
On Modeling and Simulation of Game Theory-based Defense Mechanisms against

DoS and DDoS Attacks

Qishi Wu, Sajjan Shiva, Sankardas Roy, Charles Ellis, Vivek Datla

Department of Computer Science

University of Memphis

Memphis, TN 38152, USA

{qishiwu, sshiva, sroy5, ceellis, vvdatla}@memphis.edu

Keywords: DoS, DDoS, game theory, static games, dynamic

games

Abstract
As cyber attacks continue to grow in number, scope, and

severity, the cyber security problem has become increasingly

important and challenging to both academic researchers and

industry practitioners. We explore the applicability of game

theoretic approaches to the cyber security problem with focus

on active bandwidth depletion attacks. We model the interac-

tion between the attacker and the defender as a two-player

non-zero-sum game in two attack scenarios: (i) one single at-

tacking node for Denial of Service (DoS) and (ii) multiple

attacking nodes for Distributed DoS (DDoS). The defender’s

challenge is to determine optimal firewall settings to block

rogue traffics while allowing legitimate ones. Our analysis

considers the worst-case scenario where the attacker also at-

tempts to find the most effective sending rate or botnet size. In

either case, we build both static and dynamic game models to

compute the Nash equilibrium that represents the best strat-

egy of the defender. We validate the effectiveness of our game

theoretic defense mechanisms via extensive simulation-based

experiments using NS-3.

1. INTRODUCTION

Today’s national security, economic progress, and social

well-being largely depend on the use of cyberspace. De-

spite considerable efforts made by the research and practic-

ing communities over the last two decades, the cyber secu-

rity problem is far from being completely solved. Particu-

larly, the rapid growth in both inter-connectivity and compu-

tational power provides attackers with the potential to launch

attacks of unprecedented scale and complexity [5]. Recent in-

cidents [4, 12, 13] indicate that cyber attacks can cause severe

damages to governments, enterprises, and the general public

in terms of money, data confidentiality, and reputation.

Researchers have recently started exploring the applicabil-

ity of game theory to address the cyber security problem [10].

The weakness of traditional network security solutions is that

they lack a quantitative decision framework. As game the-

ory deals with problems where multiple players with contra-

dictory objectives compete with each other, it can provide us

with a mathematical framework for modeling and analyzing

cyber security problems.

In this paper, we focus on bandwidth depletion attacks for

Denial of Service (DoS) or Distributed DoS (DDoS) where

a single attacking node or multiple attacking nodes attempt

to break down one or more network links by exhausting lim-

ited bandwidth. We consider the interaction between the at-

tacker1 and the defender (network administrator) as a two-

player game and apply game theory-based countermeasures.

For each of DoS and DDoS cases, we design a static game,

which is a one-shot game where no player is allowed to

change the strategy. The attacker attempts to find the most

effective sending rate or botnet size while the defender’s chal-

lenge is to determine optimal firewall settings to block rogue

traffics while allowing legitimate ones. We study the exis-

tence of the Nash equilibrium, which represents the best strat-

egy of each player. We also show the benefit of using the

game-theoretic defense mechanisms to the network admin-

istrator. Furthermore, we present a dynamic game model that

allows each player to change the strategy during the game.

We validate our analytical results through extensive

simulation-based experiments in NS-3. Our simulations pro-

vide performance measurements from situations involving a

single attacking node and multiple ones. We develop a new

module in NS-3, NetHook, which enables an application or a

module to have direct access to packets as it traverses the net-

work stack. The addition of this module satisfies the require-

ments of our packet filtering specifications. More importantly,

NetHook facilitates packet inspection at any arbitrary level of

the NS-3 network stack and can be used to implement any of

the myriad of filtering applications to provide features such as

firewall, network address translation, and intrusion detection

system. We also develop two additional modules based on

NetHook in NS-3: NetHookFlowMon, a layer-2 flow moni-

toring module that provides a per-flow association of packet

flow information, and NetHookFilter, a layer-3 module that

implements our game-inspired filtering approaches.

1We assume that one single attacker controls all of the attacking nodes

present in a botnet for DDoS.

