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The ability to discriminate between ballistic missile warheads and

confusing objects is an important topic from different points of view.

In particular, the high cost of the interceptors with respect to tac-

tical missiles may lead to an ammunition problem. Moreover, since

the time interval in which the defense system can intercept the mis-

sile is very short with respect to target velocities, it is fundamental to
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minimize the number of shoots per kill. For this reason, a reliable tech-

nique to classify warheads and confusing objects is required. In the

efficient warhead classification system presented in this paper, a model

and a robust framework is developed, which incorporates different

micro-Doppler-based classification techniques. The reliability of the

proposed framework is tested on both simulated and real data.

I. INTRODUCTION

The challenge of ballistic missiles (BM) classification

is continuing to grow in importance [1]. In particular,

two principal factors increase the interest in developing

efficient techniques to recognize missiles. The first is

economic, because the interceptor missiles are expensive

relative to that of tactical missiles. The second factor is

tactical and relates to the possibility that there may be

numerous missiles and many more objects present. Hence

the defense system will have, in general, a limited number

of missiles and consequently it is important to maximize

the interception success ratio. Another fundamental aspect

is that the period in which the missile can be intercepted

by the defense system is limited, then it is necessary

to recognize the real threats in a cloud of debris and

other objects. The detection and recognition of a BM are

challenging due to various reasons during different phases

of its flight. Generally, a BM trajectory is divided into three

parts [2]: boost phase, which comprises the powered flight

portion; midcourse phase, which comprises the free-flight

portion that constitutes most of the flight time and during

which the missile separates from the rest of missile; and the

re-entry phase wherein the warhead re-enters the Earth’s

atmosphere to approach the target. As well as the warhead,

the missile releases also confusing objects in order to make

the BM detection more difficult for defense systems. These

objects come in many different shapes.

The midcourse phase represents the most useful period

to intercept the warheads. In fact since the launch point

of the BM will normally be a significant distance from

the defense radar system, the boost phase does not offer

much opportunity to track accurately and to recognize the

missile. Moreover, during this phase the missile separates

from several boosters, which would result in significant in-

terference. The re-entry phase is not very useful for BM

recognition due to its short duration and hence limited time

available to destroy them, at a safe distance (the war head

could be armed with a nuclear or chemical bomb). For the

above mentioned reasons, significant attention is given to

the discrimination between warheads and confusing objects

throughout the midcourse phase. Warheads and confusing

objects exhibit different micromotions that, if appropriately

exploited, may be used to distinguish them [2]. In partic-

ular, the missile has precession and nutation movements,

while the confusing objects wobble after they are released

from the warhead. The precession comprises two different

motions: conical movement, which is a rotation of the axis

of symmetry of the missile in a conical shape, and spin-

ning, that is the rotation of the warhead around its axis

of symmetry, as described in [2] and [3]. Since warheads

and confusing objects make different micromotions, the

micro-Doppler analysis introduced by Chen et al. in [4]
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can be used for the purpose of information extraction for

target classification, because different behaviors produce

different signatures [5].

In the last decade, a large amount of research has been

conducted on the possibility to use micro-Doppler infor-

mation to identify different targets in many fields of inter-

est, e.g., human motion classification [6] and air moving

target recognition [7]. Most systems use information ex-

tracted from the time-frequency distribution (TFD) of radar

echoes. In [6], [8], and [9], the features for human motion

classification are empirically estimated from the spectro-

gram. In [10], a set of features is evaluated by using the

singular value decomposition (SVD) on the spectrograms

and estimating the standard deviation of the first right sin-

gular vector. In [11], Molchanov et al. propose a method for

the extraction of cepstrum- and bicoherence-based features

from TFD for aircraft classification. In [12], the features are

estimated as the Fourier series coefficients of the spectro-

gram envelope, whereas in [13] the mel-frequency cepstral

coefficients (MFCC) are employed with the main aim to

recognize human falling from other motions, which can be

used for healthcare applications. Other features that are not

extracted from TFD are presented in [7], where a method

that employs empirical mode decomposition (EMD) and

CLEAN technique is proposed. Moreover, a Greedy Gaus-

sian mixture model based classification technique for ATR

with low resolution ground surveillance radars is presented

in [14], where the linear predictive coding (LPC) and cep-

strum coefficient feature sets are extracted from the data. A

micro-Doppler classification method that uses the strongest

parts of the cadence velocity diagram (CVD) [15] for the

feature vector construction is described in [16]. The algo-

rithm is tested successfully in the case of the discrimination

of human motions. However, it requires high storage ca-

pabilities as long as the feature vector is composed by the

highest cadence frequencies and sampled velocity profiles

corresponding to each of them.

The aim of this paper is to demonstrate the capability

and reliability of micro-Doppler information [17] for the

discrimination between warheads and confusing objects.

The determination of the best classification technique is

outside the scope of this paper. Instead, we consider three

typical techniques that exhibit different properties. In order

to understand the micro-Doppler shifts, a high frequency

based signal model for the targets of interest is proposed

that incorporates the effects of occlusion for all the scat-

tering points. A framework is presented for radar micro-

Doppler classification based on the processing of the CVD

with different information extraction techniques. In partic-

ular, three different techniques for feature extraction from

the CVD are presented. The first approach is based on the

statistical characteristics of the unit area function obtained

by averaging and normalizing the CVD (ACVD). The sec-

ond method is based on the use of pseudo-Zernike (pZ)

moments [5], [18]–[20], and the third one is based on the

use of the Gabor filter [21]. The ACVD approach is known

to require less computation compared to the other two

methods, since a smaller feature vector dimension is used.

The pZ moments are widely used in image processing for

pattern recognition due to their useful properties, such as

scale, translation, and rotation invariance. In [5], a micro-

Doppler-based framework using pZ moments has been pre-

sented for classification of human movement. It has been

compared with other common classification techniques un-

derlining its better performance. Moreover, the scale invari-

ant property is important for micro-Doppler-based feature

due to their more robustness with respect to the angle of

view, which affects strictly the maximum frequency shift.

Gabor filters have been successfully employed to extract

reliable features in several challenges, such as the texture

and symbol classification [22], [23] and in the context of

face recognition [24], especially due to their scale, transla-

tion, rotation, and illumination invariant properties. The last

two types of features are selected for their high accuracy

of performance. Moreover, since a work on successfully

employment of Gabor filter for ballistic target classifica-

tion has been presented in [21], the methods is taken as

term of comparison extending the previous work with the

application on simulated data and Booster data.

The remainder of the paper is organized as follows.

Section II introduces the model for the signal received from

BM warheads and confusing object. Section III describes

the different feature extraction algorithms. In Section IV,

both the simulated and the real dataset used to test the pro-

posed algorithms are described. In Section VI, the effec-

tiveness of the proposed approach is demonstrated showing

the classification results on both simulated and real data.

Section VI concludes the paper.

