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Abstract

We consider probabilistic modal logic, graded modal logic and stochastic modal logic, where linear inequal-
ities may be used to express numerical constraints between quantities. For each of the logics, we construct
a cut-free sequent calculus and show soundness with respect to a natural class of models. The completeness
of the associated sequent calculi is then established with the help of coalgebraic semantics which gives
completeness over a (typically much smaller) class of models. With respect to either semantics, it follows
that the satisfiability problem of each of these logics is decidable in polynomial space.
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1 Introduction

In this paper, we consider three different, but closely related, modal logics. The first
logic that we consider is probabilistic modal logic, where we think of every formula
A as denoting an event JAK in a probability space. The variant of probabilistic
modal logic that we consider here allows explicit comparisons of the likelihoods of
individual formulas by means of linear inequalities. If A1, . . . , Am are formulas and
p, c1, . . . , cm ∈ Q, then the expression

∑m
j=1 cj ·µ(JAjK) ≥ p can be denoted a formula

which is satisfied at a point x of a probability space if the local probability measure
µ associated with point x satisfies the above inequality. An expression of this form
is written as an m-ary modal operator, Lp(c1, . . . , cm), applied to A1, . . . , Am.

The second logic that we consider is graded modal logic, where we may again
use linear inequalities to express constraints on successors with certain properties.
As before, we use m-ary modal operators of the form Lp(c1, . . . , cm) to express that
the inequality

∑m
j=1 cj ·]Aj ≥ p holds at a particular point in a Kripke model, where

]Aj is the number of successors of that state satisfying property Aj .
Finally, we consider a third logic, stochastic modal logic, that is a hybrid between

the two. To get from probabilistic modal logic to stochastic modal logic, one needs
to generalise from probability measures to arbitrary measures. To get to stochastic
logic from graded modal logic, one gives up the idea of always having an integer
number of successors and replaces the transition relation by a family of local real-
valued measures that determine the total weight of a successor set.
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For each of the logics mentioned above, we give an axiomatisation in terms of
a cut-free sequent calculus and prove soundness with respect to a natural class of
models: Markov models, Kripke models and what we call measurable models – the
natural generalization of Markov models, where one drops the requirement of dealing
with probability measures. We then establish completeness of the sequent calculus
with respect to coalgebraic models. For each of the logics, we isolate a natural,
coalgebraic semantics and show how the general results of coalgebraic modal logics
can be used to give a rather simple completeness proof. In a third step, we relate
both types of semantics, and show that the coalgebraic semantics embeds into the
‘natural’ semantics considered initially. Our treatment thus combines the best of
both worlds for each of the logics: we establish soundness for a large class of models,
whereas the logics are proved complete for a much smaller class. The complexity
of each of the logics then follows by analysing the complexity of backwards proof
search in the given sequent calculus.

The main contributions of this paper are the cut-free axiomatisation of three
different modal logics and the completeness proof of this axiomatisation using coal-
gebraic methods. The sequent calculi appear to be new in each case. While the
soundness proofs are certainly standard, completeness relies on coalgebraic tech-
niques. Rather than exhibiting a fully fledged (canonical) model construction, we
can make do with showing that the rules that generate the sequent systems are
one-step complete: we interpret all logics over T -coalgebras (X, γ : X → TX) for
suitably chosen T , where γ is the transition function. One-step completeness now
stipulates that all sequents valid over the set of ‘successors’ TX should be derivable
via modal rules whose premises are already valid over X, where X is an arbitrary
set. For probabilistic and stochastic modal logic, the question of one-step complete-
ness can be translated into a linear programming problem over the rational domain,
which fails for the case of graded modal logic, where we use maximal consistent sets,
but only at the level of one-step successors.

The coalgebraisation of all three logics moreover allows us to apply a number
of generic (coalgebraic) results: with the help of [2] we obtain completeness and
Exptime decidability of an extension of each logic with least/greatest fixpoints,
[7] allows us to construct generic (tableau) algorithms for the global consequence
problem, and [17,8] provides an Exptime complexity bound and optimal tableau al-
gorithm, respectively, of hybrid extensions over arbitrary sets of global assumptions.
As such, the paper does not present any new results concerning the coalgebraic in-
terpretation of modal logics. Rather, we show how coalgebraic methods can be used
to obtain results about existing modal logics.

Related Work. Probabilistic modal logic, as studied in this paper, can be seen as
an extension of the probabilistic modal logic presented in [9] with linear inequalities
and is a notational variant of the probabilistic logic considered in [5,4], where a
complete axiomatisation in a Hilbert-style proof system and a proof of Pspace-
decidability is presented. Our contribution here is a cut-free sequent system that
allows for purely syntax driven implementations of satisfiability checking that are
amenable to standard optimisations [10,20].

The extension of graded modal logic extended with linear inequalities consid-
ered here is a fragment of Presburger modal logic with regularity constraints [3]
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but subsumes Majority logic [11] and the both (standard form of) graded modal
logic [6] and description logics with qualified number restrictions [1]. In absence
of linear inequalities, this logic is known to be Pspace complete [18] and Pspace-
completeness in presence of linear inequalities was shown in [3], but no complete
axiomatisation appears to be known so far, which is provided here.

For stochastic modal logic, we are not aware of any results concerning complete-
ness and complexity.

2 Preliminaries and Notation

2.1 Preliminaries on Sequent Calculi

Throughout the paper, we fix a set V of propositional variables. As we will be
dealing with three different modal logics, it is convenient to isolate their syntactical
differences into a modal similarity type, i.e. a set of modal operators with associated
arities. Given a modal similarity type Λ, the set F(Λ) of Λ-formulas is given by the
grammar

F(Λ) 3 A,B ::= p | ¬A | A ∧B | ♥(A1, . . . , An)

where p ∈ V and ♥ ∈ Λ is n-ary. If F ⊆ F(Λ) is a set of formulas, then we write

Λ(F ) = {♥(A1, . . . , An) | ♥ ∈ Λ n-ary, A1, . . . , An ∈ F}

for the set of formulas consisting of modalities applied to elements of F . If σ : V→
F(Λ) is a substitution, then Aσ denotes the result of replacing all occurrences of
p ∈ V in A by σ(p).