2. RELATED WORK

Bandwidth depletion in the form of DoS or DDoS is one of

the most common attacks in cyberspace and various defense

mechanisms have been proposed to mitigate the effect of such

attacks [8]. We provide below a survey of related efforts.

The key of DoS/DDoS defense approaches is to identify

malicious nodes and restrict their packet injection from the

source or drop unwanted packets at intermediate routers be-

fore they reach the destination. PATRICIA [14] allows edge

networks to cooperate to prevent misbehaving sources from

flooding traffic. Lau et. al [6] conducted simulation-based

analysis on various queuing algorithms including DropTail,

Fair Queuing, Stochastic Fair Queuing, Deficit Round Robin,

Random Early Detection, and Class-based queuing to deter-

mine the best queuing strategy in the target router during a

DDoS attack. Chertov et. al [3] pointed out that DoS can be

caused not only by flooding but also by exploiting the con-

gestion window of TCP in the communication between the

server and the client. Their experiments were based on the as-

sumption that the length of the attack pulse controls the trade-

off between attack damage and attack stealthiness. During the

congestion avoidance phase, when packet losses occur, TCP

halves its congestion window, which is exploited for attack.

Andersen et. al [1] proposed a proactive protection scheme

against DDoS attacks by imposing an overhead on all trans-

actions to actively prevent attacks from reaching the server.

Their architecture generalizes the Secure Overlay Services

(SOS) to choose a particular overlay routing and the set of

overlay nodes are used to distinguish legitimate traffic from

the attack traffic. Yaar et. al [17] proposed a Stateless Internet

Flow Filter (SIFF) to mitigate DDoS flooding attacks based

on per-flow states by protecting privileged flows from unpriv-

ileged ones. They used a handshake mechanism to establish

a privileged flow that consists of marked packets with the

“capability” obtained by the handshake. Wu et. al [15] con-

structed an adaptive cyber security monitoring system that in-

tegrates a number of component techniques such as decision

fusion-based intrusion detection, correlation computation of

event indicators, random matrix theory-based network repre-

sentation of security events, and event identification through

network similarity measurements.

Game theory has been widely applied in various applica-

tion domains and is attracting more attention from network

researchers for cyber security. Xu et. al [16] proposed a

game-theoretic model to protect a web service from DoS at-

tack. Network attacks [17, 11, 9, 7] have been extensively

studied via simulations, which often require realistic param-

eters of simulated components. Our work focuses on miti-

gating DoS/DDoS attacks using a game theoretic approach

and validating the game models in NS-3. Different from other

simulation efforts, we develop several new modules of NS-3

for gathering packet statistics and mitigating malicious flows.

3. NETWORK TOPOLOGY

Figure 1. A generic network topology for DoS/DDoS at-

tack.

We consider a generic network topology for DoS/DDoS at-

tacks as shown in Figure 1, where the server S is connected to

the Internet cloud via an edge switch (SW), a firewall (FW),

and a perimeter router (PR). The bandwidth of the pipe (P1,

P2) between the FW and the SW is limited and is subject

to a DoS/DDoS attack. The defender’s control is present at

the FW. There are n legitimate users who need to communi-

cate with the server S, and also, there is one attacker A who

attempts to launch a denial of service attack by consuming

most of the bandwidth of the pipe (P1, P2). The attacker A

controls m attacking nodes that can send bogus packets. Note

that DoS attack is a special case of DDoS attack when m = 1.

We would like to point out that our models and simulation-

based experiments are not network-specific and are readily

applicable to any DoS/DDoS scenarios in an arbitrary net-

work topology with the following assumptions on network

settings:

• A single attacker controls all of the attacking nodes, each

of which sends a flow of bogus packets to the server S.

• There is an infinitely high bandwidth available on the

channel between the PR and the FW, which is able to

process all of the incoming packets.

• The defender has no knowledge of whether the flow is

coming from the attacker or a legitimate user.

• The FW’s belief on the legitimacy of the flow decreases

with the increase of the flow rate.

• Some packets of a flow f are dropped in one of the two

places: (i) at the FW; and (ii) at point P1 when the total

incoming flow rate T is more than the available band-

width B.

• The attacker does not spoof a unique source address for

each packet in a single flow. Such spoofing would be

extremely difficult and is highly unlikely to occur. Note

that when the spoofed source address is the same for the

entire flow, the filtering mechanism would act the same

as if there were no spoofing.