II. SIGNAL MODEL

In this section, the model for the signal scattered from a

ballistic target is described. The exact calculation of the re-

ceived radar signal from a target is usually very difficult be-

cause of the scattering mechanisms, even if the geometrical

shape of the object is simple. However, for high frequency

radar systems, the received signal can be modeled approx-

imately by a sum of signals received from some dominant

and discrete scattering points on the target. These scattering

points provide a concise and useful description of the object

for the target recognition [3].

Without loss of generality and neglecting the envelope

of the transmitted signal, it is assumed that the radar trans-

mits a signal, which may be written as

stx(t) = exp(j2πf0t) (1)

where f0 is the radar carrier frequency. The generic received

signal can be written as

srx(t) =
Ns−1∑

i=0

μi(t) exp(j2πf0(t − τi(t)) (2)

where Ns is the number of scattering points, τi(t) and μi(t)

are the delay of propagation and the occlusion function of

the ith scatterer, respectively. This latter is a binary func-

tion whose possible values are {0, 1}. This function usually

depends on the aspect angle α(t), that is the angle between
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Fig. 1. Reference systems for ballistic targets.

the radar LOS (line of sight) and the symmetry axis of the

target. Its value is 1 when there is a LOS for the scattering

points, and 0 otherwise. An expression of the propagation

delay for the generic point is given by

τi(t) =
2ρi(t)

c
(3)

where c = 3 × 108 m/s represents the speed of light in

vacuum and ρi(t) is the distance between the radar and

the considered point.

Considering three reference systems, as Fig. 1 illus-

trates: the principal reference system (Û , V̂ , Ŵ ), centerd

on the radar; the natural coordinate system (X̂, Ŷ , Ẑ),

which is parallel to the previous one and whose origin is

thecenter of mass of the target; the local system (x̂, ŷ, ẑ)

such that the axis ẑ corresponds with the symmetry axis of

target [2].

The distance ρi(t) is the norm of the position vector

r radar
i , i.e.,

ρi(t) = ‖r radar
i ‖ =

∥∥r radar
cm + vt + r i(t)

∥∥ (4)

where r radar
cm is the initial position vector of the mass center

with respect to the system (Û , V̂ , Ŵ ), v is the translation

velocity of the target and r i(t) is the position of the consid-

ered point with respect to the (X̂, Ŷ , Ẑ) system.

Neglecting the time dependence for conciseness, r i can

be written as the following column vector

r i = (Xt , Yt , Zt )
T = Tm Rt0

(
r local

p − r local
cm

)
(5)

where (·)T is the transpose operator, Rt0 is the Euler matrix

that sets the position of the target with respect to the second

system (X̂, Ŷ , Ẑ) at the initial time instant t0, Tm = Tm(t)

is the matrix depending on the micromotions made by the

object, while r local
i and r local

cm are, respectively, the positions

in the local system of the generic point and center of mass

[2], [4].

A. BM Warhead

Evaluating the case of a conical warhead, three domi-

nant points of scattering are usually considered. The first

coincides with the tip of the cone, the others two corre-

spond to the intersection between the base of the cone and

the plane given by the radar LOS and the target symmetry

axis. However, for warheads with fins, other points need

to be considered, namely the tips of the fins. Therefore,

assuming a simple conical warhead, the expression of the

received signal is

srx(t) =
2∑

i=0

μi(t) exp

{
j2πf0

(
t −

2ρi(t)

c

)}
(6)

where ρi(t) depends on the micromotion matrix according

to (4) and (5). In the case of conical warheads, the matrix

Tm is given by the product of three terms, namely

Tm = Rc Rs Rn (7)

where the matrices Rc and Rs depend on conical movement

and spinning, which together make up the precession, while

Rn depends on nutation. Since the matrices Rc and Rs are

related to rotation movements, they can be obtained by the

Rodrigues formula [2], [25]

Rc = I + Ê sin(�c t) + Ê
2

(1 − cos(�c t))

Rs = I + Ê sin(�s t) + Ê
2

(1 − cos(�s t)) (8)

where I is the identity matrix of dimension 3 × 3, �c =
|wc| and �s = |ws |, where wc and ws are the rotation an-

gular velocity vectors of conical movement and spinning,

respectively, while Êc and Ês represent the skew symmetric

matrixs [2] obtained by normalized vectors wc and ws .

In order to evaluate the matrix Rn, a new coordinate

system (x̂n, ŷn, ẑn) has to be considered. The unit direc-

tional vector that identifies the symmetry axis of the conical

warhead with respect to the principal system (X̂, Ŷ , Ẑ) is

defined as follows

ẑt0 = Rt0 a0 (9)

where a0 = (0, 0, 1)T . Due to the precession, the coordi-

nates of target axis depend on time for its rotation during

the conical motion, namely

ẑt = Rc Rt0 a0 (10)

where ẑt represents the unit directional vector at time in-

stant t . Considering the cone axis oscillating in the plane

given by Ô ′C (see Fig. 2) and ẑt , the new reference system

(x̂n, ŷn, ẑn) is chosen so that x̂n coincides with the preces-

sion axis while the ẑn axis is perpendicular to the oscillation

plane, as shown in Fig. 2.

Therefore, the expressions of the three unit directional

vectors of the system are

x̂n =
Ô ′C

‖Ô ′C‖
, ẑn =

Ô ′C × ẑt

‖Ô ′C × ẑt‖
, ŷn =

x̂n × ẑn

‖x̂n × ẑn‖
.

(11)
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Fig. 2. The reference system (x̂n, ŷn, ẑn).

Considering the three unit directional vectors (̂x, ŷ, ẑ) of

the system (X̂, Ŷ , Ẑ), the transition matrix An, which rep-

resents the relationship between the previous and the new

system, is given by

(x̂n, ŷn, ẑn) = (̂x, ŷ, ẑ) An. (12)

Since the reference coordinates (X̂, Ŷ , Ẑ) are the natural

coordinates, which means that (̂x, ŷ, ẑ) form a 3 × 3 iden-

tity matrix, then matrix An is obtained as follows

An = (x̂n, ŷn, ẑn) (13)

from which it is clear that the transition matrix is orthonor-

mal. Therefore, the position vector of a generic point in the

new reference system at initial time instant t0 is

rnp
(t0) = (xnp

(t0), ynp
(t0), znp

(t0))T = A−1
n rp(t0). (14)

Considering the case of a sinusoidal oscillation of the pre-

cession angle, which is given by β(t) (as shown in Fig. 2),

then

�β(t) = βn sin(ωn t) = βn sin(2π fn t) (15)

where fn and βn represent the frequency and maximum

value of the oscillation, respectively. Since in the new ref-

erence system the oscillation of the cone axis is a rotation

around the ẑn axis, the position vector rnp
(t) at the instant

t is

rnp
(t) = Bnrnp

(t0) = Bn A−1
n rp(t0) (16)

where Bn is the Euler rotation matrix around ẑn axis given

by

Bn =

⎡
⎢⎣

cos(�β) − sin(�β) 0

sin(�β) cos(�β) 0

0 0 1

⎤
⎥⎦ . (17)

The position vector in the natural coordinates system is

given by

r t = An rnt
= An Bn A−1

n r t0 . (18)

Fig. 3. Representation of three principal scattering points of conical

warhead.

