
On model-checking trees generated by higher-order recursion schemes

C.-H. L. Ong
Oxford University Computing Laboratory

Abstract

We prove that the modal mu-calculus model-checking
problem for (ranked and ordered) node-labelled trees that
are generated by order- recursion schemes (whether safe
or not, and whether homogeneously typed or not) is -
EXPTIME complete, for every . It follows that the
monadic second-order theories of these trees are decidable.

There are three major ingredients. The first is a certain
transference principle from the tree generated by the scheme
– the value tree – to an auxiliary computation tree, which is
itself a tree generated by a related order-0 recursion scheme
(equivalently, a regular tree). Using innocent game seman-
tics in the sense of Hyland and Ong, we establish a strong
correspondence between paths in the value tree and traver-
sals in the computation tree. This allows us to prove that a
given alternating parity tree automaton (APT) has an (ac-
cepting) run-tree over the value tree iff it has an (accept-
ing) traversal-tree over the computation tree. The second
ingredient is the simulation of an (accepting) traversal-tree
by a certain set of annotated paths over the computation
tree; we introduce traversal-simulating APT as a recognis-
ing device for the latter. Finally, for the complexity result,
we prove that traversal-simulating APT enjoy a succinct-
ness property: for deciding acceptance, it is enough to con-
sider run-trees that have a reduced branching factor. The
desired bound is then obtained by analysing the complexity
of solving an associated (finite) acceptance parity game.

1. Introduction

What classes of finitely-presentable infinite-state sys-
tems have decidable monadic second-order (MSO) theo-
ries? This is a basic problem in Computer-Aided Verifica-
tion that is important to practice because standard temporal
logics such as LTL, CTL and CTL are embeddable in MSO
logic. One of the best known examples of such a class are
the regular trees as studied by Rabin in 1969. A notable
advance occurred some fifteen years later, when Muller and

users.comlab.ox.ac.uk/luke.ong/index.html

Shupp [13] proved that the configuration graphs of push-
down systems have decidable MSO theories. In the 90’s,
as finite-state technologies matured, researchers embraced
the challenges of software verification. A highlight from
this period was Caucal’s result [5] that prefix-recognizable
graphs have decidable MSO theories. In 2002 a flurry of
discoveries significantly extended and unified earlier devel-
opments. In a FOSSACS’02 paper [11], Knapik, Niwiński
and Urzyczyn studied the infinite hierarchy of term-trees
generated by higher-order recursion schemes that are ho-
mogeneously typed and satisfy a syntactic constraint called
safety. They showed that for every , trees generated
by order- safe schemes are exactly those that are accepted
by order- pushdown automata; further they have decid-
able MSO theories. Later in the year at MFCS’02 [6], Cau-
cal introduced a tree hierarchy and a graph hierarchy that
are defined by mutual recursion, using a pair of powerful
transformations that preserve decidability of MSO theories.
Caucal’s tree hierarchy coincides with the hierarchy of trees
generated by higher-order pushdown automata.

Knapik et al. [11] have asked if the safety assumption is
really necessary for their MSO decidability result. A partial
answer has recently been obtained by Aehlig, de Miranda
and Ong; they showed at TLCA’05 [2] that all trees up to or-
der 2, whether safe or not, have decidable MSO theories. In-
dependently, Knapik, Niwiński, Urzyczyn and Walukiewicz
obtained a sharper result: they proved at ICALP’05 [12] that
the modal mu-calculus model-checking problem for trees
generated by order- recursion schemes (whether safe or
not) is -EXPTIME complete. In this paper we give a com-
plete answer to the question:

Theorem 1. The modal mu-calculus model-checking prob-
lem for trees generated by order- recursion schemes
(whether safe or not, and whether homogeneously typed or
not) is -EXPTIME complete, for every . Thus these
trees have decidable MSO theories.