For convenience, we tabulate all the notations and abbrevi-

ations used in our mathematical models in Table 1.

Symbol Meaning

S the victim server

PR the perimeter router

FW the firewall

SW the switch

P1 the outgoing point from FW

P2 the incoming point to SW

B the bandwidth of the pipe (P1P2) between the

firewall FW and the switch SW

n the number of legitimate users

m the number of attacking nodes

rl the expected bit rate of a legitimate flow

σl the standard deviation of a legitimate flow rate

rA the bit rate of an attack flow

γ the minimum bit rate for a flow to be

considered alive

Table 1. Notations and abbreviations used in the models.

4. GAME MODELS

In this section, we present our game models for DoS/DDoS

attacks and their possible countermeasures. We consider the

interaction between the attacker and the defender (network

administrator) as a two-player game. We study the existence

of an equilibrium in these games and also show the benefit of

using the game-theoretic defense mechanisms.

The attacker attempts to find the most effective packet

sending rate or botnet size, and the defender’s challenge is

to determine the best firewall settings to block rogue traffics

while allowing legitimate ones. We first discuss some basic

concepts of game theory and the profile of legitimate users,

and then construct our game models.

4.1. Basic Concepts of Game Theory

In a game, each player chooses actions that result in the

best possible rewards for self, while anticipating the rational

actions from other players. A strategy for a player is a com-

plete plan of actions in all possible situations throughout the

game. A Nash equilibrium is a solution concept that describes

a steady state condition of the game; no player would prefer

to change his/her strategy as that would lower his/her pay-

offs given that all other players are adhering to the prescribed

strategy.

A static game is a one-shot game in which each player

chooses his/her plan of actions and all players’ decisions are

made simultaneously. A dynamic game is a game with mul-

tiple stages in which each player can consider his/her plan of

actions not only at the beginning of the game but also at any

point of time in which they have to make a decision.

4.2. Legitimate User Profile
We consider the presence of n legitimate users interested in

communicating with the server S. The sending rate of a legit-

imate user is considered to be a random variable. In particu-

lar, we model the sending rate of legitimate users by picking

n samples from a Normal Distribution, i.e. Xi ∼ N (rl ,σ
2
l),

i = 1,2, ...,n where Xi represents the sending rate of the i-

th user, rl is the mean value of a legitimate user’s sending

rate, and σl is the standard deviation. Therefore, the total in-

coming flow rate with no attack is T na = X1 +X2....+Xn. By

basic laws of probability, we have T na ∼ N (n · rl ,n ·σ
2
l). We

assume that the pipe bandwidth B is chosen such that T na < B

with a high probability.

We first present our static game model where one single

attacker controls all of the attacking nodes. Note that there

is only one attacking node in a DoS attack, while there are

multiple attacking nodes in a DDoS attack. Our discussion

considers m attacking nodes and is generic with respect to

DoS or DDoS attacks. When m is set to be 1, we get the DoS

attack scenario. We further discuss the dynamic game model

highlighting its difference from the static game.

4.3. A Static Game
In a static game, once a player decides his/her strategy,

he/she does not have a second chance to change it. We con-

sider that the attacker’s reward is not necessarily equivalent in

value to the defender’s cost, i.e. it could be a zero-sum or non-

zero sum game. The only actions available to the attacker are

to set the sending rate and to choose the number m of attack-

ing nodes. We assume that the sending rate is the same for all

of the attacking flows, which is represented by rA. In an attack

situation, the total flow rate T = (X1 +X2 + ...+Xn)+m · rA.

If T > B, then the denial of service occurs due to a congestion

condition in the pipe (P1, P2).

