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On Monotone and Convex Spline Interpolation*

By Paolo Costantini

Abstract. This paper is concerned with the problem of existence of monotone and/or convex

splines, having degree n and order of continuity k, which interpolate to a set of data at the

knots. The interpolating splines are obtained by using Bernstein polynomials of suitable

continuous piecewise linear functions; they satisfy the inequality k < n — k. The theorems

presented here are useful in developing algorithms for the construction of shape-preserving

splines interpolating arbitrary sets of data points. Earlier results of McAllister, Passow and

Roulier can be deduced from those given in this paper.

1. Introduction. Let x0 < xx < ■ ■ • < xN be real numbers, let « and k, 0 ^ k <

« - 1, be integers, and let

Snk[x0,xN) = [s e Ck[x0,xN]: s(x) e P„, x e [x,,x, + 1], i = 0,1,..., N - l)

be the set of splines of degree « and deficiency « - k at knots x¡, i = 1,..., N — 1.

In a previous paper [2], a necessary and sufficient condition for the existence of

monotone and convex s e 53[x0, x^] interpolating a set of data at the knots was

given, and in [3] an algorithm for the construction of shape-preserving interpolating

splines was described. Further investigations led to an extension of the above results

to se Sk [x0, xN], where 1 < k < « - k and s(j)(xi) = 0, j' — 2,..., k, i =

0,1,..., N, whenever k^-2. Such splines are obtained from Bernstein polynomials

of monotone and/or convex interpolating linear splines with two knots in (x,, x, + 1),

i = 0,..., N — 1. The well-known theorems of [9] and [7] (see also [8] for related

results), where linear splines with one knot in (x,, x, + 1), i = 0,...,N - 1, are used,

can be deduced from those presented here.

This paper is divided into three parts. In Section 2, « and k are prescribed and a

data-dependent condition is given. In Section 3 the degree is computed to ensure the

existence of a monotone and/or convex interpolating spline, and a degree-depen-

dent condition is provided. Section 4 is then devoted to final conclusions and

remarks.

The results of Sections 2 and 3 enable us to derive an algorithm for the

construction of shape-preserving interpolating s e Sk[x0,xN]. The spline can be

selected by the user to perform Lagrange or Hermite interpolation, to be piecewise

monotone and/or convex (concave), « and k can be assigned or automatically

computed by the code, according to Theorem 3. A detailed description of this

algorithm, together with numerical and graphical examples, will be reported elsewhere
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204 PAOLO COSTANTINI

Finally, we note that all the results of this paper, which are stated for increasing

(I), convex (C) or increasing and convex (IC) data, can be easily modified to the

other cases.

2. Data-Dependent Existence Conditions. Let (x,, y¡), i: = 0,1,..., N, be a set of

data points. Setting ft, = x, + 1 - x¿, A, = (yi+l - y¡)/h¡, i = 0,..., N — 1, we say

that the data are increasing if A, > 0, i = 0,...,N — 1, and convex if A,+1 ^ A,,

/' = 0,..., N — 2. Now let the integers k, n¡, 1 < k < ni, — k, i = 0,..., N - 1, be

given and let « = max{«,, i = 0,..., N — 1}. We introduce the sets

LSk[x0,xN] = (sG Sk[xQ,xN]: s(x) E P„ for x e [x,,x, + 1],

i = 0,...,N-l;
l/- ' s(J)(xt) = 0, j = 2,...,k,i = 0,...,N-l;

sU)(x~) = 0, j = 2,...,n¡-k, i = 1,...,N),

RS„k[x0,xN]= {s£S,k[x0,xN]: s(x) e P„ forxe [x,,xi+1],

/22) i = 0,...,JV-1;
s0)(*,+) = 0, j = 2,...,n¡ -k,i = 0,...,N-l;

s(J)(x-) = 0, j = 2,...,k,i = l,...,N),

BSk[x0,xN] = RSk[x0,xN]+LSk[x0,xN]

(2.3) = {se Sk[x0,xN]: s = <#> + rb, <p E LS£[x0,xN],

*eRS„k[x0,xN]}.

For k = 1 or «,. — k = 1 the corresponding conditions are vacuous and we have

BS2l[x0, xN] = S¡[x0, x„]   and   BS¡[x0, xN] = S¡[x0, xN]   if   «, = 3,   /' = 0, —

N - 1. We remark that su\xt) = 0,  j = 2,...,k,  i = 0,l,...,N, for any 5 e

55,f [x0, x^]. We need the set of points t¡, i = 0,1,..., 2N + 1, where

'o = -X-0' ^2N+l  ~ Xff,

(2.4) k , «,-fc, .     n A,     -,
'      i2, + 1=x, + -ft,;    r2/+2 = x,. + -*— ft,,        I-0.....JV-1,

' i i

which we use to define

LSl°[t0,t2N+x]= [leC[t0,t2f/+1]: /(xÍEPjforxE [í^];

(2'5) xe[i2,+1,/2, + 3],/ = 0,...,^-l},

(2 6)    ^['o.^w+i]- {'^['o.^i]: /(x)eP, forxe [t2„tv+2\,

i = 0,...,N-l;x<E [t2„,t2N+1]}

and

(21)    BS?[t0,t2N+x]= [leC[t0,t2N+l]: /(x)eP: forxe [t,,ti+x],

i = 0,\,...,2N}.

