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Abstract

We first discuss some mathematical tools used to compute the intensity of a single jump process,
in its canonical filtration. In the second part, we try to clarify the meaning of default and the links
between the default time, the asset’s filtration, and the intensity of the default time. We finally
discuss some examples.

1 Introduction

The problem of modeling a default time is well represented in the literature. There are two main
approaches: either the default time τ is a stopping time in the asset’s filtration, or is a stopping time
in a larger filtration (see Cooper and Martin (1996) for a comparison between these approaches). The
payoff ζ which is a positive random variable is promised at fixed time T in a default free framework.
The defaultable payoff is ζ if the default has not appeared before payment time T and 0 otherwise.

In the first approach, the so-called structural form, pionered by Merton (1974), the default time τ
is a stopping time in the filtration of the prices. Therefore, valuing the defaultable claim reduces to the
pricing problem of the claim ζ11T<τ which is measurable with respect to the prices’ filtration taken at
time T . We do not address this problem here.

In the second case, the idea is also to compute the value of the defaultable claim ζ11T<τ . However
it may happen that this claim is not measurable with respect to the σ-algebra generated by prices up
to time T . In this case, it is generally assumed that the defaultable market is complete, which means
that the defaultable claim is hedgeable. In order to compute the expectation of ζ11T<τ under the risk-
neutral probability, it is fruitful to introduce the notion of intensity of the default. Then, under some
assumptions, the intensity of the default time acts as a change of the spot interest rate in the pricing
formula.

We proceed in a different way, and try to understand the links between a “default-free” world
and a defaultable one. We recall some well known, though perhaps forgotten, tools to compute this
expectation and simplify most of the proofs in the mathematical finance literature. We make precise
the relation between the default time and the price’s filtration.

In the first part we recall that if the information is only the time when the default appears, the
computation of the expectation of a defaultable payoff involves the intensity of the default process 11τ≤t

which can be explicitly defined in terms of the distribution function of τ . We discuss a result of Duffie
and Lando and give a simpler form of the intensity of the hitting time.

In a second part, we assume that the information of the agent at time t consists of knowledge of the
behavior of the prices up to time t as well as the default time. We show that, in this case, the results
depend strongly on the stochastic link between the asset process and the default time. In particular, we
show that the intensity does not provide sufficient information about this stochastic link. We use some
tools from the theory of enlargement of filtrations to compute the intensity of the default time when
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it exists. In a final section, we give an example where the usual assumptions made in the literature
are not satisfied and where the value of a default claim is not obtained by a change of spot rate. The
appendix gives a new proof of the Duffie and Lando result quoted in section 2.

A detailed version of this paper including all the proofs is available upon request to M. Jeanblanc.

In this paper, we make precise the choice of the filtration and we shall say that, for a given filtration
J = (Jt, t ≥ 0), the J-adapted nonnegative process (λs, s ≥ 0) is the J-intensity of τ if (11τ≤t −∫ τ∧t

0

λsds , t ≥ 0) is a J-martingale. There is no uniqueness of the intensity after τ : in fact, there is

no meaning for the “intensity ” after τ , even if it is sometimes mentioned.

2 The single jump process in its own filtration

2.1 An elementary martingale

We start with some well known facts established for the first time in Dellacherie (1970). Suppose that
τ is an IR

∗
+-valued random variable on some probability space (Ω,G, P ). Let F (t) = P (τ ≤ t) be the

right-continuous distribution function of τ . We denote by F (t−) = P (τ < t) the left limit of F (s) as s
approaches t. We assume that F (0) = 0 and F (t) < 1, ∀t > 0. Denote by (Nt ; t ≥ 0) the default process
defined as the right-continuous increasing process Nt = 11τ≤t and by H = (Ht) its natural filtration
Ht = σ(Nu, u ≤ t), completed as usual with negligeable sets. The σ-algebra Ht is generated by the
sets {τ ≤ s} for s ≤ t and the atom {t < τ}; hence H is the smallest filtration satisfying the usual
hypotheses such that τ is an H-stopping time. Any random variable H which is Ht-measurable is of
the form H = h(τ)11τ≤t + h̃11t<τ , where h is a Borel function defined on [0, t] and h̃ a constant. We
borrow from Dellacherie the following results:

Proposition 1 If X is any integrable, G-measurable random variable, then

E(X|Ht) = 11τ≤tE(X|H∞) + 11t<τ
E(X11t<τ )
P (t < τ)

.

In particular,

E(X|Ht)11t<τ = 11t<τ
E(X11t<τ )
P (t < τ)

, (1)

and if X is σ(τ)-measurable, i.e., X = h(τ), then E(X|Ht) = 11τ≤th(τ) + 11t<τ
E(h(τ)11t<τ )

P (t < τ)
.

The process (Mt ; t ≥ 0), where

Mt
def
= Nt −

∫

]0,τ∧t]

dF (s)
1− F (s−)

, (2)

is an (Ht)-martingale.

If F is differentiable, then τ admits a density f = F ′ and P (τ ≤ s) = 1 − exp[−Λ(s)], where

Λ(s) =
∫ s

0
λ(u)du. Here, λ is the deterministic nonnegative function λ(s) =

f(s)
1− F (s)

. Moreover,

the process Mt = Nt − Λ(t ∧ τ) is a martingale, the H-intensity of τ is equal to λ and E(11T<τ |Ht) =
11t<τ exp− ∫ T

t
λ(s)ds .

