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is paper deals with analytical modelling of microstrip patch antenna (MSA) by means of arti�cial neural network (ANN) using
least mean square (LMS) and recursive least square (RLS) algorithms. Our contribution in this work is twofold.We initially provide
a tutorial-like exposition for the design aspects ofMSA and for the analytical framework of the two algorithmswhile our second aim
is to take advantage of high nonlinearity of MSA to compare the e	ectiveness of LMS and that of RLS algorithms. We investigate
the two algorithms by using gradient decent optimization in the context of radial basis function (RBF) of ANN. 
e proposed
analysis is based on both static and adaptive spread factor. We model the forward side or synthesis of MSA by means of worked
examples and simulations. Contour plots, 3D depictions, and Tableau presentations provide a comprehensive comparison of the
two algorithms. Our �ndings point to higher accuracies in approximation for synthesis of MSA using RLS algorithm as compared
with that of LMS approach; however the computational complexity increases in the former case.

1. Introduction

Microstrip patch antenna (MSA) has been extensively used in
wireless transmission links because of its simplicity in design
and fabrication, less weight, low cost, and small size. Major
parameters in the design consideration ofMSA include band-
width, gain, directivity, polarization, and center frequency. It
is well understood that there is a tradeo	 in selection of these
parameters and design engineers have to assign appropriate
weights based on their work objectives [1–3]. Usually MSA
�nds applications in areas where the bandwidth requirement
is narrow and with multiband resonance frequencies to
account for diversity issues [4, 5]. 
ere exist many other
applications [6–8] where MSA can be integrated with a given
automation system to better the existing results.

Terminology of patch is based on the aspects of radiating
element “photoetchen” on dielectric constant. Patch can
be of di	erent geometries both deterministic and random.
Deterministic geometry points to triangular, elliptical, circu-
lar, square, and last but not least rectangular (used in this

work) shapes of patch. Choice of patch dimension such as
length, width, permeability, and thickness of the substrate
plays signi�cant role in obtaining the resonance frequency.

ere exist numerous models in literature that account for
the determination of dimension of patch based on arti�cial
neural networks (ANN) for modelling purposes [9, 10] but
an algorithmic comparison of such models is unavailable.
Nevertheless, ANN in general and radial basis function (RBF)
in particular have been extensively used with excellent results
in modelling and simulation techniques for other nonlinear
mechanical systems [11, 12] and signal processing routines
[13] and in the design aspects of MSA [14–17]. 
e design
of MSA using ANN is subdivided into forward modelling
and backward modelling. Forward modelling accounts for
the synthesis of MSA and hence it is useful in obtaining
both length (�) and width (�) of the patch. In backward
modelling, the primary task is the extraction of resonance
frequency (�). Both forward side of the problem (synthesis)
and reverse side of the problem (analysis) are basic building
blocks for commercially available simulation so�ware such
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as advanced design system (ADS) and Anso� high frequency
simulation system (HFSS) [18]. In this work, the analysis for
the synthesis of MSA using RBF is performed. We present
herein an exposition of signi�cant algorithms such as least
mean square (LMS) and recursive least square (RLS) and
further investigate their deviants based on the gradient decent
approach (GDA). 
e choice of the LMS and RLS algorithm
is because they are considered fundamental in many subdis-
ciplines of engineering such as adaptive �ltering and signal
processing.
eparameters that are fed toANNare resonance
frequency (�), permeability constant (��), and height of the
substrate (ℎ). Consequently, width (�) and length (�) are
extracted from ANN. 
e rationale behind the proposed
work is that the MSA design and its pertinent equations are
of high nonlinearity; therefore choosing an algorithm that
results in minimal error between the estimated data and the
desired data can be useful in the development of the afore-
mentioned commercial so�ware. Moreover, computational
complexity of algorithms is another area which needs to be
looked into before choosing an algorithm; hence we outline
the complexity di	erence in terms of complexmultiplications
and additions that are performed in an algorithm. To the best
of the authors’ knowledge such investigation and comparative
analysis have not been done previously for the synthesis of
MSA.