A sequent is a finite multiset (so that contraction is made explicit) of formulas
that we read disjunctively. We identify A ∈ F(Λ) with the sequent {A} and write
Γ,∆ for the (multiset) union of Γ and ∆. If F ⊆ F(Λ) is a set of formulas, we
write S(F ) for the set of those sequents that only contain elements of F , possibly
negated. Substitution applies pointwise to sequents, respecting multiplicity so that
Γσ = {Aσ | A ∈ Γ}. The three logics we consider in this paper can be axiomatised
by one-step rules, that is, rules of the form

Γ1 . . . Γn
Γ0

where Γ1, . . . ,Γn ∈ S(V) and Γ0 ∈ S(Λ(V)). If R is a set of one-step rules, we
write R ` Γ if Γ is an element of the least set of sequents that is closed under the
propositional rules and all substitution instances of one-step rules, that is under the
rules

p,¬p,∆
A,Γ
¬¬A,Γ

¬A,¬B,∆
¬(A ∧B),∆

A,∆ B,∆
A ∧B,∆

Γ1σ . . . Γnσ
Γ0σ,∆

where p ∈ V, σ : V → F(Λ) and ∆ ∈ S(F(Λ)) is a weakening context. It is easy
to see that the propositional part of this calculus can be embedded into the system
GS3p of [19] which is known to be sound and complete. The concrete syntactical
presentation of the modal rules for the logics considered here is most conveniently
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expressed using the following notation. If c1, . . . , cm, k ∈ Q are rational numbers,
a1, . . . , am ∈ V are propositional variables and Γ = {ai | i ∈ I} ∪ {¬aj | j /∈ I} then

Γ ∈
m∑
j=1

cjaj ≥ k ⇐⇒
∑
i∈I

ci ≥ k

so that we may use
∑m

i=1 ciai ≥ k to denote a set of sequents that we think of the
set of premises of a proof rule. We write sign(q) for the sign of a rational number
q and, if A is a formula and r 6= 0, we put sg(r)A = A if r > 0 and sg(r)A = ¬A,
otherwise.

2.2 Coalgebraic Preliminaries

If T : Set → Set is an endofunctor, a T -coalgebra is a pair (X, γ) where X is a
(carrier) set and γ : X → TX is a (transition) function. We think of T -coalgebras
as playing the role of frames, and take a T -model to be a T -coalgebra equipped with
a valuation, i.e. a triple (X, γ, π) where (X, γ) is a T -coalgebra and π : V → P(X)
is a valuation of the propositional variables.

Given a similarity type Λ, we can interpret Λ-formulas over T -models provided
T extends to a Λ-structure, i.e. T comes equipped with a predicate lifting (a set-
indexed family of maps)

(J♥KX : P(X)n → P(TX))X∈Set

for every n-ary ♥ ∈ Λ that satisfies the naturality requirement

(Tf)−1 ◦ J♥KY (S1, . . . , Sn) = J♥KX(f−1(S1), . . . , f−1(Sn))

for all f : X → Y and all S1, . . . Sn ⊆ Y . If M = (X, γ, π) is a T -model, the
semantics of modal formulas is now defined as expected for propositional connectives

JpKM = π(p) J¬AKM = X \ JAKM JA ∧BKM = JAKM ∩ JBKM

together with the clause

J♥(A1, . . . , An)KM = γ−1 ◦ J♥KX(JA1KM , . . . , JAnKM )

for the modal operators. We write M,x |= A in case x ∈ JAKM and M |= A if
M,x |= A for all x ∈ X. Finally, we write T |= Γ if M |= Γ for all T -models M .
The glue between the axiomatisation (in terms of one-step rules) and the modal
semantics is provided by the following notions:

Definition 2.1 Suppose that Λ is a modal similarity type, T a Λ-structure and R
a set of one-step rules over Λ. We introduce the following notions in case X is a
set and τ : V→ P(X) is a valuation:

(i) If Γ ∈ S(V) is a propositional sequent, we write JΓK(X,τ) =
⋃
{JAK(X,τ) | A ∈ Γ}

(where JpK(X,τ) = τ(p)) for the interpretation of a sequent Γ ∈ S(V) with respect
to τ and (X, τ) |= Γ in case Γ is τ -valid, i.e. JΓK(X,τ) = X.
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(ii) Similarly, if Γ ∈ S(Λ(V )) we write JΓK(TX,τ) =
⋃
{JAK | A ∈ Γ} (where

J♥(a1, . . . , an)K(TX,τ) = J♥KX(τ(a1), . . . , τ(an))) for the interpretation of a
modalised sequent with respect to τ , and (TX, τ) |= Γ in case Γ is τ -valid,
i.e. JΓK(TX,τ) = TX.

(iii) Finally, a sequent Γ ∈ S(Λ(V)) is τ -derivable (with respect to R) if there exists
Γ1 . . .Γn/Γ0 ∈ R and σ : V → V such that all Γiσ are τ -valid for 1 ≤ i ≤ n

and Γ0σ ⊆ Γ.

We can now justify the sum notation introduced earlier:

Lemma 2.2 Suppose that τ : V→ P(X) is a valuation. Then

∀x ∈ X

 m∑
j=1

cj1τ(aj)(x) ≥ k

 ⇐⇒ ∀ Γ ∈
m∑
j=1

cjaj ≥ k ((X, τ) |= Γ) .

Moreover, we can relate one-step rules and coalgebraic semantics as follows:

Definition 2.3 Suppose Λ is a modal similarity type and T : Set → Set is a Λ-
structure. We say that a set R of one-step rules is one-step sound (resp. one-step
cut-free complete) if, for all valuations τ : V → P(X) and all Γ ∈ S(Λ(V)): Γ is
τ -derivable if (resp. only if) Γ is τ -valid.

We note that the notions of one-step soundness and one-step (cut-free) completeness
do not quantify over models: both conditions can be checked locally. Importantly,
these notions give rise to soundness and cut-free completeness in the standard way.

Theorem 2.4 Suppose R is a set of one-step rules over a modal similarity type Λ
and let T be a Λ-structure. If Γ ∈ S(Γ) and

(i) R is one-step sound, then |= Γ whenever R ` Γ

(ii) R is one-step cut-free complete, then R ` Γ whenever T |= Γ.

