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Abstract: A mode-matching analysis articulates the coupled wave scattering in a 2D

waveguide structure. An elastic plate is attached at the upper surface parallel to the axis of

inlet/outlet ducts whereas a �anged junction is introduced between two �exible waveguides.

The main intention is to see that how choice of appropriate edge conditions and the inci-

dent forcing a¤ect the scattered �eld for both structure-borne and �uid-borne vibrations.

The graphical results illustrate to draw di¤erent physical conclusions. Through apposite

numerical results, we observe the power distributions in attenuated regions with abrupt

changes of height. Such con�gurations are directly relevant to the models of �uid/structural

interactions.

Keywords: Scattering, �exible waveguide, non-Sturm-Liouville, mode-matching.

Subject classi�cation: 02.30.Jr, 03.65.Nk, 42.25.Bs, 42.25.Fx, 43.20.Bi.

1 Introduction

The study of non-uniform obstacles in uniform waveguide structures has received wide at-

tention in the literature. The transmission of elastic and electromagnetic waves, underwater

sound propagation, and sound scattering in ducts or pipes are the major applications to

such studies. The curiosity is to reduce the ducted fan noise emanated from aero engines,

power stations and heating, ventilation, and air conditioning (HVAC) systems. Numerous

investigations have been made to explore reduction of unwanted noise from di¤erent types of

obstacles [1�6]. Several mathematical models and techniques exist for computing sound at-

tenuation from di¤erent sources; see for example [7-10]. Cummings and Chang [11] imposed

continuity of pressure and velocity over the inlet and outlet planes of the silencer while using

1Corresponding author e-mail address: rabnawaz@comsats.edu.pk, Ph: +92 (51) 90495534.
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the eigenmodes in an analytic mode matching scheme. Peat [12], and later by Kirby [13],

proposed more e¢ cient alternative to Cummings and Chang�s method. They established

closed form analytic solutions based on the attenuation of the fundamental mode only. The

methods proposed by Peat and Kirby are, however, precise only over a limited frequency

range for a given waveguide structure. Such restrictions apply also to other methods based

on the fundamental mode, for example methods proposed by Panigrahi and Munjal [14].

Recently Afzal et al [10] and, Nawaz and Lawrie [15], included the second mode forcing term

which aim to carry energy through �uid-borne instead of structure-borne mode. It is thus

established that the numerical results contrast well for both, the fundamental mode and

secondary mode incidents.

Albeit, the main purpose of this article is to examine the wave scattering of two di-

mensional waveguide problems with wave bearing boundaries. Two �exible duct regions

are connected vertically with a rigid �anged junction and a soft back strip. Such type of

con�gurations are used in modelling of di¤erent modi�ed silencers. In recent times, number

of modelling techniques are studied for any shape or size of waveguide structure. These

techniques involved both analytical as well as numerical approaches depending upon the

complexity of model. Finite element method [16-17], boundary element method [18], iter-

ative Newton Raphson scheme, Wiener-Hopf technique [19] and some analytic closed form

solutions [20] are developed to deal with such con�gurations with their relative merits. The

problem under consideration is solved using mode-matching approach subject to di¤erent

set of edge conditions. The article is organized as follows:

The boundary value problem is stated and formulated in section 2. The resulting algebraic

systems formulated in terms of re�ected and transmitted coe¢ cients are obtained while using

the well-known semi analytic mode-matching approach. The incident forcing (corresponds

to both structure and �uid borne modes) is considered so that its amplitude is unity. The

solution to the underlying problem is presented in section 3 followed by subsections examining

the dispersion and orthogonality relations, mode-matching and the use of three types of edge

conditions. The distribution of re�ected and transmitted powers is examined by testing few

numerical illustrations in section 4 whereas results are concluded in section (5).
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2 Mathematical formulation in 2D Duct

Consider a two-dimensional in�nite waveguide containing two semi-in�nite duct regions

�1 < �x � �0; �0 � �y � �a and �0 � �x < 1; �h1 � �y � �b; where overbar shows the di-

mensional setting of Cartesian coordinates. These duct regions are bounded below by an

acoustically rigid surface at �y = �0; �h1 whilst bounded above by an elastic plate at �y = �a;

�1 < �x � �0 and �y = �b; �0 � �x <1. Two duct regions are mutually joined by means of two

vertical strips lying at �x = �0; �0 � �y � �h2 and �x = �0; �a � �y � �b. The material properties

on the sides of the vertical strips are assumed to be di¤erent. The sides of vertical strips

lying at �x = �0� are acoustically rigid while the sides aliened along �x = �0+ are soft. The

interior region of the waveguide is �lled with a compressible �uid of density � and sound

speed c; whereas, the exterior region is assumed to be in vaccu. The waveguide structure of

the problem is shown in Figure (1).