Organization of this paper is such that, a�er introduction
in Section 1, an overview of the design aspects of MSA
is given in Section 2. Section 3 introduces RBF, LMS, and
RLS approaches and mathematical formulation of adaptive
spread factor. Complexity analysis is presented in Section 4.
Simulation results and comparative analysis of the four
algorithms are given in Section 5. Subsequent section deals
with concluding remarks of this work and references.

2. Design of the Rectangular Microstrip
Patch Antenna

Patch antennas are multilayered components with conduc-
tors, that is, patch and ground plane separated by dielectric
substrate. Rectangular microstrip patch antenna (R-MSA)
consists of width (�) and length (�) as presented in Figure 1.

e other signi�cant parameters required in designing and
fabrication of MSA include substrate thickness (ℎ) and its
permeability (��). Choice of substrate determines the size
and its relevant application base. Most common substrates
on the market are RT/duroid with dielectric constant of
2.2 and liquid crystal polymer (LCP) with the range of
dielectric constant between 2.9 and 3.2 [19]. Generally, there
are numerous substrates available on the market for usability
in MSA and in practice the permeability of dielectric with
MSA in perspective is in the range of 2.2 ≤ �� ≤ 12. Feed is
another crucial aspect in design of patch antenna and there
exist multiple methods by which a signal can be fed. 
e
simplest method is direct contact method shown in Figure 1
and thereby used in this work. Other methods can be probe
feed, microstrip proximity coupling, and microstrip aperture
coupling [20].
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Figure 1: Rectangular microstrip antenna.

In MSA, physical length (�) and electrical (e	ective)
length (�e� ) are di	erent because of fringing �elds at the
edges of the patch. 
e e	ective electrical length of the patch
antenna is given by [2, 19–22]

�e� = � + 2Δ�, (1)

where Δ� is the change in length given by

Δ� = 0.412ℎ(��,e� + 0.3) (�/ℎ + 0.264)(��,e� − 0.258) (�/ℎ + 0.8) . (2)

E	ective dielectric constant of the dielectric material is
expressed as [19]

��,e� = �� + 12 + �� − 12 (1 + 12 ℎ�)
−1/2 . (3)


e actual length of the patch under speci�ed conditions is

�e� = 
2 �⇒
� = �2�√��,e� − 2Δ�.

(4)

Hence the practical width is determined as follows:

� = �2�√ 2�� + 1 . (5)

Based on the above mathematical modelling, both syn-
thesis and analysis can be designed using so� computing
tools. We, however, focus on the synthesis of MSA; where
the inputs to ANN are resonance frequency (�), substrate
thickness (ℎ), and dielectric constant (��) while length (�)
and width (�) are extracted from the RBF designs. Synthesis
aspect of this work is presented in Figure 2. We utilize this
model as a test bench to compare LMS and RLS algorithms
in the forthcoming sections.

3. Synthesis Using RBF-ANN

In this sectionwe examine the feedforward architecture of the
ANNbased onRBF. Layout of RBF is simplistic and it consists
of hidden layer and output layer neurons. 
e function of
hidden layer is to perform a nonlinear operation on the set of
inputs. For the purposes of performing a nonlinear operation,
one can resort to plethora of nonlinear functions such as
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Figure 2: Synthesis of ANN-MSA.

multiquadrics, inverse multiquadrics, and Gaussian function
[21–23]. Moreover, Kernels of the RBF have been extended in
multiple ways with notable work in [24–26]. In this work, we
however use the conventional approach expressed in [21, 22]
for our hypothesis testing. 
e nonlinear function pertinent
to �th neuron (Φ�) is considered as Gaussian function which
can be expressed by means of the following expressions:

Φ� (�) = exp(−∑
�
�=1 (�� − ��)22�2� ) (6a)

�� = �max√2�, (6b)

where � is the time index, �� is the spread factor of �th
Gaussian function and it is determined empirically, � is
the total number of basis functions employed, �max is the
maximum distance between any two bases, �� is the �th input
data, and �� is the �th center of basis function.