4.3.1. Impact of the Attack with no Defense

When there is no defence mechanism in place, all the pack-

ets of each flow pass the firewall. However, if T > B, only a

fraction of each flow can pass through the pipe (P1, P2). Let

α denote this fraction, which is the same for each flow. We

know that (1−α) fraction of each flow will be dropped at

P1: if the bit rate of a flow is r, only αr bit rate will reach

the server or destination. We further assume that the band-

width resource is shared in a fair and equitable manner, and

we have α = B
T

. Let γ be the minimum bit rate for a flow to

be considered as a flow, which depends on the specific com-

munication protocol used, and let ng be the average number

of legitimate flows, which are able to reach the server. We get

ng = n ·P[Xi >
γ
α], where n is the total number of legitimate

flows and P[X > x] represents the probability that the value of

the random variable X is higher than x. Similarly, α fraction

of each attack flow will also be dropped at P1. So, we have the

average bandwidth consumption (by the attacker) ratio calcu-

lated as:

vnd
b =

m ·α · ra

B
=

m · rA

n · rl +m · rA

. (1)

and the ratio of lost users to the total number of users on av-

erage calculated as:

vnd
n =

n−ng

n

= P[Xi <
γ
α]

= P[Xi <
γ(n·rl+m·rA)

B
].

(2)

The attacker’s objective is to increase vnd
b and vnd

n , which

are considered as the rewards. Also, we assume that the at-

tacker has to incur some cost to get control of an attacking

node. We assume that the attacker’s total cost vc is propor-

tional to the number of attacking nodes employed and vc =m.

We model the attacker’s net payoff as a weighted sum of the

above three quantities defined as:

V a = wa
b · v

nd
b +wa

n · v
nd
n −wa

c · vc, (3)

where wa
b,w

a
n, and wa

c are the attacker’s corresponding weight

coefficients.

On the other hand, we model the defender’s net payoff as a

weighted sum defined as:

V d =−wd
b · v

nd
b −wd

n · v
nd
n +wd

c · vc, (4)

where wd
b , wd

n and wd
c are the defender’s weight coefficients.

4.3.2. Impact of the Attack in the presence of Firewall

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

flow rate (r)

d
ro

p
 p

ro
b

a
b

ili
ty

 F
(r

)

M=100

M=200

M=300

M=400

Figure 2. Plots of several sample S curves. Dropping rate of

a flow at the firewall is modeled by an S curve. The X axis

is the flow rate and the Y axis is the drop probability. The

parameter M represents the flow rate for which the drop rate

is 0.5.

The firewall is the defense agent of the network administra-

tor: it drops the packets of an incoming flow with a probability

depending on the flow rate. The dropping rate is modeled by

a sigmoid function as follows:

F(x) =
1

(1+ e−β
(x−M)

B)
, (5)

where the parameter M represents the flow rate for which the

drop rate is 0.5 and β is a scaling parameter. Figure 2 illus-

trates several sample sigmoid functions where B= 1000 units

and β = 20. The firewall drops the packets of a flow of rate

r with a probability F(r). It is worth pointing out that some

packets of a legitimate flow might also get dropped at the fire-

wall. We consider that the defender controls the value of M,

which is the only defense action.

Recall that rl represents the expected rate of a legitimate

flow. Let the average rate of legitimate flows passing through

the firewall be r′l . We have r′l = rl · (1−F(rl)). On the other

hand, the average rate of attacking flows passing through the

firewall is r′A = rA · (1−F(rA)). If we replace rA by r′A and rl

by r′l in Equations (1) and (2), we obtain the following results:

the ratio of average bandwidth consumption by the attacker is

vb =
m · r′A

n · r′l +m · r′A
, (6)

and the ratio of lost users to the total number of users on av-

erage is

vn = P[Xi <
γ(n · r′l +m · r′A)

B
]. (7)

Note that the right hand side of Equation (7) considers

the losses due to both the firewall and the congestion. We

can compute the attacker’s and defender’s payoffs V a and V d

from Equations (3) and (4), respectively, by replacing vnd
b by

vb and vnd
n by vn.

