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Abstract— Model complexity control and regularization play
a crucial role in statistical learning theory and also for problems
in system identification. This text discusses the potential of
the issue of regularization in identification of Hammerstein
systems in the context of primal-dual kernel machines and Least
Squares Support Vector Machines (LS-SVMs) and proposes an
extension of the Hammerstein class to finite order Volterra
series and methods resulting in structure detection.
keywords: Identification, Hammerstein Systems, Model com-
plexity and regularization, Kernel Methods

I. INTRODUCTION

A. Identification of Hammerstein models

Hammerstein models consist of a sequence of a static
nonlinear function and a linear dynamic submodel and pro-
vide a useful compromise between the sometimes conflicting
requirements of flexibility of general nonlinear dynamic
systems and the interpretability of linear dynamic systems.
Most identification procedures for this model class can
be classified as a statistical averaging method [10] or a
method based on the over-parameterization technique [2].
Classical techniques often rely on basis-function expansions
[15] mostly stressing the property of consistency [23].

Recently, applications of the primal-dual kernel machine
framework were proposed towards the identification of Ham-
merstein models based on a linear ARX model [7] and a
state-space model [8] in combination with subspace iden-
tification techniques. This paper extends those results by
investigation of the role of regularization in the approach and
elaboration of an alternative to the property of consistency
in the form of the bias-variance trade-off for Hammerstein
models. A further result is found in the definition and study
of the class of generalized Hammerstein models not only ex-
tending the Hammerstein class but also containing the class
of finite Volterra series. To make the approach practically
workable, a relationship between model complexity control,
model order and model class selection is proposed analogous
to common techniques in statistical inference and machine
learning, see e.g. [12].

B. Regularization in system identification

A classical qualification of an estimator θ̂ ∈ Θ of a
parameter θ contained in the set Θ based on a set of
observations {(ut, yt)}

T
t=1 is the property whether it is

consistent, i.e. limT→∞ θ̂ = θ. It was argued in [28] that
this qualification is less relevant in predictive settings based
on a finite number of observations where the only goal is

to make predictions with minimal theoretical risk. Statistical
learning theory studies whether this can be obtained based
on an estimator minimizing the empirical risk. Especially in
the context of nonlinear models, the task of recovering the
(parameters of the) true model is much more involved than
the subtask of prediction, see e.g. [28].

The focus of the analysis of nonlinear estimators shifts
more towards the issue of appropriate model complexity
control or regularization. Intuitively, one restricts here the
solution-space explicitly or implicitly in order to obtain
increased generalization. In order to obtain model complexity
control in the context of parametric components, one may
restrict the parameter-space to a ball with pre-specified radius
[11], [26]. In the context of non-parametric models, one
may impose smoothness constraints on the estimated output
as e.g. in the case of smoothing splines [29]. A classical
way to analyze the properties of estimators based on a
finite number of observations and which include a form of
regularization is found in the decomposition of the theoretical
risk of all predictions, also referred to as the Total Mean
Squared Error (TMSE). As classically, attention is restricted
towards the risk of the estimator evaluated at the observed
input observations [13]. Let Y ∗ ∈ R

T denote the true
outputs at the sampling points and let Ŷ ∈ R

T denote the
estimated (smoothed) outputs. Then the TMSE discretized to
the observed observations can be decomposed as follows

E
[
Ŷ − Y ∗

]2

= E
[
Ŷ − E(Ŷ )

]2

+E
[
E(Ŷ ) − Y ∗

]2

, (1)

with the right hand-side respectively denoting as the bias and
the variance of the estimator.

This paper is organized as follows. Section II studies
the general issue of identification of Hammerstein models
using primal-dual kernel machines and different measures
of model complexity control. Section III then proceeds with
broadening the class of Hammerstein models. Section IV
establishes a connection between model order selection and
complexity control. Section V presents an example of the
methods.