Let us study the case τ = inf(τ1, τ2) where (τi, i = 1, 2) are independent and admit an Hi-intensity
equal to λi. The probability distribution of τ is F (t) = 1 − P (τ > t) = 1 − (1 − F1(t))(1 − F2(t)).

Therefore, the H-intensity of τ is equal to
f1(t)

1− F1(t)
+

f2(t)
1− F2(t)

= λ1(t) + λ2(t). If the τi are not

independent, the intensity of τ cannot be given in an explicit form from the law of each τi. Our result
differs from Duffie’s (1998), since we are not working in the same filtration. See Jeanblanc-Rutkowski
(1999) for details.
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In the general case, when F is not absolutely continuous, we introduce the hazard function Γ(t) =
− ln(1− F (t)) . From (1), for t < T for any Borel function h

E(h(τ)11T<τ |Ht) = 11t<τ

∫ T

t

h(u) exp(Γ(t)− Γ(u)) dΓ(u) . (3)

In particular, E(11T<τ |Ht) = 11t<τ exp(−[Γ(T )−Γ(t)]) . We have also obtained the decomposition of the

H-submartingale N as Nt = Mt + At, where M is a H-martingale and (At =
∫ τ∧t

0

dF (s)
1− F (s−)

; t ≥ 0)

is a H-predictable increasing process, also called the H-compensator of N . We shall call a continuous
increasing process Λ such that Nt − Λ(t ∧ t) is a H-martingale the H-generalized intensity of τ . If
F is continuous, the generalized intensity equals the hazard function. This is not the case if F is
discontinuous (see Rutkowski (1999) for a discussion).

2.2 Defaultable claims

Suppose now that, in a financial market, there exists a deterministic spot rate r(s). The present value of
a zero-coupon, which pays 1 at time T , is exp− ∫ T

0
r(s)ds. We assume that some institution has issued

a bond whose payoff is obtained at maturity if and only if a default has not appeared. We suppose
that the random time τ has a H-intensity λ. The t-time expected value of the defaultable zero-coupon
which pays 11T<τ at time T , for an agent who has the information Ht, is

E
(
exp(−

∫ T

t

r(s) ds) 11T<τ |Ht

)
= 11t<τ exp

(−
∫ T

t

(r(s) + λ(s) ) ds
)
. (4)

This is not really a price, since it is not possible to hedge this default, the only tradeable asset being the
riskless one. This explains why we do not compute the expectation under a “risk-neutral” probability,
which would be meaningless. Moreover, any change of probability will induce a change of intensity.
However, this formula is attractive, since it indicates that the default acts as a change of interest rate.
We shall show in section 3 that this is not always the case.

The t-time expected discounted value of the defaultable claim X is E(X11T<τ exp(−
∫ T

t

r(s)ds) |Ht).

If X is independent of τ , this equals 11t<τ exp(− ∫ T

t
(r(u) + λ(u))du)E(X), which is the value of X in

a model where the interest rate is r + λ . Suppose that the rebate h(τ) is paid at default time if the
default appears before maturity (here, h is a Borel function). From (3), in the case when the default
has not appeared at time t, the t-time value of the rebate part is

E(h(τ)11τ<T exp(−
∫ τ

t

r(s)ds) |Ht)11t<τ = 11t<τ

∫ T

t

du

[
h(u)λ(u) exp−

(∫ u

t

(r(s) + λ(s)) ds

)]
.

2.3 Duffie and Lando’s result

Consider Duffie-Lando’s model (1999) who assume that τ = T0 = inf{t : Vt = 0}, where V satisfies

dVt = µ(t, Vt)dt + σ(t, Vt)dWt ; V0 = v > 0 , (5)

and where W is a Brownian motion. We assume that V is a strong solution, hence the time T0 is a
stopping time with respect to the Brownian filtration Ft = σ(Ws, s ≤ t). Therefore, it is predictable in
that filtration and admits no F-intensity. We shall discuss this point later.

Here we suppose, as in Duffie and Lando, that the agent will observe default when it happens but will
have no knowledge of V before default has occured. In this case, when the default has not yet appeared,
section 2.2 proves that the value of a zero-coupon is given in terms of the generalized intensity of N
as exp−[ΓT − Γt], where dΓs = dF (s)/(1− F (s)) and F (s) = P (τ ≤ s), as soon as F is continuous.
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Duffie and Lando have shown that the intensity of N is λ(t) =
1
2
σ2(t, 0)

∂ϕ

∂x
(t, 0), where ϕ(t, x) is

the conditional density of Vt when t < T0, i.e., the derivative with respect to x of
P (Vt ≤ x, t < T0)

P (t < T0)
.

The equivalence between Duffie-Lando’s and our result is obvious. In fact, Duffie and Lando wrote that

λt = lim
h→0

1
hP (t < T0)

∫ ∞

0

P (Vt ∈ dx, t < T0)Px(T0 < h) =
1
2
σ2(t, 0)

∂ϕ

∂x
(t, 0) . (6)

The middle term of (6) equals
1

hP (t < T0)
P (t < T0 ≤ t+h) and tends to

f(t)
1− F (t)

as h tends to infinity,

which is our result. In fact, the proof that the limit in (6) is
1
2
σ2(t, 0)

∂ϕ

∂x
(t, 0) is quite complicated.