The proof of the last theorem can be found in [13] but it should be remarked that this
type of coherence condition between syntax and semantics is well studied: [12,15]
use similar (weaker) coherence conditions to obtain soundness and completeness of a
Hilbert system and [16] uses strict completeness to obtain what essentially amounts
to a cut-free sequent system.

3 Probabilistic Modal Logic

We start our investigation into modal logics of linear inequalities by considering
probabilistic modal logic where we may allow ourselves linear inequalities to specify
the relationships between individual formulas. That is, we consider the modal
similarity type

Λ = {Lp(c1, . . . , cm) | m ∈ N, p, c1, . . . , cm ∈ Q}

where the arity of Lp(c1, . . . , cm) is m. We interpret probabilistic modal logic over
state spaces X where every point x ∈ X induces a probability distribution µ over
successor states. Informally, validity of Lp(c1, . . . , cm)(A1, . . . , Am) at point x ∈
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X means that the linear inequality
∑m

j=1 cjµ(Aj) ≥ p holds, where µ(Aj) is the
measure of the truth-set of the formula Aj , seen from point x. In particular this
allows us to compare the probabilities of events:

Example 3.1 According to a recent experience of the second author with a well-
known budget airline, we may consider a state space comprising all European air-
ports, and we may think of the probability distribution associated with a particular
city as giving us the probability of landing at a particular airport when boarding
any flight of this carrier. In this logic, which we refrain from calling EasyLogic, we
can for instance express that landing in England is 5 times as likely as landing in
Scotland as L0(1,−5)(England, Scotland) (which is reasonable to assume for carriers
that are based in England). The second author however doubts that the business
model of said budget airline can be axiomatised in any logic.

We axiomatise probabilistic modal logic with linear inequalities and prove soundness
and completeness with respect to two different classes of models. The (complete,
cut-free) axiomatisation is induced by the set R of one-step rules that comprises all
instances of

(P )

∑n
i=1 ri

(∑mi
j=1 c

i
j · aij

)
≥ k

{sg(ri)Lpi(ci1, . . . , cimi
)(ai1, . . . , aimi

) | i = 1, . . . , n}

where r1, . . . , rn ∈ Z \ {0} and k ∈ Z that satisfy the side condition

n∑
i=1

ripi < k if all ri < 0, and
n∑
i=1

ripi ≤ k otherwise.

We first treat soundness of probabilistic modal logic, interpreted over Markov chain
models before showing completeness over a class of coalgebraic models that corre-
sponds to finitely supported Markov chains.

3.1 Markov Chain Semantics and Soundness

The first semantics of probabilistic modal logic is given with respect to Markov
models.

Definition 3.2 A Markov model is a triple (X,µ, π) where X is a measurable space
with σ-algebra ΣX , π : V → ΣX is a valuation and µ : X × Σ → [0, 1] is a Markov
kernel, that is, µ(x, ·) : Σ → [0, 1] is a probability measure for all x ∈ X and
µ(·, S) : X → [0, 1] is measurable for all S ∈ ΣX .

If M = (X,µ, π) is a Markov model, then the semantics JAKM ∈ ΣX is given as
expected for the propositional connectives (where atomic propositions are mapped
to measurable sets) and the clause for modal operators is

JLp(c1, . . . , cm)(A1, . . . , Am)KM = {x ∈ X |
m∑
j=1

cjµ(x, JAjKM ) ≥ pK

where we write M,x |= A if x ∈ JAKM and M |= A if M,x |= A for all x ∈ X.
Finally Mark |= Γ if M |=

∨
Γ for all Markov models M . Note that the measurability
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conditions guarantee that the truth-set JAKM of a formula is always measurable. We
now show soundness of probabilistic modal logic with respect to Markov models.

Proposition 3.3 Mark |= Γ whenever R ` Γ.

Proof. Suppose that M = (X,µ, π) is a Markov model and R ` Γ. We show that
M |= Γ by induction on the proof of R ` Γ where the application of an instance of
(P ) is the only interesting case.

Consider the sequent Γ appearing as the conclusion of the rule∑n
i=1 ri

∑mi
j=1 c

j
iA

j
i ≥ k

{sg(ri)Lpi(c1
i , . . . , c

mi
i )(A1, . . . , Am) | i = 1, . . . , n}

the applicability of which is ensured by the side condition

n∑
i=1

ripi < k if all ri < 0, and
n∑
i=1

ripi ≤ k otherwise.

By induction hypothesis,

n∑
i=1

ri

mi∑
j=1

cji1JAj
i KM

(x) ≥ k

for all x ∈ X. Now suppose for a contradiction that there exists an x ∈ X so that
M,x 6|= Γ. If µ = µ(x, ·) then this implies that

n∑
i=1

ri

mi∑
j=1

cjiµ(JAji KM ) ≥ k

by integrating both sides with respect to µ, and

mi∑
j=1

cjiµJAji KM ≥ pi (if ri < 0), and
mi∑
j=1

cjiµJAji KM < pi (if ri > 0)

for all i = 1, . . . , n. In summary, this implies that

k ≤
n∑
i=1

ri

mi∑
j=1

cjiµ(JAji KM ) ≤
n∑
i=1

ripi ≤ k

where either the last or the penultimate inequality are strict so that k < k in both
cases, contradicting M,x 6|= Γ and therefore proving the claim. 2

We next establish completeness over a smaller class of models, that is, Markov
chains where the transition measures are finitely supported. Crucially, these fit into
the framework of coalgebraic semantics:
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3.2 Coalgebraic Semantics and Completeness

We write supp(f) = {x ∈ X | f(x) 6= 0} for the support of a function f : X → R
and consider the functor D : Set→ Set where

D(X) = {µ : X → [0, 1] | supp(µ) finite,
∑
x∈X

µ(x) = 1}

that extends to a Λ-structure by stipulating that

JLp(c1, . . . , cn)KX(S1, . . . , Sn) = {µ ∈ D(X) |
n∑
i=1

ci · µ(Si) ≥ p}

for S1, . . . , Sn ⊆ X where µ(S) =
∑

x∈X µ(x). As spelled out in Section 2.2 this
induces an interpretation JAKM ⊆ X of Λ-formulas over D-models M = (X, γ, π).
We now show that the set R of one-step rules consisting of all instances of (P ) is
indeed one-step complete, which is the content of the next lemma.