Figure (1): The physical con�guration of the waveguide structure.

Assuming the harmonic time dependence as e�i!�t; where ! = ck is the angular velocity

and k = 2�=f is the wave number. On non-dimensionalizing the boundary value problem

with respect to the length scale k�1 and the time scale !�1 under the transformations x = k�x,
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y = k�y and t = !�t; the Helmholtz�s equation is governed as�
@2

@x2
+

@2

@y2
+ 1

�
 (x; y) = 0: (1)

For the convenience the time independent velocity potential  (dimensionless) for two duct

region is expressed in terms of two di¤erent scattered �elds as

 (x; y) =

8><>: 1(x; y); 0 � y � a; x � 0

 2(x; y); h1 � y � b; x � 0
: (2)

At y = 0; h1, the rigid horizontal lower boundaries can be de�ned as

@ j
@y

= 0; x 2 R, where, j = 1; 2:

The upper surfaces with �exible boundaries are de�ned by the following fourth order equation�
@4

@x4
� �4

�
 jy � � j = 0; (3)

where for j = 1 and j = 2 the condition is applied at y = a; x < 0 and y = b; x > 0;

respectively. Here the non-dimensional parameters � is the in vacuo plate wavenumber and

� a �uid loading parameter de�ned by

�4 =
12(1� �2)c2�p

k2h2E
; � =

12(1� �2)c2�

k3h3E
; (4)

where E is Young�s modulus, �p is the density of the plate and � is Poisson�s ratio. At

x = 0�; the rigid vertical �anged-strip is given by

@ 1
@x

= 0; 0 < y < h2; (5)

whereas, at x = 0+ the soft back of strip is de�ned as

 2 = 0; y 2 (h1; h2) [ (a; b): (6)

At the aperture x = 0; h2 < y < a; the �uid pressure and the normal component of velocity

are continuous, that is

@ 1
@x

=

8<: 0 x = 0; 0 < y < h2
@ 2
@x

x = 0; h2 < y < b
(7)

and

 2 =

8>>><>>>:
0 x = 0; h1 < y < h2

 1 x = 0; h2 < y < a

0 x = 0; a < y < b

: (8)
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It is well-studied concept that the mathematical model for structures involving �exible

boundaries is no more well-posed unless some extra conditions are imposed to make it well-

posed. The choice of these conditions depend on the order of �exible boundary, that is, the

number of extra conditions is the half of the order of boundary conditions [21]. Moreover

these conditions are termed as "edge conditions" which ensure that how the �exible bound-

aries are connected vertically. In this paper we will discuss the solution for three set of edge

conditions; i) clamped edge conditions, ii) pin-jointed edge conditions and iii) pivoted edge

conditions.

3 Acquisition of Solution

It is well established that there exist many physical situations that can be modelled in terms

of waveguides with higher order surfaces. The mathematical models for waveguide struc-

tures having plannar boundaries are solvable using the standard Wiener-Hopf technique.

In such cases the eigensystem appeared to be Sturm-Liouville (SL) and therefore separa-

tion of variables yields the simplest form of eigenfunction expansions that are orthogonal

and linearly independent. However, for waveguide structures having geometric disconti-

nuity (abrupt change in height) and comprising of higher order boundaries can be solved

using mode-matching approach. In such situations the eigensystem is non Sturm-Liouville,

obtained eigenfunctions are linearly dependent that do not satisfy the usual orthogonality

relation (OR). In this way the appropriate orthogonality relations are developed by which

the Fourier coe¢ cients of eigenfunction expansions can explicitly be expressed in terms of

known boundary data. Few extra conditions such as edge conditions are also used to ensure

the uniqueness of the mode-matching solution. The choice of these extra conditions certainly

a¤ects the scattered �eld thereby incorporating the physical behavior of scattering process.