Our approach is to transfer the algorithmic analysis from
the tree generated by a recursion scheme, which we call
value tree, to an auxiliary computation tree, which is it-
self a tree generated by a related order-0 recursion scheme
(equivalently, a regular tree). The computation tree recov-
ers useful intensional information about the computational

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06)
0-7695-2631-4/06 $20.00 © 2006

process behind the construction of the value tree. Using in-
nocent game semantics [9], we then establish a strong cor-
respondence (Theorem 3) between paths in the value tree
and (what we call) traversals over the computation tree. In
the language of game semantics, paths in the value tree cor-
respond exactly to plays in the strategy-denotation of the re-
cursion scheme; a traversal is then (a representation of) the
uncovering of such a play. The path-traversal correspon-
dence allows us to prove that a given alternating parity tree
automaton (APT) has an accepting run-tree over the value
tree if and only if it has an accepting traversal-tree over the
computation tree (Corollary 4).

Our problem is then reduced to finding an effective way
of recognising a set of infinite traversals (over a given com-
putation tree) that satisfy the parity condition. This requires
a new idea as a traversal is most unlike a path; it can jump
all over the tree and may even visit certain nodes infinitely
often. Our solution exploits the game-semantic connection.
It is a property of traversals that their P-views are paths (in
the computation tree). This allows us to simulate a traver-
sal over a computation tree by (the P-views of its prefixes,
which are) annotated paths of a certain kind in the same tree.
The simulation is made precise in the notion of traversal-
simulating APT. We establish the correctness of the sim-
ulation by proving that a given property1 APT has an ac-
cepting traversal-tree over the computation tree if and only
if the associated traversal-simulating APT has an accept-
ing run-tree over the computation tree (Theorem 5). Note
that decidability of the modal mu-calculus model-checking
problem for trees generated by recursion schemes follows
at once since computation trees are regular, and the APT
acceptance problem for regular trees is decidable.

To prove -EXPTIME completeness of the decision
problem, we first establish a certain succinctness property
(Proposition 6) for traversal-simulating APT: if a traversal-
simulating APT has an accepting run-tree, then it has one
with a reduced branching factor. The desired time bound is
then obtained by analysing the complexity of solving an as-
sociated (finite) acceptance parity game, which is an appro-
priate product of the traversal-simulating APT and a finite
deterministic graph that unfolds to the computation tree in
question.

Using a novel finitary semantics of the lambda calculus,
Aehlig [3] has shown that model-checking trees generated
by recursion schemes (whether safe or not) against all prop-
erties expressible by non-deterministic tree automata with
the trivial acceptance condition is decidable (i.e. acceptance
simply means that the automaton has a run-tree).

This paper is an extended abstract. The reader is directed
to the preprint [14] for further details, including proofs.

1Property APT because the APT corresponds to the property described
by a given modal mu-calculus formula.

2. Preliminaries

Types are generated from the base type using the ar-
row constructor . Every type can be written uniquely
as (arrows associate to the right),
for some which is called its arity; we shall of-
ten write simply as . We define the or-
der of a type by: and

. Let be a ranked alphabet
i.e. each -symbol has an arity which deter-
mines its type . Further we shall assume that

each symbol is assigned a finite set of exactly
directions, and we define .

Let be a set of directions; a -tree is just a prefix-closed
subset of , the free monoid of . A -labelled tree is a
function such that is a -
tree, and for every node , the -symbol
has arity if and only if has exactly children and the set
of its children is i.e. is a ranked2

tree. Henceforth we shall assume that the ranked alphabet
contains a distinguished nullary symbol which will be

used exclusively to label “undefined” nodes.
Note. We write as a shorthand for .

Henceforth we fix a ranked alphabet for the rest of
the paper, and set for each ;
hence we have , writing to mean

.
For each type , we assume an infinite collection

of variables of type , and write to be the union of
as ranges over types. A (deterministic) recursion

scheme is a tuple where is a ranked
alphabet of terminals; is a set of typed non-terminals;

is a distinguished start symbol of type ; is a
finite set of rewrite rules – one for each non-terminal

– of the form

where each is in , and is an applicative term3 of
type constructed from elements of .
The order of a recursion scheme is the highest order of its
non-terminals.