Duffie and Lando proved this result for Brownian motion, then for the Ornstein-Uhlenbeck process,
and finally for more general processes. We establish in the appendix a direct proof for homogeneous
diffusions.

3 Stochastic intensity

We now assume that, in addition to τ , a Brownian motion B lives on the space (Ω,G, P ). We denote
by Ft = σ(Bs, s ≤ t) its canonical filtration. Let T be a fixed horizon and X be an FT -measurable
integrable random variable.

We are mainly concerned with the general case, where τ is a random time on (Ω,G, P ), i.e., a positive
random variable. We write as in the previous section Nt = 11τ≤t, Ht = σ(Ns ; s ≤ t) and Gt = Ft ∨Ht

the enlarged filtration generated by the pair (B, N). (We denote by F = (Ft) the original Filtration
and by G = (Gt) the enlarGed one). We assume that the filtrations are completed and we use their
right-continuous version. The choice of G as the information filtration is due to the fact that, as in
the previous section, we assume that the agent will observe default when it happens. Here, the agent
observes also the behavior of the prices and τ is a G-stopping time. See Rutkowski (1999) for different
models.

In this general setting, the F-Brownian motion B is no longer a Brownian motion in the G filtration
and is not always a G-semimartingale1. However, (Bt∧τ , t ≥ 0) remains a semimartingale and we are
able, without additional hypotheses, to give the decomposition of any F-martingale stopped at time τ
as a G-semimartingale. We shall give some examples in the next section. Nevertheless, the conditional
expectation with respect to Gt is easy to compute from the expectation with respect to Ft, as long as
we restrict our attention to times before τ .

3.1 Conditional expectation

Let G∞ = F∞ ∨ σ(τ), so Gt ⊂ {A ∈ G∞ | ∃At ∈ Ft, A ∩ {t < τ} = At ∩ {t < τ} }.
Lemma 1 Let X be a GT -measurable, integrable random variable. Then, for any t < T ,

E(X|Gt)11t<τ =
E(X11t<τ |Ft)
E(11t<τ |Ft)

11t<τ . (7)

Proof: This result is obvious, from the remarks on the Gt-mesurable sets. In particular, we obtain

E(X11T<τ |Gt) = 11t<τ
E(X11T<τ |Ft)
E(11t<τ |Ft)

. It is easy to check that E(X11T<τ |Gt) is equal to 0 on the set

{τ ≤ t}. Indeed,
E(X11T<τ |Gt)11τ≤t = E(X11T<τ11τ≤t|Gt) = 0 .

Note that formula (7) is a simple generalization of formula (1). It is not easy to compute E(X|Gt)
after time τ , except in the case where for any Gt ∈ Gt there exists Ft and F̃t both belonging to Ft such
that Gt = (Ft ∩ {t < τ}) ∪ (F̃t ∩ {τ ≤ t}). This case occurs when τ is an “honest” random-time (see
Jeulin, (1980), page 73).

1This fact was alluded to in Hull and White (1995), footnote 4 :“ When we move from the vulnerable world to a default
free world, the stochastic processes followed by the underlying state variables may change.”
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3.2 Hazard process

Let us introduce the F-optional hazard process Γ defined as Γt = − ln(1 − Ft) where F is the sub-
martingale Ft = P (τ ≤ t|Ft). We assume in that paper that Ft < 1, for all t. This process contains all
the information we need. Indeed, from (7) we obtain easily

Proposition 2 For any FT -measurable integrable random variable X, for t < T ,

E(X11T<τ |Gt) = 11t<τE(XeΓt−ΓT |Ft)

In particular, E(11T<τ | Gt) = 11t<τ E(exp[Γt − ΓT ] | Ft) .

We emphazise that, in general, Γ is not an increasing process, and not even a bounded variation
process. It can be useful to note that, if there exists an increasing F-adapted process ∆, such that
E(X11T<τ |Gt) = 11t<τE(Xe∆t−∆T |Ft) for any pair t < T and any X ∈ FT , then Γ = ∆.

3.3 Intensity

Our aim is now to study the G-intensity of τ and to give explicit formulae to compute it. The Doob-
Meyer decomposition theorem states that there exists a unique G-predictable increasing process A (the
G-compensator) such that (Nt − At, t ≥ 0) is a G-martingale. This implies in particular that A is
constant after time τ .

In this paper, we assume that A is continuous. The existence of a continuous compensator makes
the choice of τ as an F-stopping time impossible. In this case, τ would be a predictable stopping time,
as is any stopping time in a Brownian filtration; therefore N would be a predictable process and its
predictable compensator would be N itself. Clearly, N is not continuous. Moreover, it is proved in
Dellacherie (1972), page 111 that if the G-compensator A is continuous, then τ is totally inaccessible
in the G filtration.

Let us assume that τ admits a G-intensity, that is if A is of the form At =
∫ t∧τ

0

λ̃sds where λ̃ is a

G-predictable process. It is well known (Jeulin (1980), p. 63) that if (k̃t) is any G-predictable bounded
process, then there exists a F-predictable bounded process (kt) such that k̃t11t≤τ = kt11t≤τ . Therefore,

there exists an F-predictable process λ, such that λ̃t11(t ≤ τ) = λt11(t ≤ τ) and (Nt−
∫ t∧τ

0

λsds, t ≥ 0)

is a G-martingale. We would like to emphasize that the process λ here is, without any supplementary
condition, mesurable with respect to the initial filtration F, and is unique up to time τ .

