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Abstract. In this paper we rigorously establish the existence of the mobility coefficient
for a tagged particle in a simple symmetric exclusion process with adsorption/desorption of
particles, in a presence of an external force field interacting with the particle. The proof is
obtained using a perturbative argument. In addition, we show that, for a constant external
field, the mobility of a particle equals to the self-diffusivity coefficient of the medium, the
so-called Einstein relation. The method can be applied to any system where the environment
has a Markovian evolution with a fast convergence to equilibrium (spectral gap property).
In this context we find a necessary relation between forward and backward velocity for the
validity of the Einstein relation. This relation is always satisfied by reversible systems. We
provide an example of a non-reversible system, where the Einstein relation is correct.

1. Introduction

In his celebrated paper on a Brownian motion (cf. [5]) Einstein established a linear relation
between the mobility σ and the diffusivity D of a Brownian particle. The diffusivity of a
Brownian particle is defined as

(1.1) Dt = E |X(t)|2 .
The mobility σ is defined in the following way. Suppose that an exterior uniform force field
E is applied to the particle, then, in the corresponding stationary state, the particle will have
a velocity v(E) corresponding to the value E of the field. The limit

(1.2) lim
|E|→0+

|v(E)|
|E| = σ

defines the mobility. The Einstein relation says that σ = βD, where β−1 = kBT , T being
the temperature of the environment fluid, and kB is the Boltzmann constant. A heuristic
derivation of this relation can be found in section 8.8 of [16].

A rigorous derivation of Einstein relation from a purely mechanical system is quite a
difficult open problem. It is natural to look first at those models where the convergence
to Brownian motion (of the rescaled path) is known, like for certain tracer dynamics in
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stochastic environments (cf. references at the end of chapter 8 in [16]). For a different
approach concerning weak perturbation of the dynamics see [10].

The main difficulty one finds when trying to prove an Einstein relation, lies in establishing
the existence of a stationary state and have good properties of relaxation to this stationary
state of the dynamics (cf. [3] for a negative result on a deterministic Hamiltonian dynamics
of interacting particles).

In a recent paper (cf. [13]) M. Loulakis considered this problem for a tagged particle in
the symmetric simple exclusion in dimension 3 or higher. In this model the environment
dynamics, even though stochastic, slowly converges to an equilibrium, because of the conser-
vation law of the number of particles. Remarkably Loulakis, without proving the existence
of a unique stationary state nor the existence of the effective velocity, was able to prove a
form of the Einstein relation.

In this paper we consider systems whose environment dynamics have very good properties
of relaxation to equilibrium (essentially they are Markovian with a unique invariant measure,
and with a gap in the spectrum of the generator). A simple example of a system of this type
is provided by the symmetric simple exclusion with creation and destruction of particles. A
perturbative argument permits then to prove, see theorem 2.2, for perturbations not too big
with respect to the gap of the spectrum of the generator, the existence of a stationary state
that is absolutely continuous with respect to the equilibrium state. In addition we obtain
exponentially fast in time relaxation to this stationary state, i.e. the stationary state is stable
in the sense of (2.19). The method allows in principle to compute all terms of the perturbative
expansion of the effective velocity.

Once these properties of the stationary state of the perturbed system are established, one
can study the mobility for a tracer particle in the following fashion. For simplicity we restrict
ourselves, to the one-dimensional case (the detailed argument is exposed in section 4.3). In the
unperturbed system, the position xt at time t of the tracer is given by an additive functional
of {ξs}0≤s≤t, the (unperturbed) environment dynamic as seen from the tracer. Typically this
functional is antisymmetric with respect to time inversion (cf. [4]) and can be written in the
standard decomposition form:

(1.3) xt =

∫ t

0
ψ(ξs) ds+Mt,

where Mt is a square integrable martingale with respect to the filtration generated by {ξt}t≥0.
We denote by µ the stationary measure for the unperturbed environment dynamics. The

function ψ appearing in (1.3) is usually called the mean forward velocity and we assume it
belongs to L2(µ) and has null µ average. It has the property

(1.4) lim
t→0

1

t
Eµ (xtf(ξ0)) =

∫

ψf dµ

for any f ∈ L2(µ).
The mean backward velocity is defined by

(1.5) lim
t→0

1

t
Eµ (xtf(ξt)) = −

∫

ψ∗f dµ
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We assume that ψ∗ exists in L2(µ) and has null µ average. Observe that if µ is reversible, by
the antisymmetry of xt for time reversal, we have ψ = ψ∗.

The asymptotic variance of the tracer is then given by

(1.6) D = lim
t→∞

1

t
Eµ

(
x2

t

)
= Eµ(M2

1 )− 2

∫ ∞

0
Eµ [ψ∗(ξ0)ψ(ξt)] dt.

The assumptions made about the dynamics are more than sufficient to establish the existence
of this limit and the convergence of the integral on the right hand side of (1.6).

One can now perturb the dynamics by applying a uniform external field of strength α on
the tracer. This can be done on the level of the path measure by a Girsanov transformation (in
the spirit of [10]). Because of the good properties of the stationary state µα of the perturbed
dynamics, there will exists an asymptotic velocity for the position of the tracer defined as

lim
t→∞

xα
t

t
= v(α)

and it turns out that the mobility is given by

(1.7) σ =: lim
α→0

v(α)

α
= D +

∫ ∞

0
Eµ {[ψ∗(ξ0)− ψ(ξ0)]ψ(ξt)} dt

so the Einstein relation is valid if and only if the second term on the right hand side of (1.7)
is null.

In reversible systems (i.e. if µ satisfies a detailed balance condition) we always have ψ = ψ∗.
In the example 4.3 below we show a non-reversible system where ψ = ψ∗.

We have chosen to expose the method first in the concrete example of the symmetric simple
exclusion with creation and annihilation (sections 2 and 3), while the general case and some
more examples are treated in section 4.

The one dimensional nearest-neighbor case for the exclusion with creation-annihilation was
treated in [1], where a mean field approximate solution is proposed.

2. Symmetric simple exclusion process with adsorption/desorption.

This process can be informally described as follows. Suppose that p(·) is a finite range
probability measure on Z

d such that p(−x) = p(x). Let K be such that p(x) ≡ 0 for |x| ≥ K,
and Sp := [x ∈ Z

d : p(x) > 0] and p0 := inf[p(x) : x ∈ Sp] > 0. We assume that Sp

generates all Z
d. Consider now an initial configuration of particles. A particle in the site x,

independently of the other particles, waits for an exponential time of intensity p(x− y) and
attempts a jump to the site y. If the site y is already occupied by another particle the jump
is suppressed. Also each particle can disappear with intensity ρ ∈ [0, 1] and in each empty
site can be created with intensity 1− ρ.

