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Abstract
We give a method to obtain the primitive central idempotent of the rational group algebra
QG over a finite group G associated to a monomial irreducible character which does not involve
computations with the character field nor its Galois group. We also show that for abelian-by-
supersolvable groups this method takes a particularly easy form that can be used to compute
the Wedderburn decomposition of QG.

Let G be a finite group and QG the rational group algebra over G. A good understanding of
the Wedderburn decomposition of QG, that is the decomposition of QG as a direct sum of simple
algebras, is a good tool to deal with several problems. For example, it is useful to study the group
of automorphisms of QG [5] or the group of units of the integral group ring ZG [6, 9, 15, 16,
18]. In theory the Wedderburn decomposition of QG can be computed using powerful but rather
complicated methods (see the introduction of [5] for a complete description of these methods).

The problem of computing the Wedderburn decomposition of QG leads naturally to the problem
of describing the primitive central idempotents of QG. The classical method to do that is first
computing the primitive central idempotents e(x) of CG associated to the irreducible characters of
G and then adding the primitive central idempotents of the form e(o o x), with o € Gal(Q(x)/Q).
(See [20] or Section 2).

Recently Jespers, Leal and Paques [7] have discovered that if G is nilpotent then every primitive
central idempotent of QG is determined by a pair (H, K) of subgroups of G satisfying suitable
conditions and that the primitive central idempotent e(G, K, H) of G associated to (H, K) can be
easily computed. In this paper we show that the results in [7] can be generalized to monomial
groups and that the description of the pairs of subgroups leading to primitive central idempotent
can be simplified. Namely we show that the primitive central idempotent of QG associated to a
monomial complex character of G is of the form ae(G, K, H) for « € Q and H and K subgroups
of GG satisfying some easy to check conditions. The advantage of this approach with respect to the
classical method is avoiding computations on extensions of the rationals.

Moreover, we prove that if G is abelian-by-supersolvable then the pairs of subgroups (H, K)
that realize the primitive central idempotents can be taken so that e(G, K, H) is a primitive central
idempotent and one can give a description of the simple algebra QGe(G, K, H).
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1 Preliminaries

We start fixing some notation. Throughout G is a finite group. The order of G is denoted by |G,
its derived subgroup by G’ and the rational group algebra over G by QG. By H < G we mean
that H is a subgroup of G and by H < G that H is a normal subgroup of G. If X is a subset of
G then (X) denotes the subgroup generated by G and we simplify the notation to (Y, Z) if either
X=YUZor X=YU{Z}or X ={Y,Z}. If H < G then Ng(H) denotes the normalizer of H
in G. For g € G and x € QG set 29 = g~'zg and let us denote by Ceng(z) the centralizer of z in
G. If H < G then we also set H9 = g~'Hg. We sometimes also use exponential notation for the
action of an automorphism of a group or an algebra.

For every positive integer n, &, denotes a complex primitive n-th root of unity.

All the characters of a group are assumed to be complex characters. If y is an irreducible
character of G then the primitive central idempotent of CG associated to x is denoted by e(y) and
the primitive central idempotent of QG associated to x by eqg(x); that is eg() is the only primitive
central idempotent e of QG such that x(e) # 0.

The group A = Aut(C) of automorphisms of the complex numbers acts on CG by acting on the
coefficients, that is

o- Zagg = Za(ag)g, (0 € Ayay € C)

geG geG

Furthermore A acts on the set of character of G by composition:
oc-x=00x, (0€A x acharacter of G)

If x is an irreducible character of G then e(o - x) = o - e(x) and the stabilizers of e(yx) and x
coincide with the group Gal(C/Q(x)) of automorphisms of C that fixes the character field Q(x) of
X. Therefore both the orbit of x and e(x) have [Q(x) : Q] elements and can be computed applying
the elements of Gal(Q(x)/Q) to x and e(x) respectively. Furthermore by [20, Proposition 1.1] one
has
o)=Y, o-ex) (1.1)
oeGal(Q(x)/Q)

If H< G then set H = ﬁerHx € QG. If g € G, then let g = @ Note that H is an
idempotent of QG which is central in QG if and only if H < G. Following the notation of [7] let
M(G) denote the set of all minimal normal non trivial subgroups of G and

e = [ a-m.

MeM(G)

By convention (1) = 1.

If N <@ then the kernel of the augmentation map wy : QG — Q(G/N) is QG(1 — N) and
so wy induces an isomorphism QGN ~ Q(G/N) (see [18]). Let e(G, N) denote the preimage of
¢(G/N) under this isomorphism, that is

N it N=0

e(G,N) = o~

The primitive (central) idempotents of QA for A abelian are well known (see [1], [4] or [10]). A
description in terms of the idempotents of the form (A, H) has been given recently in [7].



Proposition 1.1 [7] If A is an abelian group, then the primitive central idempotents of QA are
the elements of the form (A, H) where H is a subgroup of A such that A/H s cyclic.

If y is a linear character of G and H = kerx then G/H is cyclic. By Proposition 1.1
wi(e(G,H)) = ¢(G/H) is a primitive central idempotent of Q(G/H) and therefore (G, H) is
a primitive central idempotent of QG. In fact one has the following:

Lemma 1.2 If x is a linear character of G and H = ker x then eg(x) = (G, H).

Proof. If G/H = (gH) and [G : H| = n then x(g) = &, a primitive n-th root of 1. The minimal
subgroups of G/H are of the form L, = (H, g"/?) where p is a prime divisor of n. For every prime

divisor p of n, one has
p—1

o 1 )
X -Ly=1- 13 gmr—y,
pi:()

Then x(¢(G, H)) =[], x(H — E\p) = 1 and the lemma follows.

pln

We recall an old Theorem of Shoda [19] that can be deduced from Mackey’s Theorem (see [2]).