The detail study of edge condition is referred for instance to [21-24]. With this, the solution

to the above stated problem can be achieved while taking the following footsteps; I) to obtain

the eigenfunction expansion of duct modes; II) to obtain the related dispersion relations and

appropriate orthogonality relations, III) to apply mode-matching at vertical interface and,

IV) the implication of appropriate edge conditions.
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3.1 Eigenfunction Expansion

Consider an incident wave of harmonic time dependence propagating from negative x�axis

towards x = 0. The incident wave is considered with an arbitrary duct mode. At x = 0 it

will scatter into an in�nite number of re�ected and transmitted modes. With the help of

separation of variables, the eigen expansion of these scattered duct modes are given by

 1(x; y) = F` cosh(� `y)e
i�`x +

1X
n=0

An cosh(�ny)e
�i�nx; (9)

and

 2(x; y) =
1X
n=0

Bn cosh[n(y � h1)]e
isnx; (10)

where the �rst term in above (9) denotes the incident �eld. The forcing F` =
p
�=C`s`

(where the quantity C` will be de�ned later) is chosen for algebraic convenience and to scale

the incident power at unity as well. The counter ` is considered to incorporate two di¤erent

incident duct modes, that is, l = 0 for fundamental mode incident whereas l = 1 for the

secondary mode incident. The quantities �n =
p
� 2n + 1 and sn =

p
1 + 2n are the wave

numbers of nth re�ected and transmitted modes, respectively. These wave numbers are may

have real or imaginary parts depending upon the values of �n and n:

3.2 Dispersion and Orthogonality Relations

It can be seen that condition (3) contains even order derivative which ensures the even

order of corresponding characteristic polynomial [20]. Therefore the eigen values �n and

n; (n = 0; 1; 2:::) of the duct eigenfunction satisfy the following complicated dispersion

relations

((� 2n + 1)
2 � �4)�n sinh(�nb)� � cosh(�nb) = 0; (11)

and

((2n + 1)
2 � �4)n sinh[n(b� h1)]� � cosh[n(b� h1)] = 0: (12)

The equations (11)-(12) can be solved numerically for �n, n which in turn, satisfy the

properties mentioned and proved in many articles, for example [9; 15; 25].

For the problems in which waveguide comprises of walls with soft, hard or impedance

type, the separation of variable renders the solution in a simple way. Also the corresponding

eigenfunctions satisfy the ordinary orthogonality relation. Albeit, the governing system is
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Sturm-Liouville (SL) in nature. But system will be no more SL if waveguide comprises of

�exible boundaries. In such circumstances the eigenfunctions do not satisfy standard orthog-

onality relations. Thus, for such systems we have to explore the related orthogonal properties.

The problem considered herein contain elastic plate bounded duct for x 2 (�1; 0) [ (0;1)

in which the eigenfunctions satisfy the generalized form of ORs [21; 25] as follows:

�

Z a

0

cosh(�my) cosh(�ny)dy

= Cm�mn � (� 2n + � 2m + 2)�m sinh(�ma)�n sinh(�na); (13)

and

�

Z b

h1

cosh[m(y � h1)] cosh[n(y � h1)]dy

= Dm�mn � (2n + 2m + 2)m sinh[m(b� h1)]n sinh[n(b� h1)]; (14)

where

Cn :=
�a

2
+
� cosh(�na) sinh(�na)

2�n
+ 2(� 2n + 1)�

2
n sinh

2(�na); (15)

and

Dn :=
�(b� h1)

2
+
� cosh(nb) sinh(nb)

2n
+ 2(2n + 1)

2
n sinh

2[n(b� h1)]: (16)

Here �mn is the Kronecker�s Delta function. It is important to note that the eigenfunctions

corresponding to the eigenvalues �n or n;n = 0; 1; 2; � � � , are linearly dependent but contain

well de�ned orthogonal properties for elastic plate bounded ducts. Having obtained well

de�ned orthogonal properties the scattered modes coe¢ cients, (An Bn); n = 0; 1; 2:::; can

be found by using the continuity conditions of pressure and normal velocity at matching

interface along with appropriate edge conditions. This process is illustrated in the subsequent

section.