A natural state space for the process is Ω = {0, 1}Z
d
. It consists of all possible configura-

tions η ∈ Ω, η(x) = 0, or 1 depending on whether the site x ∈ Z
d is occupied, or not.

One can show, see Theorem 3.9 p. 27 of [11], that such a stochastic process ηt, t ≥ 0 can be
well defined from each initial configuration η. A standard procedure consists in constructing
the C0–semigroup (P t)t≥0 on C(Ω), the space of continuous functions on Ω. The class C of
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local functions, i.e. functions depending on finitely many sites, is a core of the generator L
of (P t)t≥0 and

Lf(η) = Ljumpf(ξ) + Ladf(ξ) =
∑

x,y

p(y − x)η(x)(1− η(y))(f(ηx,y)− f(η))

+
∑

x

[ρ(1− η(x)) + (1− ρ)η(x)](f(ηx)− f(η)).
(2.1)

Here

(2.2) ηx,y(z) =







η(z), if z 6∈ {x, y}
η(y), if z = x
η(x), if z = y

The configuration ηx is defined by

(2.3) ηx(z) =

{
η(z), if z 6= x
1− η(x), if z = x

A simple calculation shows that the product measure νρ :=
⊗

Zd B(ρ), where B(ρ) is the
Bernoulli measure with success probability ρ, is a unique invariant and ergodic measure for
the process. Since the generator L is symmetric with respect to νρ, this measure is reversible.
The semigroup (P t)t≥0 extends to a semigroup of self-adjoint operators on L2(νρ), which with
some abuse of notation we denote by the same symbol. This semigroup possesses a spectral
gap λ0 > 0, i.e.

(2.4) ‖P tf‖L2(νρ) ≤ e−λ0t‖f‖L2(νρ) for all f, s.t.

∫

fdνρ = 0.

One can easily see that λ0 ≥ 1. In fact, 1 is the spectral gap for the creation and annihilation
part Lad of the generator, and the jump part can only increase this gap.

2.1. Tagged particle process. We start now with an initial configuration where there is a
special particle in the position 0 and we tag it. Let us denote its position at time t by xt.
Furthermore, we assume that the tagged particle cannot be absorbed.

The environment process (ξt)t≥0 is defined on a slightly modified state space Ω := {0, 1}Z
d
∗ ,

where Z
d
∗ := Z

d \ {0}, via ξt(x) := ηt(x + xt). It describes the environment ”as seen from
the tagged particle”. The generator L0 of the process can be written on local functions as
follows, cf. pp. 278–279 of [12]

L0f(ξ) = Ljumpf(ξ) + Ladf(ξ) + Lτf(ξ) =
1

2

∑

x,y 6=0

p(y − x)(f(ξx,y)− f(ξ))

+
∑

x6=0

[ρ(1− ξ(x)) + (1− ρ)ξ(x)](f(ξx)− f(ξ)) +
∑

x6=0

p(x)(1− ξ(x))(f(τxξ)− f(ξ))
(2.5)

Here we have defined

τxξ(z) =

{
ξ(z + x), if z 6= −x
ξ(x), if z = −x.

The following result holds.
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Proposition 2.1. µ(·) := νρ(·|ξ(0) = 1) is an ergodic, invariant and reversible measure for

the environment process (ξt)t≥0. Its transition of probability semigroup (Qt)t≥0 extends to

a C0–semigroup of self-adjoint operators on L2(µ). The Dirichlet form associated with this

process is given by

(2.6) D(f) := −(L0f, f)L2(µ) = D0(f) +Dad(f) +Dτ (f),

and

(2.7) D0(f) := −(L0f, f)L2(µ) =
1

4

∑

x,y 6=0

p(y − x)

∫

[f(ξx,y)− f(ξ)]2µ(dξ)

Dad(f) = ρ(1− ρ)
∑

x6=0

∫

[f(ξx)− f(ξ)]2µ(dξ),

(2.8) Dτ (f) := −(Lτf, f)L2(µ) =
1

2

∑

x6=0

p(x)

∫

(1− ξ(x))[f(τxξ)− f(ξ)]2µ(dξ), f ∈ C.

It satisfies the spectral gap estimate

(2.9) D(f) ≥ λ0‖f‖2
L2(µ), ∀f ∈ C ∩ L2

0(µ),

where λ0 is the same as in (2.4) and L2
0(µ) := [f ∈ L2(µ)

∫
fdµ = 0].

Proof. The proof of the above proposition is standard. The calculation that µ is an invariant
and reversible measure is essentially the same as the one presented in Lemma 2.1 of of [8].
The spectral gap estimate for Lad part of the generator, cf. (2.1), implies the spectral gap
estimate (2.9), which in turn implies ergodicity of µ. The formulas for the quadratic forms
D0(·), Dad(·), Dτ (·) are obtained by a direct calculation. �

The l–direction coordinate of the position of the particle can be represented by a jump
process

xt · l =
∑

s≤t

∑

z

z · lχ[τzξs=ξs−] =

t∫

0

ψ(ξs) · lds+M l

t ,

where

(2.10) ψ(ξ) =
∑

z∈Zd

z p(z)(1− ξ(z))

and (M l
t )t≥0 is a cadlag martingale w.r.t. the natural filtration of ξt whose quadratic variation

equals

〈M l〉t =

t∫

0

∑

z

(z · l)2 p(z)(1− ξs(z))ds.

Since

(2.11)

∫

ψl(ξ)µ(dξ) = 0
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for each l ∈ R
d it follows from a straightforward application of the ergodic theorem that the

Stokes drift of the particle

(2.12) v := lim
t→+∞

xt

t
, a.s.

equals zero. Also, due to the presence of the spectral gap for the tagged particle dynamics,
one easily concludes, see e.g.[6], that the laws xt/

√
t converge to a normal law N(0,Σ∗).

Σ∗ = [Σk,l], called the self-diffusivity matrix of the environment, is given by

(2.13) Σ∗ = (1− ρ)D0 − 2D∗(ρ)

where D0 = [D
(k,l)
0 ] with

D
(k,l)
0 =

∑

x

p(x)xkxl

is the co-variance matrix of the random walk with transition of probabilities p(·) and D∗(ρ) =

[D
(k,l)
∗ (ρ)] can be calculated as follows. Thanks to (2.9) for each k = 1, . . . , d there exists a

unique χk satisfying

−L0χk = ψk and

∫

χkdµ = 0.

Here ψk := ψek
, with ek := (0, . . . , 1, . . . , 0)

︸ ︷︷ ︸

k−th position

. We have

(2.14) Dk,l
∗ (ρ) = (ψk, χl)L2(µ).

