ON MODULES INDUCED OR COINDUCED FROM HOPF SUBALGEBRAS

K.-H. ULBRICH

Let A be a Hopf algebra over a commutative ring $k, B \subset A$ a Hopf subalgebra, and W a left A-module. Koppinen and Neuvonen [2] showed that W is induced from B, that is $W \cong A \otimes_B V$ for a left B-module V, if and only if W admits a system of imprimitivity based on B; their result assumes however that the antipode of A is bijective and that A as a right B-module is a finitely generated and projective generator. Essentially the same result holds for coinduced modules, i.e. modules of the form $W \cong \operatorname{Hom}_B(A, V)$. The rather strong assumptions in [2] were made in order to apply the Morita theorems, and Koppinen and Neuvonen asked whether these assumptions can be weakened ([2], Remark). The present paper gives proofs for the above results which do not use Morita theory, and which only assume A to be finitely generated and projective over B. In the induced case a more general result is given which only needs A to be flat over B; this is closely related to [1] and [4].

In the following A denotes a Hopf algebra over a commutative ring k, and $B \subset A$ a Hopf subalgebra. The antipode and counit are denoted by λ and ε , respectively, and the coproduct by δ . "A-module" will mean left A-module.

1. Induced Modules.

Let F denote the k-algebra considered in [2]; as a k-module F consists of all right B-linear maps $f: A \to k$, i.e. $f(ab) = f(a)\varepsilon(b)$ for $a \in A, b \in B$, and the product is given by

$$(f \cdot f')(a) = \sum f(a_{(2)}) f'(a_{(1)}), \quad f, f' \in F.$$

F is an A-module with $(af)(a') = f(\lambda(a)a')$ for $a, a' \in A$. By definition, an A-module W admits a system of imprimitivity based on B if it is a left F-module satisfying

(1)
$$a(fw) = \sum (a_{(1)}f)(a_{(2)}w), \quad a \in A, f \in F, w \in W.$$

In the following let $C = A \otimes_B k$. This is naturally an A-module coalgebra with coproduct $C \to C \otimes C$, $a \otimes 1 \mapsto \sum (a_{(1)} \otimes 1) \otimes (a_{(2)} \otimes 1)$, $a \in A$. (We note that $C \cong A/AB^+$ in the notation of [4], and that C represents the kernel of $\operatorname{Sp}(A) \to \operatorname{Sp}(B)$ if A is commutative, [5], p. 14). Let ${}_A^C \mathfrak{M}$ be the category of A-modules W which are supplied with a left C-coaction α : $W \to C \otimes W$ such that

(2)
$$\alpha(aw) = \delta(a)\alpha(w), \quad a \in A, w \in W.$$

A morphism in ${}^{C}\mathfrak{M}$ is a map which is both A-linear and C-colinear.

LEMMA 1.1. Assume A_B is finitely generated and projective. Then an A-module W admits a system of imprimitivity based on B if and only if W is an object of ${}^{C}_{A}\mathfrak{M}$.

PROOF. First note that F is essentially the opposite of the dual algebra C^* of C. For

$$\zeta : \operatorname{Hom}_{k}(C, k) \to F, \quad \zeta(g)(a) = g(a \otimes 1),$$

is an anti-isomorphism of k-algebras with $\zeta^{-1}(f)(a\otimes 1)=f(a)$; ζ is an algebra antimorphism since the product of F is defined by the transpose coproduct of A. Since A_B is finitely generated and projective, $C=A\otimes_B k$ is so over k. Therefore, W is a left F-module if and only if W is a left C-comodule, the actions being determined by each other through the formula

$$f \cdot w = \sum \langle \zeta^{-1}(f), w_{(-1)} \rangle w_{(0)}, \quad f \in F, w \in W.$$

Since $C \otimes W \cong \operatorname{Hom}_k(F, W)$, one sees that (1) is equivalent to

$$(1 \otimes a)\alpha(w) = \sum (\lambda(a_{(1)}) \otimes 1)\alpha(a_{(2)}w), \quad a \in A, w \in W.$$

The latter is evidently satisfied if (2) holds. Conversely, applying (3) with a replaced by $a_{(2)}$ one obtains $\delta(a)\alpha(w) = \sum (a_{(1)}\lambda(a_{(2)})\otimes 1)\alpha(a_{(3)}w) = \alpha(aw)$. Hence (2) is equivalent to (1), and this completes the proof.

