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Abstract

Statistical shape-and-texture appearance models employ

image metamorphosis to form a rich, compact represen-

tation of object appearance. They achieve their efficiency

by decomposing appearance into simpler shape-and-texture

representations. In general, the shape and texture of an ob-

ject can vary nonlinearly and in this case the conventional

shape-and-texture mappings using Principle Component

Analysis (PCA) may poorly approximate the true space. In

this paper we propose two nonlinear techniques for mod-

elling shape-and-texture appearance manifolds. Our first

method uses a mixture of Gaussians in image space to sep-

arate the different parts of the shape and texture spaces.

A linear shape-and-texture model is defined at each com-

ponent to form the overall model. Our second approach

employs a nearest-neighbor method to find a local set of

shapes and images that can be morphed to explain a new

input. We test each approach using a speaking-mouth video

sequence and compare both approaches to a conventional

Active Appearance Model (AAM).

1. Introduction

Statistical shape-and-texture appearance models [9, 2]

use image metamorphosis to define rich, compact models

of appearance. They are useful in a variety of applica-

tions including object recognition, tracking and segmen-

tation [5, 13, 14]. Traditionally these methods use linear

models (i.e., PCA) to represent the shape and texture of an

object. There are many objects, however, that can exhibit

nonlinear shape and texture variation, for which the con-

ventional shape and texture mappings using PCA poorly

approximate the true space. This is especially true of bi-

ological objects that can deform quite drastically, such as a

hand or mouth, or whose texture can drastically vary across

different examples (e.g., cats, dogs).

In this paper we investigate nonlinear techniques for

modelling shape-and-texture appearance manifolds that ex-

hibit a varying topology (i.e., a manifold that can have mul-

tiple parts or holes) or dimensionality. We test our methods

using a speaking-mouth video sequence obtained from the

AVTIMIT database [8]. In our experiments, the different

parts of the space arise from varying mouth configurations

(e.g., closed vs. open mouth). Different regions can take a

different dimensionality in shape and texture. For example,

an open mouth can have features associated with the teeth

that are absent in a closed mouth.

We have implemented and compared two nonlinear tech-

niques. The first technique uses a Gaussian mixture model

to learn the nonlinear mouth appearance manifold. As

demonstrated in the experiments, this method outperforms

a simple linear model since it more tightly models the local

variation of the nonlinear mouth appearance manifold. In

general, it is difficult to know a priori the correct number of

components to use in the mixture model. Also, a complex

appearance manifold may require arbitrarily many mixture

components, making such a model inefficient.

To overcome these limitations of a mixture-model ap-

proach we have implemented an example based shape and

texture appearance model that computes a small neighbor-

hood of example images and shapes that can be combined

to explain a new input. In particular, we compute a morph

between a neighborhood of examples on the manifold found

using nearest neighbor, using a convex (or bounded) com-

bination of the neighborhood’s shape and texture to match

the input image. Unlike the mixture model method, this ap-

proach makes no assumptions about the global structure of

the manifold. It also lends itself more naturally to shape

features having multiple dimensionality across examples in

the database.

In our experiments we evaluate the performance of each

of the above algorithms using a mouth sequence from a

single speaker. We build each model using a small set of

frames taken from the sequence and then fit each model to

frames outside of the training set. For comparison, we also
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build an AAM and show examples for which the conven-

tional AAM fails and our methods succeed.

2. Related Work

Linear models of shape and texture have been widely ap-

plied to the modelling, tracking and recognition of objects

[5, 9, 13]. Provided a set of example images, linear shape

and texture appearance models decompose each image into

a shape and texture representation and then model the vari-

ation of the data in these spaces using Principle Component

Analysis (PCA). The shape of an object describes the ob-

ject’s geometry and is typically defined by a set of feature

points that outline the object contours. The texture is the

“shape free” representation of the object and is obtained by

warping each image to a reference coordinate frame that

is usually defined by the average shape computed from the

training images.

The Active Appearance Model (AAM) [2] and Multidi-

mensional Morphable Model (MMM) [9] are probably the

most well known linear shape and texture appearance mod-

els. By decomposing appearance into separate shape and

texture spaces they achieve a compact, expressive model of

appearance, more powerful than pure intensity models de-

fined with PCA (e.g. Eigenfaces [17]). As we show in this

paper, these models are unable to faithfully represent the

appearance of complex objects with nonlinear appearance

manifolds, such as mouths, whose manifolds have parts and

holes.