We use recursion schemes as generators of -labelled
trees. The value tree of (or the tree generated by) a recur-
sion scheme is a possibly infinite applicative term, but
viewed as a -labelled tree, constructed from the terminals

2In the sequel, we shall have occasions to consider unordered trees
whose nodes are labelled by symbols of an unranked alphabet . To avoid
confusion, we shall call these trees -labelled unranked trees.

3Applicative terms are terms constructed from the generators using the
application rule: if and then . Standardly we
identify finite -labelled trees with applicative terms of type generated
from -symbols endowed with 1st-order types as given by their arities.

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06)
0-7695-2631-4/06 $20.00 © 2006

in , that is obtained by unfolding the rewrite rules of ad
infinitum, replacing formal by actual parameters each time,
starting from the start symbol .

Example 2.1 (Running). [The simple recursion scheme
defined here will be used to illustrate various concepts
throughout the paper.] Let be the order-2 (unsafe) re-
cursion scheme with rewrite rules:

where the arities of the terminals are respec-
tively. The value tree is the -labelled tree defined by
the infinite term :

...

The only infinite path in the tree is the node-sequence
(with the corresponding trace

).

This paper is concerned with the decision problem:
Given a modal mu-calculus formula and an order- re-
cursion scheme , does satisfy (at)? The problem
is equivalent [7] to deciding whether a given alternating par-
ity tree automaton has an accepting run-tree over . To
fix notation, an alternating parity tree automaton (or APT
for short) over -labelled trees is a tuple
where is the input ranked alphabet, is a finite state-set,

is the initial state, is
the transition function whereby for each and ,
we have where is the
set of positive boolean formulas over elements of , and

is the priority function.

3. Computation trees and traversals

The long transform, , of a recursion scheme is an
order-0 recursion scheme. Its rules are obtained from those
of by applying the following four-stage transformation in
turn. For each -rule:

1. Expand the RHS to its -long form: We hereditarily -
expand every subterm – even if it is of ground type so
that expands to – provided it is the operand
of an occurrence of the application operator.

2. Insert long-apply symbols @ : Replace each ground-
type subterm by @ where

.

3. Curry the rewrite rule. I.e. transform the rule
to .

4. Rename bound variables afresh.

is an order-0 recursion scheme with respect to an en-
larged ranked alphabet , which is augmented by cer-
tain variables and lambdas (of the form which is a short
hand for where) but regarded as terminals.
The alphabet is a finite subset of the set

@ ATypes

Non-lambdas Lambdas

where ATypes is the set of types of the shape
with . Symbols in

are ranked as follows. A symbol
from has arity . The long-apply @ where

has arity .
Lambdas have arity 1. Further, for , we define

@ if @
otherwise

For technical convenience, the leftmost child of an @-node
is its 0-child, but for all other nodes, the leftmost child is
the 1-child. The non-terminals of are exactly those of

, except that they are all of type . We can now define
the computation tree4 to be . Thus is the

-labelled (ranked and ordered) tree that is obtained by
unfolding the -rules ad infinitum (note that no “ -redex”
is contracted in the process).

Example 3.1. Let be as defined in Example 2.1. We
present its long transform as follows and the computation
tree in Figure 1.

@
@

@

In Figure 1, for ease of reference, we give nodes of
numeric names (in square-brackets).

We define a family of binary relations , where
, between nodes of a computation tree , called

enabling, as follows:

Every lambda-labelled node , that is the -child of its
parent node , is -enabled by .

A variable node (labelled , say) is -enabled by
its binder, which is defined to be the largest prefix of

that is labelled by a lambda , for some list
in which occurs as the -element.

4In recent work on deciding higher-order matching [15], Colin Stirling
has introduced property checking game over a kind of trees determined by
lambda terms. His trees are exactly the same as our computation trees.

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06)
0-7695-2631-4/06 $20.00 © 2006

@

@

@

...

Figure 1. An order-2 computation tree.