Theorem 1.3 [19] Let x be a linear character defined on a subgroup K of G. Then the induced
character X is irreducible if and only if for every g € G\ K there is k € K N K9 such that

x(gkg™") # x(k).

Definition 1.4 A pair (H, K) of subgroups of G is called a Shoda pair if it satisfies the following
conditions:

(S1) H 4K,
(S2) K/H s cyclic and

(S3) If g € G and [K,g|N K C H then g € K.

Note that giving an A-orbit of a linear character of a subgroup of K of G is equivalent to give a
pair a subgroups (H, K) of G satisfying (S1) and (S2). The A-orbit associated to such a pair (H, K)
is formed by the characters y of K with kernel H. Then Shoda’s Theorem can be rephrased as
follows: if x is a linear character of a subgroup of K of G with kernel H then the induced character
x@ is irreducible if and only if (H, K) is a Shoda pair.

The group G acts on the right on CG by conjugation

x-g=29, (reCqG,gceQq).

Moreover G acts on the right on the set of characters of subgroups of G by defining x - g, for x a
character of a subgroup K of G and g € G, as the character of K9 given by

(x - 9)(k) = gkg™".

This action restricts to an action on the set C of irreducible characters of subgroups of G and this
restriction is related with the action of G on CG by conjugation by the formula

e(x-g)=ex)-9, (xe€C,geaq).



Thus, the G-stabilizers of a character x of a subgroup K of GG and the stabilizer of the corresponding
idempotent e(x) coincide and are exactly

Gy = Gery) =19 € No(K) : x(k9) = x(k), for every k € K}.

Given two subgroups H and K of G such that H 9 K, let e(G, K, H) denote the sum of all
G-conjugates of (K, H), that is if T is a right transversal of Ceng(e(K, H)) in G then

e(G, K, H) =Y e(K,H)".
teT

Clearly e(G, K, H) is a central element of QG and if the G-conjugates of e(K, H) are orthogonal,
then e(G, K, H) is a central idempotent of QG.

2 The central idempotent associated to a monomial irreducible
character

In this section we show that the primitive central idempotent of QG associated to a monomial
irreducible complex character can be computed using the elements of the form e(G, K, H). Namely
we show the following.

Theorem 2.1 Let G be a finite group, K a subgroup of G, x a linear character of K and x©
the induced character of x on G. If X© is irreducible then the primitive central idempotent of QG
associated to x© is

G) — [CenG(g(KvH)) : K]

Q0 :aGo)] &)

eq(x

where H is the kernel of x.
Proof. The actions of A and G on CG are compatible in the sense that
oc-(x-g)=(-x)-g, (60 €AgeGqG,zeCq).

Thus the notation o - x - g is unambiguous and one can consider A x G acting on the left on CG

and C by (0,9) -z =0-2-g %

Let e = e(x). The elements of the A x G-orbit of an element e can be collected in a table

01-€-gr o01-€-g2 -+ 01°€-gnm
02:€-g1 02:€-g2 -+ 02 €'Gn
Op-€-gr Opn-€-ga -+ Op'€:gn
where Ty = {o1,...,0,} is a left transversal of the A-stabilizer of e and T = {g1,...,9m} is

a right transversal of the G-stabilizer of e. One may take T4 = Gal(Q(x)/Q). But one should
be careful, although each row and each column does not have repeated elements there may exist
repeated elements in the table. When two rows (resp. two columns) have an element in common
then they have the same entries in a different order. By Theorem 1.3, the G-stabilizer of e is
G, = K and hence Tg is a right transversal of G modulo K. Thus

m

e(x“) =) e-g (2.2)

=1
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We complete the table by adding a column (respectively a row), the entries of which are the sum
of the corresponding row (respectively column).

01-€-41 01-€-g2 01 € 3gm Ul'e(XG)

0’2 . e .gl 0’2 . 6.92 PEEEEY 0'2 . e .gm 0'2 . e(XG)

O'n . e .gl O’n . 6-92 PEREEY O-TL . e .gm 0'n . e(XG)
e(K,H) g1 e(K,H) g2 --- 5(K,H)-gn‘ *

Note that by (2.2) the sum of the elements in the i-th row is o; - e(x) an by (1.1) and Lemma 1.2
the sum of the elements of the j-th column is eq(x) - g; = (K, H) - gj. We can compute the total
sum * by adding the elements of the last column or the elements of the last row:
n m
x =Y oi-ec(x9) =) e(K,H)-g;. (2.3)

i=1 j=1

In the first sum of (2.3) the elements to add are the elements of the A-orbit of e(x¥), each of them
repeated [Q(x) : Q(x%)] times. Using (1.1) once more one has

«=[Q00: Qx> o-e(x) =[QK) : QKx)]ea(x%) (2.4)
oeGal(@(x9)/Q)

Similarly the second sum of (2.3) adds up the elements of the G-orbit of ¢(K, H), each of them
repeated [Ceng(e(K, H)) : K| times. Therefore

x = [Ceng(e(K,H)) : Kle(G,K,H) (2.5)
and the Theorem follows comparing (2.4) and (2.5). 1
The following two corollaries of Theorem 2.1 follow immediately.

Corollary 2.2 If (H,K) is a Shoda pair of G then there is an a € Q, necessarily unique, such
that ae(G, K, H) is a primitive central idempotent of QG.