Lemma 3.4 Consider a valuation τ : V→ P(X) and suppose that Γ ∈ S(Λ(V)) is
τ -valid. Then Γ is τ -derivable.

Proof. Suppose that Γ = {sg(εi)Lpi(c
1
i , . . . , c

mi
i )(a1

i , . . . , a
mi
i ) | i = 1, . . . , n} where

ε1, . . . , εn ∈ {−1, 1}, the pi and cji ∈ Q and the aji ∈ V. Furthermore let τ : V →
P(X) be a valuation such that Γ is τ -valid. To see that Γ is τ -derivable, we show
that there exist k, r1, . . . , rn ∈ Z so that

(i)
∑n

i=1 r
2
i > 0 (i.e. at least one of the r1, . . . , rn is non-zero)

(ii) sign(ri) = sign(εi) for all i = 1, . . . , n with ri 6= 0

(iii)
∑n

i=1 ri

(∑mi
j=1 c

i
j · 1τ(ai

j)(x)
)
≥ k for all x ∈ X

(iv)
∑n

i=1 ripi ≤ k if at least one εi is positive, and
∑n

i=1 ripi < k otherwise.

We define an equivalence relation ∼ on X by

x ∼ y ⇐⇒
(
x ∈ τ(aji ) ⇐⇒ y ∈ τ(aji )

)
for all i = 1, . . . , n and all j = 1, . . . ,mi. Assume that x1, . . . , xk ∈ X are the
(finitely many) representatives of the equivalence classes of X under ∼. Consider
the matrices

A0 =



−ε1 0 0
. . .

...

0 −εn 0

−f1(x1) . . . −fn(x1) 1
...

...

−f1(xk) . . . −fn(xk) 1


A1 = ( p1 . . . pn − 1)
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where fi =
∑mi

j=1 c
j
i · 1τ(aj

i )
and let A =

A0

A1

. We note the following properties,

where y = (y1, . . . , yn, ŷ1, . . . , ŷk, y0) ∈ Qn+k+1
≥0 :

(i) if b = (b1, . . . , bn, 0, . . . , 0) with
∑n

i=1 b
2
i > 0, yTA = 0 and yT b < 0 then y0 > 0.

(ii) if y0 = 1 and yTA = 0, then the assignment µy(xi) = ŷi and µy(x) = 0 if
x /∈ {x1, . . . , xk} is a finitely supported probability distribution with

mi∑
j=1

cji · µy(τ(aji )) = pi − εiyi

for all i = 1, . . . , n.

For item (i) we assume (for a contradiction) that y0 = 0 and consider the last
column of A to obtain

∑k
l=1 ŷl−y0 = 0 hence ŷ1 = · · · = ŷk = 0 as y ∈ Qn+k+1

≥0 . Now,
considering the i-th column of A, we have that 0 = −εiyi −

∑k
l=1 ŷlfl(xi) + piy0 =

−εiyi whence yi = 0 for all i = 1, . . . , n so that, in summary, y = 0, contradicting
yb < 0.

Finally, for item (ii), we first consider the last column of A and deduce from
yA = 0 that

∑k
l=1 ŷl − y0 = 0 so that

∑k
l=1 ŷl = 1 and µy is a finitely supported

probability distribution as y ∈ Qn+k+1
≥0 . Moreover, considering the i-th column of

A, the equality y ·A = 0 gives

0 = −εiyi −
k∑
l=1

ŷlfi(xl) + y0pi

= −εiyi −
k∑
l=1

ŷl ·
mi∑
j=1

cji · 1τ(aj
i )

(xl) + pi

= −εiyi −
mi∑
j=1

cji ·
k∑
l=1

ŷl · 1
τ(aj

i )
(xl) + pi

= −εiyi −
mi∑
j=1

cji · µ(τ(aji )) + pi

so that
∑mi

j=1 c
j
iµy(τ(aji )) = pi − εiyi as required.

According to the statement of the theorem, we distinguish the following cases.
Case 1: At least one εi is positive. The claim follows (by multiplying with a com-

mon denominator) if there exists b = (b1, . . . , bn, 0, . . . , 0) ∈ Qn
≤0 with

∑
i=1,...,n b

2
i 6=

0 so that the system of linear inequalities

Ar ≤ bT (1)

has a solution r = (r1, . . . , rn, k)T .
Now suppose, for a contradiction, that Equation (1) does not have a solution

for any choice of b1, . . . , bn ∈ Q≤0 with
∑n

i=1 b
2
i > 0. Then, by Farkas’ Lemma in

the form of [14, Corollary 7.1 (e)], there exists, for every b = (b1, . . . , bn, 0, . . . , 0) ∈
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Qn+k+1
≤0 with

∑n
i=1 b

2
i > 0, a vector yb ∈ Qn+k+1

≥0 such that yTb A = 0 and yTb · b < 0.
Now consider the (non-empty) set

I+ = {i ∈ {1, . . . , n} | εi > 0}

and, for i ∈ I+, the vector

bi = (0, . . . , 0,−1, 0, . . . , 0)T ∈ Qn+k+1

where −1 appears in the i-th coordinate. By Farkas’ Lemma, this gives a vector yi

so that (yi)TA = 0 and (yi)T b < 0. In particular, yi0 6= 0 by item (i) so that we may
assume that yi0 = 1 by linearity for all i ∈ I+. Moreover, yT b < 0 implies that yii > 0
for all i ∈ I+. Now consider y = 1

]I+
∑

i∈I+ yi and let y = (y1, . . . , yn, ŷ1, . . . , ŷk, y0).
By linearity, we have y0 = 1, yTA = 0 and yi =

∑
h∈I+ y

i
h ≥ yii > 0. By item (ii)

above the vector y induces a finitely supported probability measure µ so that

•
∑mi

j=1 c
j
i · µ(τ(aji )) = pi − εiyi > pi if i ∈ I+ as yi > 0 and εi = +1

•
∑mi

j=1 c
j
i · µ(τ(aji )) = pi − εiyi ≤ pi if i /∈ I+ since εi = −1 and yi ≥ 0.

As a consequence, we have that µ /∈ Jsg(εi)Lpi(c
1
i , . . . , c

mi
i )(a1

i , . . . , a
mi
i )KD(X),τ

for all i = 1, . . . , n which contradicts our assumption that D(X), τ |= Γ. This
finishes our treatment of the first case.