We say that is enabled by just if is -enabled by , for
some (necessarily unique) . A node of is initial if it is
not enabled by any node. The initial nodes of a computation
tree are the root node and all nodes labelled by a long-apply
or -symbol. A justified sequence over is a possibly
infinite, lambda / non-lambda alternating sequence of nodes
that satisfies the pointer condition: Each non-initial node
that occurs in it has a pointer to some earlier occurrence of
the node that enables it.

Notation means that points to and
is -enabled by . We say that is -justified by in

the justified sequence.

The notion of view (of a justified sequence) and the con-
dition of Visibility were first introduced in game semantics
[9]. Intuitively the P-view of a justified sequence is a certain
subsequence consisting of moves which player P considers
relevant for determining his next move in the play. In the
setting here, the lambda nodes are the O-moves, and the
non-lambda moves are the P-moves.

The P-view, , of a justified sequence is a subse-
quence defined by recursion as follows: we let range over

non-lambda nodes

In the second clause above, suppose the non-lambda node
points to some node-occurrence (say) in ; if appears

in , then in is defined to point to ; oth-
erwise has no pointer; similarly for the third clause. We
say that a justified sequence satisfies P-visibility just in
case every non-initial non-lambda node that occurs in the
sequence points to some (necessarily lambda) node that ap-
pears in the P-view at that point.

Definition 3.2. Traversals over a computation tree
are justified sequences defined by induction over the fol-
lowing rules. In the following, we refer to nodes of
by their labels, and we let range over non-lambda nodes.

(Root) The singleton sequence, comprising the root node
of , is a traversal.

(App) If @ is a traversal, so is @ .

(Sig) If is a traversal, so is for each
with

(Var) If is a traversal, so is

.

(Lam) If is a traversal and is a path in ,
then is a traversal.

Thus the way that a traversal can grow is deterministic (and
determined by), except when the last node in the jus-
tified sequence is a -symbol of arity , in which
case, the traversal can grow in one of possible directions
in the next step.

Lemma 2. Traversals are well-defined justified sequences
that satisfy P-visibility (and O-visibility). Further, the P-
view of a traversal is a path in the computation tree.

Example 3.3. The following are maximal traversals (point-
ers omitted) over the computation tree shown in Figure 1:

The preceding traversals have the same P-view, namely,
. The P-view of (i.e. the prefix of the 2nd

traversal above that ends in 16) is .

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06)
0-7695-2631-4/06 $20.00 © 2006

We state an important result that underpins our approach.

Theorem 3. Let be a recursion scheme. There is a one-
one correspondence, , between maximal paths in
the value tree and maximal traversals over the com-
putation tree . Further for every maximal path in

, we have , where denotes
the subsequence of consisting of only -symbols with

.

Using the language of game semantics, we are claiming
(in the Theorem) that the traversal is (a representation of)
the uncovering of the path viewed as a play. The proof is
by innocent game semantics [9].

Example 3.4. To illustrate Theorem 3, consider the compu-
tation tree in Figure 1. The two (maximal) traversals over

given in Example 3.3 correspond respectively to the
(maximal) paths and in . The traversal

corresponds to the path .

Relative to a property APT over -
labelled trees, an (accepting) traversal-tree of over
plays the same rôle as an (accepting) run-tree of over

. A path in a traversal-tree is a traversal in which each
node is annotated by an element of . Formally, we have:

Definition 3.5. A traversal-tree of a property APT over
a -labelled tree is a -labelled
unranked tree , satisfying

, and for every with
:

If is an @, then .

If is a -symbol , then there is some
such that satisfies – and we pick

the smallest such ; and for each , there
is some , such that

.

If is a variable, and is -justified by with
for some and , then

where .

or @

Note that is a lambda node that is -justified by
which is labelled by either an @-symbol or a variable.

If is a lambda, then .

@

@

@

...

Figure 2. A traversal-tree of an APT over .

A traversal-tree is accepting if all infinite traces
through it satisfy the parity

condition, namely, is even.

It follows from the definition that (the element-wise first-
projection of) every trace of a traversal-tree is a traversal
over the computation tree.