Many nonlinear models have been defined separately for

shape and appearance [12, 3, 10]. Romdhani et. al. [12]

use Kernel PCA to define a nonlinear shape model for rep-

resenting shape across object pose. Cootes et. al. [3] show

how a Gaussian mixture model can be used to construct a

nonlinear active shape model that restricts its search to valid

shapes on the object shape manifold, thus avoiding erro-

neous matches. A nearest neighbor algorithm is explored

by Grauman et. al. [7]. In her work she defines an active

shape model across body poses. Several authors have devel-

oped example based models of object appearance, including

the metric mixtures approach of Toyama and Blake [16],

however, these methods do not exploit shape and texture

decomposition. Similarly, Murase and Nayar [10] present a

manifold learning algorithm that maps out the space of im-

ages of an object imaged across different poses. To the au-

thor’s knowledge this is the first work that explores nonlin-

ear techniques for modelling shape and texture appearance

manifolds. The only exception is the view-based AAM [4].

The view-based AAM defines a piecewise linear repre-

sentation of the shape and texture appearance manifold in

a very similar fashion to the Gaussian mixture model de-

scribed in Section 3.1. The key differences between the

Gaussian mixture model and the method described in [4]

is that our method automatically learns the different regions

Input Shape Texture
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Figure 1. Linear models compute a texture space by warping each

example to a single reference frame. Note the stretched region

present in the closed mouth textures and that the inside of the

mouth is lost in the texture of the open mouth.

of the manifold from the data and is not restricted to learn-

ing mixture components that vary across pose alone.

3. Nonlinear Appearance Manifolds

The images of a complex object such as a mouth gener-

ally belong to a nonlinear appearance manifold with parts

or holes as illustrated by Figure 1. This figure illustrates the

shape and texture of example mouth images taken from the

AVTIMIT database [8]. The average image and shape are

displayed along with example textures and shapes of select

prototype images.

Consider modelling the mouth appearance using a linear

model such as an AAM. Figure 1 demonstrates the difficulty

with modelling the mouth using a linear method. In partic-

ular, notice the stretched region in the texture of a closed

mouth and that the inside of the mouth is lost in the tex-

ture of an open mouth. These artifacts cripple the computed

model; in general, linear methods have difficulty modelling

the full range of mouth appearance. Such artifacts are a re-

sult of the varying topology of the appearance manifold of

this object—some features (or surfaces) are visible in cer-

tain images but not in others (e.g., teeth). Intuitively, this is

seen by the fact that there exist sets of mouth configurations

for which the same parts of the mouth are visible in each

set.

In addition to varying topology, the shape-and-texture
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Input First Five Nearest Neighbors

Figure 2. First five nearest neighbors computed with our algorithm

on a database of 100 mouth images.

spaces of nonrigid object classes have varying dimension-

ality across examples. Once again, consider the mouth im-

ages of Figure 1. The presence of teeth in the open mouth

introduces new shape features that are absent from the im-

age of the closed mouth. Allowing for varying shape dimen-

sionality results in a more expressive and accurate model of

appearance.

Below we present two nonlinear models for modelling

shape-and-texture appearance manifolds. The first method

takes into account the varying topology in image space by

fitting a mixture model to the PCA coefficients of the image

data. As the number of components necessary is difficult

to know a priori (or estimate via cross-validation) and the

number of components may increase substantially with the

complexity of the appearance manifold, we also develop an

alternative nearest-neighbor model. Unlike the first method,

the nearest-neighbor model makes no assumptions of the

global structure of the appearance manifold. Instead, it

looks at local neighborhoods on the manifold that are as-

sumed to belong to the same region of the topology. While

in principle it is possible to extend both of the nonlinear

approaches below to include varying shape dimensionality,

the nearest-neighbor model lends itself more naturally to

this task.

3.1. Mixture Manifold

In this section we develop a Gaussian mixture model for

representing a shape-and-texture appearance manifold. To

begin, let xi and si, i = 1, ...n, be a set of prototype images

and their corresponding shapes. As in [2], we define shape

to be

s = 〈x1, x2, .., xk, y1, y2, ..., yk〉
T

, (1)

where 〈xi, yi〉 is a two dimensional image feature point.