II. IDENTIFICATION OF HAMMERSTEIN MODELS

Given a sequence of observations {(ut, yt)}
T
t=1 ⊂ R

D×R,
the observations satisfy a Hammerstein model with an Auto-
Regressive dynamic system with eXogenous inputs (ARX)
when the following equalities hold. Let p = max(M, N)+1
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and Tp = T − p + 1.

yt =

M∑
m=1

amyt−m +

N∑
n=1

bnf (ut−n+1) + et, (2)

for all t = p, . . . , T and assume e = (ep, . . . , eT )T ∈ R
T−p

are i.i.d. error terms. Let in general a model complexity of
a nonlinear function f be denoted as C(f) and of the linear
dynamic model with parameters a, b as C(a, b). The general
estimation of the Hammerstein model subject to various
complexity constraints then amounts to solving

(â, b̂, f̂ , ê) = argmin
a,b,f,e

J�,ς(e) =
1

2
‖e‖2

2

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C(f) ≤ � (a)

C(a, b) ≤ ς (b)

yt =
∑M

m=1 amyt−m

+
∑N

n=1 bnf (ut−n+1) + et ∀t, (c)

(3)

where a = (a1, . . . , aM )T ∈ R
M , b = (b1, . . . , bN )T ∈ R

N

be vectors.

A. Controlling the model complexity of the nonlinear model

We hereby assume that the reader is somewhat familiar
with the LS-SVM based approach to Hammerstein identifi-
cation as reported in [7]. This framework enables the use
of various regularization mechanisms. The following regu-
larization method is prototypical. Let the nonlinear function
f : R

D → R be approximated as f(u) = wT ϕ(u) where
ϕ : R

D → R
Dϕ , the vector of parameters w ∈ R

Dϕ and
Dϕ ∈ N0. Controlling the model complexity then amounts
to finding a ρ > 0 such that

C(f) �
1

2
‖w‖2

2 s.t. f(u) = wT ϕ(u) + u, (4)

which quantifies the distance of the fit f with the identical
function f(u) = u. The classical over-parameterization tech-
nique as adopted in [7] then amounts to replacing the cross-
products bnf by a new set of functions {fn : R

D → R}N
n=1

(the over-parameterization step), leading to the modified
model complexity definition

C(f) �
1

2

N∑
n=1

‖wn‖
2
2 s.t. f(u) =

N∑
n=1

wT
n ϕ(u)+bnu.

(5)

The constrained optimization problem becomes

(â, b̂, ŵn, ê) = argmin
a,b,w,e

J�(e) = ‖e‖2
2

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

∑N
n=1 wT

n wn ≤ � (a)

yt =
∑M

m=1 amyt−m +
∑N

n=1 bnut

+wT
n ϕ (ut−n) + et ∀t = p, . . . , T (b)

bnwT ϕ(ut) = wT
n ϕ(ut), ∀t = p, . . . , T. (c)

(6)

where the constraints (6.c) are referred to as collinearity
constraints which are known to be hard to be imposed.

The typical procedure then is to solve a broader problem
by omitting those and consequently project the estimated
system onto the Hammerstein model class. We focus here
on the former step. Let YM ∈ R

Tp×M and YM ∈ R
Tp×N

be vectors defined as YM,tm = yt−M+m−1 and UN,tn =
ut−N+n−1 respectively. Let the matrix X be defined as
X = [UM YN ] ∈ R

(Tp)×(M+N), let c = (a; b) ∈ R
N+M

and let IN ∈ R
N×N denote the identity matrix.

Lemma 1: The solution to the constrained problem (6) is
given as the solution to the dual linear system[

0(M+N)×(M+N) XT

X (ΩN + γIN )

] [
c

α

]
=

[
0M+N

Yp

]
, (7)

where the kernel matrix ΩN is defined as ΩN,st =∑N
n=1 K(us−n, ut). The result can be used for prediction at

timestep t + 1 as follows

ŷt+1 =

M∑
m=1

âmyt−m+1 +

N∑
n=1

b̂nut−n+2

+

T∑
s=p

α̂s

N∑
n=1

K(us−n, ut−n), (8)

where ĉ = (â; b̂) and (ĉ, α̂) are the solution to the dual
problem (7).