Example 3.6. Take as defined in Example 2.1. Consider
an APT over -labelled trees with state-set
where is the initial state, and states 1 and 2 have priorities
1 and 2 respectively. The transition map

is defined as follows:

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06)
0-7695-2631-4/06 $20.00 © 2006

In Figure 2, we present a traversal-tree of over .

We state a straightforward consequence of Theorem 3:

Corollary 4. There is a one-one correspondence between

(i) accepting run-trees of over

(ii) accepting traversal-trees of over .

Our task is therefore reduced to that of effectively recog-
nising accepting traversal-trees.

4. The traversal-simulating APT

An informal explanation

We want to find a device that can recognise accepting
traversal-trees of a property APT over a computation tree.
This is far from trivial since a traversal can jump all over
the tree and may even visit some nodes infinitely often. Our
idea is to exploit Lemma 2: The P-view of a traversal is a
path. Thus a maximal traversal can be simulated by the set
of P-views of all its finite prefixes. The challenge is then to
define an alternating parity automaton (which we will call
traversal-simulating in order to distinguish it from the prop-
erty APT) that recognises precisely the set of paths of the
computation tree that simulate an accepting traversal-tree
of .

Fix a property APT with pri-
orities. Suppose a traversal jumps from a node labelled
with simulating state to a subtree (denoting the ac-
tual parameter of that formal parameter) rooted at a node
labelled ; suppose it subsequently exits the subtree
through with simulating state , and rejoins the original
subtree through the first -child of the -labelled node, as
follows:

...

@

...
...

...

...
...

We simulate the traversal by paths in the computation
tree, making appropriate guesses, which will need to be ver-
ified subsequently:

When reading the node with simulating state , the
automaton, having guessed that the jump to will
eventually return to the 1-child of the node with sim-
ulating state , descends in direction 1.

In order to verify the guess, an automaton is spawn
to read the root of the subtree that denotes the actual
parameter of (i.e. the node labelled by).

At a node that is labelled by @, in addition to the
main simulating automaton that descends in the direction
of the leftmost child labelled by (say), we guess,
for each variable in the list of formal parameters

, a number of quadruples of the shape ,
which we call profiles for , where

is the state that is simulated when a -labelled
node (a descendent of) is encountered by the de-
scending automaton, simulating the traversal

is the maximal priority that will have been
seen at that point, since reading the node labelled by

The interface , which is a subset of VP ,
where VP is the set of profiles of variables of type

occurring in with respect to the property APT
, captures the manner in which the traversal, which

now jumps to a neighbouring subtree denoting the ac-
tual parameter of , will eventually return to the chil-
dren of the -labelled node (i.e. with what simulating
state, and through which child of).

Formal definition

Henceforth we fix a recursion scheme and its associated
computation tree , and fix a property APT

with priorities, over -labelled trees. Let be the (fi-
nite) set of variables of type that occur as labels in .

Definition 4.1. (i) The set VP of profiles for variables
of type in relative to are defined as follows:

VP VP

If , we have VP .
For every variable that occurs as a label in ,
we write VP for the set of profiles for . Take
any VP ; we shall refer to as the
priority and the interface of the profile respectively.

(ii) An active profile is a pair where is a profile and
. The boolean value is the answer to the question:

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06)
0-7695-2631-4/06 $20.00 © 2006

“Is the highest priority seen thus far (since the creation of
the active profile) equal to ?” An environment is a set of
active profiles for variables that occur as labels in .

Notations. Take an active profile . For any pri-
ority , we define an update function of :

[=] if
undefined otherwise

where [=] denotes the Boolean value of the equality test
“ ”. For any profile , we define (by abuse of
notation) to be . Let be an environment. We define

by point-wise extension i.e. we say that is defined
just if is defined for all active profiles , and is
equal to .

Definition 4.2. The auxiliary traversal-simulating alter-
nating parity automaton (w.r.t.) over -labelled trees
is given by where con-
sists of pairs and triples such that is the

-state being simulated – called the simulating state, is
an environment, and is a variable profile; the pair is
the initial state. The priority of a -state, or -priority, is
defined by cases:

where is the priority of .

Given a -state or , we say that its -priority
is .