Initial 3 Iterations 8 Iterations Converged

Figure 3. A convincing reconstruction of the shape and texture of

an input mouth image is computed in a few iterations using the

gradient descent algorithm of the nearest neighbor model.

Assuming that the different regions of the object appear-

ance manifold are well approximated as linear, the underly-

ing structure of the manifold can be explained using a Gaus-

sian mixture model. More specifically, we wish to learn the

underlying probability distribution p(x) of the object ap-

pearance manifold. Using a Gaussian mixture, this distribu-

tion is found as

p(x) =
∑

j

p(x|j)p(j), (2)

where j = 1, ...,m represents the jth mixture component.

Given the prototype images, xi, the Gaussian mixture is

learned using Expectation Maximization (EM). See [1] for

details. To make the computation of (2) computationally

tractable, we use PCA to reduce the dimensionality of the

images and then approximate p(x) by computing a mixture

model over the PCA coefficients. Namely, we approximate

p(x) as

p(x) ≈
∑

j

p(b|j)p(j), (3)

where b are the PCA coefficients of the input image found

as

b = P
+(x − µ), (4)

the columns of P are the d < n principle axis computed

with PCA and µ is the mean image. More generally, we

could use PPCA [15], which would allow for different di-

mensional sub-spaces.

Each component of the mixture model defines a region of

image space for which the same parts of the mouth are vis-

ible. Consequently, each component is associated with its

own shape-and-texture space. Assuming that the shape and

texture varies linearly in each component, we can model the

local shape-and-texture variation using a linear deformable

model. In particular, at each component, we compute an

AAM [2] using the examples that lie under the support of

the component’s Gaussian. Since each Gaussian has infinite

support, we segment the manifold according to the mixture

model by truncating each Gaussian using a threshold. We

consider an example to be under the support of a Gaussian if

it is less than three standard deviations away from the mean.
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Figure 4. Multidimensional shape representation used by the

nearest-neighbor model. Each example image is labelled with

varying feature sets according to what parts of the mouth are visi-

ble. Three examples are shown: (left) with only lip features, (mid-

dle) with lip and top teeth features, (right) with lip, top and bottom

teeth features.

The Gaussian mixture model defines a piecewise linear

model of shape and texture, each region of the topology

modelled using a separate AAM. To analyze a new example

image, we independently fit each local AAM to the exam-

ple and retain the fit with the lowest error. Note the model

provides a nonlinear mapping of shape and texture that ob-

serves the varying topology of the manifold. In particular,

the components of the Gaussian mixture model map out

the different regions and holes of the nonlinear appearance

manifold. Using this model, an input image is mapped to

a set of local shape-and-texture coefficients associated with

the region in image space that best explains the new input.

Given p(x), we are less likely to map an image to a point off

of the manifold (e.g. a non-mouth), since p(x) equips the

model with detailed knowledge of the manifold structure.

The above model provides a concise representation of

the shape and texture of a nonrigid object class whose ap-

pearance manifold has a varying topology. This model re-

quires knowledge of m, however, which may be difficult

to estimate, and may be arbitrarily large for complex mani-

folds. Part of the reason for this, is that it assumes that each

region of the topology is locally linear. In general, each

part of the manifold can have arbitrary shape and thus we

expect this model to perform poorly when this occurs. In

the next section, we present an alternative nearest-neighbor

algorithm that relaxes the above assumptions.

3.2. Nearest-Neighbor Model

In this section, we present our nearest-neighbor shape-

and-texture appearance model. Instead of modelling each

region explicitly, the nearest-neighbor model provides an

implicit representation of the object appearance manifold.

Specifically, this model focuses on local neighborhoods of

the manifold defined by k examples. In this region it is

assumed that the same parts of the nonrigid object are vis-

ible. Given the local neighborhood, the shape and texture

of a new input is found by taking bounded combinations

of the shape and texture of the k nearest-neighbor exam-

ples. Therefore, given a new image, we wish to find a local

neighborhood observing the above properties, whose shape

input synth image synth shape

Five Nearest Neighbors

Figure 5. Shape intersection algorithm used by the nearest-

neighbor model. To compute the shape of the input, the shape

of the nearest neighbors is intersected and the shape features com-

mon to all examples is used.

and texture best explain the input.