Proof: The proof follows straightforwardly from re-
sults in convex optimization, see [4], [24]. Let L� be the
Lagrangian of the constrained optimization problem (6)

L�(a, b, w, e; α̃, γ) =
1

2
eT e + γ(

1

2
wT w − �)

+

T∑
t=p

α̃

(
M∑

m=1

amyt−m +

N∑
n=1

(bnut−n+1

+wT
n ϕ (ut−n+1)

)
+ et − yt

)
. (9)

where α̃ = (α̃p, . . . , α̃T )T ∈ R
Tp+1 and γ ∈ R

+ are the
Lagrange multipliers. Taking the first order conditions for

optimality
∂L�

∂wn

= 0,
∂L�

∂c
= 0,

∂L�

∂et

= 0 and
∂L�

∂α̃t

= 0;

and elimination of the primal variables wn and e results
in the dual system (7) where γα = α̃. The multiplier
γ and the hyper-parameter � are related via a monotone
secular equation as explicified in [21]. Using the conditions
∂L�

∂wn

= 0 it follows that wn =
∑T

t=p αt−nϕ(ut−n) for all

n = 1, . . . , N , one can evaluate the estimate as described in
(8).
From this derivation it also follows that the estimated sub-
models f̂n can be evaluated in a new point u∗ ∈ R as follows

f̂n(u∗) = b̂nu∗ +

N∑
t=p

α̂K(ut−n, u∗), (10)

where ĉ = (â; b̂) solves (7).
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B. Regularization of the linear sub-systems

In addition to the model complexity control of the non-
linear function as described in Section II.A, complexity
measures can be formulated to quantify the simplicity of
the linear model

C(a, b) =

M∑
m=1

a2
m +

N∑
n=1

b2
m ≤ ς. (11)

This kind of regularization term was also employed in
[18], [27] and [9] to impose stability and positive realness
respectively on the identified linear system. Slightly related
to those approaches, [5] studied related convex methods to
impose constraints on the estimated transfer function of a
linear system. In general, control of model complexity can
be adopted to decrease the variance in the estimates of
the parameters when the number of parameters is large in
relation to the number of observations [12], [13].

In the case of the regularization mechanism as described in
(11), the following convex optimization problem is obtained

(â, b̂, ŵn, ê) = argmin
a,b,w,e

J�,ς(e) = ‖e‖2
2

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

∑N
n=1 wT

n wn ≤ � (a)

aT a + bT b ≤ ς (b)

yt = et +
∑M

m=1 amyt−m

+
∑N

n=1 bnut + wT
n ϕ (ut−n) ∀t. (c)

(12)

The primal-dual derivation is summarized as follows
Lemma 2: The dual problem to (12) becomes(

ΩN +
γ

λ
XXT + γIN

)
α = Y. (13)

The parameters of the linear model can be recovered as

λ

γ
ĉ = XT α̂, (14)

where ĉ = (â; b̂) ∈ R
N+M and α̂ ∈ R

Tp solve (26).
Proof: The proof follows along the same lines as in

Lemma 2.1 where γ > 0 and λ > 0 are the Lagrange
multipliers associated with the model complexity constraints
quantified by � and ς respectively. The occurrence of the
extra model complexity constraints allows for eliminating
the variables a and b in the dual formulation.

C. Smoother matrix of the Hammerstein model

It turns out that the Hammerstein identification process
can be written as a linear operator as follows. The smoother
matrix SH

γ,λ ∈ R
(Tp)×(Tp) becomes

Ŷ = SH
γ,λY s.t.

SH
γ,λ =

(
ΩN +

γ

λ
XXT

)(
Ω +

γ

λ
XXT + γIN

)−1

. (15)

The trace of the smoother matrix was proposed in [17] as a
way to quantify the degrees of freedom of a linear operator.
Let USUT be the unique SVD of the matrix (ΩN + γ

λ
XXT )

with U ∈ R
Tp×Tp and D = diag(σ1, . . . , σTp

) with σi ≥ 0
the singular values.

10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

γ

bias

variance

TMSE

Fig. 1. In the case γ = λ, the bias (solid line) and the variance (dashed
line) can be plotted in terms of the sole hyper-parameter as illustrated here
on the example as described in Section V. The total MSE (dashed-dotted
line) typically has a global minimum at a γ > 0 implying that a little
amount of regularization often increases the generalization performance of
the estimates.

Definition 1: The degrees of freedom or the effective di-
mension of the model are defined as

Deff(SH
γ ) =

Tp∑
i=1

σi

σi + γ
, (16)

where σi are the singular values of the positive semi-definite
matrix (ΩN + γ

λ
XXT ).