For any left B-module V, $W = A \otimes_B V$ is naturally an object of ${}^C_A\mathfrak{M}$ with coaction $W \to C \otimes W$, $a \otimes v \mapsto \sum (a_{(1)} \otimes 1) \otimes (a_{(2)} \otimes v)$. Conversely, we want to show that any $W \in {}^C_A\mathfrak{M}$ is induced from B if A_B is flat. This is closely related to [1], Thm. 2.11, and [4], Thm. 2, and essentially the same proof as in [1] can be employed. It is based on the following lemma.

LEMMA 1.2. For any A-module X the map

$$\eta_X: A \otimes_B X \to C \otimes X, \quad a \otimes x \mapsto \sum (a_{(1)} \otimes 1) \otimes a_{(2)} x,$$

is an isomorphism.

PROOF. For $b \in B$ we have $\eta_X(ab \otimes x) = \sum (a_{(1)} \otimes \varepsilon(b_{(1)})) \otimes (a_{(2)}b_{(2)}x) = \eta_X(a \otimes bx)$; hence η_X is well-defined, and $(a \otimes 1) \otimes x \mapsto \sum a_{(1)} \otimes \lambda(a_{(2)})x$ gives a (well-defined) inverse.

THEOREM 1.3. Let A be a Hopf k-algebra, $B \subset A$ a Hopf subalgebra, and $C = A \otimes_B k$. Assume A is flat as a right B-module. Then an A-module W is induced from B if and only if W is an object of ${}^{C}\mathfrak{M}$ (i.e. a left C-comodule satisfying (2)).

PROOF. Let $\alpha: W \to C \otimes W$ be the coaction of W. Regard $C \otimes W$ as an A-module by $a \cdot (c \otimes w) = \delta(a)(c \otimes w)$. Then both α and $i: W \to C \otimes W$, $w \mapsto (1 \otimes 1) \otimes w$, are B-linear. Set $W_0 = \{w \in W | \alpha(w) = i(w)\}$. Since A is B-flat, the sequence

$$(4) A \otimes_B W_0 \to A \otimes_B W \xrightarrow{1 \otimes \alpha} A \otimes_B (C \otimes W)$$

is exact. Consider $\mu_W: A \otimes_B W_0 \to W$, $a \otimes w \mapsto aw$, which is a morphism in ${}^C_A\mathfrak{M}$. It is easy to see that $(\mu_W, \eta_W, \eta_{C\otimes W})$ transforms (4) into the sequence

$$W \xrightarrow{\alpha} C \otimes W \xrightarrow{1 \otimes \alpha \atop \delta \otimes 1} C \otimes C \otimes W.$$

But this sequence is exact for any comodule. Hence Lemma 1.2 implies that μ_W is an isomorphism.

Let $_B\mathfrak{M}$ denote the category of left B-modules.

COROLLARY 1.4. (cf. [4], Thm. 2). Assume A_B is faithfully flat. Then the functor ${}_B\mathfrak{M} \to {}_A^C\mathfrak{M}$, $V \mapsto A \otimes_B V$, is an equivalence.

PROOF. For $V \in {}_B\mathfrak{M}$ consider the *B*-linear map $v: V \to (A \otimes_B V)_0, v \mapsto 1 \otimes v$. Since $\mu(1 \otimes v): A \otimes_B V \to A \otimes_B V$ is the identity, we have that $1 \otimes v$, hence v, is an isomorphism. It follows that $W \mapsto W_0$ is a quasi-inverse for $V \mapsto A \otimes_B V$.

REMARK 1.5. For B = k theorem 1+3 gives the descent theorem for Hopf modules [3], Thm. 4.1.1. It should be noted however that the proof given in [3] works also for A not k-flat (and k not a field).

2. Coinduced Modules.

In the following we work with the k-algebra $E = \text{Hom}_B(A, k)$ of all left B-linear maps $f: A \to k$. The product is defined by

$$(f \cdot f')(a) = \sum_{i} f(a_{(1)}) f'(a_{(2)}), \quad f, f' \in E.$$

E is an A-module algebra with (af)(a') = f(a'a). We shall consider the category ${}_{A}\mathfrak{M}_{E}$ of left A-modules and right E-modules W satisfying

(5)
$$a(wf) = \sum (a_{(1)}w)(a_{(2)}f), \quad a \in A, w \in W, f \in E.$$

EXAMPLE. Let $W = \operatorname{Hom}_{B}(A, V)$ for a left B-module V. For $g \in W$ and $f \in E$ define $gf \in W$ by $(gf)(a) = \sum g(a_{(1)}) f(a_{(2)}), a \in A$. Then W is an object of ${}_{A}\mathfrak{M}_{E}$ with natural A-action (ag)(a') = g(a'a).