Recall that a finite group is said to be monomial (or M-group) if every irreducible complex
character of the group is monomial, that is induced by a linear character of a subgroup.

Corollary 2.3 A finite group G is monomial if and only if every primitive central idempotents of
QG is of the form ae(G, K, H) for a € Q and (H,K) a Shoda pair of G.

3 Sufficient conditions for a« = 1 and an approach to the structure
of the simple algebra

In the previous section we have seen that the primitive central idempotent of QG associated to a
monomial irreducible character x is of the form ae(G, K, H) for o € Q and a Shoda pair (H, K)
of G. Clearly a = 1 if and only if e(G, K, H) is an idempotent (this happens, for example, if the
G-conjugates of (K, H) are orthogonal).

We say that a subgroup K of G is a maximal abelian subgroup of G if it is maximal in {A <
G : A is abelian}.



Definition 3.1 A strongly Shoda pair of G is a pair (H,K) of subgroups of G satisfying the
following conditions:

($S1) H < K < Ng(H);
(S52) K/H is cyclic and a mazimal abelian subgroup of No(H)/H and
(SS3) for every g € G\ Ng(H), (K, H)e(K,H) = 0.

In this section we show that if (H, K) is a strongly Shoda pair of G then it is a Shoda pair of G
and then e(G, K, H) is a primitive central idempotent of QG. Strongly Shoda pairs have one small
and one big advantage with respect to Shoda pairs. The small advantage is that to compute the

primitive central idempotent ae(G, K, H) associated to the strongly Shoda pair it is not necessary
to compute o = [Ceng(=(K,H)):K]
[Q(x):Q(x%)]

idempotent, that is, « is the quotient of the coefficients of 1 in e(G, K, H) and (G, K, H)?. (Recall
that the coefficient of 1 of a non zero idempotent of QG is non zero [18, Proposition 1.8].) The big
advantage is that if (H, K) is a strongly Shoda pair then one can give an approach to determine a
description of the structure of the simple component QGe(G, K, H) as we will see in Proposition
3.4.

We use several times the following obvious facts for every N < H < K < G such that N I G
and g € G:

Instead « can be computed by forcing ae(G, K, H) to be an

(K, H)? = (K9, HY), (3.6)
wy(e(K, H)) = (K /N, H/N). (3.7)

Lemma 3.2 Let H <K < (.
1. If K I Ng(H), then No(H) < Ceng(e(K, H)).

2. If K/H is cyclic then Ceng(e(K,H)) < Ng(H) and the following conditions are equivalent
forgeG:

(i) g€ H,
(ii) ge(K,H) = e(K,H) and
(111) ge(K,H)=¢(K,H).

Proof. 1 is a consequence of (3.6).

2. Assume that K/H is cyclic. (i) implies (ii) and the equivalence between (ii) and (iii) are
obvious. The inclusion Ceng(e(K, H)) < Ng(H) is a direct consequence of (3.6) and the equivalence
between (i)-(iii). So we only have to prove that (ii) implies (i).

By (3.7) and [7, Lemma 2] one has that e(K, H) # 0. Assume that ge(K, H) = ¢(K, H). Then
g € K because 0 # (K, H) = ge(K, H) € QK. Assume that g ¢ H and let/JW\/H e M((H,g)/H).

1

Thus M/H € M(K/H). Moreover (g, H) = (g, M) and hence §H = (g, H) = (g, M) = §M.
Therefore e(K, H) = ge(K, H) = 0, a contradiction.

Proposition 3.3 The following conditions are equivalent for a pair (H, K) of subgroups of G:
1. (H,K) is a strongly Shoda pair of G;

2. (H,K) is a Shoda pair of G, K I Ng(H) and the G-conjugates of (K, H) are orthogonal.



Moreover if the previous conditions holds then Ceng (K, H) = Ng(H) and e(G, K, H) is a primitive
central idempotent.

Proof.

2 implies 1 is a consequence of Lemma 3.2.

Now we prove 1 implies 2. Assume that (H, K) is a strongly Shoda pair. Clearly (H, K) satisfies
(S1) and (S2). By Lemma 3.2, Ceng(e(K, H)) = Ng(H) and hence condition (SS3) implies that
the G-conjugates of (K, H) are orthogonal and so e(G, K, H) is a central idempotent. It only
remains to show that (H, K) satisfies condition (S3). Let g € G be such that [K,g] N K C H and
X a linear character of K with kernel H. If k € K and g~ 'kg € K then [k, g] € [K,g] N K and thus
X([k,g]) = 1. Then

_ 1 _ _ _
(et 97 = e ST xlk (ks N kighag .
k1,ko€K

and hence the coefficient of 1 in e(x)e(x - g7!) is

1 o 1 KNKSY
w2 XWXk = e DL kgl = [0 K] 27 20
K] kg~ kge K K] kg~ kge K K]

9 ge g gc

Since (K, H) = ZoeGal(Q(x)/@) e(o - x) (Lemma 1.2) and the different e(o - x)’s are orthogonal

0#e(x)e(x-g~") = e(x)e(K, H)e(K, H)9e(x - g~ ),

and hence (K, H)e(K, H)? # 0. By condition (SS3), g € Ng(H) and then [K, g] C K, by condition
(SS1). Thus [K,g] € KN[K,g] C H and hence (K, g)/H is abelian. We deduce that g € K from
condition (SS2). This proves (S3). 1

By S % G we denote the crossed product of a group G over a coefficient ring S [13]. We write
S %7 G to emphasize the action ¢ and twisting 7 of the crossed product S * G.