2.2. Tagged particle in the presence of an external field. We modify now the jump
rates of the tagged particle. They will depend on a positive parameter α small enough
and we denote them by p(x;α). We assume that p(x;α) depends smoothly on α and that
p(x; 0) = p(x). We are particularly interested in the case p(x;α) = p(x) exp{α l · x}, with
l ∈ R

d and of length 1. This choice corresponds to a perturbation given by an external field
of strength α in the direction l, cf. [13].

Since we are concerned only in the first order effects in α, we can linearize p(x;α) and
with no loss of generality assume that it is of the form p(x) +α`(x) where ` : Z

d → R is such
that p(x) + α`(x) ≥ 0. We assume furthermore that the support of `(·) is contained in the
support of p(·) (which, as we recall, is finite).

Define the operator

(2.15) Ag(ξ) =
∑

x

(1− ξ(x))`(x) [g(τxξ)− g(ξ)] .

A standard theory of Markov process, modifying slightly the approach taken in Chapter 1
of [11], guarantees that the operator

(2.16) Lα = L0 + αA,

gives rise to a Markov process
(

ξ
(α)
t

)

t≥0
, α ∈ R whose generator restricted to C equals Lα.
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Now, in general, µ is not an invariant measure for ξ
(α)
t when α 6= 0. Let (Qt

α)t≥0 be the

transition of probability semigroup that corresponds to ξ
(α)
t , t ≥ 0. Our first result concerning

the existence of an invariant measure for this process can be stated as follows.

Theorem 2.2. There is α0 > 0 such that for any 0 ≤ |α| < α0 the following statements are

true.

1) There exists a unique invariant measure να for
(

ξ
(α)
t

)

t≥0
that is absolutely continuous

w.r.t. µ.
2) Let fα := dνα/dµ. Then, fα > 0, µ-a.s. In addition, there exist gn ∈ L2(µ), n ≥ 1,

such that

(2.17) ‖gn‖L2(µ) ≤Mα−n
0 , ∀n ≥ 1

for some M > 0 and

(2.18) fα = 1 +
+∞∑

n=1

αngn.

3) Suppose that the distribution of ξ
(α)
0 possesses a square integrable density g0 w.r.t. the

unperturbed equilibrium measure µ. Denote by gt the respective density of the law of ξ
(α)
t .

Then, there exists λ > 0 such that

(2.19) ‖gt − fα‖L2(µ) ≤ ‖g0 − fα‖L2(µ)e
−λt, ∀ t ≥ 0.

Let P
α,µ denote the path measure on D([0,+∞); Ω) corresponding to the process with the

generator Lα and the initial distribution µ. By the ergodic theorem we conclude that

(2.20) v(α) := lim
t→+∞

xt

t
=

∫

ψ(α)(ξ)να(dξ),

where

ψ(α)(ξ) :=
∑

z

z [p(z) + α`(z)] [1− ξ(z)].

Our next result is concerned with the asymptotic of v(α) for small α. We let

φ`(ξ) :=
∑

z

[`(z)− `(−z)][1− ξ(z)].

Theorem 2.3. (Einstein’s relation) The following asymptotic equality holds for α� 1

(2.21) vk(α) =

[

(1− ρ)
∑

z

zk`(z)− (φ`, χk)L2(µ)

]

α+ o(α), k = 1, . . . , d.

In the particular case when `(z) = l · zp(z) we have φ` = 2ψ · l and we obtain

(2.22) v(α) = αΣ∗l + o(α).

where Σ∗ is given by (2.13).

The proofs of Theorems 2.2 and 2.3 are given in Section 3.
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Remark 2.4. (2.21) implies that Einstein’s relation is valid only for particular perturbations,
e.g. for the external constant field. In addition, even a mean zero perturbation `(·), i.e.
∑

z z`(z) = 0, can cause the particle to pick up a non-zero drift. This can be seen in the
following simple example.

Let d = 1, n ≥ 2 that we will choose large enough, and p(±1, α) = 1/2 ± αn, p(±n, α) =
1/(2n2)∓ α, and of course we take small perturbations |α| ≤ 1/(2n2) . Then, the functional
ψ defined in (2.10) is given by ψ(ξ) = 1/2A(ξ) + 1/(2n)B(ξ), where

A(ξ) = ξ(−1)− ξ(1) and B(ξ) = ξ(−n)− ξ(n)

and χ = 1/2χA + 1/(2n)χB. Here χA, χB are zero mean solutions of the Poisson equa-

tions −L0χA = A, −L0χB = B. Since ‖B‖L2(µ) = ‖A‖L2(µ) =
√

2ρ(1− ρ) the norms

‖χA‖L2(µ), ‖χB‖L2(µ) can be bounded from above by
√

2ρ(1− ρ). On the other hand, here we
have `(n) = −`(−n) = 1, `(1) = −`(−1) = −n, `(z) = 0 if otherwise. We have φ` = 2nA−2B.
For a sufficiently small α we have, according to (2.21),

(2.23) v(α)/α ≈ −(φ`, χ)L2(µ) = −n(A,χA)L2(µ) +
1

n
(B,χB)L2(µ).

Now (B,χB)L2(µ) is bounded from above by 2ρ(1− ρ), while it is not difficult to prove that
there exists a constant C independent from n and ρ such that

(2.24) (A,χA)L2(µ) = (A, (−L0)
−1A) ≥ Cρ(1− ρ)

Indeed, to prove the lower bound (2.24) we use the variational expression

(2.25) (A, (−L0)
−1A)L2(µ) = sup

ϕ
{2(A,ϕ)−D(ϕ)}

where D is defined by (2.6). Let ϕ = λA, λ > 0 is to be appropriately selected later on.
A straightforward direct calculations produce, cf. (2.7)–(2.8), D0(A) = (1 + 2/n2)ρ(1 − ρ),
Dad(A) = 2ρ(1− ρ) and Dτ (A) = ρ(1− ρ)(1 + ρ+ 2n−2). Thus,

D(A) = ρ(1− ρ)

(

4 +
4

n2
+ ρ

)

.

According to (2.25)

(A,χA)L2(µ) ≥ 2λρ(1− ρ)− λ2ρ(1− ρ)

(

4 +
4

n2
+ ρ

)

.