3.3 Mode-Matching

Mode-matching technique is considered to be the most suitable way of �nding the solu-

tion for acoustic structural problems. As mentioned earlier that the underlying system is

non-SL which on using the mode-matching reduces to an in�nite system of algebraic equa-

tions which is not well-behaved. The same technique has been utilized by many authors

[9; 10; 15; 26; 27] in number of disciplines to address the complicated discontinuous geomet-

ric structures. Therefore we opt mode-matching across the interface to �nd the solution of
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above boundary value problem. On using (9)-(10) into (7), it is straight forward to obtain

F`�` cosh(� `y)�
1X
n=0

An�n cosh(�ny)

=

8><>:
0 0 < y < h2

1P
n=0

Bnsn cosh[n(y � h1)] h2 < y < b
: (17)

On multiplying with � cosh(�my), integrating from 0 to a and then using orthogonality

relation (13), we get

Am = F`�m` �
�m sinh(�ma)

�mCm
fe1 + (� 2m + 2)e2g �

�

�mCm

1X
n=0

BnsnRmn; (18)

where

e1 = �i 1xyyy(0; a); (19)

e2 = �i 1xy(0; a) (20)

and

Rmn =

aZ
h2

cosh(�my) cosh[n(b� h1)]dy (21)

Similarly the continuity of pressure (8) along with appropriate orthogonality relation (14)

reveals

Bm =
m sinh[m(b� h1)]

Dm

fe3 + (2m + 2)e4g+
�

Dm

fF`R`m +
1X
n=0

bnRnmg; (22)

where

e3 =  1yyy(0; b); (23)

and

e4 =  1y(0; b): (24)

Here e1 � e4 are arbitrary constants that can be determined by using the edge conditions.

Three sets are edge condition are considered here which we discuss in following cases.

3.4 Use of Edge Conditions

As in case of higher order �eld equation and boundary conditions, the ORs are likely to be

non simple then there is inevitably a question of how to impose the corner conditions at the

junction of discontinuity. Thus, the development of appropriate OR is not su¢ cient without

a practical and convenient approach of imposing the edge conditions. In order to incorporate

these edge conditions, a simple procedure is demonstrated below:

8
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3.4.1 Clamped edges (zero displacement and zero slope)

For edges to be clamped, the elastic plate displacement and gradient are assumed as zero.

That is,
@ 1
@y

= 0; (x; y) = (0; a); (25)

@2 1
@x@y

= 0; (x; y) = (0; a); (26)

@ 2
@y

= 0; (x; y) = (0; b); (27)

and
@2 2
@x@y

= 0; (x; y) = (0; b): (28)

From (26)-(27), it is straightforward to write e2 = e4 = 0: However, to �nd e3 we multiply

equation (18) by �m sinh(�mb), taking sum over m upto 1 and then use of edge condition

(25) yields

e1 =
2F`� ` sinh(� `a)

S1
� �

S1

1X
m=0

1X
n=0

Bnsn�m sinh(�mb)Rmn

�mCm
; (29)

where

S1 =
1X
m=0

[�m sinh(�ma)]
2

�mCm
: (30)

Similarly from (22) and (28), it is found that

e3 = �
�

S2

1X
m=0

smm sinh[m(b� h1)]

Dm

fF`R`m +
1X
n=0

BnRnmg; (31)

where

S2 =

1X
m=0

sm
2
m sinh

2[m(b� h1)]

Dm

: (32)

3.4.2 Pin-jointed edges

In this condition we assume the zero displacement and the zero bending moment at the

elastic plate edges. That is
@ 1
@y

= 0; (x; y) = (0; a); (33)

@3 1
@x2@y

= 0; (x; y) = (0; a); (34)

@ 2
@y

= 0; (x; y) = (0; b); (35)
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and
@3 2
@x2@y

= 0; (x; y) = (0; b): (36)

Now on using the re�ected mode coe¢ cient (18) into (9), di¤erentiating with respect to y;

and then using the edge condition (33), we obtain

e1S1 + e2S3 = 2F`� ` sinh(� `a)� �
1X
m=0

1X
n=0

Bnsn�m sinh(�mb)Rmn

�mCm
; (37)

where

S3 =

1X
m=0

(� 2m + 2)[�m sinh(�ma)]
2

�mCm
: (38)