Proposition 3.4 Let (H,K) be a strongly Shoda pair and let k = [K : H|, N = Ng(H), n =[G :
N], = a generator of K/H and ¢ : N/K — N a left inverse of the projection N — N/K. Then
QGe(G, K, H) is isomorphic to M, (Q(&) *2 N/K) and the action and twisting are given by

g@W =g, ifer=a

7(a,b) =&, if plab)~'¢(a)p(b)H = a7,
for a,b € N/K and integers i and j.

Proof. Set f = ¢(K,H), e = e(G,K,H) and T a right transversal for N in G. By Proposition
3.3, e is a primitive central idempotent of QG and e = deT f9. By Lemma 1.2, f is a primitive
central idempotent of QK and QK f is isomorphic to Q(&x) via the map given by H +— 1, x — &.
Furthermore QN f = QK f 7! N/K is a crossed product of N/K over the field QK f. Clearly the
isomorphism QK f ~ Q(&) extends naturally to an N/K-graded isomorphism QN f = QK f *7!
N/K ~ Q(&) # N/K

If g € G then the map = — xg is an isomorphism between the QG-modules QG f and QG f9.
Therefore gQGe = ®4erQG [ ~ (QG f)". Moreover fQGf = QN f, because f is central in QN.
Thus

QGe ~ Endgg(QGe) ~ M, (Endga(QGf)) ~ M, (fQG[f) = M, (QN f) ~ M,(Q(&) *2 N/K).
|



Remark 3.5 Note that one can obtain an alternative proof of the fact that if (H, K) is a strongly
Shoda pair then e(G, K, H) is a primitive central idempotent, which does not use Theorem 2.1 by
extending the arguments of the previous proof as follows:

If aK belongs to the kernel of o1 and B = (a, K) then QBf = QK f * B/K is commutative.
Thus bf = f for every b € B'. By Lemma 3.2, B C H and so B/H is abelian. Thus a € K as a
consequence of (SS2). This proves that o is faithful. By [14, Theorem 29.6], QN f is simple and
hence so is QGe ~ M, (QN f).

Although condition (SS3) is very easy to check, it is conceptually disappointing because it has
to be checked in QG rather than in the lattice of subgroups of G. The following corollary shows
some sufficient conditions to be checked only in the lattice of subgroups of G for e(G, K, H) to be
a primitive central idempotent.

Corollary 3.6 Let (H,K) be a pair of subgroups of a finite group G satisfying the following con-
ditions:

1. HJIK G,
2. K/H is cyclic and mazimal abelian subgroup of No(H)/H.

Then (H,K) is a strongly Shoda pair and hence e(G, K, H) is a primitive central idempotent of
QG.

Proof. Clearly (H, K) satisfies (SS1) and (SS2). By condition 1 and equation (3.6) the G-
conjugates of (K, H) are of the form (K, HY), with ¢ € G. Since K/HY is cyclic, Proposi-
tion 1.1 yields that (K, HY) is a primitive central idempotent of QKffg ~ Q(K/H), and thus
also of QK. So the G-conjugates of (K, H) are primitive central idempotents of QK. Then
the G-conjugates of (K, H) are mutually orthogonal and hence (SS3) follows from the equality
Ng(H) = Ceng(e(K, H)) which is a consequence of Lemma 3.2. |

4 Abelian-by-Supersolvable groups

In this section we show that if G is an abelian-by-supersolvable finite group then every primitive
central idempotent of QG is of the form e(G, K, H) for a strongly Shoda pair (H, K).

Recall that a group G is supersolvable if there is a series of normal subgroups of G with cyclic
factors. A group G is said abelian-by-supersolvable if it has an abelian normal subgroup A such
that G/A is supersolvable. Notice that the class of abelian-by-supersolvable groups is closed under
subgroups and epimorphic images.

We need three lemmas. The first one elementary.

Lemma 4.1 Let {Hy, Hs,...,Hy} be an ordered list of non trivial subgroups of a finite group G
satisfying the following condition: If hihg - - hi, = R\ Ry - - - b} with h;, b, € H; for everyi=1,...,k,
then h; = hl; for all i. Then

(1= )(1— Hy)- - (1— Hy) £0.

Lemma 4.2 Let H and K be subgroups of G such that H<1K, K/H is cyclic and the G-conjugates
of (K, H) are mutually orthogonal, then Ceng(e(K,H)) = Ng(H).



Proof. By Lemma 3.2, Ceng(e(K,H)) < Ng(H). To prove the converse inclusion we show
that if g € Ng(H) then e(K,H)e(K,H)? # 0. Let ¢ € Ng(H). Then ¢(K,H) = (K9, H),
so that (K, H) and e(K, H)? belong to QNg(H). Therefore we may assume, without loss of
generality, that Ng(H) = G, that is H < G. Factoring out by H and using the isomorphism
wi : QGH ~ Q(G/H) and the equality (3.7) one may assume that H = 1, so that K is cyclic
and we have to prove that ¢(K)e(K)? # 0. Let My,..., M} be the minimal subgroups of K,
ordered so that there is an integer h < k such that Ml-g = M; if and only if h < ¢ < k. Since
MlMQ“'MkﬁMiqMéq"‘Mg = {1} and M{Ms--- My = My @& My ® --- & My, the list of groups
{My,..., My, M7,..., M} satisfies the conditions of Lemma 4.1. Then

e(K)e(K)? = (1= M) -+ (1 — My)(1 = MP) - (1 — M) #0.

We say that N is a maximal abelian normal subgroup of G if N is maximal in {A 4G :
A is abelian}. In general not every maximal abelian normal subgroup of G is a maximal abelian
subgroup of G.