TABLE I

Value of the Occlusion Function μi (t) for the Three Principal

Scattering Points P0, P1, and P2 With Respect to the Aspect Angles α

α < γ γ ≤ α < π
2

− γ ≤ π
2

≤ π − γ
π
2

− γ α < π
2

α < π − γ ≤ α ≤ π

μ0(α) 1 1 1 1 0

μ1(α) 1 1 1 1 1

μ2(α) 1 0 0 1 1

Finally, the nutation matrix Rn can be written as

Rn = An Bn A−1
n . (19)

The occlusion function μi(t) depends only on the aspect

angle α(t) and the semiangle γ that defines the cone shown

in Fig. 3. The functions μi(t), with i = 0, 1, 2, are eval-

uated for α(t) ∈ [0, π] due to the symmetric shape of the

target and to the specific micromovements exhibited by war-

heads. Specifically, for the tip of the cone identified with P0,

the occlusion function μi(t) = 0 for α(t) ≥ π − γ , which

means that in this interval occlusion occurs. For the scatter-

ing point P1, which is one of the points on the cone base at

minimum distance from the radar, occlusion never occurs,

so the function μi(t) = 1 for all values of α(t). On the other

hand for the point P2 occlusion occurs when α(t) ∈ [γ, π
2

].

The interval of occlusion for several scattering points are

summarized in Table I.

Let us now consider the warheads with fins then the

received signal can be modeled as follows:

srx(t) =
2∑

i=0

μi(t) exp

{
j2πf0

(
t −

2ρi t

c

)}

+
Nfin∑

a=1

μa(t) exp

{
j2πf0

(
t −

2ρat

c

)}
(20)

where Nfin is the number of fins and μa(t) is the occlusion

function for the ath fin. In the presence of fins, the occlu-

sion function does not only depend on the aspect angle α,

but also on the spinning of the cone as it can cause the

fins to be occluded behind the warhead body. In order to

evaluate the occlusion function for the fins, the physical

optics approximation is considered. This is a valid approx-
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Fig. 4. (a) Reference system (x̂f , ŷf , ẑf ). (b) Representation of the threshold x̃.

imation given the high frequency at which the radar system

operates. Since the targets of interest are within the Fraun-

hofer zone [2], the rays that strike the targets can be con-

sidered as parallel. The occlusion of fins can only occur for

values of the aspect angle such that α(t) ≥ γfin, where γfin

is the semiangle of an isosceles triangle whose height is

equal to the height of the cone and the base is equal to the

diameter of circumference drawn by rotating fins. There-

fore, the function μa(t) = 1 when α(t) ∈
[
0, γf in

]
. In order

to evaluate μa(t) for α(t) ≥ γf in, a new reference system

(x̂f , ŷf , ẑf ) has to be considered, as shown in Fig. 4(a).

The reference system is chosen in order to have the ẑf axis

coincident with the cone axis, while ŷf is perpendicular to

the plane given by the radar LOS and the cone axis

ẑf = ẑt , ŷf =
ẑf × r̂ radar

cm

‖ ẑf × r̂ radar
cm ‖

, x̂f =
ŷf × ẑf

‖ ŷf × ẑf ‖
.

(21)

Since the reference system (X̂, Ŷ , Ẑ) is the natural coor-

dinate system, the transition matrix Af is given by

Af = (x̂f , ŷf , ẑf ). (22)

The position vector of the ath fin tip in the new system is

given by

rfa
= (xfa

, yfa
, zfa

)T = A−1
f ra (23)

where ra is the position vector in the natural system. The

value of occlusion function for α(t) ≥ γfin is calculated by

comparing the coordinate xfa
with a suitable threshold as

follows

μa(t) =
{

1 if xfa
< x̃

0 if xfa
≥ x̃

. (24)

In order to evaluate the threshold x̃ it is necessary to calcu-

late when the straight line joining the radar and tip of the

fin becomes tangential to the cone surface [see Fig. 4(b)].

Considering the reference system (x̂f0
, ŷf0

, ẑf0
) ob-

tained moving the origin of system (x̂f , ŷf , ẑf ) into center

of cone bottom as shown in Fig. 5, the position vectors of

Fig. 5. Reference system (x̂f0
, ŷf0

, ẑf0
).

the fin tip OF , and of the radar OS are

OF =
[
(R + Hf ) cos(φ), (R + Hf ) sin(φ), 0

]T

OS =
[
−d ′ sin(α′), 0, d ′ cos(α′)

]T
(25)

where R is the bottom radius of the cone, Hf is the fin

height, φ is the angle between the fin and x̂f0
axis, and

where

α′ = tan−1

(
d sin(α)

d cos(α) + L

)
(26)

d ′ ≃ d + L cos(α′) (27)

with α the aspect angle, d = ‖r radar
cm ‖ the distance between

the radar and the mass center, and L the distance between

the mass center and the bottom center of the cone.

The conical surface is represented by the function:

f (xf0
, yf0

, zf0
) = r ′2 −

(
x2

f0
+ y2

f0

)

= R2
(

1 −
zf0

H

)2

−
(
x2

f0
+ y2

f0

)
(28)
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where r ′ = r ′(zf0
) is the radius of the generic cone section

given by

r ′(zf0
) = R

(
1 −

zf0

H

)
(29)

where H is the cone height. Considering the generic point

of the cone P whose position vector is

OP =
[
r ′ cos(ψ), r ′ sin(ψ), H

(
1 −

r ′

R

)]T

(30)

where ψ is the position angle with respect to x̂f0
axis, the

lines from P to F and S are

PF = OP − OF =
[
r ′ cos(ψ) − (R + Hf ) cos(φ), r ′

sin(ψ) − (R + Hf ) sin(φ), H

(
1 −

r ′

R

) ]T

PS = OP − OS =
[
r ′ cos(ψ) + d ′ sin(α′), r ′ sin(ψ),

H

(
1 −

r ′

R

)
− d ′ cos(α′)

]T

(31)

respectively. In order to evaluate the occlusion threshold, it

is necessary to evaluate the angle φ and ψ such that PF

and PS are both tangent to the conical surface as follows

⎧
⎪⎪⎨
⎪⎪⎩

[
∂f

∂xf0

,
∂f

∂yf0

,
∂f

∂zf0

]T

· PF = 0

[
∂f

∂xf0

,
∂f

∂yf0

,
∂f

∂zf0

]T

· PS = 0

(32)

where the components of gradient vector for a generic cone

point are evaluated from (28) as

∂f

∂xf0

= −2xf0
= −2r ′ cos(ψ);

∂f

∂yf0

= −2yf0
= −2r ′ sin(ψ);

∂f

∂zf0

=
−2R2

H

(
1 −

zf0

H

)
=

−2Rr ′

H
;

(33)

with

xf0
= r ′ cos(ψ); yf0

= r ′ sin(ψ); zf0
= H

(
1 −

r ′

R

)
.