In most examples, the continuous compensator of N is not absolutely continuous with respect to the
Lebesgue measure. In the case where Nt−Λ(t∧ τ) is a G-martingale with Λ an G-adapted continuous
increasing process, we shall say that dΛ is the G-generalized intensity of N .

The filtration G is the filtration F enlarged, in a progressive way, by σ(τ ∧ t). Therefore, the process

(11τ≤t −
∫

]0,t∧τ ]

1
Zτ

s−
dAτ

s , t ≥ 0) (8)

is a G-martingale (see Yor (1994)). Here Aτ is the F-dual predictable projection of the increasing
process Nt = 11τ≤t, i.e., the F-predictable increasing process such that (E(Nt|Ft) − Aτ

t , t ≥ 0) is a
F-martingale and Zτ is the F-supermartingale Zτ

t = P (t < τ |Ft). Therefore, we obtain the following
lemma :

Lemma 2 If Aτ is continuous, the G-generalized intensity of τ is the F-adapted process

dΛs =
1

Zτ
s−

dAτ
s =

1
1− Fs−

dAτ
s . (9)

Let us remark that formula (9) is very similar to the formula (2), and that when Ft is the trivial
σ-algebra for each t, the formula (9) reduces to (2). In the particular case when τ is independent of F,
we obtain that the G-intensity of τ is deterministic and defined as in section 2.
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Lemma 3 If Aτ is constant after τ , then At =
∫ t∧τ

0

1
Zτ

s−
dAτ

s is equal to Aτ
t .

Proof: It suffices to prove that the process (Mt = 11τ≤t −Aτ
t , t ≥ 0) is a G-martingale. Let H be any

G-predictable bounded process, and h the F-predictable bounded process such that Hs11s≤τ = hs11s≤τ .
Then,

E(
∫ ∞

0

HsdMs) = E(Hτ −
∫ ∞

0

HsdAτ
s ) = E(Hτ −

∫ τ

0

HsdAτ
s )

= E(hτ −
∫ τ

0

hsdAτ
s ) = E(hτ −

∫ ∞

0

hsdAτ
s ) = 0

Working in the G filtration is possible, because the decomposition of any F-martingale in this
filtration is known up to time τ . For example, if B is an F-Brownian motion, its decomposition in the
G filtration up to time τ is

Bt∧τ = βt∧τ +
∫ t∧τ

0

d < B,Zτ >s

Zτ
s−

,

where (βt∧τ , t ≥ 0) is a continuous G-martingale with increasing process (t∧ τ). If the dynamics of an
asset S are given by dSt = St(rtdt+σtdBt) in a default free framework, where B is a Brownian motion
under the EMM, its dynamics will be

dSt = St(rtdt + σt
d < B, Zτ >t

Zτ
t−

+ σtdβt)

in the default filtration, if we restrict our attention to time before default. Therefore, the default will
act as a change of drift term on the prices.

In some examples, Zτ is a continuous decreasing process. In this case, the bracket < B, Zτ > is
equal to zero, and the F-Brownian motion B remains a Brownian motion in the G filtration up to time
τ . Therefore, any F-martingale is equal to a G-martingale up to time τ . Moreover, Aτ

t = 1 − Zτ
t and

the hazard process and the intensity process are equal. We shall give some examples below.

3.4 Rebate

The theory of dual predictable projection proves that the process Aτ enjoys the property that for any

F-predictable bounded process h, E(hτ ) = E

(∫ ∞

0

hsdAτ
s

)
. This property lead to the computation of

the rebate’s value : E(11t<τ≤T hτ |Gt) = 11t<τ
1

Zτ
t

E

(∫ T

t

hsdAτ
s |Ft

)
. In the very particular case where

the hazard process is increasing and absolutely continuous, i.e., Zτ
t = exp−Γt, where Γt =

∫ t

0
γsds, if h

is any F-predictable process,

E(hτ11t<τ<T |Gt) = 11t<τE

(∫ T

t

hsγs eΓt−Γs ds

)
. (10)

3.5 Examples of stochastic intensity

An example of default time with stochastic intensity is a single jump Cox process, that is, a process
Nt = 11t≤τ such that there exists an F-predictable process f with P (τ ≤ t|F∞) =

∫ t

0
fsds

def
= Ft.

In this case it is easy to check that Nt −
∫ t∧τ

0
λsds is a G-martingale with λs =

fs

1− Fs
and that

P (τ ≤ t|Ft) = exp− ∫ t

0
λudu.

As we mentioned above, the default is often modelled from a given non-negative F-adapted process
(λt, t ≥ 0). In order to construct a process N with intensity λ an easy way is to set

τ = inf{t ;
∫ t

0

λsds ≥ Θ} (11)
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where Θ is a random variable with an exponential law of parameter 1, independent of the Brownian
motion (constructed on an auxiliary space).

However, such modeling is very restrictive. If the G-intensity of the random time τ can be computed,
τ is not necessarily defined as in (11), even if it is equal in law to such a random time. For example,
random times as in (11) are never F∞-measurable. We reinforce this remark by the fact that the
intensity does not contain all the information about default time. More precisely, the dependence of τ
with respect to F is not contained in the intensity process.

3.6 (H)-hypothesis and generalization

Here we assume, as in Kusuoka (1999), the following hypothesis:
(H) Every F-square integrable martingale is a G-square integrable martingale.