Definition of the transition function

The automaton starts by reading the root node of
with the initial state . Rather than giving the positive
Boolean formula for each and , we
describe the action of the automaton with state or

reading a node of the computation tree, by a case
analysis of .

Cases of the label :

Case 1: is a -symbol of arity , and .

If is not satisfiable, the au-
tomaton aborts; otherwise, guess a satisfying set, say

where (with iff), and guess environ-
ments , such that

(1)

Spawn automata with states

in directions respectively provided is
defined for all , otherwise the automaton aborts.

Note. In case the arity , since
and , we have is either true or false. If
the former, note that true is satisfied by the every set in

, namely ; it follows that equation (1) can only
be satisfied provided .

Case 2: is a variable where ,
and .

We check that has the shape for some in-
terface and such that ; otherwise
the automaton aborts. Suppose

for some (with iff). (In case is order
2 or higher, we may assume that so that we have

.)
Guess to be one of or . For each

, guess distinct environments with
, such that

(2)

For each and each , spawn an
automaton with -state

in direction , provided is de-
fined for all and , otherwise the automaton aborts.

Note. If is order 0, the interface in is necessarily empty
(i.e.). Thus, for equation (2) to hold, we must have

; it follows that we must have .

Case 3: is @ of type
where , and .

Guess a set of profiles VP and
spawn an automaton with state in direction ,
with

(say) where (with iff). Note that
. For each , guess distinct environments

with such that

(3)

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06)
0-7695-2631-4/06 $20.00 © 2006

For each and , spawn an automaton
with -state

in direction , provided is de-
fined for all and , otherwise the automaton aborts.

Case 4: is a lambda, with state or .

Spawn an automaton in direction with -state where
for some if the guess is that the label of

the child node is a variable, otherwise .

Example 4.3. Take the computation tree and the
property APT as defined in Example 3.6. In Table 1 we
give an initial part of an (accepting) run-tree of the corre-
sponding traversal-simulating APT . We shall see in the
sequel that the run-tree is a simulation (in the sense of The-
orem 5) of the traversal-tree in Figure 2.

5. Correctness of the simulation

For the rest of the paper, we shall fix a recursion scheme
and an associated computation tree . We shall also

fix a property APT over -labelled
trees, and write as the associated traversal-simulating
APT over -labelled trees. Our notion of simulation is
correct, in the following sense:

Theorem 5. The following are equivalent:

(i) There is an accepting traversal-tree of over .

(ii) There is an accepting run-tree of over .

Since is a regular tree, an immediate corollary of
the Theorem is that the modal mu-calculus model-checking
problem for trees generated by arbitrary recursion schemes
is decidable. In this Section we briefly sketch a proof of the
Theorem.

From traversal-trees of to run-trees of

Suppose there is an accepting traversal-tree t of the property
APT over . Recall that t is a -
labelled unranked tree. We first perform a succession of
annotation operations on t, transforming it eventually to a

-labelled unranked tree t, which has the
same underlying tree as t i.e. t t . We then
show that the set of P-views of traces of t gives an accepting
run-tree of the traversal-simulating APT .

Run-trees of a traversal-simulating APT can have a
rather large (though necessarily bounded) branching factor.
Fortunately we can prove a kind of succinctness result: We
show that if a traversal-simulating APT has an accepting
run-tree, then it has a “narrow” accepting run-tree in the
sense that it has a reduced branching factor.

Definition 5.1. A narrow run-tree of a traversal-simulating
APT is a run-tree satisfying the rules of Definition 4.2
except that in (2) of Case 2, for each , we guess
exactly one environment (so that) such
that ; similarly in (3) of Case 3. (Note that a
narrow run-tree of is a fortiori a run-tree of in the sense
of Definition 4.2.)

Proposition 6. If the traversal-simulating APT has an ac-
cepting run-tree then it has one that is narrow. The branch-
ing factor of a narrow run-tree is bounded above by the
number of distinct variable profiles.

