution G6. by G6. a.1i F 1 W +

i2P x)+..+~. F (x). Thtn, G (x) is also a discrete distribution such

*that the probability of an outcome belonging to state j is given by

We assume that there exists a lower bound g. such that g j> g 0 .> 0 for all

i =1I, 2, .. .,ks j 1, Is2a... Is. Let n samples be drawn from iiand let ni.

dvilot.C the numbor of outcomes which belong to state j. For any

Q CAy V2 ... a M we define the M'atuslta distance (see f711) as fol~low~s.,:

whore gu a O . Sf) is thus a function on<01

1.0 t denote a value in 40,Vý such that S (;1) attains itb infimum.

Ft-r givon an and X, to %olect the f~bost with respect to 1, we proposo the

ral lowing sele'ction, procedure.

Rt. Select it 'I ..w If, and, o4ny if

A(ft X0e *#.,Aa )Afte the t .-largvit values~ of.

~(a1, A(...c Q, hich are dofino, iby 4l.

Ige us.e a I aldoim taChan i u i n case of, ties.

I" 3
-Z UN
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Theorem 6. The selection procedure R is consistent and asymptotically

strongly monotone with respect to X if X is continuous.

Proof: It has been shown in [71] that for our case a. ÷ c. with probability

one in the usual sense of convergence of a sequence of vectors. Therefore,

X(&i) ÷ X(%i) WPl. Appling the analogous arguements given in the proofs

of Theorem 4 we can conclude the same results. This completes the proof.

13

1 0

.4
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