Choosing λ > 0 sufficiently small we can guarantee the bound on the utmost right hand side
of (2.24). Observe that the effective velocity is negative. We can understand this fact in the
following way. If the long jumps of length n were not present, the effect of the perturbation
would be to give the particle a positive effective velocity. This effective velocity would be,
in the first order in α, equal to the velocity of the particle without other particles present
(ρ = 0), minus the autocorrelation term (φ`, χ) which represent the slowing down due to
the blocking caused by the other particles. This blocking is due to the correlations of the
stationary state: the tagged particle finds a higher density at its right than at its left. Now, if
the jumps of order n are allowed and the density of other particles is zero the tagged particle
will have a null effective velocity, but with other particles at hand, the blocking effect will
be still present and many of the short jumps to the right will be suppressed. This does



MOBILITY AND EINSTEIN RELATION 9

not happen for the long jumps to the left, because of the fast decay of correlations of the
stationary measure, so that the global effect is a negative velocity. �

3. The proofs of Theorems 2.2 and 2.3

3.1. The proof of parts 1) and 2) of Theorem 2.2.

3.1.1. The existence of an invariant density. We make an Ansatz concerning the form of the
invariant density. We shall be looking for the formal solution of the Fokker-Planck equation

(3.1) L∗αfα = 0

among the elements of L2(µ) of the form (2.18). (3.1) leads to a recursive relation on gn

(recall that L0 is self-adjoint)

−A∗1 = L0g1(3.2)

−A∗gn = L0gn+1, n ≥ 1.(3.3)

A simple calculation shows that
A∗1(ξ) = −φ`(ξ).

Since the left hand side of (3.2) is centered it has a unique solution g1 satisfying
∫
g1dµ = 0.

By induction we conclude that if gn has been constructed in such a way that
∫
gndµ = 0 then

clearly also
∫
A∗gndµ = 0 and one can find a unique gn+1 satisfying (3.3) that is centered.

In addition, the spectral gap estimate allows us to write

(3.4) (gn,Agn+1)L2(µ) = −(L0gn+1, gn+1)L2(µ) ≥ λ0‖gn+1‖2
L2(µ).

On the other hand we have the following.

Lemma 3.1. There exists a constant C depending only on p and `, such that

(3.5) |(f,Ag)L2(µ)| ≤ C‖f‖L2(µ)D1/2(g),

here f , g are local functions.

Proof. Since there exists a constant C such that |`(x)|/p(x) ≤ C/
√

2, the left hand side of
(3.5) can be estimated by

1√
2
C‖f‖L2(µ)




∑

x∈Sp

∫

[1− ξ(x)]|g(τxξ)− g(ξ)|2µ(dξ)





1/2

= C‖f‖L2(µ)D1/2
τ (g) ≤ C‖f‖L2(µ)D1/2(g)

and (3.5) follows �

Continuing with the proof of Theorem 2.2 we note that (3.4) and (3.5) together imply that

C‖gn‖L2(µ)D1/2(gn+1) ≥ D(gn+1)

and in consequence

(3.6) C‖gn‖L2(µ) ≥ D1/2(gn+1) ≥ λ
1/2
0 ‖gn+1‖L2(µ), ∀n ≥ 1.

(3.6) clearly implies (2.17) for a suitable choice of α0. Note that for α as the statement of
the theorem the series given on the right hand side of (2.18) converges in L2(µ). The proof
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that fα is not only a formal but also the ”true” solution to the Fokker-Planck equation shall
be presented after the proof of Lemma 3.2 below.

3.1.2. Positivity. First we show that fα must be nonnegative. Denote by f+
α , f−α the positive

and negative parts of fα. Suppose that they are both nontrivial. Then f+ := f+
α /‖f+

α ‖L1(µ),

f− := f−α /‖f−α ‖L1(µ) should also be invariant densities. Indeed, to see the above it suffices
only to show that

(3.7)

∫

1Af
±
α dµ =

∫

Qt
α1Af

±
α dµ

for all A ∈ B(Ω) and t ≥ 0. Since f+
α ≥ fα, the positivity of Qt

α implies that for any A ∈ B(Ω)
we have Qt

α1A f
+
α ≥ Qt

α1A fα, hence

(3.8)

∫

Qt
α1Af

+
α dµ ≥

∫

Qt
α1Afαdµ =

∫

1Afαdµ.

Let A∗ := suppf+
α and A ∈ B(Ω). Using the fact that Qt

α is monotone we have Qt
α1A ≥

Qt
α(1A∩A∗) and therefore

(3.9)

∫

Qt
α1Af

+
α dµ ≥

∫

Qt
α(1A∩A∗)f

+
α dµ

(3.8)

≥
∫

1A1A∗fαdµ =

∫

1Af
+
α dµ.

The inequality in (3.9) can be in fact strengthen to an equality. Indeed, from (3.9) applied
to Ac we have

∫
Qt

α1Acf+
α dµ ≥

∫
1Acf+

α dµ and since Qt1 = 1 these facts together of course
imply

∫
Qt

α1Af
+
α dµ =

∫
1Af

+
α dµ for all A ∈ B(Ω), which proves that f+

α is invariant. The
invariance of f−α can be shown in an identical fashion. The above argument shows that
L∗αf± = 0. On the other hand, thanks to the uniqueness result on the solutions of the
Fokker-Planck equation (see Lemma 3.2 below), we must have f− = f+, which leads to a
contradiction.

We proceed with the proof of strict positivity. Let A∗ := supp fα. We have µ(A∗) > 0 and
suppose that Ac

∗ := Ω \A∗ is of positive µ–probability. Then,

(3.10) (Qt
α1Ac

∗

, fα)L2(µ) = 0 for all t ≥ 0.

Denote by P
α,η the path measure on D([0,+∞); Ω) associated to the process with the gener-

ator Lα and the initial configuration η. Since the processes corresponding to different values
of α have the same allowed jumps the path measures P

α,η and P
0,η are equivalent when con-

sidered over D([0, T ]; Ω) for each T > 0, see e.g. [9] p. 326. Using this notation we can recast
(3.10) in the form

(3.11)

∫ [∫

1Ac
∗

(ξ(t))Pα,η(dξ)

]

fα(η)µ(dη) = 0.

(3.11) in turn implies that
∫

1Ac
∗

(ξ(t))Pα,η(dξ) =

∫

1Ac
∗

(ξ(t))P0,η(dξ) = 0
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for all η ∈ A∗. Hence,

(P t1Ac
∗

,1A∗)L2(µ) =

∫

A∗

[∫

1Ac
∗

(ξ(t))P0,η(dξ)

]

µ(dη) = 0

so P t1Ac
∗

≤ 1Ac
∗

. By reversibility we also get P t1A∗ ≤ 1A∗ . These two conditions however
contradict ergodicity of µ.

