
Canad. Math. Bull. Vol. 14 (4), 1971 

ON MÔBIUS FUNCTIONS AND A PROBLEM IN 
COMBINATORIAL NUMBER THEORY 

BY 

BERNT LINDSTRÔM 

1. Introduction. After the publication of the important paper by Rota [9] on 
Môbius functions a large number of papers have appeared in which the ideas are 
applied or generalized in various directions, the papers by Crapo [3], Smith [10] 
and Tainiter [11] are some of them. The theory of Môbius functions is now recog­
nized as a valuable tool in combinatorial and arithmetical research. 

It is the purpose of the present note to prove a valuable property of Môbius 
functions and then to apply this to generalize the method in [5] to construct detect­
ing sets of vectors. We recall that a set of vectors vl9v29..-9vn was said to be de­
tecting if all the sums 2ï *&% (^=0, 1, . . . , k— 1) are different. The result depends 
on the function hk(x), which is defined as the maximum number h for which there 
exist integers d% ( i '=l , . . . , h) in the interval 1 <dt<x such that the sums 2î €A 
(€t=09 1, . . . , k— 1) are different. 

The problem to estimate h2(x) from above has been studied by Erdôs and Moser 
(cf. [4]). The conjecture of Erdôs in [4] that h2(l

k) > k+2 for sufficiently large k has 
been studied by Conway and Guy [2]. 

2. Môbius functions. Let P be a finite partially ordered set. The Môbius function 
fji(x, y) of P is defined for x and y in P such that 

(2.1) /*(*,*) = 1 

(2.2) /*(*,j) = 0 ifx£y 

(2.3) / x ( x , j ) = - 2 Kx9z) ifx<y. 
z\x<.z<y 

By duality [9, p. 345] is 

(2.4) p(x,y) = - 2 V&y) Kx<y. 
z\x<z^y 

Observe that the function fi(x, y) is integervalued. When P is the Boolean algebra 
of all subsets of a finite set is 

(2.5) fi(x, y) = ( - l)n(y) "n(*> if x c y9 

where n(x) is the cardinality of x. A similar formula holds for the lattice associated 
with a convex polytope (cf. [7]). 

We shall prove the following theorem. 
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THEOREM 1. Let P be a finite partially ordered set with 0 and a unique last element 
1. Let [i(x, y) be the Môbius function of P. Put m = ̂ xeP |/x(x, 1)|. m is then an even 
integer. Let n be an arbitrary integer in the interval 0<n<m/2. Then there exists a 
function f{x) = Q or 1 on P such that 

(2.6) 2 f(x)t*(x> 1) = ~n s ign KO, 1), 
x; 0 < x £ 1 

where sign a= 1 ifa>0 and sign a— — 1 ifa<0. 

Proof. We shall first prove another related result. Let e be an arbitrary integer in 
the interval 0 < e < m. We shall then prove the existence of a function g(x) = 1 or 
- 1 such that g(0)=l and 

(2.7) 2 g(x)tix, l) = e sign M(0, 1). 

Let 7 be an arbitrary subset of P such that y e F and y < z (in P) implies z e 7. 
Then 7 is partially ordered by < and the Môbius function of Y is the restriction 
to Y of (JL(X, y). Put 

2/eY 

We shall prove by induction on the number of elements in Y that 

(2.8) 2 g(y)H>(y> 1) = - m y , - % + 2 , . . . , o r % 
2/ey 

for a suitable function g(j>) = 1 or — 1 on 7. This is true when the cardinality of Tis 
| Y\ = 1, in which case Y={1} and /x(l, 1) = 1. 

Assume that | F| > 1. Let c denote a minimal element in 7 and put Z= Y—{c}. By 
the inductive assumption it follows that we can find g(y) = 1 or — 1 on Z such that 

2 S(y)Ky9
 l) = any of -mZ9 -mz + 2,..., or /wz. 

yeZ 

It follows that the sum (2.8) equals any of the integers —mz±\x{c, 1), —mz 

±fi(c, 1)4-2,..., or mz±iJL(c, 1) if g(c)= ± 1. Since my = mz+ |/x(c, 1)| and 
\[JL(C, 1)| <m7 by (2.4) and the triangle inequality, it follows that (2.8) is true for a 
suitable function g(y) = 1 or — 1 on 7. In the special case when Y=P is 0 one of the 
possible values by (2.4) and m must be even. 