REMARK 2.1. The condition for an A-module W to be an object of ${}_A\mathfrak{M}_E$ is slightly different from that of admitting a system of imprimitivity. There is no difference if A is cocommutative, for then E is commutative and $f \mapsto f\lambda$ gives an algebra isomorphism $F \cong E$. There appears however to be a gap at the end of the proof in [2] for the coinduced case. The proof provides an action on W by the right B-endomorphisms of A, but for $W \cong \operatorname{Hom}_B(A, V)$ a (right) action by the left B-endomorphisms of A is needed.

Let $W \in \mathcal{M}_F$. We define a left B-module W_0 by the exact sequence

$$(6) W \otimes E \xrightarrow{m} W \xrightarrow{p} W_0$$

where $m(w \otimes f) = wf$, and $m'(w \otimes f) = wf(1)$. Note that m and m' are B-linear if we regard $W \otimes E$ as a B-module by $b \cdot (w \otimes f) = \delta(b)(w \otimes f)$. We want to show that the left A- and right E-linear map

(7)
$$\mu_{\mathbf{w}} \colon W \to \operatorname{Hom}_{\mathbf{R}}(A, W_0), \quad \mu_{\mathbf{w}}(w)(a) = p(aw),$$

is an isomorphism if $_BA$ is finitely generated and projective. The proof is in some sense dual to that in section 1, and uses the following lemma (cf. the lemma in $\lceil 2 \rceil$).

LEMMA 2.2. Let X be an A-module, and suppose $_{B}A$ is finitely generated and projective. Then

$$\vartheta_X: X \otimes E \to \operatorname{Hom}_B(A, X), \quad \vartheta_X(x \otimes f)(a) = \sum a_{(1)} f(a_{(2)}) x,$$

is an isomorphism.

PROOF. Let ${}^{\varepsilon}X = X$ with left B-action $b \cdot x = \varepsilon(b)x$. Then

$$\beta$$
: $\operatorname{Hom}_{B}(A, {}^{\varepsilon}X) \to \operatorname{Hom}_{B}(A, X), \quad \beta(\varphi)(a) = \sum a_{(1)} \varphi(a_{(2)}),$

is an isomorphism with $\beta^{-1}(\psi)(a) = \sum \lambda(a_{(1)})\psi(a_{(2)})$ for $\psi \in \operatorname{Hom}_{\mathcal{B}}(A, X)$. Set ${}^{\varepsilon}\vartheta = \beta^{-1}\vartheta$. Then for $f \in E, a \in A$, and $x \in X$

$${}^{\varepsilon}\vartheta(x\otimes f)(a) = \sum \lambda(a_{(1)})\vartheta(x\otimes f)(a_{(2)}) = \sum \lambda(a_{(1)})a_{(2)}f(a_{(3)})x = f(a)x.$$

Now choose a projective coordinate system $f_i \in \operatorname{Hom}_B(A, B)$, $a_i \in A$, $1 \le i \le n$; then $\operatorname{Hom}_B(A, {}^eX) \to X \otimes E$, $\varphi \mapsto \sum \varphi(a_i) \otimes \varepsilon \circ f_i$, is an inverse for ${}^e\mathfrak{I}$ as follows from $\sum f_i(a)a_i = a$ for $a \in A$.

THEOREM 2.3. Let A be a Hopf k-algebra, $B \subset A$ a Hopf subalgebra, $E = \text{Hom}_B(A, k)$, and assume that A is finitely generated and projective as a left

B-module. Then an A-module W is coinduced from B if and only if W is an object of ${}_{A}\mathfrak{M}_{E}$ (i.e. a right E-module satisfying (5)).

PROOF. For any right E-module W there is a canonical exact sequence

$$(8) W \otimes E \otimes E \Longrightarrow W \otimes E \to W$$

defined by the action of E on W. Suppose $W \in {}_{A}\mathfrak{M}_{E}$ and consider $W \otimes E$ as a left A-module by $a \cdot (w \otimes f) = \delta(a)(w \otimes f)$. Then $(\vartheta_{W \otimes E}, \vartheta_{W}, \mu_{W})$, with μ_{W} defined in (7), transforms (8) into the exact sequence obtained from (6) by applying $\operatorname{Hom}_{R}(A, -)$. Observe that

$$\vartheta_{W \otimes E}(w \otimes f \otimes f')(a) = \sum a_{(1)} f'(a_{(2)})(w \otimes f) = \sum f'(a_{(3)})(a_{(1)} w \otimes a_{(2)} f),$$

and $p(wf) = p(wf(1))$. In particular, $(\mu_W m)(w \otimes f)(a) = p(a(wf)) = p(\sum (a_{(1)} w)$

and p(wf) = p(wf(1)). In particular, $(\mu_W m)(w \otimes f)(a) = p(a(wf)) = p(\sum_{(a_{(1)}w)} (a_{(2)}f)) = p(\sum_{(a_{(1)}w)} a_{(1)}w) = p\vartheta_W(w \otimes f)(a)$. It follows therefore from lemma 2.2 that μ_W is an isomorphism.