Lemma 4.3 If G is a supersolvable group and N is a maximal abelian normal subgroup of G then
N is a maxzimal abelian subgroup of G.

Proof. Let K = Ceng(N). We have to show that K = N, so assume the opposite. Since G/N is
supersolvable and K /N is a normal subgroup of G/N then G/N has a series of normal subgroups
of G/N with cyclic factors containing K/N [17, page 230]. Thus there exists € K \ N such that
(N,z)/N is normal in G/N. Since x € K, (N, z) is an abelian normal subgroup of G containing
N properly, a contradiction. J

Theorem 4.4 Let G be a finite abelian-by-supersolvable group and e € QG. Then the following
conditions are equivalent.

1. e is a primitive central idempotent of QG.
2. e=¢e(G,K, H) for a strongly Shoda pair (H,K) of G.
3. e=e(G,K,H) for a pair (H,K) of subgroups of G satisfying the following conditions:

(A) H<K <Ceng(e(K, H));
(B) K/H is cyclic and mazimal abelian subgroup of Ceng(e(K,H))/H and
(C) the G-conjugates of (K, H) are orthogonal.

Proof. To show that 2 and 3 are equivalent it is enough to prove that if a pair (H, K) of subgroups
of G satisfies either condition 2 or condition 3 then Ceng(e(K,H)) = Ng(H). That the latter
holds in the respective cases follows from Lemma 3.2 and Lemma 4.2.

2 implies 1 is a consequence of Proposition 3.3.

It remains to show that 1 implies 3. Let us call a good idempotent to be one of the form
e(G, K, H) with (H, K) a pair of subgroups of GG satisfying conditions (A)-(C). Since 3 implies 1,
every good idempotent is a primitive central idempotent and we want to show that every primitive
central idempotent of QG is good or equivalently that 1 is a sum of good idempotents. We argue
by induction on |G| with the case |G| = 1 being trivial.



Let A be a maximal element in the set of abelian normal subgroups of G such that G/A
is supersolvable. Let AN be the set of non trivial normal subgroups of G contained in A. Set
E=[Iyea(1— N) We are going to obtain our aim by showing that £ and 1 — E are both sums
of good idempotents.

Let e be a primitive central idempotent of QG(I — E). Then there is N € N such that eN #0,
for otherwise 0 = eE = e. Thus e = eN € QGN and wy(e) is a primitive central idempotent of

Q(G/N). By the induction hypothesis wy(e) = e(G/N,K/N,H/N) where (H/N,K/N) satisfies
conditions (A)-(C) as a pair of subgroups of G/N. By equation (3.7), e = (G, K, H) and (H, K)
satisfies conditions (A)-(C) as a pair of subgroups of G. This proves that 1 — E is a sum of good
idempotents.

Let B be the set of subgroups H of A such that A/H is cyclic. By Proposition 1.1, {¢(A, H) :
H € B} is the set of primitive central idempotents of QA. Let By = {H € B: Fe(A,H) =¢(A, H)}
and By the complement of By in B. Then £ =) 5 e(A,H) and 1 — E =3y g (A, H).

We claim that By = {H € B: N ¢ H for every N € N'}. Let H € B. If N C H for some
N € N then Ne(A, H) = (A, H), by Lemma 3.2. Therefore Ec(A, H) = 0 and hence H € Bs.
Conversely, assume that N ¢ H for every N € N. By Lemma 3.2, for every N € N there exists
n € N such that ne(A, H) # e(A, H) and hence Ne(A, H) # ¢(A, H). Then Ne(A, H) = 0 and so
Ee(A,H) =¢(A,H). Thus H € B;. This proves the claim.

Since A < G, B; is closed under conjugation by elements of G and hence E is the sum of
the idempotents of the form e(G, A, B) with B running through a set of representatives of the
G-conjugates of elements in B;. Therefore we only have to show that e(G, A, B) is a sum of good
idempotents for every B € B;. In the remainder of the proof B is an element of 5.

If B =1 then A is cyclic and hence G is supersolvable. By Lemma 4.3, A is a maximal abelian
subgroup of G and hence the pair (1, A) satisfies conditions (A)-(C), so that e(G, A, 1) is a good
idempotent.

Assume now that B # 1. Thus B is a non trivial subgroup of G which does not contain any
non trivial normal subgroup of G and in particular B is not normal in G, that is Ng(B) # G. Let
S = Ceng(e(A4, B)). By Lemma 3.2, S = Ng(B). Since £(A4, B) is a central idempotent of QS and
S is a proper subgroup of GG, by induction hypothesis

k
=> e(S K, Hy),
=1

where each (H;, K;) is a pair of subgroups of S satisfying conditions (A)-(C) as subgroups of S.
Claim: If g € G\ S then e(K;, H;)e(K;, H;)9 = 0.

This is because €(A, B) and (A, B)?9 are two different primitive central idempotents of QA and

hence
8(KZ’, Hl)€(Kl, Hl)g = €(Ki, Hl)é(A, B)é(A, B)gé‘(Ki, Hz)g =0.

From the Claim it follows that Ceng(e(K;, H;)) C S and therefore
Ceng(e(K;, H;)) = Ceng(e(K;, H;)). (4.8)

Let T be a right transversal of S in G and, for each i = 1,... k, let R; be a right transversal of
Ceng(e(K;, H;)) in S. By (4.8), R;T is a right transversal for Ceng(e(K;, H;)) in G. So

k

e(G,A,B) =) e(A ZZ (S, Ky, Hy)' ZZZ (Ki, Hy)™" = " e(G, K, Hy).

teT teT i=1 teT i=1 reR; i=1
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Recall that the (H;, K;)’s satisfy conditions (A)-(C) as subgroups of S. Now we show that they also
satisfy these conditions as subgroups of G. (A) and (B) follow from (4.8) and (C) is a consequence
of the Claim. Thus e(G, A, B) is a sum of good idempotents and this finishes the proof.