(34)

From (32) and (33) follows

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−2r ′)
(
r ′ cos2(ψ) − (R + Hf ) cos(ψ) cos(φ)

+r ′ sin2(ψ) − (R + Hf ) sin(ψ) sin(φ) − r ′ + R
)

= 0

(−2r ′)
(
d ′ sin(α′) cos(ψ) + r ′ cos2(ψ) + r ′ sin2(ψ)

+R − r ′ −
Rd ′ cos(α′)

H

)
= 0

(35)

Fig. 6. Example of threshold values x̃ as a function of aspect angle (α).

which leads to⎧
⎨
⎩

cos(ψ − φ) = R
R+Hf

cos(ψ) =
[

d cos(α′)R
H

− R
]

1
d sin(α′)

=
[

tan(γ )

tan(α′)
− R

d sin(α′)

]
.

∀r ′ > 0 (36)

Finally, the threshold is given by

x̃ = (Hf + R) cos(φ) (37)

where

φ = cos−1

[
tan(γ )

tan(α′)
−

R

d sin(α′)

]
− cos−1

[
R

R + Hf

]
.

(38)

Fig. 6 shows how the threshold values varies as a function

of aspect angle for the cone dimensions H and R of 1 and

0.375 m, respectively, fin height Hf = 0.200 m and at a

distance of 150 km. It has to be pointed out that x̃ depends

on the distance between the target and radar, which makes

this general model valid also for distances relatively small,

e.g., in the case of an on-board radar of an interceptor.

B. Confusing Object

In the case of confusing objects, according to (2), the

received signal is given by

srx(t) =
Nd∑

i=0

μi(t) exp

{
j2πf0

(
t −

2ρi t

c

)}
(39)

where Nd in the number of scatterers. Since the confusing

objects only wobble, and assuming for simplicity that the

angular rotation vector is perpendicular to the plane given

by the symmetry axis of the objects and the radar LOS, the

matrix Tm is given by Rodrigues formula [2], [25]

Tm = T r = I + Ê sin(�r t) + Ê
2

(1 − cos(�r t)) (40)

where �r = |wr | and wr is the angular rotation velocity

vector, while Ê is the skew symmetric matrix obtained by

the normalized vector wr [2]. Moreover, the number of

dominant scattering points depends on the type and geom-

etry of confusing object. In particular, for a sphere, two

diametrically opposite scatterers are chosen on the circum-

ference given by the intersection between the plane given by
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Fig. 7. Representation of the scattering points of confusing objects. (a) Sphere. (b) Cone. (c) Cylinder.

the symmetry axis of the object and the radar LOS and the

sphere. In order to evaluate the phenomenon of occlusion

for the spherical object, a new reference system (x̂d , ŷd , ẑd )

is considered, as illustrated in Fig. 7(a). Assuming that the

sphere axis âd is the line passing through the two scatter-

ers, the ŷd axis is chosen so as to be parallel to the radar

LOS, while the ẑd axis is perpendicular to the plane iden-

tified by the radar LOS and the sphere axis, as illustrated

in Fig. 7(a). Therefore, the unit directional vectors of the

system are given by

ŷd =
r̂ radar

cm

‖̂r radar
cm ‖

, ẑd =
âd × r̂ radar

cm

‖âd × r̂ radar
cm ‖

, x̂d =
ŷd × ẑd

‖ ŷd × ẑd‖
.

(41)

Since the reference system (X̂, Ŷ , Ẑ) is the natural ref-

erence system, the transition matrix Ad between the two

system is

Ad = (x̂d , ŷd , ẑd ). (42)

The position vector of the ith scattering point in the new

reference system is given by

rdi
= (xdi

, ydi
, zdi

)T = A−1
d r i (43)

where r i is the position vector in the natural reference sys-

tem. Furthermore, the occlusion for the scatterers occurs

when the coordinate ydi
> 0, so it follows

μi(t) =

{
1 if ydi

≤ 0

0 if ydi
> 0

. (44)

As for the warhead, three scatterers are considered for the

conical object, namely the tip of the cone and the two on

the base in proximity of the plane given by target symmetry

axis and the radar LOS, as shown in Fig. 7(b). However,

because of the different motion of the confusing object

compared to the warhead, the occlusion of the three points

is evaluated for values of the aspect angle which lays in

[0, 2π]. In particular, μi(t) = 0 for the following:

1) P1 when α(t) ∈ [π − γ, π + γ ];

2) P2 when α(t) ∈
[

3π

2
, 2π − γ

]
;

3) P3 when α(t) ∈
[
γ, π

2

]
.

Finally, for cylindrical objects four scattering points are

considered: two for each base of the cylinder and on the

plane given by target symmetry axis and the radar LOS. As

for the conical object, the occlusion function for these points

depends only on the aspect angle, specifically μi(t) = 0 for

the following:

1) P1 when α(t) ∈
[
π,

3π

2

]
;

2) P2 when α(t) ∈
[

3π

2
, 2π

]
;

3) P3 when α(t) ∈
[π

2
, π

]
;

4) P4 when α(t) ∈
[
0,

π

2

]
.
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Fig. 8. Block diagram of the proposed algorithm.

Fig. 9. Example of spectrogram and CVD obtained by a received signal from a cylindrical object. (a) Spectrogram. (b) CVD.

Fig. 7(c) shows the scattering points considered for a

cylindrical object and their circular trajectory during its

flight.

III. FEATURE EXTRACTION ALGORITHM

In this section, the algorithm to extract micro-Doppler-

based features for the classification of ballistic targets is

described. Fig. 8 shows a block diagram of the classification

method outlining the common steps for the three different

approaches proposed in this paper. The starting point of

the proposed algorithm is the received signal s̃rx(n), with

n = 0, ..., N , containing micro-Doppler components and

comprising of N signal samples. The received signal has to

be preprocessed before the evaluation of the micro-Doppler

signature. The first block includes a notch filtering, down-

sampling, and normalization (as required for the pZ-based

method). The second step is the spectrogram computation

of the preprocessed signal s̃rx(n)

χ(ν, k) =

∣∣∣∣∣

N−1∑

n=0

s̃rx(n)wh(n − k) exp
(
−j2πν

n

N

)∣∣∣∣∣ ,

k = 0, . . . , K − 1 (45)

where ν is the normalized frequency and wh(·) is the

smoothing window. The spectrogram is a TFD that allows

the signal frequency time variations to be evaluated and it

is chosen for its robustness with respect to the production

of artefacts. In Fig. 9(a), the spectrogram obtained by a sig-

nal scattered from a cylindrical object is shown. Observing

Fig. 8, the next step consists in the extraction of the CVD,

that is defined as the Fourier transform of the spectrogram

along each frequency bin [5]:

�(ν, ε) =

∣∣∣∣∣

K−1∑

k=0

χ(ν, k) exp

(
−j2πε

k

K

)∣∣∣∣∣ (46)

where ε is known as the cadence frequency. The CVD is

chosen because it offers the possibility of using, as discrim-

inants, the cadence of each frequency component and the

maximum Doppler shift, and because the CVD is more ro-

bust than the spectrogram since it does not depend on the ini-

tial phase of moving objects. In Fig. 9(b), the CVD obtained

from the spectrogram given in Fig. 9(a) is shown, in which

it is possible to see that the zero cadence component is fil-

tered out. Finally, the CVD has to be processed to extract

a Q-dimensional feature vector F =
[
F0, F1, . . . , FQ−1

]
,

which can identify unequivocally each class. The feature

extraction block of Fig. 8 for the three different approaches

will be described in the following sections. Before classifi-

cation, the vector F is normalized as follows

F̃ =
F − ηF

σF

(47)

where ηF and σF are the statistical mean and standard

deviation of the vector F, respectively.