From run-trees of to traversal-trees of

Take an accepting run-tree r of over . We
first construct an annotated traversal-tree t, which is a

-labelled unranked tree. Let t be the
-labelled unranked tree that is obtained

from t by replacing the -state that annotates each node by
the -state that is simulated. It is straightforward to show
that t is a traversal-tree of over ; the tricky part is
to prove that t is accepting, which follows from:

Proposition 7. Every infinite path in the traversal-tree
t determines an infinite path in the accepting run-tree
r such that the highest -priority that occurs infinitely of-
ten in the former coincides with the highest -priority that
occurs infinitely often in the latter.

To prove the Proposition, we first need to construct
from a given . Note that an infinite path in t is just an
infinite (-state annotated) traversal in . We define a
binary relation over prefixes of a traversal , called view
order, as follows. Let . We say that just in
case is a prefix of , and l – the last node of – and
hence every node in the P-view of , appear in the P-view
of . (Note that the last clause implies, but is not implied
by, .)

An infinite strictly-increasing (w.r.t. prefix ordering) se-
quence of prefixes of , namely , is
called a spinal decomposition of just if

(i) , and

(ii) (means length)

We set in the above Proposition to be the infinite path
in defined by the infinite strictly-increasing sequence

, which we call the (associated)
spine of the spinal decomposition. (Note that neither (i) nor
(ii) above is a consequence of the other.)

Lemma 8. (i) The highest -priority that occurs in-
finitely often in coincides with the highest -priority
that occurs infinitely often in .

(ii) Every infinite traversal has a spinal decomposition.

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06)
0-7695-2631-4/06 $20.00 © 2006

@

@

@

...

Shorthand notation: .

Table 1. A run-tree of the traversal-simulating APT associated with the property APT in Example 3.6.

6. Complexity analysis

We briefly sketch a proof that the modal mu-calculus
model-checking problem for trees generated by order-

recursion scheme is -EXPTIME complete. The -
EXPTIME hardness of the problem follows from Cachat’s
result [4] that the (sub)problem of model-checking trees
generated by safe order- recursion schemes is -
EXPTIME hard. We prove -EXPTIME decidability
by analysing the complexity of solving an associated
acceptance parity game G , which is an ap-
propriate product of the traversal-simulating APT

and a (finite) -labelled determin-
istic directed graph

which unfolds to the -labelled computation tree .
The graph has root , and is the vertex-labelling
function; it is ranked in the sense that the edge-set

, where each is a partial func-
tion such that is well-defined for each and

.
For each and , we write

.

Definition 6.1. The underlying digraph of the acceptance
parity game G has two kinds of vertices. A-
Vertices (A for Abelard) are sets of the form , with

and ; and E-Vertices (E for Eloise)
are pairs of the form with and . The
source vertex is the E-vertex . The edges are defined
as follows.

For each A-vertex , and for each ,
there is an edge from to .

For each E-vertex , and for each
such that satisfies ,

there is an edge from to .

The priority map is defined by cases as follows:

A play is a (possibly infinite) path in G of the
form . (For ease of
reading, we use as item separator in the sequence.)

Eloise resolves the E-vertices, and Abelard the A-
vertices. If the play is finite and the last vertex is an A-
vertex (respectively E-vertex) which is terminal, Eloise (re-

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06)
0-7695-2631-4/06 $20.00 © 2006

spectively Abelard) is said to win the play. If the play is in-
finite, Eloise wins just if the maximum that occurs infinitely
often in the following numeric sequence is even.

Proposition 9. Eloise has a (history-free) winning strat-
egy in the acceptance parity game G iff the
traversal-simulating APT accepts the -labelled com-
putation tree , which is the unfolding of .

Let be an order- recursion scheme and take a prop-
erty APT as before. For we define VP to be the
union of sets of the form VP , as ranges over order-
types that occur in . It follows from the definition of vari-
able profiles that VP where

is a measure of the recursion scheme , is the num-
ber of elements of , and is the tower-of-exponentials
function of height . Next we set VP
and Env . It follows that

and Env
Finally, as Env Env , we
have .