Similarly with the aid of edge condition (34), we found

e1S4 + e2S5 = 2F`�
2
`� ` sinh(� `a)� �

1X
m=0

1X
n=0

Bnsn�m�m sinh(�mb)Rmn

Cm
; (39)

where

S4 =
1X
m=0

�m[�m sinh(�ma)]
2

Cm
; (40)

and

S5 =
1X
m=0

�m(�
2
m + 2)[�m sinh(�ma)]

2

Cm
: (41)

Thus, it clearly follows that the values of e1 � e2 and e4 are found to be zero whereas the

value of e3 can be found by imposing the edge condition (36) together with the Green�s

function, which follows

e3 = �F`

1X
m=0

s2mfP`m + T`mgm sinh[m(b� h1)]

Dm

+�

1X
n=0

1X
m=0

Bns
2
mfPnm + Tnmgm sinh[m(b� h1)]

Dm

;

where

Pmn =

h2Z
h1

cosh(�my) cosh[n(b� h1)]dy; (42)

and

Tmn =

bZ
a

cosh(�my) cosh[n(b� h1)]dy: (43)
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3.4.3 Pivoted edges

The pivoted edge conditions are usually feasible only when a = b: These can be de�ned as

@ j
@y

= 0; (x; y) = (0; b) j = 1; 2 (44)

@2 1
@x@y

(0; b) =
@2 2
@y@x

(0; b); (45)

and
@3 1
@x2@y

(0; b) =
@3 2
@y@x2

(0; b); (46)

The above conditions can be used to calculate the values of constants e1 � e4: For that we

�rst reconstruct the scattered �eld potentials (9)-(10) on using (18) and (22). Now by using

the edge condition (44), it is straightforward to write e4 = 0 and

e1S1 + e2S3 = 2F`� ` sinh(� `a)� �
1X
m=0

1X
n=0

Bnsn�m sinh(�mb)Rmn

�mCm
: (47)

However, the simpli�cation of (45) on using the Green�s function [20] related identities leads

to

e2 � e3S2 = �
1X
m=0

1X
n=0

Bnsn�m sinh(�mb)Qmn

Cm

+�
1X
m=0

smm sinh[m(b� h1)]

Dm

fF`R`m +
1X
n=0

BnRnmg;

where

Qmn =

h2Z
0

cosh(�my) cosh[n(b� h1)]dy: (48)

Furthermore, equation (46) can be simpli�ed by constructing the Green�s function which

may be expressed as

e1S4 + S5e2 + e3 = 2F`�
2
`� ` sinh(� `a)� �

1X
m=0

1X
n=0

Bnsn�m�m sinh(�mb)Rmn

Cm

+�

1X
m=0

s2mm sinh[m(b� h1)]

Dm

fF`P`m +
1X
n=0

BnPnmg:

4 Results and Discussion

In this section the obtained solution is truncated �rst, and then solved numerically for each

set of edge conditions. In each case the non-SL system is suitably convergent [7; 15]. Thus
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we truncate (18) and (22) together with e1 � e4 upto m = 0; 1; :::N � 1 and then solve the

retained system simultaneously. The truncated solution can be used to check the accuracy

of presented algebra and distribution of energy �ux. This not only validate the proposed

solution but also provide a useful physical information about the boundary value problem.

The re�ected power and transmitted power in duct regions [15] are given by

Pref = <e
(
1

�

J1X
n=0

jAnj2 �nCn

)
: (49)

and

Ptrans = <e
(
1

�

J2X
n=0

jBnj2 snDn

)
; (50)

respectively, where J1=J2 be the cut-on re�ected/transmitted modes in two duct regions.