The classification performances of the extracted feature

vectors are evaluated using the k-Nearest neighbor (kNN)

classifier, modified in order to account for unknown class.

In particular, let T be the training vectors set, for each class

v an hypersphere SCMv
(ζv) is considered, with center CMv

and radius ζv . In the case in which the tested vector does

not belong to any hypersphere, it is declared as unknown.

The operation mode of this classifier is composed by three

phases. In the first phase, the set N of nearest neighbor

training vectors to the tested vector F is selected from T as

follows

N =
{
F̃1, . . . , F̃k : ∀i = 1, . . . , k,

∥∥F̃i − F
∥∥

< min
F̃∈{T −F̃1,...,F̃i−1}

∥∥F̃ − F
∥∥
}

. (48)

The second phase consists into definition of vector ι whose

elements represent a label for each vector in N . Each label
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can assume an integer value in the range [0, V ], where V

is the number of possible classes. The value 0 is assigned

when the tested vector does not belong to any hypersphere

of the vectors in N , while the values [1, V ] correspond to

a specific class. Specifically, ∀i = 1, . . . , k, the i-label ιi is

updated as follows

ιi =

{
0

∥∥F̃i − F
∥∥ > ζv

v otherwise
(49)

where v is the value corresponding to the belonging class of

F̃i . Finally, the (V + 1)-dimensional score vector s is eval-

uated, whose elements are the occurrences, normalized to

k, of the integers [0, . . . , V ] in the vector ι. The estimation

rule then may be implemented as follows:

v̂ =
{

arg maxv s if max(s) > 1
2

0 otherwise
(50)

where 0 is the unknown class.

Assuming that the feature vectors of each class are dis-

tributed uniformly around their mean vector, for all the

Monte Carlo runs, the hypersphere radius ζv was chosen

equal to σv

√
12/2, where σv = tr (Cv) and Cv is the covari-

ance matrix of the training vectors which belong to the class

v. The choice is made according to the statistical propri-

eties of uniform distributions. In fact, for one-dimensional

(1-D) uniform variables, the sum of mean and the prod-

uct between the standard deviation and the factor
√

12/2

gives the maximum possible value of the distribution. The

choice of a kNN classifier is justified for its low computa-

tional load and its capability of providing score values as

an output. However, in general other classifiers with similar

characteristics could also be selected. The selection of the

best classifier is outside the scope of this paper.

A. ACVD-Based Feature Vector Approach

In the ACVD-based feature vector approach, seven fea-

tures are computed from the ACVD. The starting point is

the mean of the CVD along each cadence bin; the resulting

1-D function is then normalized to have a unit area. From

the resulting function �̆(n), n = 0, . . . , Nc − 1, where Nc

is the number of cadence bins, four statistical indices are

extracted :

(1) Mean:

F0 =
1

Nc

Nc−1∑

n=0

�̆(n). (51)

(2) Standard deviation:

F1 =

√√√√ 1

Nc − 1

Nc−1∑

n=0

[
�̆(n) −

1

Nc

Nc−1∑

n=0

�̆(n)

]2

. (52)

(3) Kurtosis:

F2 =
1
Nc

∑Nc−1
n=0

[
�̆(n) − 1

Nc

∑Nc−1
n=0 �̆(n)

]4

(√
1

Nc−1

∑Nc−1
n=0

[
�̆(n) − 1

Nc

∑Nc−1
n=0 �̆(n)

]2

)4
−3.

(53)

(4) Skewness:

F3 =
1
Nc

∑Nc−1
n=0

[
�̆(n) − 1

Nc

∑Nc−1
n=0 �̆(n)

]3

(√
1

Nc−1

∑Nc−1
n=0

[
�̆(n) − 1

Nc

∑Nc−1
n=0 �̆(n)

]2

)3
.

(54)

Three other indices, specifically the peak sidelobe level

(PSL) ratio and two different definitions of the integrated

sidelobe level (ISL) ratio, are computed from the normal-

ized autocorrelation of the sequence �̆(n), C�̆(m), m =
0, . . . , M − 1. Specifically

F4 = PSL = max
m

∣∣C�̆(m)
∣∣

∣∣C�̆(0)
∣∣ (55)

while the latter are

F5 = ISL1 =
∑M−1

m=1

∣∣C�̆(m)
∣∣

∣∣C�̆(0)
∣∣ (56)

and

F6 = ISL2 =
∑M−1

m=1

∣∣C�̆(m)
∣∣2

∣∣C�̆(0)
∣∣ (57)

respectively.

B. Pseudo-Zernike-Based Feature Vector Approach

The pZ moments of order r and repetition l of an im-

age I (x, y), introduced in [19], are geometric moments

computed as the projection of the image on a basis of 2-D-

polynomials which are defined on the unit circle. They are

calculated as

ζr,l =
r + 1

π

∫ 2π

0

∫ 1

0

W ∗
r,l (ρ, θ) I (ρ cos θ, ρ sin θ) ρdρdθ

(58)

where

Wr,l (ρ, θ) =
r−|l|∑

h=0

ρr−h (−1)h (2r + 1 − h)!

h! (r + |l| + 1 − h)! (r − |l| − h)!
ej lθ ,

with ρ ≤ 1. (59)

The moments have several properties, among which are

that they are independent, since the pZ polynomials are

orthogonal on the unit circle, and their modulus is rotational

invariant.

The algorithm, proposed and tested in [18], computes

(K + 1)2 pZ moments, where K is the maximum order (to

be chosen by the user), by projecting the magnitude of the

CVD on the pZ polynomials, and obtaining a feature vector
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whose zth element is

Fz = ζr,l (60)

where r = l = 0, . . . , K − 1 and z = 0, . . . , (k + 1)2 − 1.

Since the pZ moments are defined on the unit circle, the

support of the spectrogram, hence that of the CVD, has to

be chosen to be a unit square so that it can be inscribed in

the unit circle [5], [18].