This hypothesis implies that the F-Brownian motion remains a Brownian motion in the enlarged
filtration. This hypothesis is quite natural, despite its technical form. It was studied in Dellacherie and
Meyer (1978), Bremaud-Yor (1978) and Mazziotto-Szpirglas (1979), who proved that it is equivalent to
one of the following hypothesis
(H1) ∀t, the σ-algebras F∞ and Gt are conditionally independent given Ft.
(H2) ∀F ∈ F∞, ∀Gt ∈ Gt, E(FGt|Ft) = E(F |Ft)E(Gt|Ft).
(H3) ∀t, ∀Gt ∈ Gt, E(Gt|F∞) = E(Gt|Ft).
(H4) ∀t, ∀F ∈ F∞, E(F |Gt) = E(F |Ft).
(H5) ∀s ≤ t, P (τ ≤ s|F∞) = P (τ ≤ s|Ft).

Lemma 4 Suppose that (H) holds, Ft = P (τ ≤ t|Ft) is continuous and Ft < 1. Then, the hazard
process Γ is increasing and is the G-generalized intensity of τ , i.e., the process Nt − Γ(t ∧ τ) is a
G-martingale.

Indeed, in this case, Zτ
t = E(t < τ |F∞) is a nonincreasing predictable process and is equal to Aτ

t .

The hypothesis (H5) appears in many papers on default risk, often without any reference to the (H)-
hypothesis. For example, in the Madan-Unal paper(1998), the main theorem follows from the fact that
(H5) holds (See the proof of B9 in the appendix of their paper). Note also that, if τ is F∞-mesurable,
and if (H5) holds, then τ is an F-stopping time (and does not admit intensity).

It is easy to generalize and prove

Proposition 3 Suppose that Ft = P (τ ≤ t|Ft) is a continuous increasing process and Ft < 1 for any
t. Then, the hazard process Γ is increasing and is the G-generalized intensity of τ .

It seems that all the cases where the hazard function is increasing reduce to the model (11), as is
made precise in the following proposition:

Proposition 4 Suppose that (Ft, t ≥ 0) is a continuous increasing process, with Ft < 1, ∀t. Let X be
any predictable F process and Xτ the killed process, i.e. Xτ

t = Xt11t<τ . Define τ̃ as τ = inf{t ; Γt ≥ Θ}
on an extension of Ω as in (11) . Then (Xτ

T ) law= (X τ̃
T ).

Proof: Let H be any predictable process. Then, from (10)

E(Hτ ) = E

∫ ∞

0

Hsds(11τ≤s) = −E

∫ ∞

0

HsdFs = E(Hτ̃ ) .

In fact, models such that Γ is increasing are close to (H) hypothesis :

Proposition 5 Suppose that F is a continuous function, and Ft < 1, ∀t. The two following conditions
are equivalent
(a) The process E(11τ≤t|Ft) is increasing.
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(b) If (Yt, t ≥ 0) is an F-martingale, then (Yt∧τ , t ≥ 0) is a G-martingale.
In this case, for any F-predictable process h

E(hτ |Gt) = 11τ≤thτ + 11t<τ E(
∫ ∞

t

h(u) exp[Γ(t)− Γ(u)]dΓ(u) |Ft).

Proof: If (a) holds, then the process Zτ
t = E(11t<τ |Ft) is decreasing. Therefore, the F-Brownian mo-

tion B remains a G-Brownian motion up to time τ , and (b) holds. If (b) holds, the bracket < B, Zτ >
is equal to zero. This implies that the martingale part of Zτ is equal to zero, therefore Zτ is a non-
increasing process and Γ is increasing.

Duffie et al. (1996) assume that λ is the J-intensity of the J -stopping time τ and that X is an
integrable JT -measurable random variable. Under the hypothesis that there exists an extension λ∗ of

λ (i.e., λ∗s11s<τ = λs11s<τ ) such that the process E(X exp−
∫ T

t

λ∗udu|Jt) is continuous at time τ , they

establish that

E(X11T<τ |Jt) = 11t<τE(X exp−
∫ T

t

λ∗udu|Jt) . (12)

This result differs from ours, since in (12) the σ-algebra is the same in both sides, whereas we work
with the enlarged filtration and the initial one.

3.7 Information

Suppose that the market is FT complete, i.e., any FT random variable is hedgeable and the price
of any contingent claim ζ ∈ FT is EQ(ζ|Ft), where Q is the E.M.M.. If the default time is such that
{T < τ} ∈ FT (see the following section), we are led to distinguish two kinds of agents. The uninformed
agent does not know the time when the default occurs and will price the defaultable contingent claim
as Cun

t = EQ(ζ11T<τ |Ft). If the informed agent, who observes the default time, prices the defaultable
claim as Cin

t = EQ(ζ11T<τ |Gt), the spread between the two prices is, if the default has not yet appeared

Cin
t − Cun

t = EQ(ζ11T<τ |Ft)
(

1
EQ(11t<τ |Gt)

− 1
)

which is non-negative. This can be interpreted as the value of the information. However, in such a
model the informed agent acts as an insider as soon as the default appears.

4 Examples: Last passage times

Our aim is to study some particular examples where the hazard function is not increasing and to give
tools to compute this function and the intensity. Other examples can be found in Kusuoka (1999) and
in Jeanblanc (1999).