Note that the choice of F` =
p
�=C`s`; (` = 0 or 1); certi�es that the incident power is

unity. Thus

Pref + Ptrans = 1; (51)

which is conserved power identity. While carrying the numerical computation the elastic

plate is chosen of aluminum, of thickness �h = 0:0006m and density �p = 2700 kg m�3;

whereas, values of Young�s modulus and Poisson�s ratio are taken to be E = 7:2�1010Nm�2

and � = 0:34. For each case considered here the speed of sound in air c = 343ms�1 and

density of air � = 1:2043kgm�3 are taken from Kaye and Laby [28], whereas, the duct heights

are �xed at �a = 0:06m and �b = 0:085m:

Now we can discuss the distribution of scattering power against frequency with di¤erent

set of edge conditions. On taking ` = 0 and ` = 1 the fundamental (structure-borne)

and secondary (�uid-borne) mode, respectively, can be used as an incident �eld. For the

clamped set of edge conditions, re�ected power (Pref), transmitted power (Ptrans) and their

sum (Pref + Ptrbns) against frequency (Hz) are shown in Figures (2 to 5). These clearly

follow that for structure-borne mode incident maximum of the power goes on re�ection with

and without �anged junction (solid curves in Figures (2&4)). Whereas, for the �uid-borne

mode incident which cuts-on at f = 191Hz; the transmitted power increases in the absence

of �anged junction (dashed curves in Figures (3&5)). However, the sum of the re�ected

and transmitted powers (dotted lines) is unity that successfully testi�es the conserve power

identity (51). For Figures (6-9), the power components are plotted for the pin-jointed set of

edge conditions. The power propagation behavior for this set of edge conditions is largely
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similar to that of clamped set of edge conditions.

Figure (2): For structure-borne mode incident (` = 0);

the Pref (solid curve), Ptrans (dashed curve) and

Pref + Ptrans (dotted line) are shown against frequency,

where, �h1 = 0:02m and �h2 = 0:04m:

Figure (3): For Fluid-borne mode incident (` = 1); the

Pref (solid curve), Ptrans (dashed curve) and Pref + Ptrans

(dotted line) are shown against frequency�where,

�h1 = 0:02m and �h2 = 0:04m:
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Figure (4): For structure-borne mode incident (` = 0);

the Pref (solid curve), Ptrans (dashed curve) and

Pref + Ptrans (dotted line) are shown against frequency�

where, �h1 = �h2 = 0:02m :

Figure (5): For Fluid-borne mode incident (` = 1); the

Pref (solid curve), Ptrans (dashed curve) and Pref + Ptrans

(dotted line) are shown against frequency�where,

�h1 = �h2 = 0:02m

For Figures (6-9) the power components are plotted for the pin-jointed set of edge conditions.

The power propagation behavior for this set of edge conditions is largely similar to that of
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clamped set of edge conditions.

Figure (6): For structure-borne mode incident (` = 0);

the Pref (solid curve), Ptrans (dashed curve) and

Pref + Ptrans (dotted line) are shown against frequency,

where, �h1 = 0:02m and �h2 = 0:04m:

Figure (7): For Fluid-borne mode incident (` = 1); the

Pref (solid curve), Ptrans (dashed curve) and Pref + Ptrans

(dotted line) are shown against frequency�where,

�h1 = 0:02m and �h2 = 0:04m:
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Figure (8): For structure-borne mode incident (` = 0);

the Pref (solid curve), Ptrans (dashed curve) and

Pref + Ptrans (dotted line) are shown against frequency�

where, �h1 = �h2 = 0:02m

Figure (9): For Fluid-borne mode incident (` = 1); the

Pref (solid curve), Ptrans (dashed curve) and Pref + Ptrans

(dotted line) are shown against frequency�where,

�h1 = �h2 = 0:02m

Figures (10-13) depict the power propagation against frequency with pivoted set of edge

conditions. For the structure-borne mode incident and in the presence of �anged junction,
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the re�ected and transmitted powers tend to have identical power scattering in two duct

regions over the variation of frequency (see Fig. 10). However, for the �uid-borne mode

incident the re�ected power decreases from the maximum to 80% as frequency varies from

191Hz to 953Hz (see Fig. 11): Whilst in the absence of �ange, the power propagation

behavior is quite di¤erent (see Figs. 12&13). As for the case of structure-borne mode

incident with 1Hz � f � 191Hz; the re�ected power decreases steadily upto 70% of incident

power and then goes on to maximum at cut-on frequency f = 191Hz: But once it crosses the

cut-on frequency the re�ection decreases upto half of the total power. With this variation of

frequency, the transmitted power behaves symmetrically in opposite direction but, of course,

the sum of the re�ected and transmitted power remains unity (see Fig. 12). On contrary

for the �uid-borne mode incident the transmitted power increases from 20% to 80% with

increasing values of frequency from 191Hz to 953Hz (see Fig. 13).