C. Gabor Filter Based Feature Vector Approach

The 2-D Gabor function is the product of a complex

exponential representing a sinusoidal plane wave and an

elliptical 2-D Gaussian bell. Its analytical expression in the

spatial domain, which can be normalized to have a compact

form [22], [24], is

ψ (x, y) =
f 2

πγ η
e
−

(
f 2

γ 2 x ′2 + f 2

η2 y ′2
)

ej2πf x ′
(61)

with

x ′ = x cos(θ) + y sin(θ) and y ′ = −x sin(θ) + y cos(θ)

(62)

where f is the central spatial frequency, θ is the anticlock-

wise angle between the direction of the plain wave and

the x̂-axis, γ is the spatial width of the filter along the

plane wave, and η is the spatial width perpendicular to the

wave. Therefore, the sharpness of the filter is controlled

on the major and minor axes by η and γ . The normalized

expression of the Gabor function in the Fourier domain

is [22]

� (u, v) = e
− π2

f 2

(
γ 2(u′−f )

2+ η2v′2
)

(63)

where

u′ = u cos(θ) + v sin(θ) and v′ = −u sin(θ) + v cos(θ).

(64)

In the proposed technique, as in the pZ moments based

approach, the magnitude of the CVD, scaled to fit the unit

square, is normalized to obtain a matrix whose values be-

longs to the set [0, 1] as follows

�̄(ν, ε) =
�(ν, ε) − minν,ε �(ν, ε)

maxν,ε

[
�(ν, ε) − minν,ε �(ν, ε)

] . (65)

Then, the resulting matrix �̄(ν, ε) is filtered with a bank of

Gabor filters whose impulse responses are

ψm,l (x, y) =
f 2

l

πγ η
e
−

(
f 2
l

γ 2 x ′2 + f 2
l

η2 y ′2
)

ej2πflx
′

(66)

with

x ′ = x cos(θm) + y sin(θm) and

y ′ = −x sin(θm) + y cos(θm) (67)

for various fl and θm, l = 0, . . . , L − 1, m = 0, . . . , M −
1, where L and M are the numbers of selected spatial central

frequencies and orientation angles, respectively. The choice

of the fl and θm depends on the specific application and on

the worst case image to represent with the moments. The

selection of these parameters has to be conducted in order

to get an accurate representation of the image under test. In

fact, since by varying θm, the harmonic response of the filter

moves on a circumference, whose radius is fl , it is possible

to extract local characteristics in the Fourier domain by

choosing a set of values for the two parameters [21]. The

value of each pixel of the output image is given by the

convolution product of the Gabor function and the input

image �̄(ν, ε) as

gl,m(ν, ε; fl, θm) = ψl,m(ν, ε; fl, θm) ∗ �̄(ν, ε)

=
∫ ∞

−∞

∫ ∞

−∞
ψl,m(ν − ντ , ε − ετ ; fl, θm)�̄(ντ , ετ )dντdετ

(68)

with l = 0, . . . , L − 1 and m = 0, . . . , M − 1, where L

and M are the numbers of central frequency and orien-

tation angles, respectively. Finally, the outputs of the filters

are processed to extract the feature vector used to classify

the targets. In particular, a feature is extracted from the out-

put image of each filter by adding up the values of all pixels

[21], as

Fq = gl,m =
Nν−1∑

ν

Nε−1∑

ε

|gl,m(ν, ε; fl, θm)| (69)

where q = mL + l, with l = 0, . . . , L − 1 and m =
0, . . . , M − 1, Nν and Nε are the dimensions of the im-

age �̄ along both axis.

IV. PERFORMANCE ANALYSIS

In this section, the proposed model is tested with both

simulated data and real data acquired from replicas of the

targets of interest. The targets are divided in two classes,

which are warhead and confusing object. Moreover, both

of them are divided in subclasses, which are associated to a

particular type of target. Specifically, the warhead class is

composed by two subclasses: cone and cone with triangular

fins at the base, which are replicas of warhead without and

with fins, respectively. Confusing object class, in contrast,

is divided in three subclasses: sphere, cone, and cylinder.

The conical warhead has a diameter d of 0.75 m and a

height h of 1 m, while the fin’s base bf is 0.20 m and the

height hf is 0.50 m, as shown in Fig. 10(a). The sizes of the

confusing objects are usually comparable with the dimen-

sions of the warheads in order to confuse the antimissile

radar system. Therefore, both the cylindrical and conical

objects are chosen to have a diameter and a height equal

to 0.75 and 1 m, respectively, while the sphere diameter is

1 m, as shown in Fig. 10(b).

In order to analyze the performance of the proposed

algorithm, three figures of merit are considered, which are

the Probability of correct Classification (PC), the Proba-

bility of correct Recognition (PR), and the Probability of

Unknown (PU ). The meaning of classification is the ability

to distinguish between the warhead class and the confus-

ing object class, while recognition means the capability to

identify the actual shape of the target within the warhead

and the confusing object class. Finally, PU is computed as

the ratio of the number of analyzed objects for which the
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Fig. 10. Dimensions of the replicas of the targets of interest. (a) Warheads. (b) Confusing objects.

classifier does not make a decision and the total number of

analyzed objects. A Monte Carlo approach is used in or-

der to calculate the mean of the three figures of merit over

several cases. Specifically, the means are evaluated over 50

different Monte Carlo runs in which all the available signals

are divided randomly into training or testing sets with 70%

used for training and 30% for testing. The k value of classi-

fier has to be chosen greater than 1 in order to consider the

unknown class; especially it is set to 3 for the ACVD and Ga-

bor filter based methods, while it is 5 for the pZ based one.

These two specific values of k are selected as they resulted

to provide the best performance for the three approaches.

The performance is shown for varying the signal to

noise power ratio (SNR) and observation time, which is

either 10, 5, or 2 s. Moreover, for both the pZ and the Gabor

filter methods, the dimension of the feature vector is also

varied. The spectrogram is computed using a Hamming

window with 75% overlap. The number of points for the

DFT computation Nbin is fixed for the ACVD approach,

whereas it is adaptively evaluated for the pZ and the Gabor

filter methods, in order to obtain a square representation of

the spectrogram. Specifically, in these cases Nbin is given

by

Nbin =
⌈

N − W overlap

W (1 − overlap)

⌉
(70)

where N is the number of signal samples, ⌈·⌉ represents

the smaller integer greater than or equal to the argument,

and overlap is the percentage of overlap expressed in the

interval [0, 1]. Finally, it is assumed that the effect of the

principal translation motion of the targets is compensated

before the signals are processed.

A. Simulated Data

The database for simulated data is composed of 105

realizations of the received signal for each target of interest,

obtained by considering 15 signals for 7 different values of

the elevation angle αE as follows:

αE = ε 15◦ with ε = 0, ..., 6 (71)

while the azimuth angle αA is set to 0◦. The initial phase of

the micromotions is taken randomly in uniform distribution

[0, 2π] and an additive white Gaussian noise is added to

each simulation.

Fig. 11(a) shows PC and PR for the ACVD-based feature

vector approach. It is clear that both of them increase as

the SNR increases, while showing a slight difference as

the signal’s duration varies. Moreover, PC and PR become

similar as the noise decreases. Observing Fig. 11(b), which

shows PU , it is noted that it is almost constant at about 0.1,

for all the values of SNR and signal duration considered.