As a direct consequence of Lemma 4.2 and Theorem 4.4 one has:

Corollary 4.5 Let G be a finite supersolvable group and e € QG. Then the following conditions
are equivalent.

1. e is a primitive central idempotent of QG.
2. e=e(G,K,H) for a pair (H,K) of subgroups of G satisfying the following conditions:

(a) H< K < Ng(H);
(b) K/H is cyclic and mazimal abelian normal subgroup of No(H)/H and
(c) if g€ G\ Ng(H), then e(K,H)e(K,H)Y = 0.

3. e=e(G,K,H) for a pair (H,K) of subgroups of G satisfying the following conditions:

(A) H<LK < Ceng(e(K, H));
(B) K/H is cyclic and mazimal abelian normal subgroup of Ceng(e(K,H))/H and
(C) the G-conjugates of (K, H) are orthogonal.

It is well known that every abelian-by-supersolvable group is monomial. Note that we have not
used this fact in the proof of Theorem 4.4. In fact one can deduce an stronger result from Theorem
2.1 and Theorem 4.4:

Corollary 4.6 If G is a abelian-by-supersolvable finite group then every irreducible character of
G is a monomial character induced by a linear character x of a subgroup K of G such that K is
normal in Ng(Ker x) and the elements of the G-orbit of e(x) are mutually orthogonal.

Now we show how to modify the proof of Theorem 4.4 to show that the primitive central
idempotents provided by Corollary 3.6 are enough to describe the primitive central idempotents of
QG for a metabelian group G. Recall that a group G is metabelian if it contains an abelian normal
subgroup A so that G/A is abelian too or equivalently if G’ is abelian.

Theorem 4.7 Let G be a metabelian finite group and let A be a mazimal abelian subgroup of G
containing G'. The primitive central idempotents of QG are the elements of the form e(G, K, H)
where (H, K) is a pair of subgroups of G satisfying the following conditions:

1. K is a mazimal element in the set {B < G: A< B and B' < H < B} and
2. K/H is cyclic.

Proof. Let G and A be as in the statement of the theorem. Note that every subgroup K of G
containing A is normal in G. Moreover, if H < B < G then B’ < H if and only if B C Ng(H) and
B/H is abelian. Thus if the pair (H, K) satisfies conditions 1 and 2 then it also satisfies conditions
1 and 2 of Corollary 3.6 and so e = e(G, K, H) is a primitive central idempotent of QG.

Now we want to prove that every primitive central idempotent is of this form. Note that this is
equivalent to prove that 1 is a sum of primitive central idempotents of the desired form. We argue
by induction on the order of G/A, the case |G/A| =1 follows from Proposition 1.1.
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Let B be the set of subgroups of G containing A properly. Note that every element B in B is
normal in G and hence so is B'. Let E = [[5.5(1 — @), which is a central idempotent of QG. We
will show that both E' and 1 — E are a sum of e(G, K, H)’s with K and H satisfying conditions 1
and 2. -

Let e be a primitive central idempotent of QG(1 — E). Then there is B € B such that eB’ # 0,
for otherwise 0 = eE = e. Thus eB’ = e € QGB' and wp(e) is a primitive central idempotent
of Q(G/B’). By the induction hypothesis wp/(e) = e(G/B',K/B', H/B') where (H/B',K/B’)
satisfies conditions 1 and 2. Then e = e(G, K, H) and (H, K) satisfies conditions 1 and 2. This
proves that 1 — F is a sum of primitive central idempotents of the desired form.

Let H be the set of subgroups H of A such that A/H is cyclic. By Proposition 1.1, 1 =
Yomenc(AH). Let Hy = {H € H:e(A,H)E = (A, H)} and Ha the complement of H; in H.
Then E =3 pey, e(A,H) and 1 — E =3 oy (A H).

We claim that Hy = {H € H : B’ € H for every B € B}. Let H € H. If B’ C H for some
B € B then B\,{:‘(A, H) = ¢(A, H), by Lemma 3.2. Therefore (A, H)E = 0 and hence H € Ha.
Conversely, assume that B’ ¢ H for every B € B. By Lemma 3.2 for every B € B there exists
b € B’ such that be(A, H) # (A, H) and hence B'e(A, H) # €(A, H). Then B'e(A,H) = 0 and
thus e(A, H)E = (A, H). Thus H € H;. This proves the claim.

By the previous paragraph, if H € H; then A is maximal in the set of subgroups B of G such
that B’ C H, that is (H, A) satisfies conditions 1 and 2. Consider G acting on H; by conjugation
and let R be a set of representatives of this action. Then £ =) 4 €(A, H) = yep e(G, A H).
This finishes the proof. J

Often when the primitive central idempotents of QG are sought one recalls that the primitive
central idempotents of QGG’ ~ Q(G/G’) are easy to compute by using the description of the
primitive central idempotents of rational group algebras over abelian groups and one concentrates
on computing the primitive central idempotents of QG(1 — G') [5, 8]. Now we can go further.
Indeed, for every group G, the quotient group G/G” is metabelian and using the isomorphism
QGG ~ Q(G/G") one deduces the following from Theorem 4.7.