Figure (10): For structure-borne mode incident (` = 0);

the Pref (solid curve), Ptrans (dashed curve) and

Pref + Ptrans (dotted line) are shown against frequency,

where, �h1 = 0:02m and �h2 = 0:04m:
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Figure (11): For Fluid-borne mode incident (` = 1); the

Pref (solid curve), Ptrans (dashed curve) and Pref + Ptrans

(dotted line) are shown against frequency�where,

�h1 = 0:02m and �h2 = 0:04m:

Figure (12): For structure-borne mode incident (` = 0);

the Pref (solid curve), Ptrans (dashed curve) and

Pref + Ptrans (dotted line) are shown against frequency�

where, �h1 = �h2 = 0:02m.
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Figure (13): For Fluid-borne mode incident (` = 1); the

Pref (solid curve), Ptrans (dashed curve) and Pref + Ptrans

(dotted line) are shown against frequency�where,

�h1 = �h2 = 0:02m:

Now we reconstruct the continuity conditions at matching interface (7)-(8) by using the

truncated solution. Figures (14-17) show the real (<) and imaginary (=) parts of non-

dimensional pressures and normal velocities at matching interface. From these �gures it

is evident that the pressures and normal velocities match exactly at x = 0; h2 � y � a:

Whereas, <f 2(0; y)g and =f 2(0; y)g ! 0 for y 2 (h1; h2)[(a; b) (see Figures (14&15)) and,

<f 1x(0; y)g and =f 1x(0; y)g ! 0 for y 2 (0; h1) (see Figures. (16&17)): These are exactly

the conditions given by equations (7) and (8). Though Figures (16&17) contain oscillations

due to Gibbs phenomenon [29] yet these con�rm the accuracy of the modal coe¢ cients. In

case this trend increases then we have to cater it by resolving Gibb�s phenomenon using the
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Lanczos �lter [30-31] thereby con�rming the accuracy of velocity conditions more clearly.

Figure (14): The real part of non-dimensional pressures :

j = 1 (dashed curve, 0 � y � a ) and j = 2 (solid curve,

h1 � y � b ) are shown for �a = 0:1m ,�b = 0:2m; �h1 = 0:03m

and �h2 = 0:07m:

Figure (15): The imaginary part of non-dimensional pressures :

j = 1 (dashed curve , 0 � y � a ) and j = 2 (solid curve,

h1 � y � b ) are shown for �a = 0:1m ,�b = 0:2m; �h1 = 0:03m

and �h2 = 0:07m:
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Figure (16): The real part of non-dimensional velocities :

j = 1 (dashed curve , 0 � y � a ) and j = 2 (solid curve,

h1 � y � b ) are shown for �a = 0:1m ,�b = 0:2m; �h1 = 0:03m

and �h2 = 0:07m:

Figure (17): The imaginary part of non-dimensional velocities

: j = 1 (dashed curve , 0 � y � a ) and j = 2 (solid curve,

h1 � y � b ) are shown for �a = 0:1m ,�b = 0:2m; �h1 = 0:03m

and �h2 = 0:07m:
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5 Conclusion

The coupled wave scattering characteristics of a two dimensional waveguide structure has

been studied using mode-matching approach. The governing problem has been reduced to

that of non-SL. The primary focus was the scattering of the incident mode by the �anged

junction and, in particular, the e¤ect that di¤erent edge conditions have on this process. It

is worthwhile to mention that the case of a fully rigid �ange is signi�cantly more challenging

requiring, for example,a matrix Weiner-Hopf approach. Despite the use of the zero pressure

condition, it is concluded that current problem o¤ers much information both about scat-

tering at a �ange and about mode-matching approaches. It is observed that the choice of

appropriate edge conditions and the incident forcing term expressively a¤ect the scattered

�eld as well as the transmission through structure-borne as compared to �uid-borne vibra-

tion. It is also revealed that the power distribution is greatly a¤ected by the attenuated

regions and abrupt changes in height of duct. In the end the mode-matching solution is well

supported through number of validation points.

Acknowledgments: Authors are thankful to the reviewers for their painstaking review

and useful suggestion in improving the quality of paper.
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