Defining the probability of misclassification PM as

PM = 1 − PC − PU (72)

and since PC is slightly greater than 0.9 for SNR greater

than 0 dB, it is clear that PM decreases as the SNR increases,

becoming smaller than 10−2.

Fig. 12 shows the performance obtained by using the

pZ-based approach. In this case the dimension of the fea-

ture vector Q depends on the polynomial order which, in

turn, determines the number of pZ moments. Observing

Fig. 12(a), (b), (d), (e), (g), and (h), it is clear that the per-

formance generally improves as the signal’s duration and

the moments order increases. Moreover, for SNR greater

than 0 dB, the gap between PC and PR becomes negli-

gible as the moments order increases, and both of them
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Fig. 11. Performance of the ACVD-based feature vector approach for simulated data on varying the signal’s duration and the SNR.

(a) PC and PR . (b) PU .

reach probabilities of about 0.99 for order greater than 8.

Fig. 12(c), (f), and (i) represent the performance in terms of

PU . It is possible to observe that, for SNR greater than −5

dB, the performance generally improves as both signal du-

ration and moments order increase. For observation times

of 5 and 2 s, PU is smaller than 0.1, for orders greater than

4 and for all the noise levels; in contrast, for duration equal

to 10 s and for SNR of −10 dB, PU is about 0.1, while for

lower noise levels PU becomes smaller than 10−2 as the

order increases.

Fig. 13 shows PC , PR , and PU for the Gabor filter ap-

proach. For this approach, the dimension of feature vector

corresponds to the number of filters, which depends on

the orientation angular step θstep. Recall that the number of

features, Q is given by

Q = L

(⌈
π/2

θstep

⌉
+ 1

)
(73)

where θstep is the orientation angular step and L in the

number of central frequencies. The latter was fixed at four

values; 0.5, 1, 1.5, and 2. The value of θstep was set to be

an integer in the interval [3◦, 10◦]. In this way, an analysis

on varying the density of the considered positions of the

harmonic response on each circumference with radius equal

to fl is conducted. The values of the orientation angle, θm,

is given by

θm = mθstep (74)

with m = 0, . . . , M − 1 and where

M =
⌈

π/2

θstep

⌉
. (75)

From (74) and (75), it is important outlining that the features

are extracted moving the harmonic response of the filter

considering only the first quadrant, due to the symmetry of

the expected image for this application.

Fig. 13(a), (b), (d), (e), (g), and (h) show that PC and

PR are approximately equal, and for a signal duration of

2 s, they increase quickly, becoming greater than 0.98 for

SNR greater than −5 dB. For signal durations of 5 and

10 s, instead, PC and PR are greater than 0.98 for all the

considered values of SNR and Q. As shown in Fig. 13(c),

(f), and (i), PU is always smaller than 0.05. Finally it is

noted that the performance does not change significantly

when varying the feature vector dimension.

B. Real Data

Fig. 14 shows the experiment setup used to acquire the

real data. The real data was acquired from signals scattered

from targets of interest with a representative radar. Partic-

ularly, ten acquisitions of 10 s were made for each target

and for each of the possible nine pair of azimuth and ele-

vation angles formed using three values for both of them,

namely [0◦; 45◦; 90◦]. The acquisition of 10 s has been also

split into segments of 5 and 2 s for the analysis on the

signal duration. The parameters of the micromotions were

chosen as for simulated data, and the precession, nutation,

and wobbling were simulated using an ST robotic manip-

ulator R-17 and an added rotor [26], for both warheads

and confusing objects. As it can be noted from pictures

in Fig. 14, which shows the experiment setup, the robotic

arm is wrapped with anechoic material such that acquired

signals contain only the micro-Doppler from the targets.

The rotor is attached to the wrist of the robotic arm and

it is used to simulate the warhead spinning and confusing

objects wobbling. Moreover, by means of a synchronized

and perturbed rotation of robotic arm and the wrist, the

conical movement and nutation are simulated. It has to be

underlined that the trajectory of ballistic targets is not taken

into account in the experiment considering that the princi-

pal movement of the object is compensated. In this way, the

classification is based only on the micromotions of targets of

interest.

Fig. 15 represents an example of spectrogram of a war-

head with fins obtained by using both simulated and real

data. It is possible to note that the two spectrograms show

the same trend, where the precession leads to a modulation

of the maximum Doppler, which is due to the fins rotation.

A. PERSICO ET AL.: ON MODEL, ALGORITHMS, AND EXPERIMENT FOR MICRO-DOPPLER-BASED RECOGNITION 1099



Fig. 12. Performance of the pZ-based feature vector approach for simulated data; the analysis is conducted on varying the order, the signal’s

duration, and the SNR. (a) PC . (b) PR . (c) PU . (d) PC . (e) PR . (f) PU (g) PC . (h) PR . (i) PU .

Moreover, it is pointed out that the main differences be-

tween the simulated and the real case are due to the fact

that in the presented simulation model the RCS of the scat-

ters is not taken into account, and the initial phase of the

micromotions is random in both two cases. The perfor-

mance is evaluated by varying the signal duration and the

SNR, as for the simulated data. In addition, assuming that

the noise for the acquired signals in a controlled environ-

ment is negligible, the analysis on the SNR was conducted

by adding white Gaussian noise to the real data. Finally

before processing, the received signals are down-sampled

by a factor of 10.

Fig. 16(a) shows PC and PR , while Fig. 16(b) shows the

PU for the ACVD-based method. The performance trend

obtained in the previous section for the simulated data is

confirmed by the real data. In fact, both PC and PR increase

as the SNR increases; however, the effect of changing the

observation time is more evident in this case. Moreover, the

gap between the two figures of merit decreases as both the

duration of the signals time and the SNR increase. Observ-

ing Fig. 16(b), PU is almost constant for all analyzed cases

and it is smaller than 0.1.

Fig. 17 shows the results obtained by using the pZ-based

approach. Fig. 17(a), (b), (d), (e), (g), and (h) show that,

even on real data, PC and PR generally improves as the

moments order and the SNR increase. However, they both

decrease as the signal duration increases. In particular, this

trend is more evident for low values of SNR. Moreover, ob-
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Fig. 13. Performance of the Gabor Filter based feature vector approach for simulated data; the analysis is conducted on varying the number of

features Q, the signal’s duration, and the SNR. (a) PC . (b) PR . (c) PU . (d) PC . (e) PR . (f) PU . (g) PC . (h) PR . (i) PU .

serving Fig. 17(c), (f), and (i), it is clear that PU increases

as the observation time increases. The reason of this be-

havior seems likely to be due to the choice of the k-means

classifier. In fact, for greater values of the signal duration,

the feature vectors of a given class occupy a smaller re-

gion in the multidimensional space: then, it is more likely

that a feature vector under test is not close enough to be

classified as belonging to the correct class. A different clas-

sifier, less dependent on distances in the multidimensional

space might produce different results. Moreover, PU de-

creases as the SNR and the moments order increases. The

gap between PC and PR becomes smaller as the moments

order increases. However, unlike the performance obtained

on simulated data, the maximum value reached by the two

probabilities is around 0.90.