Case 2: ε1 = · · · = εn = −1. The claim follows if we can show that there exists
b = (b1, . . . , bn, 0, . . . , 0) ∈ Qn+k

≤0 with
∑n

i=1 b
2
i > 0 so that the system

A0r ≤T b A1r < 0 (2)

has a solution r = (r1, . . . , rn, k).
Suppose for a contradiction, that (2) has no solution for all b = (b1, . . . , bn, 0, . . . , 0) ∈

Qn+k
≤0 with

∑n
i=1 b

2
i > 0. In particular, (2) has no solution for b = (−1, . . . ,−1, 0, . . . , 0).

By Motzkin’s transposition theorem in the form of [14, Corollary 7.1 (k)], there ex-
ists

y = (y1, . . . , yn, ŷ1, . . . , ŷk, y0) ∈ Qn
≥0

so that yTA = yTA0 + yTA1 = 0 and either y0 = 0 and yb < 0 or y0 6= 0 and
yb ≤ 0.

By (i) the case y0 = 0 and yT b < 0 is impossible, so we may assume that y0 6= 0
and yT b ≤ 0, and, without loss of generality that y0 = 1.

By item (ii) the vector y induces a finitely supported probability measure µ so
that

mi∑
j=1

cji · µ(τ(aji )) = pi + yi ≥ pi.

Hence µ /∈ J¬Lpi(c
1
i , . . . , c

mi
i )(τ(a1

i ), . . . , τ(ami
i )KD(X),τ for any i = 1, . . . , n which

implies that D(X), τ 6|= Γ, again contradicting our assumption that D(X), τ |= Γ.
Having reached a contradiction in both cases finishes the proof. 2

We obtain completeness of probabilistic modal logic with respect to D-models as a
corollary of Theorem 2.4.

10
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Corollary 3.5 R ` Γ whenever D |= Γ.

We summarise our results about probabilistic modal logic with linear inequalities
in the next theorem, that ties the two different semantics together.

Theorem 3.6 Let Γ ∈ S(Λ). Then D |= Γ whenever Mark |= Γ. As a consequence,
the following are equivalent:
(i) R ` Γ (ii) Mark |= Γ (iii) D |= Γ.

Proof. We just need to show thatD |= Γ whenever Mark |= Γ as the other assertions
are covered in Corollary 3.5 and Proposition 3.3. So suppose that Mark |= Γ and take
a D-model M = (X, γ, π) and equip X with the trivial σ-algebra ΣX = P(X). Then
µ(x, S) = γ(x)(S) is a Markov kernel. If M ′ = (X,µ, π) one shows by induction
on the structure of formulas that JAKM = JAK′M whence M |= Γ. This proves that
D |= Γ as M was arbitrary. 2

4 Graded Modal Logic

As for probabilistic modal logic, the graded modal logic features linear inequalities
comprising the number of successors in a Kripke model. As for probabilistic modal
logic, we consider modal operators Lp(c1, . . . , cn) but p, c1, . . . , cn are now required
to be integers. In other words, we consider the modal similarity type

Λ = {Lp(c1, . . . , cm) | m ∈ N, p, c1, . . . , cm ∈ Z}

that defines the set F(Λ) of formulas of graded modal logic. For p ∈ Z we write
Lp as a shorthand for the unary modality Lp(1). If A1, . . . , An ∈ F(Λ), then
Lp(c1, . . . , cn)(A1, . . . , An) is valid at a point c if the linear inequality

∑m
j=1 cj]Aj ≥

p holds, where ]Aj is the number of successors of c that satisfy Aj .

Example 4.1 We may use graded modal logic to reason about supporters of dif-
ferent football teams. Consider a Kripke model M = (X, γ : X → P(X), π) where
X represents individuals. We think of x′ ∈ γ(x) as representing that individual x
“knows” x′. If Arsenal and Chelsea are propositional variables that hold for those
individuals that support the respective football team, then the second author (living
in North London) would satisfy the formula L0(1,−5)(Arsenal,Chelsea) that stipu-
lates that the individual in question knows at least 5 times as many Arsenal than
Chelsea supporters – which is not valid for the first author (who resides in South
London).

To obtain a sound and complete axiomatisation of graded modal logic with linear
inequalities, we consider the set R of one-step rules that consists of all instances of

(G)

∑n
i=1 ri ·

∑mi
j=1 c

j
ia
j
i ≥ 0

{sg(ri)Lpi(ci1, . . . , cimi
)(ai1, . . . , aimi

) | i = 1, . . . , n}

where r1, . . . , rn ∈ Z \ {0} under the side condition∑
ri>0

ri(pi − 1) +
∑
ri<0

ripi < 0

11
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As before, we first discuss soundness of the ensuing sequent system with respect to
Kripke frames, then provide completeness with respect to a coalgebraic semantics
in terms of multigraphs, and then compare the two classes of models.

4.1 Kripke Semantics and Soundness

We define the semantics of graded modal logic with respect to image finite Kripke
models, essentially following Demri and Lugiez [3] and thus generalising the defini-
tions of Fine [6] and of Pacuit and Salame [11]. By an image finite Kripke model,
we mean a triple (X, γ, π) where, as usual, X is the set of worlds, γ : X → Pf (X)
assigns a finite set of successors to every x ∈ X and π : V → P(X) is a valuation.
The semantics of F(Λ) with respect to a Kripke model M = (X, γ, π) is given by
the usual propositional rules, together with

M,x |= Lp(c1, . . . , cm)(A1, . . . , Am) ⇐⇒
m∑
j=1

cj · ](γ(x) ∩ JAjKM ) ≥ p

where JAKM = {x ∈ X |M,x |= A} is the truth-set of A, and ] denotes cardinality.
As usual, M |= A if M,x |= A for all x ∈ X. We write Krip |= Γ for Γ ∈ S(F(Λ)) if
M |=

∨
Γ for all Kripke models M = (X, γ, π).

Proposition 4.2 Krip |= Γ whenever R ` Γ.