3.1.3. Uniqueness of an invariant measure. We prove the following lemma.

Lemma 3.2. The operator K := L−1
0 A∗ is well defined on the space C0 of zero µ-average

local functions. It extends to a bounded operator K : L2
0(µ) → L2

0(µ) and there exists α0 > 0
such that I + αK is a linear isomorphism of L2

0(µ) for |α| ≤ α0. Moreover,

(3.12) (I + αK)f = L−1
0 g, for some g ∈ L2

0(µ)

iff f ∈ D(L∗α) and

(3.13) L∗αf = g.

Proof. Let f ∈ C0. Substituting g = 1 in (3.5) we conclude that
∫
A∗fdµ = 0, hence A∗f

belongs to the range of L0. Indeed, thanks to the spectral gap condition we can always write
L−1

0 A∗f = −
∫∞
0 QtA∗fdt. Furthermore, for any g ∈ L2

0(µ) we have

|(L−1
0 A∗f, g)L2(µ)| = |(A∗f,L−1

0 g)L2(µ)| ≤ C‖f‖L2(µ)D1/2(L−1
0 g)

= C‖f‖L2(µ)((−L0)
−1g, g)

1/2
L2(µ)

≤ C√
λ0
‖f‖L2(µ)‖g‖L2(µ)

and boundedness of K follows. The fact that I+αK is a linear isomorphism for a sufficiently
small α can be concluded via a standard perturbation argument. Note also that for any
h ∈ C0 we have

(3.14) ((I + αK)f, h)L2(µ) = (L∗αf,L−1
0 h)L2(µ).

Suppose now that (3.12) holds. Then, for any h ∈ C0 we have

(3.15) (f,Lαh)L2(µ) = (f,L0h+ αAh)L2(µ) = ((I + αK)f,L0h)L2(µ).

= (L−1
0 g,L0h)L2(µ) = (g, h)L2(µ),

which implies that f ∈ D(L∗α) and (3.13) holds (recall that f ∈ D(L∗α) iff the linear functional
g 7→ (f,Lαg)L2(µ) extends in a bounded way to entire L2(µ)).

The converse follows from the fact that (3.13) implies

(3.16) (g, h)L2(µ) = (L∗αf, h)L2(µ) = (f,L0h+ αAh)L2(µ)

(3.14)
= ((I + αK)f,L0h)L2(µ), ∀h ∈ C0.

�

We shall finish the proof that fα constructed in the existence part of the proof satisfies the
Fokker–Planck equation. Let f̃α = fα − 1. It is elementary to observe from the construction
of fα that

(I + αK)f̃α = −αL−1
0 A∗1
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hence according to Lemma 3.2 we have fα ∈ D(L∗α) and (3.1) holds �

3.2. The proof of part 3) of Theorem 2.2. It suffices to show inequality (2.19) under the
assumption that g0 ∈ D(L0 + αA∗). Then, obviously gt ∈ D(L0 + αA∗) and, thanks to the
fact that A∗ is bounded we can estimate

d

dt
‖gt − fα‖2

L2(µ) = 2((L0 + αA∗)(gt − fα), gt − fα)L2(µ)

= −2D(gt − fα) + α(A∗(gt − fα), gt − fα)L2(µ)

(2.9)

≤ −2D(gt − fα) + λ
−1/2
0 α‖A∗‖D1/2(gt − fα)‖gt − fα‖L2(µ) ≤

(2.9)

≤ −
(

2− Cα

λ
1/2
0

)

D(gt − fα) ≤ −λ0

(

2− Cα

λ
1/2
0

)

‖gt − fα‖2
L2(µ).

When g0 = fα and |α| < 2λ
1/2
0 /C the conclusion follows from a standard application of

Gronwall’s inequality.

3.3. The proof of Theorem 2.3. Note that according to (2.20) and (2.18) the k-th com-
ponent of the particle’s Stokes drift v(α) equals, up to a term of order o(1),

(1− ρ)
∑

z

zkα`(z) + (g1, αψk)L2(µ)
(3.2)
= (1− ρ)

∑

z

zkα`(z)− α(A∗1,L−1
0 ψk)L2(µ)

= (1− ρ)
∑

z

zkα`(z)− α(φ`, χk)L2(µ)

and (2.21) follows.

4. A general Model and some more examples

In the previous section we have applied the perturbative approach to the exclusion model
with adsorption-desorption of particles. We will describe here a more general set-up for
theorems 2.2 and 2.3. In particular we will discuss the role of reversibility. Some of the ideas
exposed in this section are inspired by [10] and [14].

4.1. Environment dynamics. Let Ω be a Polish metric space of the environment configu-
rations. We consider then an Ω–valued, cadlag Markov process (ξt)t≥0 and suppose that

R) µ is an invariant, ergodic measure for this process, i.e. the corresponding L2(µ)–transition
probability semigroup Qt : L2(µ) → L2(µ), t ≥ 0 satisfy

(4.1) (Qtf,1)L2(µ) = (f,1)L2(µ), ∀ f ∈ L2(µ), t ≥ 0

and Qtf = f for all t ≥ 0 iff f is constant. This semigroup is C0–continuous and we
denote by L0 : D(L0) → L2(µ) its generator.

Observe that we do not assume that this generator is symmetric in L2(µ). We denote by
EL0(f, g) = (−L0f, g)L2(µ) the corresponding Dirichlet form (in general non-symmetric) de-
fined for appropriate f, g ∈ D(EL0) – the domain of the form.
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SG) The semigroup (Qt)t≥0 satisfies the spectral gap condition, i.e. there exists λ0 > 0, such
that

(4.2) λ0‖f‖2
L2(µ) ≤ EL0(f, f), ∀ f ∈ D(EL0) ∩ L2

0(µ).

4.2. Perturbations and the existence of a steady state. We suppose that for a given

α, (ξ
(α)
t )t≥0 is another Ω–valued, cadlag, Markov process. Let Qt

α : Bb(Ω) → Bb(Ω), t ≥ 0 be
its corresponding transition of probability. Here Bb(Ω) denotes the space of all bounded and
measurable functions. Note that we do not require this semigroup to be C0–continuous.

We assume that

C) there exists C, a linear subspace of Bb(Ω), containing 1 that is a core of both L0 and L∗0,
the adjoint operator to L0 w.r.t. the scalar product (·, ·)L2(µ). In addition, we assume that

there exists a certain α1 > 0 for which Qt
α(C) ⊆ C for all t ≥ 0, |α| ≤ α1 and (Qt

αf − f)/t
tends L2(µ)–weakly to Lαf , as t→ 0+ for all f ∈ C.

SC) The operator Lα : C → L2(µ) can be written in the form

(4.3) Lαf = L0f + αAαf, f ∈ C,
where both Aα and A∗α are operators that satisfy the sector condition in the following
sense

|(f,Aαg)L2(µ)| ≤ CE1/2
L0

(g, g)‖f‖L2(µ), |(f,A∗αg)L2(µ)| ≤ CE1/2
L0

(g, g)‖f‖L2(µ)

for all f, g ∈ C and some C > 0.