Fig. 18 shows the performance of the Gabor filter based

method. Observing Fig. 18(a), (b), (d), (e), (g), and (h),

it is clear that both PC and PR increase as the SNR and

observation time increase. In particular, for signal duration

of 5 s, both PC and PR are greater than 0.98 for SNR

greater than −10 dB; for duration equal to 10 s, instead,

PC is greater than 0.99 for the all analyzed cases. Finally,

the gap between the two probabilities decreases as the SNR

increases, and they tend to become equal for high values of

the SNR. Fig 18(c), (f), and (i) show PU versus Q, which

is clearly smaller than 0.05 for all the analyzed case, from
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Fig. 14. Experiment setup.

Fig. 15. Example of spectrogram obtained by a received signal from a warhead with fins. (a) Simulated data. (b) Real data.

Fig. 16. Performance of the ACVD-based feature vector approach for real data on varying the signal duration and the SNR. (a) PC and PR . (b) PU .

the results it is clear that higher is the SNR then higher are

the performance.

C. Performance in Presence of the Booster

The performance with real data was evaluated also in

the case in which the received signal was scattered from

an additional object different from warheads and confusing

objects. This analysis is of interest since, during the flight,

the missile releases some debris in addition to the confusing

objects, such as the booster used in the boost phase. As in

the case of confusing objects, when the booster has been

released by the missile, it starts to wobble, as shown in

Fig. 19(a). However, the booster rotation velocity is smaller

than the confusing objects’, while its dimensions are bigger.

In Fig. 19(b), the model used for the booster is shown. It
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Fig. 17. Performance of the pZ-based feature vector approach for real data; the analysis is conducted on varying the moments order, the signal

duration and the SNR. (a) PC . (b) PR . (c) PU . (d) PC . (e) PR . (f) PU . (g) PC . (h) PR . (i) PU .

is assumed that the booster has a cylindrical shape, whose

diameter and height are 0.75 and 5 m, respectively, with

triangular fins, whose base is 0.50 m and height is 1 m; the

wobbling velocity is one fifteenth of that of the confusing

objects.

This analysis is conducted by training the classifier with

feature vectors belonging to either warhead class or confus-

ing object class, and then by testing it on the booster feature

vector. Moreover, the performance is evaluated in terms of

PU , as defined above, and probability of misclassification

(Error) as a Warhead (PeW ), determined by the ratio of

the number of times in which the booster is classified as

a warhead and the total number of tests. Note, in this spe-

cific case, classifying the booster as unknown represents the

correct classification as there is no specific booster class.

Fig. 20 shows PU and PeW obtained by the ACVD-

based algorithm as the signal duration and the SNR are

varied. From Fig. 20 it is observed that even if PU increases

and, consequently, PeW decreases as the signal duration

increases, PeW remains greater than PU . Moreover, the per-

formance does not change significantly on varying the SNR.

Results obtained by using the pZ-Based approach are

shown in Fig. 21. Observing the figure it is clear that the

probability of classifying the booster as unknown increases

as the order grows up to 4, independently of the observation

length, where the maximum value is reached, and it is above

0.80 for SNR equal to 0 and 5 dB. Considering orders

greater than 4, PU remains constant for positive values of

SNR, while it significantly decreases for SNR smaller than

0 dB. However, for moments order of about 20, PU grows

as the SNR increases. It is noticed that PeW decreases as

the observation time increases for negative value of SNR,

while it increases for SNR greater than 0 dB. However, the

best results are obtained for positive values of the SNR and

for signal duration of 2 and 5 s, reaching probabilities of

error smaller than 0.20.

Finally, PU and PeW obtained for Gabor filter based

feature vector are shown in Fig. 22. From the figure, one can
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Fig. 18. Performance of the Gabor Filter based feature vector approach for real data; the analysis is conducted on varying the number of features Q,

the signal duration and the SNR. (a) PC . (b) PR . (c) PU . (d) PC . (e) PR . (f) PU . (g) PC . (h) PR . (i) PU .

Fig. 19. Representation of Booster. (a) Difference of movement respect with warhead. (b) Dimensions model.

1104 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 53, NO. 3 JUNE 2017



Fig. 20. Performance of the ACVD-based feature vector approach for

real unknown data (booster); the analysis is conducted on varying the

number of features Q, the signal duration and the SNR.

Fig. 21. Performance of the pZ-based feature vector approach for real

unknown data (booster); the analysis is conducted on varying the

moments order, the signal duration and the SNR. (a) PU . (b) PeW . (c)

PU . (d) PeW . (e) PU . (f) PeW .

deduce that the performance improves as the signal duration

and the SNR increase. In particular, the performance for the

signal duration of 2 s is not useful because PeW is always

greater than PU . However, for observation time of 5 s PU

becomes greater than PeW from SNR greater than −10 dB

reaching about 0.90 for highest values of SNR. Finally, for

signal duration equal to 10 s, PU is constantly greater than

0.90 independently of the values of the SNR and Q; on the

other hand, PeW is smaller than 10−2 for values of the SNR

greater than 0 dB.

Consequently it is clear that in the case of classifica-

tion of unknown objects which are not used to train the

classifier, such as the booster, the ACVD-based approach

Fig. 22. Performance of the Gabor Filter based feature vector approach

for real unknown data (booster); the analysis is conducted on varying the

number of features Q, the signal duration and the SNR. (a) PU . (b) PeW .

(c) PU . (d) PeW . (e) PU . (f) PeW .

does not guarantee satisfactory performance. The pZ-based

approach is able to give good performance for small signal

duration and for high SNR. Alternatively the Gabor filter

approach provided the optimum results for an observation

time of 5 s, for SNR greater than −10 dB, and of 10 s,

independently of the noise levels.

CONCLUSION

In this paper, the capability of micro-Doppler-based

recognition in the specific challenge of distinguishing be-

tween warheads and confusing objects has been evaluated.

A high frequency based model of a received radar signal

for the targets of interest has been presented, consider-

ing different scattering points and their occlusion effects

on time. This signal model has been used to simulate the

received signal from the targets on varying the elevation an-

gle. By using a CW radar, instead, a real database has been

obtained by acquiring signals scattered by replicas of the

targets of interest on varying both the elevation and the az-

imuth angles. Subsequently, a framework comprising three

different techniques for radar micro-Doppler classification

based on the CVD have been presented. The reliability of

these techniques has been demonstrated by testing them

both on simulated and real micro-Doppler data. The re-

sults have shown that, for both the two cases, all the three

approaches generally ensure a sufficient degree of correct

classification. Finally, an analysis on real unknown data has
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been conducted in order to test the presented methods also

in the case in which the feature vector under test does not

belong to one of the classes of interest, such as the booster

separated from warhead. Even in this case the results have

shown that for a sufficient observation time, the framework

is able to recognize the unknown target. Future work will

involve a study of the best micro-Doppler features for bal-

listic target classification in terms of computational cost and

reliability. A new model based classification algorithm will

be investigated that uses the proposed mathematical model

in this paper.
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