Corollary 4.8 Let G be a finite group and A a mazimal element in {H < G : G' < H and H/G" is
abelian}. Then every primitive central idempotent of QGG" is of the form e(G, K, H) for a pair of
subgroups (H, K) of G satisfying the following conditions:

1. G"<H,
2. K is a mazximal element in the set {B <G : A< B and B'< H < B} and

3. K/H is cyclic.

5 Examples

In this section we first show a straightforward method to compute the primitive central idempotents
of QG for G a finite metacyclic group. Then we compare the different methods to compute primitive
central idempotents of QG we have introduce in the previous sections.

Example 5.1 Recall that a metacyclic finite group is a finite group G having a normal cyclic
subgroup (a) such that G/(a) is cyclic; that is G has a presentation of the form

G={(a,b|a™=1,b"=a',bab~! = a").
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Let u be the multiplicative order of 7 module m. For every d|u let G4 = (a,b%). Note that
h= (ard_1> and hence G, is a maximal abelian normal subgroup of G containing G’. By Theorem
4.7 the primitive central idempotents of QG are the elements of the form e(G, Gy, H) where d is a

divisor of v and H is a subgroup of G4 satisfying the following conditions:
1. d=min{z|u:a"" "' € H} and

2. G4/H is cyclic.

If G is as in Example 5.1 with n a prime number then there are only two kinds of idempotents:
those of the form e(G, G, H) with G/H cyclic and those of the form £({a), (a?)) where d is a divisor
of m which does not divide » — 1. This was the starting point of the investigation of Herman [5]
of the group of automorphisms Aut(QG) of QG for this case. We quote the following from [5]: “In
order to generalize the results of the above metacyclic groups (that is for n prime) to the class of
general metacyclic groups, we need an algorithm means to determining the entire collection of non-
abelian simple components that would appear. This appears to be a complicated process to work
out for a general m and n.” This process has three tasks: first determining the primitive central
idempotents of QG; second studying for each primitive central idempotent e of QG the exact form
of the QGe as a matrix ring over a division ring and third deciding which pairs of primitive central
idempotents give rise to isomorphic simple rings.

Another problem that often reduces to determining the structure of the simple components of
QG is the study of the group of units ZG* of the integral group ring ZG. By results of Jespers and
Leal [6], and Ritter and Sehgal [16], the Bass cyclic and bicyclic units of ZG (see [18]) generate a
subgroup of finite index of ZG* if the simple components of QG do not belong to a small list of
simple algebras. Jespers, Leal and Polcino [8] have studied when this is the case for G a metacyclic
group as above with n = 2 and ¢t = 0. In this case the problem reduces to the first two tasks of the
previous paragraph.

We have seen how to accomplish the first task. Proposition 3.4 provides a tool for the second
and third tasks but a careful study of the number theoretic information of the crossed product of
Proposition 3.4 is required to complete this process. This study is beyond the scope of this paper.

In the remainder we use the notation C,, = (a) to denote a cyclic group of order n and S, for
the symmetric group on n letters.
Let G be a finite group and let E be the set of primitive central idempotents of QG and set

E, = {ae(G,K,H) € E: (H,K) is a Shoda pair of G};

Ey, = {e(G,K,H)€ E:(H,K)is a Shoda pair of G};
Es = {e(G,K,H): (H,K) is a strongly Shoda pair of G} and
E, = {e(G,K,H): (H,K) satisfies conditions 1 and 2 of Corollary 3.6}.

Then Ey C E3 C Ey C By C E. Furthermore E = Ej if and only if G is monomial (Corollary 2.3),
E = Es if G is abelian-by-supersolvable (Theorem 4.4) and E = E; if G is metabelian. Now we
compare the different E;’s.

Example 5.2 (E3 # Ey for G minimal monomial and non metabelian.) Every subgroup of order

at most 23 is metabelian. There are two non isomorphic non metabelian groups of order 24: Sy,
which is abelian-by-supersolvable, and the special linear group SL(2, 3), which is not monomial.
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Q5S4 has exactly five primitive central idempotents but there are only 3 pairs (H, K) of subgroups
of Sy satisfying conditions 1 and 2 of Corollary 3.6, namely (Sy,Ss), (A4, S4) and (V, Ay), where
V =1((12)(34),(13)(24)). So E4 has 3 elements. The other two primitive central idempotents of
QSy are e(Sy, K,((1234))) and e(Sy, K,((13),(24))) where K = ((1234),(13)). &

Example 5.3 (E5 # E4 for supersolvable groups and non metabelian.) Consider the supersolvable
group

G = (al,ag,b,c|a§’ = ag = =c= [a1,a2) = [a1,b] = [a1,c] = 1,ag = ajag,as = aQ_l,bC = b_1>

and let H = (az). Then Ng(H) = (a1,a2,¢) and (H, Ng(H)) is a strongly Shoda pair, so that
e(G,Ng(H), H) is a primitive central idempotent of QG. However a computer search has shown
that e(G, Ng(H),H) € E4. 1

Example 5.4 (Ey # E3.) Let G = ((z,y) x (b)) x (a) where (x,y) ~ Qs is the quaternion group
of order 8, (b) ~ C7, (a) ~ C3 and the action of (a) on (x,y) x (b) is given by z* =y, y* = xy
and b® = b2. Then (H = 1, K = (z,b)) is a Shoda pair of F' and the G-conjugates of (K, H) are
orthogonal so that e(G, K, H) € Es. However (H, K) is not strongly Shoda pair because K is not
normal in G = Ng(H) and in fact a computer search shows that e(G, K, H) ¢ Es.