This formulation allows us to quantify bias and variance of
the Hammerstein model as summarized as follows

Lemma 3: The total mean squared error of the esti-
mated model can be decomposed as TMSE(Ŷ , Y ∗) =
Bias(Ŷ , Y ∗) + var(Ŷ ) where the bias and variance become
respectively{

var(Ŷ )2 = σ2
e

∑Tp+1
i=1

σ2

i

(σi+γ−1)2

bias(Y ∗, Ŷ )2 = γ−2
∑Tp+1

i=1
p2

i

(σi+γ−1)2 ,
(17)

with pi ∈ R
Tp defined as UT

i Y ∗.
This derivation goes completely along the lines of the
derivation of the bias-variance trade-off derived in the case
of smoothing splines [29].

Note that only the effect of the regularization parameters
γ and λ does not follow straightforwardly as their role in
the matrix (Ω+ γ

λ
XXT ) is not directly reflected in the SVD

matrix. In the case both hyper-parameters are taken equal,
the decomposition can be used to describe the evolution of
the total mean squared error as a function of this parameter
as denoted in Figure 1.

III. GENERALIZATION OF THE HAMMERSTEIN CLASS

This section elaborates on the measure of model complex-
ity in terms of the model orders M and N .

A. Nonlinear over-parameterization

The classical over-parameterization approach proceeds
by projecting the estimated functions fp on the class of
Hammerstein models using a rank one approximation. Let
Yn be vectors for all n = 1, . . . , N defined as Yn =
(fn(up−t+1), . . . , fn(uT−n+1))

T ∈ R
Tp and Yf as Yf =
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∑N
n=1 Yn ∈ R

Tp , then the following equality follows from
the definition of the Hammerstein class (2):[

Y1 Y2 . . . YN

]
= Y bT . (18)

When estimates for Yn are obtained via the described
method, the best rank-one approximation can be found using
the Singular Value Decomposition (SVD).

B. Linear over-parameterization

An alternative route towards the constraining of the esti-
mate onto the class of the Hammerstein models can be taken.
A Hammerstein model (2) can be rewritten as follows

HM,N (ut) =
B(q)

A(q)
f(ut) =

∑N−1
n=0 bnqn∑

m=1 amqm
f(ut), (19)

where q denotes the generalized back-shift operator
qf(ut) = f(ut−1) and qyt = yt−1. It is a classical result that
any fractional polynomial A(q)

B(q) can be approximated well as
1

Ã(q)
such that one can write [16]

HM,N (ut) ≈ H̃P,1(ut) =
1

Ã(q)
f(ut) =

1∑
m=1 ãmqm

f(ut)

(20)
where P is in general much larger than N and {ãp}

P
p=1 is

an appropriate set of coefficients. Identification of models of
the form HP,1 do apparently avoid the need for the over-
parameterization of the cross-products as in the previous
subsection and make the projection step based on the SVD
obsolete. The over-parameterization now occurs in the linear
system as described in equation (20). However, the regu-
larization mechanism of the linear subsystem as described
previously enables the successful identification of the set of
linear parameters {ãp}

P
p=1 even if P approaches T .

A disadvantage of the linear over-parameterization tech-
nique is that the noise model is not preserved as can be seen
easily

yt =
B(q)

A(q)
f(ut) + et ≈

yt =
β0

Ã(q)
f(ut) + et ⇔ Ã(q)yt = β0f(ut) + Ã(q)et,

(21)

from which it follows that this model formulation cannot
handle output noise straightforwardly.

C. Generalization of the Hammerstein class

The previous elaboration motivates the following defini-
tion of the class of generalized Hammerstein models. Let for
all j = 1, . . . , N ′ the denominator I(j) denote the jth set of
indices I(j) = (n1, n2, . . . , nr(j)) where n1 < n2 < · · · <

nr(j) denote the indices of the jth function fj : R
r(j) → R

such that fj(ut) = f
(
ut−I(j)1 , . . . , ut−I(j)r

)
. Let R ∈ N

define the maximum length of the sets Ij . A generalization
to the Hammerstein class can be defined as follows.

Definition 2: Let M, N, R ∈ N0 denote the orders of
the model, {am}M

m=1 ⊂ R be a set of linear parameters

and let {fI(j)}
N ′

j=1 be a set of given functions. The class of
generalized Hammerstein models may be defined as follows

yt =

M∑
m=1

amyt−m +

N ′∑
j=1

fI(j)

(
ut−I(j)1 , . . . , ut−I(j)r

)
(22)

which reduces to the class of Hammerstein models if R = 1
and the functions {fn}

N
n=1 are collinear (or N = 1).