COROLLARY 2.4. Suppose $_BA$ is finitely generated and projective. Then the functor $_A\mathfrak{M}_E \to _B\mathfrak{M}, W \mapsto W_0$, is an equivalence if and only if $B \subset A$ is a left B-direct summand of A.

PROOF. First observe that $V \mapsto \operatorname{Hom}_B(A, V)$ is a right adjoint for $W \mapsto W_0$, the adjunction morphisms being μ , and ν : $\operatorname{Hom}_B(A, V)_0 \to V$, $p(g) \mapsto g(1)$, for $g \in \operatorname{Hom}_B(A, V)$. Furthermore, the composite

$$\operatorname{Hom}_{B}(A, V) \xrightarrow{\mu} \operatorname{Hom}_{B}(A, \operatorname{Hom}_{B}(A, V)_{0}) \xrightarrow{\operatorname{Hom}(A, v)} \operatorname{Hom}_{B}(A, V)$$

is the identity, since p(ag) = (ag)(1) = g(a) for $a \in A$. Hence $\operatorname{Hom}(A, v)$ is bijective. Now, if $A = B \oplus X$, we may conclude that v is bijective by decomposing $\operatorname{Hom}(A, v) = \operatorname{Hom}(B, v) \oplus \operatorname{Hom}(X, v)$. Conversely, suppose that v is bijective for V = B. Then there exists $g \in \operatorname{Hom}_B(A, B)$ with g(1) = 1, and therefore $A = B \oplus \operatorname{Ker}(g)$. \square

REMARK 2.5. $B \subset A$ is a left *B*-direct summand of *A* iff *A* is a left *B*-generator; for suppose there exists a *B*-epimorphism $A^{(I)} \to B$. Pick $u \in A^{(I)}$ such that $u \mapsto 1$. Then $g: A \to Au \to B$ is a *B*-epimorphism with g(1) = 1, and hence with $A = B \oplus \text{Ker}(g)$.

REMARK 2.6. For B=k the assumption of thm. 2.3 can not be omitted. This can be seen as follows. Let X be an A-module. Then $W=X\otimes E$ is naturally a right E-module and an object of ${}_{A}\mathfrak{M}_{E}$ with A-action defined by δ . It is not difficult to see that

$$W \otimes E \xrightarrow{m} W \xrightarrow{p} X$$

is exact where $p(x \otimes f) = f(1)x$ for $x \in X$, and $f \in E$. Hence in this case $W_0 = X$.

Furthermore, for $\mu_W: X \otimes E \to \operatorname{Hom}_B(A, X)$ we obtain

$$\mu_{\mathbf{W}}(x \otimes f)(a) = p(a \cdot (x \otimes f)) = p(\delta(a)(x \otimes f)) = \sum_{i=1}^{n} a_{(1)} f(a_{(2)}) x.$$

Thus $\mu_W = \vartheta_X$. Suppose now that μ_W is bijective for X = A. Then also ${}^{\varepsilon}\vartheta = \beta^{-1}\vartheta$ is an isomorphism, and in case B = k this means that A is finitely generated and projective over k.

ACKNOWLEDGMENT. I would like to thank the referee for some valuable remarks concerning section 2, and the Japan Soc. Prom. Sci. for financial support.

REFERENCES

- 1. Y. Doi and M. Takeuchi, Hopf-Galois extensions of algebras, the Miyashita-Ulbrich action, and Azumaya algebras, J. Algebra 121 (1989), 488-516.
- M. Koppinen and T. Neuvonen, An imprimitivity theorem for Hopf algebras, Math. Scand. 41 (1977), 193-198.
- 3. M. E. Sweedler, Hopf Algebras, W. A. Benjamin, Inc., New York, 1969.
- M. Takeuchi, Relative Hopf modules equivalences and freeness criteria, J. Algebra 60 (1979), 452–471.
- 5. W. C. Waterhouse, Introduction to Affine Group Schemes, Springer Verlag, Berlin, 1979.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA, TSUKUBA-SHI, IBARAKI 305 JAPAN