Example 5.5 (Ey # Es.) Let G = (D x C7) x C3 where C7 = (b) and C3 = (a) are cyclic groups
of order 7 and 3 respectively and D is the group given by the following presentation:

D= {(z,y,zlz' =122 =y? =22, [2,2] = [y, 2] = 1,2¥ = 2™ 1).

A computer search shows that for this group E£7 has 11 elements but both F3 and Fs has only 10
elements. The element of E1 \ Es is e = 2e(G, K, H) where H = (zz) and K = Ng(H) = (2, 2,b).

Note that the groups of Examples 5.4 and 5.5 are not monomial. A computer search has shown
that £ = FEj3 for all the monomial groups of order at most 500. This yields the question of whether
Theorem 4.4 can be extended to monomial groups.

By Theorem 4.4 if G is abelian-by-supersolvable then ¥ = F5 and therefore for every primitive
central idempotent e of QG there is a linear character y of a subgroup K of G with kernel H such
that e = eg(x%) = e(G, K, H), that is [Cen(e(K, H)) : K] = [Q(x) : Q(x%)]. Since abelian-by-
supersolvable groups are monomial, if the equality [Cen(e(K, H)) : K] = [Q(x) : Q(x%)] would
hold for every Shoda pair (H, K) and every character x of K with kernel H then Theorem 4.4
would follow immediately. The next example shows that this is not the case.

Example 5.6 Let C5 = (a), Cy = (b), Qs = (z,y) and consider G = C3 x (Qg x C3) where the
actions are given by

d=att =2ty =yr,a" =a,a¥ =a "

If H= (b) and K = (a,b,2?) then (H, K) is a Shoda pair and therefore the linear character of K,
x : K — C given by x(az?) = & and x(b) = 1 induces an irreducible monomial character x“ of G.
Notice that K = Ng(H) = Ceng(e(K, H)) but the G-conjugates of e(K, H) are not orthogonal. In
fact (G, K, H) is not idempotent but eq(x%) = e(G, K, H)/2. Notice that G is supersolvable and
so, according to Theorem 4.4, eq(x®) = e(G, K1, Hy) for some strongly Shoda pair (Hi, K1) of G.
Specifically this can be obtained with H; = 1 and K; = (a,z). |

We finish with computing the primitive central idempotents of the smallest non abelian-by-
supersolvable group (which coincides with the smallest non monomial group) in terms of elements
of the form e(G, K, H).
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Example 5.7 The minimal non monomial group is SL(2,3) which is isomorphic to G = Qg x Cj
where Qg = (7,y), C3 = (a) and 2% = y and y* = zy. Notice that G/(z?) ~ Ay = (z,7) x (a),
which is metabelian and the primitive central idempotents of QA4 are £(Ay4, Ay), (A4, (Z, 7)) and
e(Aq, (Z,7),(Z)). Thus, for G, E4 has at least 3 elements: f; = ¢(G,G) = G, fr = e(G,Qg) =
6/2\8 — G and f3 = e(G,Qs,(x)). Let e = fi+ fo+ f3 =1— (/x\2> = ¢((«?),1). Note that the
pair (1, (z?)) satisfies conditions (a)-(c) and (A)-(C) of Corollary 4.5. However e is not a primitive
central idempotent, namely e is the sum of the following two primitive central idempotents of QG

o — e(G,B,A) _ (=) 2=(+(ztytay))a—(1—(z+y+ay))a?)

1 2 12 )

ey — CGBl=eGBA) _  (=a?)(d+(+(@ty+ay))at(I=(z+ytay))a®)
2 4 12 )

where A = (a) and B = (z%a). Since G is not monomial E; # E and therefore either e; or ey do
not belong to E;. This is a consequence of the well known fact that the irreducible characters of
G associated to e; and es are not monomial. We give an alternative proof of this fact by showing
directly that e; and es do not belong to Fj.

Assume that e; = ae(G, K, H) for i = 1 or 2, a € Q and some Shoda pair (H, K) of G. Then

a= W for some linear character of K with kernel H and hence |K|[Q(x) : Q(x%)]e; €

ZG. Thus |K|[Q(x) : Q(x%)] is a multiple of 12. Let k& = |K|. Then [Q(x) : Q(x%)] divides
¢([K : H]) and ¢([K : H]) divides ¢(k). Therefore k¢(k) is a multiple of 12. We deduce that
k=6,12 or 24.

If £ # 6 then K is a normal subgroup of G. Since the normal subgroups of G are 1, (x?), (x,y)
and G, none of them of order 12, we have that K = G and so H < G. This implies that (G, H) is a
strongly Shoda pair and hence oo = 1. However e; # ¢(G, G, H) for any normal subgroup H of G.

Thus k£ = 6. Conjugating by an appropriate element of G one may assume without loss of
generality that K contains A. The only subgroup of G of order 6 that contains A is B, so that
K = B. However (B, H) is not a Shoda pair for any subgroup H of B because [B,z] N B =1 and
r ¢ B.

Note that e; is of the form ae(G, K, H) for o € Q and a pair of subgroups (H, K) of G such
that H < K. However an exhaustive search of the idempotents of QG of this form shows that e
cannot be written in this form. J

Example 5.7 also shows that conditions (a)-(c) and (A)-(C) of Corollary 4.5 are not enough to
ensure that e(G, K, H) is a primitive central idempotent even if G is solvable.

Final Remark. Some of the computations necessary to compute the different F;’s of the groups
of the previous examples have been done using a package [11] for System Gap [3] that we have
developed and is explained in [12].
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