We use the notion of Nash equilibrium to determine the

best strategy profile of these two players. Each player has the

goal to maximize his/her payoff. The attacker needs to choose

optimal values for m and rA, and the defender needs to choose

the best value for M in the sigmoid function to be used by the

firewall. The Nash equilibrium of this game is defined to be a

pair of strategies (r∗A,m
∗, M∗), which simultaneously satisfy

the following two relations:

V a
(r∗A, m∗, M∗) ≥V a

(rA, m, M∗) ∀ rA, m

V d
(r∗A, m∗, M∗) ≥V d

(r∗A, m∗, M) ∀ M

We can analytically compute the Nash equilibrium strategy

profile (r∗A,m
∗, M∗), which could also be obtained through

numerical computation for a particular game setting. We use

MATLAB as the platform for numerical computation. The

following analysis shows an interesting case in which the

total bytes sent by the attacker remains constant, i.e., m · rA

does not change, which means that the attacker only needs

to set the value of m. In our future work, we will extend

this analysis to a more general case. As an example, let us

consider the scenario where the attacker’s and the defender’s

weight coefficients are the same (wa
b = wd

b , wa
n = wd

n , and

wa
c = wd

c), i.e., V a = −V d (in a zero-sum game). Figure 3

illustrates the attacker’s payoff V a for different numbers m

of attack flows, and different values of M with wa
b = 1000,

wa
n = 1000, wa

c = 10, B = 2000, n = 20, rl = 60, σl = 20,

γ = 10, and m · rA = 5000. We observe a saddle point at

m∗ = 22, M∗ = 225, which represents the Nash equilibrium.

The attack flow rate r∗A = 227.27 corresponding to m∗ = 22.

100
200

300
400

500

0
20

40
60

80
−200

0

200

400

600

800

1000

Firewall Midpoint (M)

X: 225
Y: 22
Z: 704

 Number of Attack Flows (m)

A
tt
a
c
k
e
r’
s
 P

a
y
o
ff

Figure 3. The attacker’s payoff V a for different numbers m

of attack flows and different values of M (the firewall mid-

point). We observe a saddle point at m∗ = 22, M∗ = 225,

which represents the Nash equilibrium.

4.4. A Dynamic Game

In the static game model discussed above, no player has

the chance to modify his/her strategy. Once the attacker sets

the value for the flow rate rA and the number m of attack-

ing nodes, they remain fixed throughout the game. Similarly,

the defender is not allowed to change the value of M, i.e.

the firewall midpoint. The dynamic game model allows the

players to change their strategies. This property may shift the

game equilibrium point, i.e, the strategy profile (rA, m, M)

may change during the game.

The entire game duration is considered as a sequence of

time steps. As an example, the attacker A can think that if

he/she sets rA low and m high during the first few time steps,

the defender D will set M to a low value, and then A can ex-

ploit it by setting rA high and m low in the next few time steps

assuming that D does not change M. On the other hand, the

defender can also decide a strategy based on his/her anticipa-

tion of the attacker’s behavior.

In general, it is harder to determine the Nash equilibrium

for a dynamic game compared to the static game. Due to the

space constraint, we do not present its formal analysis in this

paper. Let us consider that the game lasts for h time steps in

total. When h is infinitely large, the game is said to have an

infinite horizon, otherwise it is with a finite horizon.

We first extend the notations used in the static game. Let

rAt ,mt , and Mt denote the corresponding quantities at the t-th

time step. We represent the attacker’s and defender’s payoffs

at the t-th time step by V a
t and V d

t , respectively, which are

determined by the strategy profile (rAt ,mt , Mt) at that step.

Similarly, the attacker’s and the defender’s total payoffs are

denoted by V a and V d , respectively.

We compute the total payoff of a player by adding his/her

time serial payoffs over the entire game, i.e. V a = ∑h
t=1 V a

t

and V d =∑h
t=1 V d

t . The attacker can construct his/her strategy

by deciding rAt ,mt at the t-th step ∀t = 1, . . . ,h. Similarly, the

defender can construct his/her strategy by deciding Mt at the

t-th step ∀t = 1, . . . ,h. The strategy profile (r∗At
,m∗

t , M∗
t , t =

1, . . . ,h) leads to the Nash equilibrium if it simultaneously

satisfies the following two relations:

V a
(r∗At

, m∗
t , M∗

t , t=1,...,h) ≥V a
(rAt , mt , M∗

t , t=1,...,h) ∀ rAt , mt

V d
(r∗At

, m∗
t , M∗

t , t=1,...,h) ≥V d
(r∗At

, m∗
t , Mt , t=1,...,h) ∀ Mt

5. SIMULATION
NS-3 is an advanced simulator tool written completely in

C++ with optional binding for experiment scripts written in

Python. There have been many recent developments with nu-

merous research teams contributing their research as differ-

ent modules for the simulator. FlowMonitor [2] is one such

model which has inspired us to develop our own application

to monitor packet flows. Unfortunately, FlowMonitor was not

applicable in our experiment situation as it depends entirely

upon the traced output of packet data, rather than inspecting

these packets as they traverse NS-3’s protocol stack. In our

module, we need to develop a packet filtering module based

on the game theory model and collect statistics on that mod-

ule. For this packet-filtering module, we implement a unique

network hook, which is used to observe packet flow informa-

tion as they actually pass through the stack rather than at the

end of the simulation.

5.1. Development of New Modules in NS-3
The NetHookFilter module we developed provides a means

to manipulate the standard packet handling routines in NS-

3. This concept has been widely used in Linux kernel for

packet filtering, mangling, NAT (network address translation)

and queuing packets for user-land inspection. Linux’s Net-

Filter makes connection tracking possible through the use of

various hooks in the kernel’s network code. These hooks are

places that kernel code, either statically built or in the form of

a loadable module, can register functions to be called for spe-

cific network events at pre-defined locations within the proto-

col stack.

NetFilter is a useful component of modern networked sys-

tems for addressing various issues regarding packet inspec-

tion and manipulation. Traditionally NetFilter implements

hooks during a packet’s traversal through the protocol stack

at the following locations: pre-routing, local deliver, for-

ward, and post-routing. Each hook corresponds to locations

in which one might be interested in viewing/manipulating a

packet as it traverses the stack. Unfortunately, this compo-

nent does not yet exist within NS-3. In order to overcome

this limitation, we have developed a new NS-3 module called

NetHook, which can be aggregated to any node with a net-

work protocol stack and enables a developer to integrate their

own inspection module. This new module provides the ca-

pability of manipulating packets at any location within the

protocol stack.

Figure 4. Implementation of NetHook. The function Do-

Hook() enables the NetHook, which returns a boolean value

that determines whether or not the packet needs to be

dropped.

As shown in Figure 4, NS-3 NetHook is implemented via

an ordered list of callbacks associated by callback type and

a given priority value. The NetHook callback list is then

initiated via a call from within the existing NS-3 code via

the method DoHooks(), and is capable of running any ar-

bitrary number of hooks given the appropriate hook type.

NetHook is not limited to the traditional NetFilter inspection

points, pre routing, post routing, local in, local out, and for-

ward, rather it offers the flexibility for an NS-3 developer to

implement an inspection callback at any location they desire

within the NS-3 network system. The developer is left with

the choice on the hook point for NetHook. They only need to

implement the functor call and aggregate the NetHook object

to the appropriate node within the topology.

5.2. Experimental Setup
We simulate our game-theoretic defense mechanisms in

NS-3 to understand what aspects of networking would place

constraints on the applicability of our model when applied to

a real-world scenario. We wish to observe how control traf-

fic would be affected, whether our model can be applied to

data-intensive operations such as packet filtering, or even if

the model could be applied at all. We adopt an attack model

for raw bandwidth consumption where the attack nodes uti-

lize UDP as the transport protocol in order to avoid using

a modified TCP stack and avoid retransmission storms and

their effect upon the simulation results. Figure 5 shows the

relationship of the core infrastructure (perimeter router, fire-

wall, and edge switch) and the packet filtering functionality.

Figure 5. NetHook::Filter integration into experimental net-

work topology.

We use the traditional dumbbell network topology for our

experiments, as shown in Figure 1, which consists of three

nodes where the leftmost node is the uplink node to which all

legitimate and attack nodes are connected. The middle node

of the dumbbell core is where we implement the packet filter.

The rightmost node represents the local area network (LAN)

side of the topology and provides connectivity for the server

nodes. We use Point-to-Point channels to simplify the setup

of the simulation topology. The left side of the topology has

1 Gbps of bandwidth while the rightmost side has 1 Mbps of

bandwidth available with the bottleneck at the firewall node.

The client nodes, either malicious or legitimate, are config-

ured via the command line with arbitrary arguments for the

number of nodes, packet size, and sending bit rates in order

to support multiple runs with different settings. We use a con-

stant bit rate generator available in NS-3, OnOffApplication,

to generate packets destined to a server.