We suppose that the dynamics of the value of a firm are

dVt = µ(Vt)dt + σ(Vt)dBt, V0 = v > 0 . (13)

The filtration of the Brownian motion B will be denoted by F. We recall that a scale function for the
diffusion V is a function s such that s(V ) is a local martingale.

4.1 Value of defaultable claims

For simplicity, we assume that the interest rate r is equal to 0. Our aim is to compute the value of
a contingent claim with payoff G(VT ), where T is a fixed time, if the default has not appeared before
time T . This payoff is made at time T or later (see below). The case where a payment of hτ is made
at time τ if the default has appeared before T and where h is some given F-predictable process is also
taken into account. In this setting, the value of the defaultable claim is the expectation of

G(VT )11T<τ + hτ11τ≤T .
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The value of the defaultable claim for a G informed agent is made of two parts. The value of the
terminal payoff is

E(G(VT )11T<τ |Gt) = 11t<τE(G(VT )eΓt−ΓT | Ft) .

In the particular case where e−Γt = Zτ
t = ψ(Vt), we obtain, thanks to Markov property E(G(VT )e−ΓT |Ft) =

Ψ(Vt, T − t) with Ψ(x, u) = E(G(V x
u )ψ(V x

u )) where V x is the solution of (13) with initial value x. The
value of the rebate part is, if the default has not appeared before t

E(hτ11τ<T | Gt)11t<τ = 11t<τeΓtE(
∫ T

t

hsdAτ
s |Ft)

In many examples, the process Aτ involves a local time La(V ). In the particular case hs = h(Vs), the

computation of the rebate part is easy, because
∫ T

0

h(Vs)dLa
s(V ) = h(a)La

T (V ).

4.2 Last passage at a fixed level

Let V be a transient diffusion and s a scale function such that s(−∞) = 0 and s(x) > 0. Let τ = γa
def
=

sup{t : Vt = a} the last passage at the level a.

Lemma 5 We have Zγ
t = Pv(t < γa|Ft) =

s(Vt)
s(a)

∧ 1 and the dual predictable projection of Nt = 11γa≤t

is Aγ
t =

1
2s(a)

L
s(a)
t where L is the local time of the continous semimartingale s(V ).

These results are well known (see for example, Pitman-Yor (1980), or Yor (1997) p.48).
We make explicit the computation of the value of a defaultable claim in the particular case where

Vt = v + µt + σWt, with µ < 0. In this case, the scale function is s(x) = exp−2µx

σ2
.

Note that z ∧ 1 = 1− (1− z)+. Then, E(G(VT )Zτ
T |Ft) = Ψ(Vt, T − t), where

Ψ(x, u) = E

[
G(x + µu + σWu)

(
1− (1− 1

s(a)
s(x + µu + σWu))+

)]

= E[G(x + µu + σWu)]− E

[
G(x + µu + σWu)

(
1− 1

s(a)
exp−2µ

σ
(x + µu + σWu)

)+
]

In the case of a defaultable zero coupon with zero recovery, the computation reduces to a European
claim case. Indeed, from the above computations

E(11T<γ |Gt) = 11t<γ
s(a)− E((s(a)− s(VT ))+|Ft)

s(Vt) ∧ s(a)

and the value of E((s(a)− s(VT ))+|Ft) = E((s(a)− exp(−2µ

σ2
(v + µT + σBT )+|Ft) is given as a put’s

price. In the other cases, even though the computations are involved, they require only the law of a
normal variable.

4.3 Last passage at a fixed level before bankruptcy

We suppose that τ = ga
T0

(V ) = sup{t ≤ T0 : Vt = a} with v > a. Consider the case when µ = 0 and σ
is a non-negative constant. Then, E(ga

T0
(V ) ≤ t|Ft) = P (dα

t (W ) > T0(W )|Ft) on the set {t < T0(W )},
where α =

v − a

σ
. It is easy to prove that P (dα

t (W ) < T0(W )|Ft) = Φ(σWt∧T0(W )) where

Φ(x) = Px(Tα(W ) < T0(W )) =
x

α
for 0 < x < α

and Φ(x) = 1 for α < x; Φ(x) = 0 for x < 0.
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Then, on the set t < T0(V ), we have Zτ
t = E(ga

T0
≤ t|Ft) =

(α−Bt∧T0)
+

α
=

(α−Bt)+

α
. We deduce

that the dual predictable projection of the process N = 11{gα
τ0
≤t}is Ag

t =
1
2α

Lα
t (W ).

4.4 Last passage at a fixed level before maturity

This firm operates until time T + ε = θ, where T is a fixed time, and promises to pay to the investors
at date θ the amount G(VT ). If the value of the firm remains above a level a, where a < v between T
and θ, the firm defaults and the payment of G(VT ) at time θ is not made. In this setting, the value of
the defaultable claim with a rebate given by the process h is the expectation of

G(VT )11T<τ + G(VT )11VT≥a11τ≤T + hτ11VT≤a11τ≤T

where τ = sup{t ≤ θ : Vt = a} = ga
θ (V ). If Vt > a, ∀t ≤ θ, we set τ = θ. In what follows, we set θ = 1.

If the time ε, which plays the role of a delay, is equal to 0, the payoff is an F1-measurable claim
equal to G(V1)11V1>a + hg11V1<a, and the computation is easy, at least for the terminal payoff part. We
shall explain below how to compute the rebate part.