We use nearest-neighbor search to find a set of examples

on the manifold whose appearance most closely approxi-

mate that of the input. Given a novel input, xs, we compare

it to each image, xi, of the prototype set to compute its k

nearest neighbors. Although we use an exhaustive search

there exist fast methods for computing approximate nearest

neighbors [6] that we leave for future work. In our algo-

rithm, we compute proximity using Euclidean distance in

pixel space. We compute the distance,

d(xs,x) = ‖xs − x‖2, (5)

between xs and each prototype image and retain the k ex-

amples having smallest distance. Figure 2 displays the re-

sults of this nearest-neighbor algorithm on a database of 100

images of a single subject’s mouth taken from the AVTIMIT

database. The nearest neighbors of a novel input appear to

form a local neighborhood in image space.

The shape and texture of an input image are computed

by taking a convex combination of the shape and texture of

its k nearest neighbors. Let xj and sj , j = 1, ..., k be the k

nearest neighbors of the input and their associated shapes.

The texture of each example is computed as

tj = xj ◦ W (sj , sref ), j = 1, ..., k, (6)

where ◦ denotes the warping function, W () is a function

that computes the piecewise affine correspondence between

two images given their shape [2], and sref is the reference

shape of the local neighborhood defined to be the mean of

the example shapes,

sref =
1

k

∑

j

sj . (7)

Given the k nearest neighbors of the input, we search over

bounded combinations of their shape and texture that best

match the input by minimizing the following error objective

function,

E(xs,b, c) = ‖xs ◦ W (sm(c), sref) − tm(b)‖2, (8)
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Figure 6. Video sequence taken from the AVTIMIT database [8]

used to train and test our models. Select frames from this sequence

are shown.

where

tm(b) =
∑

j bjtj ,

sm(c) =
∑

j cjsj ,

and bj , cj take values on the closed interval [α, β]. Note that

α and β restrict the search to a bounded region of the man-

ifold containing the k nearest-neighbor examples. If α = 0
and β = 1 then the search is restricted to the convex hull

of the example shape-and-texture vectors. This restriction

results in a compact representation of the manifold and as-

sures that we match an input to a point on the manifold. In

our experiments, we bound the mixture weights to lie on the

closed interval [-1.5,1.5].

We minimize the objective function (8) using gradient

descent. Figure 3 displays an example match using the

above algorithm. The algorithm is able to generate a con-

vincing reconstruction of the mouth from the shape and tex-

ture of the nearest-neighbor examples.

It is straightforward to extend the nearest-neighbor

model to handle multiple shape dimensionality. With this

representation a shape vector, sM , is defined as

s
M = 〈x1, x2, ..., xM , y1, y2, ..., yM 〉 . (9)

In the above representation, each shape has dimensionality

2M . This multidimensional shape representation is illus-

trated by Figure 4. In the nearest-neighbor model we as-

sociate each prototype image with a shape vector that has

dimensionality according to what is visible in the image.

When computing nearest neighbors, we intersect the shapes

of the neighborhood examples and use the shape features

common to all examples to match the novel input. This

process is illustrated by Figure 5. The use of multiple shape

dimensionality results in a more expressive and accurate ap-

pearance model.

4. Experiments

To evaluate each algorithm, we used a mouth sequence of

a single person taken from the AVTIMIT database [8]. This

sequence contained a total of 2300, 720×480 grayscale im-

ages; select frames from this sequence are displayed in Fig-

ure 6. We randomly selected 100 frames and manually la-

belled each frame with mouth features (see Figure 1). Using

Variables Perturbations

x, y ±5% and ±10% of the height and width

of the reference shape

θ ±5, ±15 degrees

scale ±5%, ±15%

c1−k ±0.25, ±0.5 standard deviations

Table 1. Perturbation scheme used to train the local linear models

of the Gaussian mixture model and used by the AAM. [14]

the labelled features, we cropped each image about the cen-

ter of the mouth using a 111×139 window to form our train-

ing set. Using this training set we constructed the Gaussian

mixture deformable model discussed in Section 3.1 and an

Active Appearance Model [2]. The same 100 frames, along

with the multidimensional shape feature vectors displayed

in Figure 4, were used by the nearest-neighbor model dis-

cussed in Section 3.2.