In particular SC) implies that Aα is closable and D(L0) ⊆ D(Āα). In what follows we denote
the closure of Aα by the same symbol.

Let g
(α)
1 be the unique µ–zero mean solution of the equation −A∗α1 = L∗0g

(α)
1 . The existence

and uniqueness of such a g
(α)
1 follows easily from the fact that L∗0 is a generator of the dual

semigroup (Qt)∗, t ≥ 0 in L2(µ) which also satisfies the spectral gap condition with the same
constant λ0. We assume the following continuity condition:

P) lim
α→0

g
(α)
1 = g1 := g

(0)
1 .

The following result concerning the existence of a steady state for the process, that is ab-
solutely continuous with respect to µ, can be obtained using essentially the same argument
(with some trivial adjustments due to non-symmetry of L0) as the one in the proof of Theorem
2.2

Theorem 4.1. Under the assumptions R), SG), C), SC) and P ) there exists α0 > 0 such

that for any |α| ≤ α0 there is a unique invariant measure να for (ξ
(α)

t )t≥0 that is absolutely

continuous w.r.t. µ. Let fα := dνα/dµ. Then, fα ∈ L2(µ) and there exist gn : [−α0, α0] →
L2(µ), n ≥ 1, such that

(4.4) ‖g(α)
n ‖L2(µ) ≤Mα−n

0 , ∀n ≥ 1, |α| ≤ α0

for some M independent of α, n and

(4.5) fα = 1 +
+∞∑

n=1

αng(α)
n .
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Moreover, part 3) of the statement of Theorem 2.2 holds also in this case.

Observe that, since g
(α)
1 is the solution of the equation A∗α1 = −L∗0g

(α)
1 , we have

∫
Aαg

(α)
1 dµ =

EL0(g
(α)
1 , g

(α)
1 ).

4.3. Tracer dynamics. Let us first consider the unperturbed case. The position of the
tracer is usually given by an additive functional xt = (x1,t, . . . , xd,t) ∈ R

d of the environment

process (ξt)t≥0. With no change to the argument we could admit xt ∈ Z
d. We assume that

T-1 there exists a vector valued function ψ = (ψ1, . . . , ψd) with ψp ∈ L2(µ), p = 1, . . . , d
(the so-called mean forward velocity) with null µ-average, such that

(4.6) xt =

t∫

0

ψ(ξs)ds+Mt,

where (Mt)t≥0 is a square integrable vector valued martingale with respect to the natural
filtration of the process (ξt)t≥0 satisfying M0 ≡ 0.

T-2 the joint quadratic variation of the vector martingale (Mt)t≥0 is given by

(4.7) 〈Mp,Mq〉t =

t∫

0

θp,q(ξs) ds

Since the martingale is square integrable we must have θp,q ∈ L1(µ).

T-3 The R
d × Ω–valued joint process (xt, ξt)t≥0 is Markovian and denote its generator by

L0.
T-4 xt is an anti-symmetric functional of {ξs}0≤s≤t with respect the time reversal transfor-

mation Rt(ξ.)s = ξt−s for 0 ≤ s ≤ t. This means that, denoting xt = Xt(ξ.),where Xt(·)
is Ft := σ(ξs; 0 ≤ s ≤ t)–measurable, we have Xt(Rt(ξ.)) = −Xt(ξ.) = −xt.

Since the ξt process is autonomous, we have that L0, when restricted to function of the form
f(x, ξ) = f(ξ), coincides with L0 for any f ∈ D(L0). The conditions T-3 and T-4 are
automatically satisfied in all examples we are interested. We recall that, in the stationary
state induced by µ, the process ξ∗s = Rt(ξ.)s is Markovian with the generator L∗0.
T-5 There exists a vector valued function ψ∗ = (ψ∗1, . . . , ψ

∗
d) with ψ∗p ∈ L2(µ), p = 1, . . . , d

(the mean backward velocity) with null µ-average, such that

(4.8) Xs(ξ
∗.) =

s∫

0

ψ∗(ξ∗τ ) dτ +M∗
s , 0 ≤ s ≤ t

where (M∗
s )0 is a square integrable vector valued martingale with respect to the filtration

of the process (ξ∗s )0≤s≤t satisfying M∗
0 ≡ 0.

Observe that Xt(ξ
∗.) = −xt.

Let us define Up(x) = xp, p = 1, . . . , d. By (4.6) and (4.7) we have

(4.9) ψp = L0Up, θp,q = L0(UpUq)− UpL0Uq − UqL0Up.

Observe that the above functions do not depend on x.
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Thanks to hypothesis SG), there exists a unique zero mean solution χp ∈ L2(µ) to the
equation

(4.10) −L0χp = ψp .

Using (4.9) and the stationarity of µ, we can compute the covariance matrix of xt in the
stationary state µ as

Eµ (xp,T xq,T ) = Eµ

[∫ T

0
(L0UpUq)(xt, ξt) dt

]

= T

∫

θp,q dµ+

∫ T

0
Eµ (Up(xt)ψq(ξt) + Uq(xt)ψp(ξt)) dt

(4.11)

Now by assumptions T-4 and T-5 we have

Eµ (Up(xt)ψq(ξt)) = −E
∗
µ (Up(Xt(ξ

∗. ))ψq(ξ
∗
0)) = −

∫ t

0
E
∗
µ

(
ψ∗p(ξ

∗
s )ψq(ξ

∗
0)
)
ds

= −
∫ t

0
(ψ∗p, Q

sψq)L2(µ)

(4.12)

We have then that the asymptotic covariance matrix exists and is given by

Σp,q
∗ = lim

t→∞

1

t
E (xp,t xq,t) =

∫
(
θp,q − ψ∗pχq − ψ∗qχp

)
dµ(4.13)

We are now ready for introducing the perturbed process obtained by the action of an
external constant force. The way to do that is not always evident in such a general context. A
natural assumption is that the path measure Q(α) obtained by such perturbation is absolutely
continuous, locally in time, with respect to the original measure. This suggest to define
the path measure Q(α) by the Radon-Nikodym derivative with respect to the measure Q(0)

associated to the Markov process generated by L0. This is given by the following Girsanov
formula

(4.14)
dQ

(α)
0,η

dQ
(0)
0,η

∣
∣
∣
FT

= exp






αUl(xT )−

T∫

0

e−αUl(xs)(L0e
αUl)(xs, ξs) ds






.

where Ul(x) = l · x and l = (`1, . . . , `d) ∈ S
d−1 is a fixed direction.