This class of models does not only contain the class of
Hammerstein models but also generalizes the class of finite
Volterra series which possess a property of general approx-
imator, see e.g. [3]. Therefor, M = 0 and the class of
nonlinearities must take the form

fI(j)

(
ut−I(j)1 , . . . , ut−I(j)r

)
= k(I(j)1, . . . , I(j)r) ut−I(j)1 . . . ut−I(j)r

, (23)

where k : R
r(j) → R is an appropriate function. The

primal-dual derivation of an appropriate kernel machine is
summarized as follows.

Lemma 4: Consider the models

fI(j)

(
ut−I(j)1 , . . . , ut−I(j)r

)
= wT

I(j)ϕj

(
ut−I(j)1 , . . . , ut−I(j)r

)
(24)

for all j = 1, . . . , N ′. Modification of the estimation prob-
lem (12) with the model complexity of the nonlinear model
replaced by the following definition

1

2

N ′∑
j=1

wT
I(j)wI(j) ≤ �, (25)

results in the dual system(
ΩI +

γ

λ
XXT + γIN

)
α = Y, (26)

with γ the Lagrange multiplier proportional to � and where
ΩI ∈ R

Tp×Tp is defined as

ΩI,st =
N ′∑
j=1

K
(
us−I(j)1 , ..us−I(j)r

, ut−I(j)1 , ..ut−I(j)r

)
.

(27)
and the estimate can be evaluated similarly as in (8).
Note that the difference with Lemma 2 only reflects in the
design of the kernel. The proof again follows along the same
lines as in [19] and [7]. The main disadvantage (at least in
a practice) is the presence of at least 6 hyper-parameters
N, M, R, λ, γ and the kernel parameter which need to be set
a priori or using a suitable model selection procedure. The
following section proposes a way to circumvent this problem.

IV. STRUCTURE DETECTION AND MODEL SELECTION

One can relate the previous discussion with the task of
model order selection as discussed next. Here we differen-
tiate between model order selection of the linear AR part
and of the nonlinear eXogenous part respectively. Structure
detection (sparseness) of the parameters am, bn and the
functions fn may be obtained by employing a regularization
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scheme based on the L1 norm. This approach has gained
recent interest in the research on machine learning and
statistical inference as in the LASSO [25] and basis pursuit
[6]. The linear model can be equipped with a L1 norm such
that the model complexity of the linear system becomes

M∑
m=1

|am| +

N∑
n=1

|bn| ≤ ς. (28)

The property that the use of L1 norms results in sparseness
on the parameters depending on the hyper-parameter ς was
already exploited in the LASSO estimator [25], projection
pursuit [6] and SVMs [28]. It was extended to nonlinear
kernel machines in [19], [22] by using a measure of maximal
variation defined as follows.

Definition 3: (Maximal Variation) The theoretical maxi-
mal variation of a function f : R

D → R is defined as

M(f) = sup
x∈RD

|f(x)| . (29)

Its empirical counterpart is defined as

M̂(f) = max
xi∈D

|f(xi)| , (30)

where D denotes the set of training data. and may be used as
an approximation to (29).
It was argued in e.g. [1] that the L1 norm is not optimal
in the sense of obtaining sparseness and other measures can
be employed satisfying the so-called oracle constraints. A
disadvantage of those norms is that the property of convexity
is lost and iterative approaches need to be adopted, see
e.g. [19]. The corresponding optimization problem including
the linear model complexity measure (28) and an L1 based
control of the sum of the (empirical) maximal variations
become

(â, b̂, ŵ, ê) = argmin
a,b,w,e

J�,ς(e) = ‖e‖2
2

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

∑N
n=1 M̂ ≤ � (a)∑M

m=1 |am| +
∑N

n=1 |bn| ≤ ς (b)

yt = et +
∑M

m=1 amyt−m

+
∑N

n=1 bnut + wT
n ϕ (ut−n) ∀t. (c)

(31)

Primal-dual interpretations of this kind of models were
described in [22]. Those are omitted from the current paper
due to space limitations. Practical re-formulations based on
the additive regularization trade-off framework [20] result in
the following constrained optimization problem

min
α,q,u,c

Jγ,λ(e, q, u) = ‖e‖2
2 + γ‖t‖1 + λ‖u‖1 s.t.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
0M+N×N+M XT