Proof. Consider a Kripke model M = (X, γ, π) and suppose that R ` Γ. We
show that M |= Γ by induction on the proof of R ` Γ, where the application of an
instance of (G) is the only interesting case. Consider the modal rule∑n

i=1 ri
∑mi

j=1 c
j
i ·A

j
i ≥ 0

{sg(ri)Lpi(c1
i , . . . , c

mi
i )(A1

i , . . . , A
mi
i ) | i = 1, . . . , n}

the applicability of which assumes that the side condition∑
ri<0

ripi +
∑
ri>0

ri(pi − 1) > 0 (3)

holds. By induction hypothesis, we may assume that

n∑
i=1

ri

mi∑
j=1

cji · 1JAj
i KM

(x) ≥ 0

for all x ∈ X. To see that M,x |= Γ, note that the above inequality implies that

n∑
i=1

ri

mi∑
j=1

cji · ](γ(x) ∩ JAji KM ) =
∑

x′∈γ(x)

n∑
i=1

ri

mi∑
j=1

cji · 1JAj
i KM

(x′) ≥ 0 (4)

Now suppose, for a contradiction, that M,x 6|= Γ. Then we have

mi∑
j=1

cji ](γ(x) ∩ JAji KM ) < p

12
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in case ri > 0 and
mi∑
j=1

cji ](γ(x) ∩ JAji KM ) ≥ p

if ri < 0. Combining the side condition (3) with (4) this gives

0 ≤
∑
ri<0

ripi +
∑
ri>0

ri(pi − 1) < 0

i.e. the desired contradiction. 2

This shows that graded modal logic is sound with respect to Kripke frames. We next
establish completeness of graded modal logic with respect to multigraphs before we
relate the different types of semantics.

4.2 Coalgebraic Semantics and Completeness

We consider the functor

B(X) = {f : X → N | supp(f) is finite}

that extends to a Λ-structure by stipulating that

JLp(c1, . . . , cm)KX(S1, . . . , Sm) = {f ∈ B(X) |
m∑
j=1

cj · f(Sj) ≤ p}

where X is a set and S1, . . . , Sm ⊆ X and f(S) =
∑

x∈S f(x) for S ⊆ X. We may
think of a B-coalgebra (X, γ : X → B(X)) as a multigraph where every edge is
assigned an integer weight.

For the whole section, we fix the set R of one-step rules that comprises all
instances of (G). Completeness of graded modal logic with linear inequalities is
proved using a variant of a canonical model construction, but at the level of one-
step formulas. We note two simple properties that correspond to admissibility of
contraction of cut, but at the level of one-step derivations.

Lemma 4.3 Suppose τ : V→ P(X) is a valuation.

(i) if Γ, A,A is τ -derivable, then so is Γ, A.

(ii) if Γ, A and Γ,¬A are τ -derivable, then so is Γ.

Proof. Both are immediate from the rule format: for the first item, we obtain a new
instance of (G) that witnesses derivability of Γ, A by simply adding the coefficients
that induce both occurrences of A. For the second item, we are given two rule
instances that witness derivability of Γ, A and Γ,¬A that we normalise so that the
coefficients associated with A and ¬A have the same magnitude and then add (the
coefficients of) both rules. 2

The next lemma ensures that every consistent set of formulas can be satisfied, at
the one-step level, by an assignment of integer weights that is bounded.

13
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Lemma 4.4 Suppose that τ : V → P(X) is a valuation and let Γ ∈ S(Λ(V)) so
that Γ is not τ -derivable.

(i) for all a ∈ V, there exists p ≥ 0 so that Γ, Lpa is not τ -derivable.

(ii) If Lpa ∈ Γ, then Γ,¬Lp+na is τ -derivable for all n ≥ 0.

Proof. The first item is by contraposition: If Γ, LpA were derivable for all p ≥ 0
we obtain a contradiction in terms of the inequalities in premise and side condition
of the rules. For the second item, one shows that Lpa,¬Lp+na is derivable for all
n ≥ 0. 2

One-step completeness is now content of the following lemma.

Lemma 4.5 Suppose that τ : V → P(X) is a valuation, X is finite and Γ ∈
S(Λ(V)). If B(X), τ |= Γ, then Γ is τ -derivable.

Proof. Suppose, for a contradiction, that Γ is not τ -derivable and pick, for all
x ∈ X, pairwise distinct propositional variables bx not occurring in Γ. Repeated
application of Lemma 4.4 gives, for all (finitely many) x ∈ X, a number kx ∈ N so
that

Γ′ = Γ ∪ {Lkxbx | x ∈ X}
is not τ -derivable. By Lemma 4.3 the same holds for the sequent supp(Γ) that we
may extend to a maximal subset M ⊆ Λ(V) ∪ ¬Λ(V) with the property that no
finite subset ∆ ⊆ M, viewed as a multiset where every element has multiplicity
one, is derivable. We now define a measure µ : X → N by

µ(x) = max{p ∈ N | ¬Lp(bx) ∈M}

for all x ∈ X and write µ(A) =
∑

x∈A µ(x) as usual. Note that µ(x) ∈ N by Lemma
4.4. We now claim that

¬Lµ(τ(a)) ∈M and Lµ(τ(a))+1(a) ∈M

for all a ∈ V. For the first point, note that ¬Lµ(x)bx ∈ M by definition of µ and
consider the rule

−
∑

x∈τ(a) bx + a ≥ 0

{¬Lµ(x)bx | x ∈ τ(a)} ∪ {Lµ(τ(a))+1a}
that witnesses Lµ(τ(a))+1 /∈M as M is not derivable, and hence ¬Lµ(τ(a))+1a ∈M
by Lemma 4.3. The proof of the second point is entirely dual.

We now establish that

sg(ε)A ∈M =⇒ µ /∈ Jsg(ε)AK(B(X),τ)

for all A ∈ F(Λ) and all ε ∈ {−1,+1}. Let A = Lp(c1, . . . , cm)(a1, . . . , am). For the
case ε = +1 assume for a contradiction that µ ∈ JAK(B(X),τ) so that

m∑
j=1

cjµ(aj) ≥ p.

14
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Consider the rule (the side condition of which is readily established)

c1a1 + · · ·+ cmam +
∑m

j=1 cjaj ≥ 0
{¬Lµ(τ(aj))aj | cj < 0} ∪ {Lµ(τ(aj))+1aj | cj > 0} ∪ {Lp(c1, . . . , cj)(a1, . . . , aj)}

that witnesses A /∈ M as M is not derivable, contradicting A ∈ M. The case for
ε = −1 is entirely dual.