Once the nonlinear activation function is performed on
the input set of data (��), the output can be extracted from
output layer neuron (��) as

�� (�) = �∑
�=1
!� (�)Φ� (�) , (7)

where� is the total number of basis functions and!� are the
weighted interconnection between the hidden neurons and
the output neurons.

Weight update is processed by using recursion principle
of RBF-ANN and its optimality is an active research area
with the synthesis of MSA in perspective. An e	ort is made
herein to model algorithms with better convergence and
stability properties of the objective functionwhich is basically
error minimization. 
e following subsections provide an
overview of algorithms utilized in approximating MSA met-
rics and recursively update weights and the corresponding
activation function. Figure 3 presents an RBF neural network
where input data is fed to Gaussian function; each nonlinear
activation function has a weighted interconnection with the
output neuron. Our primary focus here is the minimization
of objective function which accounts for the mean square
error (MSE) between the desired output (�) and the estimated
output (�). We use two benchmark algorithms, namely, the
LMS and the RLS independently. Lastly, spread can also
be recursively updated based on gradient decent approach
(GDA) which has the potential to further minimize theMSE.

3.1. Least Mean Square (LMS). Least mean square (LMS)
algorithm is used widely in the domain of adaptive �ltering
[27] and it is alsomore o�en than not utilized in RBF forMSA
design [14]. 
e LMS utilizes GDA approach to recursively
update the weights of neurons based on the instantaneous
MSE. Consider an objective function which is simply based
on instantaneous error of all the output neurons given by

" (�) = 12
	∑
�=1
(�� (�) − �)2 , (8)

where� corresponds to the desired output which is compared
with the approximated result of the output neuron ��. Gradi-
ent of the cost function is thus calculated as

#" (�)#!� (�) =
	∑
�=1
(�� (�) − �)Φ� (�) . (9)

Hence, the corresponding weights!� update equation can be
computed and updated as

!� (� + 1) = !� (�) − $1 #" (�)#!� (�) , (10)

where $1 is the learning rate or step size and it plays an
important role in the convergence properties of the given
objective function.

3.2. Recursive Least Square (RLS). Recursive least square
(RLS) is another powerful adaptive algorithm where the cost
function is minimized by recursively updating the weights.

ere is a plethora of literature available on the design of
RLS algorithm; therefore [28] and references therein can be
insightful for interested readers. 
e main aim herein is not
to redrive the RLS algorithm but to brie�y overview its core
principles. 
e linear least square objective function is given
by

" (�) = 
∑
�=1
� (�, %) (�� (�) − �)2 (11a)

� (�, %) = 

−�, (11b)

where 
 is the forgetting factor of RLS and has values in the
range of 0 < 
 ≤ 1.
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Figure 3: LMS, RLS, and adaptive spread factor (�) modelled using RBF-ANN.


e order of RLS denoted as &(�) and the corresponding
weights update (!�) expressions are given by

& (�)
= 
−1 [& (� − 1) − & (� − 1) � (�) �� (�) & (� − 1)
 + �� (�) & (� − 1) � (�) ]

(12)

! (� + 1) = ! (�) + & (�) � (�) - (�) . (13)

Convergence of RLS is much faster as compared with
LMS though computational complexity of RLS substantially
increases, and this aspect is shown in the subsequent section.

3.3. Gradient Decent Approach for Adaptive Spread. In this
subsection, the spread factor has also been made adaptive
using gradient decent approach for both LMS and RLS
algorithms. 
e relevant gradient of objective function and
recursive update of spread factor are given by [21, 22]

#" (�)#�� (�)
= −!� (�) �∑

�=1
(�� (�) − �)2 7
 (::::x� − ��::::��)Q�� (�)

(14a)

Q�� (�) = [x� − �� (�)] [x� − �� (�)]� (14b)

�� (� + 1) = �� (�) − $2 #" (�)#�� (�) , (14c)

where the term 7
(⋅) in (14a) is the �rst derivative of Green’s
function 7(⋅) with respect to its argument and $2 is the
learning rate for adaptive spread.