We built the Gaussian mixture model using a three di-

mensional subspace of the image data computed with PCA,

retaining 56 % of the total model variance, and with m = 5
mixture components. We found these parameters to work

well in our experiments. Using a three dimensional sub-

space also allowed us to visualize our models. To compute

the Gaussian mixture, we used the NetLab library [11]. The

local AAMs constructed in the Gaussian mixture model and

the single AAM models were constructed using the parame-

ters listed in Table 1. In each local AAM, as well as the sin-

gle AAM, 95 % of the model variance was retained by the

combined shape-and-texture space. In our experiments we

evaluated the nearest-neighbor algorithm for varying values

of k. The value used is made explicit in each experiment.

We also allowed each interpolation weight to take values

between -1.5 and 1.5, allowing it more freedom to extrap-

olate from the data. These values were found empirically

from the training data.

In our experiments, we assume that the location of the

mouth is coarsely initialized by an external mouth detector.

Both the Gaussian mixture model and the AAM optimize

for location during model search and therefore require only

approximate initialization of the mouth location. We refine

the mouth location estimate in the nearest-neighbor model

by finding the nearest neighbor using the input location and

then computing a normalized cross correlation between the

nearest neighbor and same-sized patches in the input im-

age centered about locations in an 11 × 11 search window

about the initial center. We reset the center of the mouth to

the location having the highest correlation score and repeat

this process until convergence or the maximum number of

iterations is reached. In our experiments, we found this al-

gorithm typically converged in a few iterations.

In the following section, we perform both a quali-

tative and quantitative comparison of each of the non-
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linear algorithms and compare them against the base-

line AAM approach, each model constructed as specified

above. We perform this comparison over 540 mouth im-

ages outside of the training set taken from the mouth se-

quence of Figure 6. The nearest-neighbor model’s de-

pendency on k is also evaluated using this test set. Fi-

nally, we show an example for which the multidimensional

shape representation improves model accuracy. A descrip-

tion of additional results and experiments can be found at

<http://groups.csail.mit.edu/vision/vip/nlam.htm>.

5. Results

Three images taken from the 540-image test set along

with the synthesized texture and shape generated by each

model are displayed in Figure 7. The RMS fit error is also

provided above each fit. In this experiment, the nearest-

neighbor model has k = 10. The first test image is mod-

elled well using all three models. Comparing the RMS

error of each fit, however, both the Gaussian mixture and

nearest-neighbor models outperform the AAM. The synthe-

sized texture of the AAM is also quite blurred. The next two

examples reveal scenarios for which the single AAM model

fails and the nonlinear methods succeed. In particular, the

AAM has difficulty modelling any images whose geometry

is very different from the model reference image. This is

seen in the case of the open mouth image, where the inside

of the mouth is poorly represented in the texture space of

the linear model (see Figure 1).

A quantitative comparison of each model is provided by

Figure 8. In the figure, a Root-Mean-Square error box plot

is shown for each approach computed over the 540-image

test set. Both the Gaussian mixture model and the nearest-

neighbor model do the same or significantly better than the

single AAM throughout the test sequence. The error box

plot shows that with k = 10 the nearest-neighbor algorithm

outperforms each approach on a whole (different values of

k are considered next). The noteworthy performance of

the nearest-neighbor model is expected since it makes the

fewest assumptions about the underlying structure of the ap-

pearance manifold.

The poor performance of the single AAM on the mouth

sequence is a direct result of the simplicity of the model.

This model assumes a single texture space over the mouth

appearance manifold. Since the appearance manifold has

varying topology, a global texture space is ill-defined; the

appearance variation of the mouth is not well represented

using a single reference coordinate frame. This point was

demonstrated by Figure 1 in Section 3. Also, the single

AAM has no knowledge of the local structure of the mani-

fold and can therefore converge to non-mouth images. Each

of these properties contribute to the AAM’s poor perfor-

mance in modelling the appearance of the mouth. The non-

linear techniques of Section 3 provide shape-and-texture
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Figure 7. Qualitative comparison between each method and a base-

line linear model. The input, synthesized shape and texture, com-

puted with each model, is shown for each example. The AAM has

difficulty modelling the full range of mouth appearance. The last

two examples illustrate scenarios where the AAM fails and our

methods succeed. These examples contain regions of the mouth

that are absent from either the reference image or input mouth im-

age and thus the AAM cannot faithfully represent their appear-

ance.
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Figure 8. Quantitative comparison between each method and a

baseline linear model. A box plot of the RMS error of each model

evaluated over 540 test mouth images is shown. In the plot, the

horizontal lines of each box represent the top quartile, median and

bottom quartile values, the whiskers give the extent of the rest of

the data and the red crosses label data outliers. Of the three meth-

ods, the AAM displays the worst performance and the nearest-

neighbor model performs the best.

mappings that take into account the varying topology of the

mouth appearance manifold and therefore are able to faith-

fully represent the full range of mouth appearance variation.