X ΩN

][
c

α

]
+

[
0N+M

e

]
=

[
0M+N

YTp

]

−q 1Tp
≤ Ωnα ≤ q 1Tp

∀n = 1, . . . , N

−u 1M+N ≤ c ≤ u 1N+M ,

(32)

−5 0 5
−4

−2

0

2

4

u
t−2

Y 1

−5 0 5
−4

−2

0

2

4

u
t−1

Y 2

−5 0 5
−4

−2

0

2

4

u
t−0

Y 3

Fig. 2. Examples of the three nonlinear functions f2(ut−2)+f1(ut−1)+
f0(ut) (dashed line) and its estimation (solid line) given a finite set of
observations (dots). The dotted lines indicate the maximal variation of the
nonlinearity, suggesting a second order model.

where q = (q1, . . . , qTp
)T ∈ R

Tp and u =

(u1, . . . , uN+M )T ∈ R
N+M are vectors of slack-variables.

This convex optimization problem can be solved efficiently
as a Quadratic Programming problem. Extension with the
output saturation as described in the previous subsection is
straightforward.

V. ILLUSTRATIVE EXAMPLE

An artificial example illustrates the practical relevance of
the discussed methods. A dataset was constructed as follows.
Let {(ut, yt)}

T
t=1 satisfy the equality

yt = f(ut) − 0.5f(ut−1)

+ 0.75yt−1 − 0.25yt−2 + 0.2yt−3 + 0.1yt−3 + et

s.t. f(ut) = (tanh(ut) + 0.4sin(2ut)) , (33)

where {ut} ∼ N(0, 2), the innovations {et} ∼ N(0, 1.5)
and T = 200. Presented model complexity control mech-
anisms are employed in the black-box identification of an
Hammerstein model from observed data. All methods take a
fixed order of the estimate of (N, M) equal to (4, 4) in order
to avoid the issue of model order selection in the comparison
of performance and degrees of freedom. The individual
hyper-parameters were tuned on a separate validation set of
size T v = 50.

(1) Classical approaches amount often to an expansion
in basis-functions sequenced by an over-parameterization
[2]. The number of effective parameters becomes MNe

where Ne ∈ N denotes the number of basis-functions. A
major drawback is the amount of variance which is rapidly
increasing when the order M becomes larger.

(2) The approach proposed in [7] possesses a form of
complexity control on the estimated nonlinearities. The effec-
tive degrees of freedom then becomes Deff(w) + M where
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Deff(w) denotes the effective dimensions of the nonlinear
part [24].

(3) Including a small amount of complexity control of
the linear subsystem as introduced in Subsection II.B often
results in improvements of the estimate. A drawback is the
occurrence of an additional hyper-parameter λ.

(4) Linear over-parameterization as presented in Subsec-
tion III.B avoids the need for nonlinear over-parameterization
as argued. However, the properties of the noise model are
affected by this approach resulting in a lower performance
on the example.

(5) The mechanism as described in Subsection IV is
illustrated in order to obtain automatic model order selection.
This reduces the number of hyper-parameters to three (γ, λ

and the kernel parameters). The automatic structure detection
property is traded against a small decrease in performance.
As a measure of the effective degrees of freedom, the
dimension of the eigenspace of the Hessian is taken as in
[25]. Numerical results or given in Table 1.

Prediction Order Eff. order # Hyp.par.
Basis func. 2.2503 (4, 4) 52 4

[7] 1.8295 (4, 4) 35.9584 4
Compl. Contr. 1.7825 (4, 4) 28.6609 5

Lin. overp. 2.0803 (1, 20) 32.6437 4
Struct. Det. 1.8006 (10, 10) 12.4534 3

TABLE 1.

VI. CONCLUSIONS

A study of the impact and relevance of model complexity
control in the identification of Hammerstein models and its
generalization is presented. Of direct practical relevance is
the established relationship between model order selection
and model complexity control resulting in a decreased num-
ber of hyper-parameters which need to be tuned. Future
directions include the investigation of the use of the presented
method towards control of Hammerstein systems, a research
track which was initiated e.g. in [14]. A further important
research track involves the study of the relationship between
persistency of excitation and model complexity.
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