We apply the preceding result to Y=P—{0}. Put g(0) = sign^(0, 1). Since 
1/̂ (0, 1)| < mY by (2.4), it follows that for any even e in 0 < e < m we can find g{y) = 1 
or — 1 on 7 such that the value of the sum in (2.7) is e. We multiply the equality by 
sign ji(0, 1) and (2.7) follows for the function g(x) sign /x(0, l) = G(x). 

If we subtract (2.7) from ^yeP fj>(y, 1)=0 and divide by 2, we obtain (2.6) with 
f(y)=i(l~G(y)) and/(0)=0 since G(0)=1. 

3. Detecting sets. A proof of the following lemma can be found in [6]. For the 
definition of semilattices (cf. [1, p. 24]). 
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LEMMA. Let P be a finite semilattice with Môbius function [M(X, y). Let a,beP 
and b£a. Letf(x) be defined for all x< a Ab with values in a commutative ring with 
unit. Then we have 

2 f(xhd)ti(x,b) = 0. 
x; x£b 

The lemma in [5, p. 481] is a special case when P is a subsemilattice of a Boolean 
algebra. The value of the Môbius function can be found by (2.5) in this case. 

We shall now prove our main result. 

THEOREM 2. Let P be a finite semilattice with m+l elements. The product in P is 
aAb andP is partially ordered such that a<b if and only if a = aAb. The first element 
in P is 6. Put my = ̂ x;x^y \n(x,y)\. Then there exists a detecting set containing 
2Î/>0 hk(my/2) vectors of dimension m with all components 0 or 1. 

Proof. Let x0 = 6,xl9..., xm be an enumeration of P such that xt < Xj holds only 
if i<j. We shall write mx instead of my if y=xt. 

Consider a particular /in the interval \<i<m. Let da,..., dih9 where h=hk(mi/2), 
be a detecting sequence of integers with 1 <d{j< mx\2 foy = r l , . . . , h. By Theorem 1 
we can find a function/iy(x) = 0 or 1 on P such that 

(3.1) 2 M*M*> *d = - dtj sign /x(0, xt). 
x;0<x£Xi 

Then we have by the lemma 

m 

(3.2) 2 MXv*xt)[i(Xv, *r) = 0 if Ï < r. 
v = l 

We shall prove that the set of all vectors 

(3.3) vtj = (fijiXi AXÙ,..., f{j{xm A xd), 

where 7= 1 , . . . , hk(mJ2) and i= 1 , . . . , m, is a detecting set. In order to prove this 
assume that 

(3.4) 2 eifln = °> (ev = - f c , . . . , 0 , . . . , or fc), 

where \<i<m and 1 <j<hjjn^). We shall prove that all e{j = 0. If this is not true 
let r be the last / such that e{j 7̂  0 for some/ We multiply the i;th component on both 
members of (3.4) by — /x(xU5 xr) sign^(0, xr) and take the sum for v=l,...,m. 
Then we obtain by (3.2) and (3.3) 

h 

2 erAi = °> 
j = l 

where h=hk(mr/2). From the fact that the sequence drj (j= 1 , . . . , h) is detecting it 
follows that erj = 0 for 7= 1 , . . . , h in contradiction to the assumption that erj ^ 0 for 
somey. Hence all ^ = 0 and we have proved that the set of all vectors vXj defined in 
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(3.3) is a detecting set. The cardinality of the set is easily determined and the theorem 

is proved. 

EXAMPLES. It seems to be a difficult problem to find the best possible estimate for 

given m. For certain classes of semilattices it is possible to find the best estimates. 

Consider e.g. the class of complexes in Boolean algebras. By the method in [8] it can 

be proved that the best possible choice was already made in [5]. 

If we apply the detecting sequences of Conway and Guy [2] one can improve the 

estimate F2(m) > A(m) in [5] to F2(m) > A(m) + m — C for a constant C, but this is a 

real improvement only if m is very large (m>221). 

If we apply Theorem 2 to a suitable semilattice it is possible to improve the esti­

mate F2(m)>A(m) even for moderate m. We give an example when m = 10. Let F 

be the lattice of the integers 1, 2, 3, 5, 6, 7, 10, 14, 21, 35, 210 ordered by divisi­

bility (x< y if x divides y). The value of my/2 for y> 9 is 1, 1, 1, 2, 1, 2, 2, 2, 2, 4 

respectively. Since h2(l) = l, h2(2) = 2 and h2(l)>4 (the sequence 3, 5, 6, 7 is de­

tecting), we obtain a detecting set of cardinality 18, which is an improvement since 

4(10) = 17 (cf. [5, p. 481]). 
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