Next, we evaluate the performance of the nearest-

neighbor algorithm for different k values. Figure 9 displays

an RMS error box plot for the nearest-neighbor model eval-

uated over the 540 test frames with k = 1, 2, 5, 10. The fig-

ure illustrates that the model performs better for increasing

values of k. This verifies our intuition that morphing be-

tween examples does better than simply taking the nearest

neighbor. As the number of examples increases the model

is provided with more degrees of freedom and can therefore

match the input image more closely. Of course taking too

large a value of k complicates the search and can lead to

poor performance.

Finally, we consider how the use of a multidimensional

shape representation can improve model-fitting accuracy.

For this experiment, we use a simplified version of the mul-

tidimensional shape representation displayed in Figure 4

that contains only mouth contours and features of the top

middle teeth. This multidimensional shape representation

divides the mouth data set into two equivalence classes,

each containing images with and without teeth. We com-

pare performing nearest-neighbor over the entire mouth

training set verses within each class separately. The re-

sults of this experiment for an example mouth image are

displayed in Figure 10 with k = 5. The figure shows the

synthesized mouth image using the single-class and dual-

class nearest-neighbor methods. The results for the single-

class and each class of the dual-class are shown along with
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Figure 9. Quantitative comparison of the nearest-neighbor method

for different k. The model performs better for increasing values

of k. As the number of examples increases the model is provided

with more degrees of freedom and can therefore match the input

more closely.

the computed nearest neighbors. Taking the shape and tex-

ture with the smallest fit error as the result of the dual-class

model, Figure 10 shows that the dual-class model outper-

forms the single class nearest-neighbor method.

The difference in performance can be explained by ob-

serving the nearest neighbors computed with each model.

The nearest neighbors of the single-class model are less like

the input than those found with the dual-class model for the

class containing mouth images with teeth. This is especially

true of the last two nearest neighbors computed with the

single class model. This simple experiment demonstrates

how a multidimensional shape representation can be used

to guide the model matching process to increase fitting ac-

curacy.

6. Conclusions and Future Work

We have presented two nonlinear techniques for mod-

elling the shape-and-texture appearance manifolds of com-

plex objects whose appearance manifold has a varying

topology consisting of parts and holes. We showed how

a piecewise linear model of a shape-and-texture appearance

manifold can be defined using a Gaussian mixture model.

We also provided a nearest-neighbor model that generalizes

well to complex manifolds, offers a compact representation

of the manifold and allows for varying feature sets. In par-

ticular, with this technique a new input is analyzed by mor-

phing a local set of examples that belong to a convex or

bounded region of the manifold.

We evaluated the performance of each algorithm using

the AVTIMIT database, where we built a shape-and-texture

appearance model of the mouth. We compared each ap-

proach to a baseline linear model and showed examples
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Figure 10. Qualitative comparison between a single and multi-dimensional shape representation. The first appearance model (top row)

contains only lip features while the second contains both lip and teeth features for the top middle teeth. The images of the second model

are separated into two equivalence classes with and without teeth. Taking the shape and texture with the smallest fit error as the result of the

dual-class model, the dual-class model outperforms the single class nearest-neighbor method. The difference in performance is explained

by the more accurate nearest neighbors found by the dual-class model.

where the conventional method fails and our methods suc-

ceed. We demonstrated that linear models poorly repre-

sent the appearance of complex objects such as mouths and

that our methods are able to define a convincing shape-and-

texture mouth appearance model by taking into account the

varying topology of the mouth appearance manifold. Inter-

esting avenues of future work include the construction of

a person-independent mouth deformable model, the use of

Locality Sensitive Hashing [6] as an alternative, more effi-

cient method for computing nearest neighbors and the con-

sideration of different distance metrics that are less sensitive

to lighting, location, orientation and scale.
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