It follows that Q(α) is the path measure of a Markov process (x
(α)
t , ξ

(α)
t ) with generator (cf.

eg. [9], appendix 1)

(4.15) LαH(x, ξ) = e−αUl(x)
L0(e

αUlH)(x, ξ)− e−αUl(x)
(
HL0(e

αUl)
)
(x, ξ).

A standard argument, by approximating Ul by bounded functions, will make sense of (4.14)
and (4.15). We decompose then Lα as

(4.16) Lα = L0 + αAα

Let us add the further assumption
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T-6 When applied to functions H(x, ξ) = H(ξ), LαH does not depend on x at it coincides
to the operator

(4.17) Lα = L0 + αAα

In the typical examples, T-6 is a consequence of some properties of translation invariance of
the dynamics.

It follows from condition T-6 that, as in the unperturbed case, ξ
(α)
t is an autonomous

Markov process.
Formally expanding Aα in α we have

AαH(ξ) = L0(UlH)(x, ξ)− Ul(x)(L0H)(ξ)−H(ξ)ψ(ξ) · l +OH(α;x, ξ)

= L0(UlH)(0, ξ)−H(ξ)ψ(ξ) · l +OH(α; ξ),
(4.18)

where H depending only on ξ belongs to C and OH(α; ξ) := OH(α; 0, ξ).

T-7 We assume thatAα satisfies condition SC) (cf subsection 4.2) and that
∫
OH(α; ξ)dµ(ξ) →

0 as α→ 0. Under this perturbed dynamics the position of the tracer is given by

(4.19) x
(α)
t =

t∫

0

ψ(ξ(α)
s , α)ds+M

(α)
t

where ψ(ξ, α) = (ψ1(ξ, α), . . . , ψd(ξ, α)) and ψp(ξ, α) := LαUp(ξ) and
(

M
(α)
t

)

is a square

integrable martingale with respect to the natural filtration of the process (ξ
(α)
t )t≥0 sat-

isfying M
(α)
0 ≡ 0.

Expanding ψ(ξ, α) with respect to α one obtain

(4.20) ψp(ξ, α) = ψp + α
d∑

q=1

θp,q(ξ)`q + αOp(ξ, α), |α| � 1, p = 1, . . . , d.

T-8 We assume that
∫
Op(ξ, α)dµ(ξ) → 0 as α→ 0,.

By Theorem 4.1 the asymptotic velocity can be computed and it equals

v(α) := lim
t→+∞

x
(α)
t

t
=

∫

ψ(ξ, α)fα(ξ)dµ(ξ)(4.21)

By the expansions (4.5) and (4.20) we have

vp(α) = α





d∑

q=1

∫

θp,q`qdµ+

∫

ψpg
(α)
1 dµ



+ o(α)

= α





d∑

q=1

∫

θp,q`qdµ−
∫

χpL∗0g
(α)
1 dµ



+ o(α)

(4.22)
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Recall that L∗0g
(α)
1 = −A∗α1, hence

−
∫

χpL∗0g
(α)
1 dµ =

∫

Aαχp dµ
(4.18)

=

d∑

q=1

`q

(∫

L0(Uqχp)dµ−
∫

χpψqdµ

)

+Oχp(α).

By a similar computation as in (4.12) we have
∫

L0(Uqχp)(0, ξ)dµ(ξ) =
d

dt | t=0
Eµ (Uq(xt)χp(ξt)) = − d

dt | t=0
Eµ (Uq(Xt(ξ

∗. )χp(ξ
∗
0))

(4.8)
= −

∫

ψ∗q (ξ)χp(ξ)dµ(ξ)

(4.23)

so we obtain

lim
α→0

vp(α)

α
=

d∑

q=1

`q

∫

(θp,q − ψ∗qχp − ψqχp)dµ

=
d∑

q=1

`qΣ
p,q
∗ +

d∑

q=1

`q

∫

(ψ∗pχq − ψqχp) dµ .

(4.24)

We deduce that a necessary condition for the Einstein relation to hold is that

(4.25)

∫

ψ∗pχqdµ =

∫

ψqχpdµ, ∀ p, q = 1, . . . , d.

For example, if µ is reversible, ψ∗ = ψ, and the above equation is automatically satisfied.

Example 4.2. Tagged particle in interacting Brownian motions with creation-annihilation

of particles. This example is basically the continuous version of the model we have studied
in section 2. The configuration space of the position of the particles is here given by

Ω :=
{

ω ⊂ R
d : card(ω ∩A) <∞ for all bounded subset A of R

d
}

.

Given ω ∈ Ω, a point x ∈ ω and h ∈ R
d, we define

ωx,h := (ωx \ {x}) ∪ {x+ h}
as the configuration ω where the point x has been changed to x + h. The derivative of a
function f(ω) with respect to a point x ∈ ω is defined as

∂xpf(ω) = lim
δ→0

δ−1(f(ωx,δep)− f(ω))

Let V be a finite range stable smooth pair potential, then the formal Hamiltonian is given
by

H(ω) =
∑

{x,y}⊂ω

V (x− y)

The dynamics is given by the Markov process on Ω generated by

L = Lb + Lg
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where
Lbf(ω) =

∑

x∈ω

eβH(ω)∂xe−βH∂xf(ω)

and

Lgf(ω) =
∑

x∈ω

D−
x f(ω) + z

∫

e−βD+
x H(ω)D+

x f(ω) dx

with
D−

x f(ω) = f(ω \ {x})− f(ω) D+
x f(ω) = f(ω ∪ {x})− f(ω)

The Gibbs grand canonical measure with temperature β−1 and activity z is reversible for
this dynamics. It follows by the results in [2] that, in a certain range of values for z and
β, there is a spectral gap of this generator. Then one can consider a tagged particle not
subject to the Glauber dynamics, and, by applying the method of the present paper, prove
the Einstein relation for it. Since this is a quite straightforward extension of what we have
done in the previous sections, we omit the details. �

Example 4.3. The Einstein relation for a massless tracer particle. Let Ω be a compact Polish
metric space equipped with a group of Borel measurable transformations τx : Ω → Ω, x ∈ R

d.
Let µ be a Borel probability measure on Ω of which we assume that U xF (η) := F (τxη), x ∈ R

d

defines a C0–group of isometries on any Lp(µ) for p ∈ [1,+∞). Let us denote by Cm(Ω) the
space consisting of those elements f ∈ C(Ω), for which x 7→ f(τxη) possesses m bounded
derivatives at x = 0 that belong to C(Ω). Let Df = (D1f, . . . ,Ddf) the corresponding
differentiation operator, defined as

Dpf(η) := lim
h→0

f(τheq
η)− f(η)

h
, p = 1, . . . , d.