We present here only the Brownian motion case, i.e., when Vt = v + Bt. The more general compu-
tation, in case where the process V is a Brownian motion with constant drift are more involved. They
are available upon request and are published in Jeanblanc (1999).

The computation of the H-intensity is easy, since we need only the probability distribution of

τ = sup{t ≤ 1 ; Vt = a} = gα def
= sup{t ≤ 1 ; Bt = α}

where α = a− v. It is well known that g0 follows a arcsine law, and the probability density of gα given

in (Yor (1995), formula (3.b)), is P (gα ∈ du) =
du

π
√

u(1− u)
exp− α2

2(1− u)
. Note that the right-hand

side is a subprobability, and that the missing mass is P (gα = 1) = P (Tα ≥ 1) = P (|N | ≤ α) . The
intensity of gα in the H filtration follows from proposition 1.

For the computation of the G-intensity, we need the following (see Yor 1994 and 1997)

Lemma 6 The dual predictable projection of Nt = 11gα≤t is dAg
t =

√
2
π

dLα
t√

1− t
where Lα is the local

time of the Brownian motion at level α,and E(11g≤t |Ft) = Φ
( |α−Bt|√

1− t

)
where Φ(x) =

√
2
π

∫ x

0

du exp(−u2

2
)

We present now the computation of the value of the terminal payoff, which is given in terms of
E(G(BT )11T<g|Ft), for t < T < 1. After first conditioning with respect to FT , we obtain

E(G(BT )11T<g|Ft) = E(G(BT )|Ft)− E

(
G(BT )Φ

( |α−BT |√
1− T

)
|Ft

)

then computation can be done using the Markov property: E(G(BT )|Ft) = Ĝ(Bt) where Ĝ(y) =

E(G(BT−t + y)) and E

(
G(BT )Φ

( |α−BT |√
1− T

)
|Ft

)
= ĜΦ(Bt), where

ĜΦ(y) = E

(
G(BT−t + y)Φ

( |BT−t + y − α|√
1− T

))
=

1√
2π(T − t)

∫
G(u)Φ

( |u− α|√
1− T

)
exp− (u− y)2

2(T − t)
du .

The computation for the rebate part, in the particular case hs = h(Vs) follows from

E(
∫ T

t

hsdAg
s |Ft) = h(a)E(Ag

T −Ag
t |Ft) = h(a)[E(Zg

T |Ft)− Zg
t ]

which can be done using Markov property.
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4.5 Information

Suppose that the value of the firm is an asset, or that there is an asset such that the market is FT

complete, i.e. any FT random variable is hedgeable. Suppose that, as in the last example, the default
time is FT measurable. In this case, if the information of an agent is the filtration Gt, this agent will be
an inside trader. In an obvious way, if the agent observes the last passage time at a fixed level, as soon
as this time is revealed, he will know that the price will stay below (or above) this level. Investigating
this kind of information is work in progress.
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5 Appendix

We give here the details of the alternative proof mentioned in Duffie and Lando’s paper (1999). Two
other approaches to this result can be found in Kusuoka (1999) and Song (1997).
In fact, we obtain a more general result than Duffie and Lando’s, and we establish in particular the
following proposition

Proposition 6 For any differentiable and integrable function f , such that f(0) = 0,

lim
h→0

1
h

∫ ∞

0

dxf(x)Px(T0 < h) = −1
2
f ′(0)

where T0 = inf{t|Xt = 0}, and Px denotes the family of laws of a diffusion satisfying Xt = x + Bt +∫ t

0

duµ(Xu), i.e., X is a diffusion with unit diffusion coefficient and drift µ.

We begin by establishing a lemma in a general setting. Consider a pair of diffusions and associated
probability measures ((Xt, t ≥ 0), Px) and ((Rt, t ≥ 0), P̂x) such that

(i) under Px, (XT0−t, t ≤ T0) is distributed as (Rt, t ≤ γx) under P̂0, where γx = sup{t : Rt = x}
(ii) Rt

t→∞→ ∞
(iii) Êx [F (Ru, u ≤ t)] =

1
s(x)

Ex [F (Xu, u ≤ t)s(Xt∧T0)] where s is a scale function for X, so that

r = −1/s is a scale function for R.
Consider the infinitesimal generators of (X) and (R) written in their Feller form

L =
1
2

d

dm

(
d

ds

)
, L̂ =

1
s

L(s ·) =
1
2

d

dm̂

(
d

dr

)
,

where we have used the notation

d

dα
f(x) = lim

ε→0

f(x + ε)− f(x)
α(x + ε)− α(x)

In the particular case where dXt = σ(Xt)dBt + µ(Xt)dt the infinitesimal generator can be written as

Lf(x) =
1
2
σ2(x)f ′′(x) + µ(x)f ′(x)

=
1

2m′(x) s′(x)
f ′′(x)− s′′(x)

2m′(x) (s′)2(x)
f ′(x)
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Therefore s′(x) = c exp−2
∫ x

0

dy
µ

σ2
(y) and m′(x) s′(x) =

1
σ2(x)

.

By identification, we obtain dm̂(x) = s2(x) dm(x).

Lemma 7 Let F be a positive functional. Then,
∫ ∞

0

dm̂(x)Ê0(F (Ru, u ≤ γx)) =
∫ ∞

0

dm̂(x)Ex(F (XT0−u, u ≤ T0))

=
∫ ∞

0

dtÊ0

(
− 1

2r(Rt)
F (Ru, u ≤ t)

)
(14)

In particular, one has
∫ ∞

0

dm̂(x)f(x)Ex(φ(T0)) = −1
2

∫ ∞

0

dtφ(t)Ê0(
f(Rt)
r(Rt)

) .