Depiction of GDA based spread update is shown
using dashed-lines of Figure 3. Recursive update of spread
expressed in (14a), (14b), and (14c) can greatly enhance the
approximation capabilities of the neural networks since it is

tuning themost signi�cant part of RBF, namely, the activation
function de�ned in (6a). It is also to be noted herein that
a further extension of the aforementioned model is also
possible in which one can update centers of the Gaussian
function as well [21–23]; however subtractive clustering
method is used in this work.

4. Computational Complexity

Computation complexity of the four algorithms based on
matrix and vector dimension denoted as A is summarized
in Table 1. It can be seen that algorithm 4 has the high-
est computational complexity and it increases rapidly with
increasing the dimension of the system, for example, number
of neurons of RBF. In order to calculate the complexity of
overall system, input vectors are needed to be considered
alongside the inherited routines of a particular algorithm.
For the detailed formation of computational complexity, we
suggest that the reader follows mechanics of [29]. It is shown
in the next section that RLS algorithm which needs more
computational power for the present problem bene�ts in
terms of minimizing the MSE which drops from 152 to just
over 1 for the testing data. 
ere are certainly some emerging
algorithms [30–34] and conventional techniques of algorithm
manipulation [35, 36] with varying degree of complexity
which can lead to the potential expansions of this work.

5. Experimental Results

In this section, four methods have been investigated and
analyzed for synthesis of MSA, namely, LMS, gradient decent
approach for updating spread fused with LMS (�-GDA-
LMS), RLS, and lastly gradient decent approach for updating
spread integrated with RLS (�-GDA-RLS). Four algorithms
mentioned are tested based on the frequency range between
2.2GHz and 5GHzwith substrate thickness variable between
0.2175mm and 0.5175mm and for a scalar value of dielectric
constant set as 2.33 which is Rogers RT/duroid, and similar
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Table 1: Comparison of computational complexity.

Algorithms
Number of complex
multiplications

Number of
complex additions

Algorithm 1:
(9) and (10)

A2 + A A2 + A
Algorithm 2:
(12) and (13)

4A2 + 2A 3A2 + A
Algorithm 3:
(9), (10), (14a), (14b),
(14c)

3A2 + A 3A2 + 3A
Algorithm 4:
(12), (13), (14a), (14b),
(14c)

6A2 + 2A 5A2 + 3A

Table 2: Mean square error (MSE) in testing phase.

Algorithm Initial � Final � MSE

LMS 0.151 0.151 1.5626- + 02
LMS with adaptive � 0.151 0.149 1.5322- + 02
RLS 0.151 0.151 1.2916- + 02
RLS with adaptive � 0.151 1.396 1.3365- + 00

frequency band has been designed using rectangular slot
antenna in [37] and therefore adopted herein. Normalized
spread used for LMS algorithm is 0.151. 
e number of
epochs used in training is 100, and subtractive clustering
approach is utilized as in the previous work of [13]. Training
results for LMS is shown in Figure 4. It can be seen that,
during the training phase, the estimated values of length
(�) and width (�) superimpose the actual output values.

e mean square error (MSE) for this algorithm is 156 for
the testing batched data. By making the spread adaptive
for the LMS algorithm based on gradient decent approach,
MSE decreases to 153 which is not a substantive decrease
in overall error for this approach. On the other hand, with
the similar set of data as in LMS case, RLS is employed
with forgetting factor (
) set at 0.93 and training of ANN
is done. On testing it is found that the MSE drops to 129
which is better than both LMS and LMS with adaptive
spread. Further, using the adaptive spread technique in RLS
algorithm, performance of ANN is enhanced tremendously
and the MSE is reduced to 1.396. Training results with ANN
based on fourth approach is shown Figure 5 whereas Table 2
represents the comparativeMSE analysis for the 4 algorithms
discussed. Please note that the di	erence between the initial
spread and �nal spread for the second and fourth algorithm
inTable 2 is disproportionatewhich is indicative of the overall
performance metric of the two algorithms.