We appeal to a result due to Jurdziński [10]:

Theorem 10 (Jurdziński). The winning region of Eloise and
her winning strategy in a parity game with vertices and

edges and priorities can be computed in time

Suppose the parity acceptance game G has
vertex-set and edge-set . The A-vertices of the game
are sets of the form , where
and ranges over nodes of . Thanks to the nar-
rowing transform (see Proposition 6), it is enough to re-
strict to subsets of that have size at
most . This gives a tighter upper bound on the
number of A-vertices of the game, namely,

. It follows that
. Since is at most , time com-

plexity for solving G is

. Thus5 we have:

Theorem 11. The acceptance parity game G
can be solved in time .

7 Further directions

Does safety constrain expressiveness? This is the most
pressing open problem. Despite [1], we conjecture that
there are inherently unsafe trees. I.e.

5Though (as far as we know) Jurdziński’s bound is the sharpest to date,
a relatively coarse time complexity of (based on an early result of
Emerson and Lei [8]) is all that we need to prove Theorem 11.

Conjecture 12. There is an unsafe recursion scheme whose
value tree is not the value tree of any safe recursion scheme.

Higher-order pushdown automata (PDA) characterize
safe term-trees. A variant class of higher-order PDA with
links (in the sense of [1]), which we call collapsible PDA,
characterize trees generated by arbitrary higher-order recur-
sion schemes. This work will be reported elsewhere.

What is the corresponding hierarchy of graphs generated
by high-order recursion schemes? Are their MSO theories
decidable?

We would like to develop further the pleasing mix of Se-
mantics (games) and Verification (games) in the paper. A
specific project, pace [3], is to give a denotational seman-
tics of the lambda calculus “relative to an APT”. More gen-
erally, construct a cartesian closed category, parameterized
by APTs, whose maps are witnessed by the variable profiles
(or “guesses” in Definition 4.1).

References

[1] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not
a restriction at level 2 for string languages. In Proc. FOS-
SACS’05, pp. 490–501, 2005. LNCS 3411

[2] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. The monadic
second order theory of trees given by arbitrary level two re-
cursion schemes is decidable. In Proc. TLCA’05, pp. 39–54,
2005. LNCS 3461

[3] K. Aehlig. A finite semantics of simply-typed lambda terms
for infinite runs of automata. Submitted. 2006

[4] T. Cachat. Higher order pushdown automata, the Caucal
hierarchy of graphs and parity games. In Proc. ICALP’03,
pp. 556–569, 2003. LNCS 2719

[5] D. Caucal. On infinite transition graphs having a decidable
monadic theory. In Proc. ICALP’96, pp. 194–205. 1996.

[6] D. Caucal. On infinite terms having a decidable monadic
theory. In Proc. MFCS’02, pp. 165–176, 2002. LNCS 2420

[7] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus
and determinacy. In Proc. FOCS’91, pp. 368–377, 1991.

[8] E. A. Emerson and C. Lei. Efficient model checking in
fragments of propositional mu-calculus. In Proc. LICS’86,
pp. 267–278, 1986.

[9] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for
PCF: I, II & III. Info. & Comp., 163:285–408, 2000.

[10] M. Jurdziński. Small progress measures for solving parity
games. In Proc. STACS, pp. 290–301, 2000. LNCS 1770

[11] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order
pushdown trees are easy. In Proc. FOSSACS’02, pp. 205–
222, 2002. LNCS Vol. 2303

[12] T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz.
Unsafe grammars and panic automata. In Proc. ICALP’05,
pp. 1450–1461. 2005. LNCS 3580

[13] D. E. Muller and P. E. Schupp. The theory of ends, pushdown
automata, and second-order logic. TCS, 37:51–75, 1985.

[14] C.-H. L. Ong. On model-checking trees generated by
higher-order recursion schemes. Preprint, 42 pp. 2006.
http://users.comlab.ox.ac.uk/luke.ong/
publications/ntrees.ps

[15] C. Stirling. A game-theoretic approach to deciding higher-
order matching. In Proc. ICALP06, LNCS, 2006. To appear.

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06)
0-7695-2631-4/06 $20.00 © 2006