In summary our assumption that Γ is not τ -derivable, we obtain that µ /∈
JΓK(B(X),τ) contradicting that Γ is τ -valid.

2

As a corollary, we obtain that the set R comprising all instances of (G) is one-step
complete.

Proposition 4.6 R ` Γ whenever B |= Γ.

Proof. By Lemma 4.5 we have that R is one-step cut-free complete over finite
sets, which implies that R is one-step complete. This can either be seen as a
consequence of [13, Proposition 4.5] or directly: Given that BX, τ |= Γ let V0 denote
the propositional variables that occur in Γ and define an equivalence relation ∼
on X by x ∼ y ⇐⇒ ∀p ∈ V0(x ∈ τ(p) ⇐⇒ y ∈ τ(p)). Let X0 = X/ ∼
and τ0(p) = {[x]∼ | x ∈ τ(p)}. Then B(X0), τ0 |= Γ by naturality of predicate
liftings whence Γ is τ0-derivable by Lemma 4.5 which implies τ -derivability of Γ.
Completeness now follows from one-step completeness (Theorem 2.4). 2

Theorem 4.7 Let Γ ∈ S(Λ). Then B |= Γ whenever Krip |= Γ. In particular, the
following are equivalent:
(i) R ` Γ (ii) Krip |= Γ (iii) B |= Γ

witnessing soundness and completeness of graded modal logic with linear inequalities
both over Kripke frames and multigraphs.

Proof. We only need to show that B |= Γ whenever Krip |= Γ, as the other claims
are consequences of Proposition 4.2 and Proposition 4.6. So suppose that Γ ∈
S(F(Λ)) and M = (X, γ, π) is a B-model so that M 6|= Γ, i.e. there exists x0 ∈ X
so that M,x0 6|= Γ. We construct a Kripke model M ′ = (X ′, γ′, π′) by unravelling
at x0: we put

• X ′ = {x0
w1→ x1

w2→ · · · wn→ xn | n ≥ 0, 0 ≤ wi < γ(xi)(xi+1)}
• γ′(x0

w1→ · · · wn→ xn) = {x0
w1→ · · · wn→ xn

wn+1→ xn+1 | 0 ≤ wn+1 < γ(xn)(xn+1)}
• π′(p) = {x0

w1→ · · · wn→ xn | xn ∈ π(p)}.

In other words, the worlds of the Kripke model (X ′, γ′, π′) are the paths from the
initial point x0 ∈ X where we make duplicates of states according to the multiplicity
of the transition. It now follows by induction on the structure of formulas that

M,x |= A =⇒ M ′, x′ |= A

whenever x′ is of the form x0
m1→ · · · wn→ xn with xn = x. In particular, M ′ 6|= Γ as

we had to show. 2
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5 Stochastic Logic

We may think of stochastic logic as a hybrid between probabilistic modal logic and
graded modal logic. As for probabilistic modal logic, every state of a model is
equipped with a measure, but we do not insist that this measure be a probability
measure. If c is a state in a stochastic model and µ the ensuing measure, we may
think of µ(JAK) as the total cost of observing event A in the next transition state.
As before, our formulas are linear inequalities in terms of the measures of the (truth
sets of) formulas. In other words, we consider the similarity type

Λ = {Lp(c1, . . . , cm) | m ∈ N, p, c1, . . . , cm ∈ Q}

defining the formulas F(Λ) of stochastic modal logic. (Note that the syntax of
stochastic modal logic is identical to that of probabilistic modal logic.) Informally
speaking, the formula Lp(c1, . . . , cm)(A1, . . . , Am) is valid at a point c, if the linear
inequality

∑m
j=1 cjµ(Aj) ≥ p holds, where µ(Aj) is the measure of the truth-set of

Aj as seen from point c.

Example 5.1 At the time of writing this paper, both authors frequently discussed
the outcome of the (then) upcoming general election in their country of residence.
To this effect, one may consider a stochastic model based on the set of inhabitants
of said country. To every inhabitant c, we associate a measure that – applied to
a subset S of the population – yields the overall amount of persuasion (measured
as a non-negative real number) that c would have to apply in order to swing the
votes of all elements of S into a particular direction. If Tory and Labour are propo-
sitional variables that denote the respective political angle, there was a heated
debate whether the formula ¬L0(1,−1)(Tory, Labour), L0(1,−1)(Labour,Tory) or
L0(1,−1)(Tory, Labour) ∧ L0(1,−1)(Labour,Tory) yields the most realistic model
(both authors still hope that this did apply to L0(−1)(>)).

A sound and complete axiomatisation of stochastic modal logic will be provided by
the set R of one-step rules comprising all instances of

(S)

∑n
i=1 rj

∑mi
j=1 c

j
ia
j
i ≥ 0

{sg(εi)Lpi(c1
i , . . . , c

mi
i )(a1

i , . . . , a
mi
i ) | i = 1, . . . , n}

where r1, . . . , rn ∈ Z \ {0} that satisfy the side condition

n∑
i=1

ripi < 0 if all ri < 0, and
m∑
i=1

ripi ≤ 0 otherwise.

We now establish soundness of stochastic modal logic with respect to the class of
finite measures, prove completeness of stochastic modal logic with respect to finitely
based measures, and then align both views.

5.1 Measurable Semantics and Soundness

Definition 5.2 A measurable model is a triple (X,µ, π) where X is a measurable
space with σ-algebra ΣX , π : V→ ΣX is a valuation and µ : X × ΣX → [0,∞) is a
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measurable kernel, i.e. a function so that µ(·, B) : X → [0,∞) is measurable for all
B ∈ ΣX and µ(x, ·) : ΣX → [0,∞) is a measure on X.

Note that we require the measure that is induced my a measurable kernel is always
finite. The semantics of F(Λ) with respect to measurable models is as expected for
the propositional rules (note that atomic propositions are mapped to measurable
sets) and the clause for a modal operator is

JLp(c1, . . . , cm)(A1, . . . , Am)KM = {x ∈ X |
m∑
j=1

cj · µ(x, JAjKM ) ≥ p}

so that JAKM is a measurable set for all A ∈ F(Λ). We write M,x |= A if x ∈ JAKM
and M |= A if M,x |= A for all x ∈ X. Finally, Meas |= Γ if M |=

∨
Γ for

all measurable models M . Soundness of stochastic modal logic over measurable
models is similar to soundness of probabilistic modal logic and takes the following
form.