The experiments are run in 10 cycles, where there are 50

legitimate nodes whose packet size is 512 bytes and sends at

a rate of 15Kbps. The first cycle has 5 attack nodes that send

at a total of 5Mbps that is divided evenly between each attack

node, and the number of attack nodes increases by 5 for each

cycle. Within each cycle, we change the filter midpoint setting

three times at 250Kbps, 500Kbps, and 700Kbps, respectively.

Each cycle consists of 90 runs in total, 30 runs for each mid-

point settings, in which there is no change in the simulation’s

number of attack nodes. Each run lasts for 600 seconds in

length where the legitimate nodes send at a constant rate and

the attack nodes begin at 30 seconds and last for 300 seconds

in total. The exact same settings are used for cases without

packet filtering in order to provide a baseline performance

comparison. All simulations are run on an Intel Core-2 Duo

3Ghz machine with 4Gb of RAM and running Ubuntu 9.04

with Linux kernel version 2.6.28. Each run typically takes 3-

10 minutes to complete depending on the number of nodes

involved. The seed value of the random number generator in

each run is incremented in order to ensure independent repli-

cation of the simulation results.

5.3. Results

The players’ payoffs depend upon three components as dis-

cussed in Section 4. Our simulation focuses on the first com-

ponent, which is the percentage of bandwidth consumed by

the legitimate and attacking nodes. The second component,

the fraction of active legitimate nodes, will be considered in

our future work when the legitimate nodes send at different

bit rates. The last component, the attacker’s payoff falls out-

side the scope of this simulation. Figure 6 displays the ef-

fectiveness of our game theoretic defense mechanism against

a DoS/DDoS attack. Figure 7 illustrates that there exists an

optimal setting for the attacker, while Figure 8 shows the ef-

fectiveness of the attack can be reduced by selecting an ap-

propriate midpoint setting. All experimental results indicate

conclusively that the attacker can increase the number of at-

tacking nodes, while decreasing the per-node bit rate, in or-

der to bypass the filter. Conversely, the defender should select

an appropriate S-curve midpoint in order to allow a majority

of legitimate traffic while denying the attack traffic. If the S-

curve midpoint is too high, then a large portion of the attack

traffic will pass. These facts are consistent with the results

from Figure 3 where we clearly see that there exists an opti-

mal setting for both the attacker and the defender.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 001 02 03 04 05 06 07 08 09 0

T i m e (s e c o n d s)B and wid th utili zati onb yl egi ti mat enod es(%) N o d e f e n s e m e c h a n i s mG T − b a s e d d e f e n s e m e c h a n i s m
A t t a c k t r a f f i c s t a r t s : 3 0 s e c sA t t a c k t r a f f i c s t o p s : 3 3 0 s e c sR e g u l a r t r a f f i c s t a r t s : 0 s e cR e g u l a r t r a f f i c s t o p s : 6 0 0 s e c s

Figure 6. Impact of DDoS attack on legitimate bandwidth

consumption: 5 attacking nodes transmit at 1Mbps each (total

5Mbps), 50 legitimate nodes transmit at 15Kbps each (total

750Kbps), and the S-curve midpoint is set at 500Kbps.

Figure 7. Bandwidth consumed by legitimate nodes when

varying the number of attack nodes. The total attack bit rate

remains at 5Mbps.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 001 02 03 04 05 06 07 08 0

T i m e (s e c o n d s)B and wid th utili zati onb yl egi ti mat enod es(%)
M i d P o i n t = 2 5 0 K b p sM i d p o i n t = 5 0 0 K b p sM i d P o i n t = 7 5 0 K b p s

Figure 8. Bandwidth consumed by legitimate nodes when

varying the S-curve midpoint. There are 15 attacking nodes

whose aggregate rate is 5Mbps.

6. CONCLUSION AND FUTURE WORK
We presented a game theoretic model as a defense mech-

anism against a classic bandwidth consuming DoS/DDoS at-

tack. Validation of our analytical results was performed uti-

lizing the NS-3 network simulation tool.