In Figure 6, we present a 3D depiction for the variables
involved in the synthesis design of MSA, namely, resonance
frequency (�), substrate thickness (ℎ), and length (�) and
width (�), using adaptive spread based RLS algorithm.
ere
is excellent match of the algorithm output and the desired
output. 
e �ouring (contour) of Figure 6 indicates the
degree of match. Building on the contour of Figure 6 and
to better analyze the four algorithms, contour plots for the

10 20 30 40 50 60

Output for LMS training

20

25

30

35

40

45

50

Width (W)

Length (L)
W-LMS-training

L-LMS-training

Figure 4: Training results for LMS algorithm.
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Figure 7: Contour plots of the LMS, RLS, and adaptive spread algorithms in MSA synthesis.

testing phase of all four algorithms are provided in Figure 7.
It can be seen in the contour plots that approximated results of� and � are represented by “red” and “green” lines while the
actual or target for both� and � is shown using “blue” lines.
In algorithm 4, results almost superimpose desired “blue”
lines; the least matching contours are for LMS. 
e degree
of match between approximated and desired output is shown
to improve from algorithm 1 to algorithm 4 in respective
order. Table 3 represents the desired and approximated width
and length for the four algorithms, it can be seen that most
signi�cant approximation using RBF is � of the patch which
contributes signi�cantly toMSE for LMS; however, it is better
approximated using RLS algorithms. From Table 3, it can
also be seen that algorithms 1 and 3 are almost similar in

approximation of � while, in all four test cases, � is better
approximated using algorithm 3 as compared with LMS
approach of algorithm 1. Mean square error (MSE) among all
four cases is minimal while using adaptive spread based RLS
algorithm.
e accuracy of our fourth algorithm is 99.89% as
compared with 99.09% achieved by authors of [14] which is
their highest in the synthesis work of MSA.

6. Concluding Remarks


is paper presented the comparative analysis of four dif-
ferent algorithms for synthesis aspect of MSA using RBF.
Estimation based on LMS, LMS with adaptive spread, RLS,
and RLS with adaptive spread algorithms is utilized for
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Table 3: Comparison of the desired and approximated width and length for the four algorithms.

Synthesis parameters

� = 4.5GHz � = 3.3GHz � = 2.33GHz � = 2.3GHzℎ = 0.238mm ℎ = 0.387mm ℎ = 0.338mm ℎ = 0.588mm�� = 2.33 �� = 2.33 �� = 2.33 �� = 2.33
Desired width 25.832808609737622 35.226557195096753 43.054681016229374 50.542451627747518

Algorithm 1 25.503126915201797 34.727797095017110 42.546963629337398 53.123805223190246

Algorithm 2 25.399012168041605 34.595677176141677 42.368210233612288 52.787288550277708

Algorithm 3 25.503126711966839 34.727794498976266 42.546963026145313 53.123800213238567

Algorithm 4 25.844082198839743 35.219397833997661 43.044311230214660 50.575068292414450

Desired length 21.589078002479315 29.529980036520211 36.147398398220965 42.477102918108628

Algorithm 1 21.180298009632367 28.977178217363399 35.587003693004334 44.507734041334601

Algorithm 2 21.096419382083074 28.866795189303346 35.436986349108103 44.225886126622122

Algorithm 3 21.142603463604360 29.537218733244114 37.292493792678805 41.295986097468969

Algorithm 4 21.513894367659727 29.466986874035420 36.059519035942024 42.453611546508384

approximating length and width of the MSA based on the
input of resonance frequency, permeability constant, and
substrate thickness. It is shown that, by augmenting the
adaptive spread schemewith LMS andRLS algorithm, there is
possibility of signi�cantly improving the performance of RBF
Kernel. It is also shown in this work that the most signi�cant
metric that accounts for maximum error is length of patch
antenna and hence its estimation is of utmost importance
which is accounted in RLS algorithmwith goodmeasure.
e
computational power that is desired by machines has been
explicitly expressed in terms of complex multiplication and
additions. Lastly, some potential extension of this work is
discussed.
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