Proof: From our time reversal assumption
∫ ∞

0

dm̂(x)Ex[F (XT0−u, u ≤ T0)] =
∫ ∞

0

dm̂(x)Ê0[F (Ru, u ≤ γx)]

Then (14) will be a consequence of the following result (e.g., Yor (1994), 4.5)

Ê0[F (Ru, u ≤ γx)] =
∫ ∞

0

dt

( −1
2r(x)

p̂t(0, x)Ê0[F (Ru, u ≤ t)|Rt = x]
)

(15)

where p̂t(0, x) denotes the density of P̂t(0, dx) with respect to m̂(dx) : P̂t(0, dx) = p̂t(0, x)m̂(dx). Then,
from the above result
∫ ∞

0

dm̂(x)Ex(F (XT0−u, u ≤ T0)) =
∫ ∞

0

dm̂(x)
∫ ∞

0

dt

(
− 1

2r(x)

)
p̂t(0, x) Ê0(F (Ru, u ≤ t)|Rt = x)

=
∫ ∞

0

dt

∫ ∞

0

P̂t(0, dx)
(
− 1

2r(x)

)
Ê0(F (Ru, u ≤ t)|Rt = x)

=
∫ ∞

0

dtÊ0

(
F (Ru, u ≤ t)

(
− 1

2r(Rt)

))

In particular, for F (Xu, u ≤ t) = φ(t)f(Xt)s(Xt)
∫ ∞

0

dm(x)s(x)f(x)Ê0(φ(γx)) =
∫ ∞

0

dm(x)s(x)f(x)Ex(φ(T0)) = −1
2

∫ ∞

0

dtφ(t)Ê0(f(Rt)) .

It follows that Ê0(φ(γx)) = − 1
2r(x)

∫ ∞

0

dtφ(t)p̂t(0, x) and the law of γx is P̂0(γx ∈ dt) = dt
−1

2r(x)
p̂t(0, x).

Now we consider the case where X is a diffusion of the form dXt = dBt+µ(Xt)dt with B a Brownian
motion. We denote by s a scale function of X such that s(0) = 0, s(+∞) = ∞. The properties of the
scale function enable us to define the probability measure

P̂x|Ft =
s(Xt∧T0)

s(x)
Px|Ft (16)

where T0 = inf{t > 0 ; Xt = 0}. From Girsanov’s theorem, under P̂x, the process X satisfies

Xt = x + βt +
∫ t

0

du c(Xu) (17)

where c(x) = (
s′

s
+µ)(x). Moreover, the definition (16) implies that a scale function of X under the P̂x

family is r(x) = − 1
s(x)

, and m′s′ = 1. For clarity, we now switch back to our notation R to denote the
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process under P̂x and X for the process under Px. In this general setting, the time reversal property
holds, i.e., under Px, the process (XT0−t, t ≤ T0) is distributed as the process (Rt, t ≤ γx) under P̂0 (D.
Williams time reversal theorem). From (14), we obtain

Ê0

[∫ ∞

0

dxHγx

]
= −1

2
Ê0

[∫ ∞

0

du
r′

r
(Ru)Hu

]
. (18)

Therefore, in the case where Ht = φ(t)f(Rt) and with φ and f two deterministic functions, the left-hand
side of (18) is

f(x)Ê0 [φ(γx)] = f(x)Ex(φ(T0)) .

From (18) ∫ ∞

0

dxf(x)Ex(φ(T0)) = −1
2
Ê0

[∫ ∞

0

du
r′

r
(Ru)φ(u)f(Ru)

]
.

Duffie and Lando’s result: For φ(t) = 11t<h we obtain, as a consequence of property 6:

lim
h→0

1
h

∫ ∞

0

dxf(x)Px(T0 < h) = − lim
y→0

r′

2r
(y)f(y)

as soon as the right-hand side limit exists. Let us remark that −r′

r
(x) =

s′

s
(x). Suppose that f is

differentiable and that f(0) = 0. We know that s′(x) = c exp−2
∫ x

0

dyµ(y). If µ is locally integrable,

we obtain limx→0
s′

s
(x)f(x) = f ′(0).

An alternative proof of (18): It is also possible to give a proof of (18) based on a generalization of
Pitman’s representation of the BES(3) process (Yor (1997)), which states that the decomposition of R

in the enlarged filtration RJ
t = Rt ∨ σ(Jt) where Jt

def
= infs≥t Rs is

Rt = r + B̃t +
∫ t

0

du

(
r′

r
(Ru) + c(Ru)

)
+ 2Jt . (19)

From (19), we deduce that, for any (Rt)-predictable process H,

Ê0

[∫ ∞

0

dJuHu

]
=

1
2
Ê0

[∫ ∞

0

(
dRu − (

r′

r
+ c)(Ru)du

)
Hu

]
. (20)

From (17), the right-hand side of (20) equals −1
2
Ê0

[∫ ∞

0

du
r′

r
(Ru) Hu

]
. By time change on the left-

hand side of (20), we obtain

Ê0

[∫ ∞

0

dxHγx

]
= −1

2
Ê0

[∫ ∞

0

du
r′

r
(Ru)Hu

]
, (21)

and the proof is completed.