In our future work, we will consider the existence of multi-

ple equilibria in some scenarios. We plan to extend our simu-

lation to incorporate a normal distribution to select the send-

ing rate of a legitimate flow. In addition, we plan to investigate

the applicability of our game-theoretic defense mechanisms

in scenarios where the attacker is interested in exploiting spe-

cific protocol mechanisms to create attacking conditions. The

TCP congestion window is one example of such possibilities.

Furthermore, we plan to simulate a dynamic game where both

the attacker and the defender can alter their strategies dur-

ing the attack event. We also plan to contribute our NetHook

module to the NS-3 codebase in order to make it available to

other researchers interested in packet manipulation within the

simulator.

ACKNOWLEDGMENT
This research is sponsored by the Office of Naval Re-

search under Award No. N00014-09-1-0752 with University

of Memphis.

REFERENCES
[1] D. G. Andersen. Mayday: Distributed filtering for internet ser-

vices. In Proc. of the 4th Usenix Symposium on Internet Tech-

nologies and Systems, March 2003.

[2] G. Carneiro, P. Fortuna, and M. Ricardo. Flowmonitor-a net-

work monitoring framework for the network simulator 3 (ns-

3). In NSTOOLS, Pisa, Italy, Oct. 19 2009.

[3] R. Chertov, S. Fahmy, and N. Shroff. Emulation versus simu-

lation: A case study of TCP-targeted denial of service attacks.

In Proc. of the 2nd International Conference on Testbeds and

Research Infrastructures for the Development of Networks and

Communities, page 10, 2006.

[4] Security Focus. http://www.securityfocus.com/archive/1. Se-

curity Focus Bugtraq Vulnerability Notification Database,

2009.

[5] B. Gourley. Cloud computing and cyber defense. Crucial Point

LLC, March 2009.

[6] F. Lau, S. Rubin, M. Smith, and L. Trajkovic. Distributed de-

nial of service attacks. In IEEE International Conference on

Systems, Man, and Cybernetics, volume 3, 2000.

[7] M. Liljenstam, J. Liu, D. Nicol, Y. Yuan, G. Yan, and C. Grier.

Rinse: the real-time immersive network simulation environ-

ment for network security exercises. In Workshop on Princi-

ples of Advanced and Distributed Simulation, pages 119–128,

2005.

[8] J. Mirkovic. A taxonomy of DDoS attack and DDoS defense

mechanisms. ACM SIGCOMM Computer Communication Re-

view, 34(2):39–53, 2004.

[9] D. Nicol, W. Sanders, and K. Trived. Model-based evalua-

tion: From dependability to security. IEEE Transactions on

Dependable and Secure Computing, 1(1):48–65, 2004.

[10] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and

Q. Wu. A survey of game theory as applied to network se-

curity. To appear: The 43rd Hawaii International Conference

on System Sciences, 2010.

[11] C. Sarraute, F. Miranda, and J.L. Orlicki. Simulation of Com-

puter Network Attacks. In Argentine Symposium on Comput-

ing Technology, Aug. 30 2007.

[12] Packet Storm. http://packetstormsecurity.org/. Packet Storm

Vulnerability Database, 2009.

[13] US-CERT. http://www.us-cert.gov/. United States Computer

Emergency Readiness Team, 2009.

[14] L. Wang, Q. Wu, and Y. Liu. Design and Validation of PA-

TRICIA for the Mitigation of Network Flooding Attacks. In

Proceedings of the 2009 International Conference on Compu-

tational Science and Engineering-Volume 02, pages 651–658.

IEEE Computer Society, 2009.

[15] Q. Wu, D. Ferebee, Y. Lin, and D. Dasgupta. Monitoring se-

curity events using integrated correlation-based techniques. In

Proceedings of the 5th Annual Workshop on Cyber Security

and Information Intelligence Research: Cyber Security and

Information Intelligence Challenges and Strategies, page 47,

2009.

[16] J. Xu and W. Lee. Sustaining availability of web services under

distributed denial of service attacks. IEEE Transactions on

Computers, pages 195–208, 2003.

[17] A. Yaar, A. Perrig, and D. Song. Siff: A stateless internet flow

filter to mitigate ddos flooding attacks. In In Proc of IEEE

Symposium on Security and Privacy, pages 130–143, 2004.