Proposition 5.3 Meas |= Γ whenever R ` Γ.

Proof. By induction on the proof of R ` Γ analogous to the proof of Proposition
3.3. 2

This shows that stochastic modal logic is sound with respect to measurable models.
We now look upon stochastic modal logic coalgebraically and establish completeness.

5.2 Coalgebraic Semantics and Completeness

To interpret stochastic modal logic over coalgebraic models, we consider the functor

M(X) = {µ : X → [0,∞) | supp(µ) finite}

and we write µ(S) =
∑

x∈S µ(x) whenever µ ∈ M(X) and S ⊆ X. The functor M
extends to a Λ-structure by virtue of

JLp(c1, . . . , cm)KX(S1, . . . , Sm) = {µ ∈M(X) |
m∑
j=1

cj · µ(Sj) ≥ p}

where S1, . . . , Sm ⊆ X. We may think (modulo currying) of M-coalgebras as mea-
surable kernels with finite support. Completeness of stochastic modal logic over
M-coalgebras is established by means of the following lemma that again uses re-
sults from linear programming:

Lemma 5.4 Consider a valuation τ : V→ P(X) and suppose that Γ ∈ S(Λ(V)) is
τ -valid. Then Γ is τ -derivable.

17



Kupke and Pattinson

Proof. We proceed as in the proof of Lemma 3.4 but instead consider the matrix

A0 =



−ε1 0
. . .

...

0 −εn

−f1(x1) . . . −fn(x1)
...

...

−f1(xk) . . . −fn(xk)


A1 = ( p1 . . . pn )

where fi =
∑mi

j=1 c
j
i · 1τ(aj

i )
and let A =

A0

A1

 and proceed as in the proof of

Lemma 3.4 (where the absence of the last column means that we do not define a
probability distribution). 2

As a corollary, we obtain that stochastic modal logic is complete overM-coalgebras.

Corollary 5.5 R ` Γ whenever M |= Γ.

In summary, we obtain the following theorem for stochastic modal logic:

Theorem 5.6 Let Γ ∈ S(Λ). Then M |= Γ whenever Meas |= Γ. In particular,
the following are equivalent:
(i) R ` Γ (ii) Meas |= Γ (iii) M |= Γ.

Proof. We only need to show that M |= Γ whenever Meas |= Γ, as the remain-
ing assertions are the content corollary 5.5 and Proposition 5.3. So suppose that
(X, γ, π) is a M-model and Meas |= Γ. We equip X with the trivial σ-algebra
P(X) and consider the measurable kernel µ(x, S) =

∑
x′∈S γ(x)(x′). Note that µ

is well-defined as γ(x) has finite support, and so defines a measurable kernel. Let
M ′ = (X,µ, π). One now shows by induction on the structure of formulas that
M,x |= A ⇐⇒ M ′, x |= A for all x ∈ X which finishes the proof. 2

6 Complexity

Given that we have coalgebraised all three logics by equipping them with a sound
and complete coalgebraic semantics, we are now in a position to use generic (coal-
gebraic) methods to establish complexity bounds. As we have a characterisation
of universal validity in terms of a cut-free sequent calculus where the size of the
formulas strictly decreases when we move from conclusion to premise, we can map
the decidability problem onto backwards proof search, which we can be seen as the
problem of searching a tree the length of whose branches is polynomially bounded.
To see that this problem is in polynomial space, we have to agree on representa-
tions for modal operators. Here, we represent numbers in binary, that is, we put
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size(n) = dlog2 ne and size(p/q) = size(p) + size(q) which allows us to define the
size of a modal operator as size(Lp(c1, . . . , cm)) as size(p) +

∑m
j=1 size(ci). To show

decidability in Pspace, we have to show that we can encode rules into strings of
polynomial length so that all premises can be decided in NP. The formal definition
is as follows.

Definition 6.1 A set R of one-step rules is Pspace-tractable if there exists a poly-
nomial p such that all substitution instances of rules with conclusion Γ ∈ S(Λ(F(Λ))
can be encoded into a string of length at most p(|Γ|) and it can be decided in NP

whether

• a code represents a (substitution instance) of a rule with a given conclusion Γ
• a sequent belongs to the set of premises of a rule given as a code.

We can use the methods presented in in [16] to show that the rule sets comprising
of (P ), (G) and (S) are indeed Pspace-tractable.

Lemma 6.2 If R comprises all instances of (P ), (G) or (S), then R is Pspace-
tractable.

Proof. It has been argued in [16, Lemma 6.16] that the coefficients ri that occur
in the rule sets (P ), (G) and (S) can be polynomially bounded in the size of the
linear inequalities (and hence in the size of the rule conclusions), and our argument
is essentially identical to Example 6.17 of op.cit.. 2

As a consequence, we obtain a Pspace upper bound for all three logics considered
in this paper.

Theorem 6.3 The satisfiability problem of probabilistic modal logic, graded modal
logic and stochastic modal logic (each considered with linear inequalities) is decidable
in Pspace.

Proof. One can either invoke Theorem 6.13 of [16] or directly argue in terms
of proof search where the branches of every putative proof tree are polynomially
bounded in length, their nodes can be represented by strings of polynomial length,
and membership in nodes can be decided in NP, all of which are consequences of
tractability. This gives decidability of satisfiability in connection with the complete-
ness (Theorem 3.6, Theorem 4.7 and Theorem 5.6). 2

7 Conclusions

In this paper, we have given complete, cut-free axiomatisations of three modal logics
that use linear inequalities to express constraints between probabilities of events,
the number of successors in a Kripke model or, more generally, the measure of a
successor set. In each case, completeness was established with the help of coalgebraic
semantics, where we just had to show that a given set of (one-step) rules is one-
step complete: the actual statement of completeness then follows from the general
(coalgebraic) theory. As such, this paper tries to demonstrate the usefulness of the
coalgebraic approach per se – we did not develop the general theory of coalgebraic
logics, but just used off-the-shelf results to obtain completeness and complexity
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bounds. The semantics of graded and stochastic modal logic was given here in
terms of image finite Kripke frames and bounded measures. It is an open problem
whether the semantics can be extended to the general case in a sound fashion.
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