Suppose that (ω(t))t≥0 is an Ω–valued continuous trajectory Markov process with transition
probability semigroup

(
P t
)

t≥0
. We assume that the dynamics of the process (ω(t))t≥0 com-

mutes with the shift transformations, i.e. P tUx = UxP t, for all t ≥ 0, x ∈ R
d. We also assume

that there exists a translation invariant measure µ on Ω such that is stationary and ergodic
for P t. We suppose also that L, the L2(µ)–generator of the semigroup, satisfies the spectral
gap condition −(Lf, f)L2(µ) ≥ λ0‖f‖2

L2(µ) for a certain λ0 > 0, for all f ∈ D(L) ∩ L2
0(µ).

Let [ap,q] a d × d matrix valued function on Ω such that there exists λ > 0 and for all

c ∈ R
d

(4.26) λ−1|c|2 ≤
∑

p,q

ap,qcpcq ≤ λ|c|2, |c|2 = c21 + . . .+ c2d .

We assume that a ∈ C3(Ω). Let (xt)t≥0 be the diffusion on R
d, given by the stochastic

differential equation

(4.27) dxt = σ(τxtω(t))dw(t) + ψ(τxtω(t))dt

where w(·) = (w1(·), . . . , wd(·)) is a standard d-dimensional Brownian motion (independent
of (ω(t))t≥0), σ =

√
as, where as is the symmetric part of the matrix a, and

(4.28) ψq =
∑

p

Dpap,q.
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We define the process ξt := τxtω(t), t ≥ 0. It is standard to show that measure µ is
stationary and ergodic for this process and its L2(µ) generator equals

L0f =
1

2

∑

p,q

Dp(ap,qDqf) + Lf

for f ∈ C := C2(Ω) ∩D(L). In addition, C is a core of the generator. The generator satisfies
the spectral gap condition w.r.t. measure µ. Since in this case the position of the tracer is not
measurable w.r.t. the natural filtration of (ξt)t≥0 we use relation (1.5) to define the backward
mean velocity with Eµ denoting the path measure corresponding to ((xt, ξt)) with the initial
distribution δ0 ⊗ µ. After a straightforward calculation it turns out that the backward mean
velocity is equal to ψ∗q =

∑

pDpaq,p. So, if a is symmetric, we have ψ∗ = ψ.

Let us fix l = (`1, . . . , `d) ∈ S
d−1, α ∈ R. The argument carried out in section 4 leads us

to determine that the perturbation operator is given by

Aαf =
∑

p,q

as
p,q`pDqf

for all f ∈ C. It is not difficult to check that the assumptions made in section 4 are satisfied.
The position of the tracer in the perturbed system is then given by

(4.29) dx
(α)
t =

(

α as(τ
x
(α)
t

ω)l + ψ(τ
x
(α)
t

ω)
)

dt+ σ(τ
x
(α)
t

ω(t))dw(t)

If a is symmetric and µ is reversible, since ψ∗ = ψ, the Einstein relation is verified.
Using the above model we can also give an example of a non–reversible system that satisfies

the Einstein relation. Let n ≥ 2 be a fixed integer and Ω := T
n
2/≡, where T2 is a two

dimensional torus, that we identify with R
2/2Z

2 and ≡ is the equivalence relation between
the n–tuples that differ only by the permutation of coordinates. We let τx : Ω → Ω, x ∈ R

2

be given by τx(x1, . . . , xn) := (x1 + x, . . . , xn + x) with ω = (x1, . . . , xn) (+ is the addition
modulo 2). Here DF (ω) =

∑n
i=1∇xi

F (ω) for any periodic, symmetric C1-smooth function
F . The process ω(t) is defined by the evolution of vortices whose positions are described by n
independent two dimensional Brownian motions interacting via a skew-gradient of a smooth
potential. More specifically we let Φ : T2 → R be a certain C2–smooth function and let
∇⊥Φ := (∂2Φ,−∂1Φ). We let ω(t) = (x1(t), . . . , xn(t)), where

dxi(t) =
n∑

j=1

∇⊥Φ(xi(t)− xj(t))dt+ dwi(t), i = 1, . . . , n

and w1(t), . . . , wn(t) are n independent, standard, two dimensional Brownian motions. The
generator of ω(t) is given by

LF (ω) =
1

2

n∑

i=1

∂2
xi
F (ω) +

n∑

i,j=1

∇⊥Φ(xi − xj) · ∇xi
F (ω),

for any F ∈ C2(T
n
2 ) that is symmetric. It is easy to see that the probability measure dmn

induced on Ω by the 2n–dimensional Lebesgue measure is invariant under (ω(t))t≥0 and for
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any F having mn zero average we have

−(LF,F )L2(mn) = 1/2
n∑

i=1

∫

Ω
(∂xi

F )2dmn ≥ γ‖F‖2
L2(mn),

where the constant γ > 0 is independent of n and F . The invariant measure is however
non-reversible under the vortex dynamics, for

L∗F (ω) =
1

2

n∑

i=1

∂2
xi
F (ω)−

n∑

i,j=1

∇⊥Φ(xi − xj) · ∇xi
F (ω), F ∈ C2(T

n
2 ).

Let r(ω) := −ω. Define now ap,q, p, q = 1, 2 to be even functions on Ω, i.e. ap,q(r(ω)) =
ap,q(ω) for all ω that satisfy (4.26) (then obviously ψ(r(ω)) = −ψ(ω), cf. (4.28)). Let
R : L2 → L2 be given by RF (ω) := F (r(ω)). It can easily be verified that Rψ = −ψ, R∗ = R
and RL = L∗R. To check (4.25) note that

(ψq, χp)L2(mn) = −(Rψq, χp)L2(mn) = (RLχq, χp)L2(mn)

= (L∗Rχq, χp)L2(mn) = (χq, RLχp)L2(mn)

= −(χq, Rψp)L2(mn) = (χq, ψp)L2(mn), p, q = 1, 2,

so (4.25) holds (recall that ψ∗ = ψ in this case) thus the Einstein relation is satisfied in
this case. This example can be easily generalized to an evolution of a system consisting of a
random number of vortices on T2 with the initial distribution given by a Poisson measure.
Further generalization could be also possible by considering an infinite system of vortices in
R

d with the creation and annihilation process analogous to the one presented in Example 4.2
�
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Śniadeckich 8, 00-950 Warsaw, Poland
Institute of Mathematics, UMCS
pl. Marii Curie Sk lodowskiej 1, 20-031 Lublin, Poland
komorow@hektor.umcs.lublin.pl

http://golem.umcs.lublin.pl/~komorow

Ceremade, UMR CNRS 7534
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