It is an easy task to see that

(2.8) BS?[t0,t2N+l] = LS?[t0,t2N+l]+ RS?[t0,t2N+l].
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MONOTONE AND CONVEX SPLINE INTERPOLATION 205

We finally recall that the mth degree Bernstein polynomial of a function / in the

interval [x,, x,+1], /' = 0.N - 1, has the form [6]

*,(*; /.«) = ¿ E (?)/*, + £*, (*- *,)'<*i+i - x)m-'
i    f = 0

and the following properties hold:

Byx(x;f,m)

(2.9) 1 m\       "'tt' lm- j\Mfi      ,   v     \, ,V( ,m-j-v

(2.10) 5<y)U,/,w) = l_^AyU.)i

(2.11) ^H^,+1;/^) = ^7--^-TTvy(x,+1),

where AJ (V7) is the yth forward (backward) difference with step «,/m,  j =

1,2, ...,m.

Now let ß: C[x0, xN] -» C[x0, xw] be the linear operator such that

iBf)ix) = Biix;f,ni)   forx e [x,,x, + 1], / = 0.N - I.

It is simple to prove the following

Lemma  1.   The restriction of B to BSx[t0,t2N+l]  is an invertible map from

BS?[t0,t2N+l]toBSÏ[x0,xN].

Proof. Let / e BSx°[t0, t2N+x], Then we have from (2.8) that

/ = A + p,   where a e LSx[t0, t2N+1] and ju e AS^îq, t2N+ï].

From (2.5), (2.6), (2.10) and (2.11) it is easy to see that

By\xl;X,ni) = B^(xl + x;p,n,) = 0,       j = 2.k, i = 0,...,N - 1,

B¡<\x, + X; A, it,) = B}J\xt; p, «,) = 0,        j = 2,..., nt - k, i = 0,..., TV" - 1,

and Bjl\(x,: \,ni_x) = BV\xi; A,«,); B}i\(x,; ju, «,_,) = £,("(x,; p,nt) for

7 = 0,1, i = l,...,N-l. Hence, from (2.1), (2.2), B\ e LSk[x0,xN], Bp e

/vS,f [x0, Xyy], and definition (2.3) implies immediately that 5/ = B(\ + \i) = B\ +

Bp<=BSnk[x0,xN].

On the other hand, let s e BSk[xQ, x„]. Using (2.3), (2.1) and (2.2), we have that,

for any x E [x,, x, + 1], /' = 0_, 7Y - 1, s(x) = <f>(x) + \p(x), where <f>, $ e P„ and

(212) *(7)U) = *W)(*/+i) = o,   y = 2,...,*,

<í,<"(^ + 1) = ^/)(^,) = 0.    ; = 2.n,-k.

Since the two polynomials can be put in the form (see, e.g., [6, p. 48])

Hx) = t^7 E ("')*»(* " */)'(*«+i - *)"'"'.

i       w*

>H*) = 7^ E [Jj^Ax - x,)"(xl + l - x)"'"',

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



206 PAOLO COSTANTINI

we can write <p(x) = B¡(x; A,, «,), \b(x) = 5,(x; p,, «,), where A,, pi are piecewise

continuous linear functions such that

x\xi + ~hi) = x^ Pí(jcí + ir*i)"'1"   " = o,i,...,«,.

Moreover, it follows from (2.12), (2.10) and (2.11) that they are made up of two

linear segments which intersect each other respectively at t2i+x and t2l+2 (see (2.4)).

So the piecewise linear function /, = A, + p¡ has two break points and, of course,

s(x) = B¡(x; /,, «,) for x e [x,, x, + 1], /' = 0,..., TV - 1. If we use again (2.10) and

(2.11) for j = 0,1, we have

'/-iW = '((4    ^—V/,_1(x,) = -A/,(x,),        í = 1.JV,

and so / e BSx[t0,t2N+l], where l(x) = /,(x), x e [x,, x, + 1], i = 0,..., N — 1. The

obvious observation that Bl = s then completes the proof.

The well-known shape-preserving properties of Bernstein polynomials ensure that,

if / e BSx[t0, t2N+x] is I, C, or IC, then the corresponding s = Bl is also an I, C, or

IC function.

Moreover, we can state the following

Lemma 2. Let s e BSk[x0, xN] be C or IC. Then I = B~xs is also a C or IC linear

spline. Further, if k = «, - k, i = 0,..., N - 1, and s is I, then also I = B~xs is

increasing.

Proof. Let s e BSk[x0, xN] be any C or IC spline and let I = B~ls, /e

BSx°[t0,t2N+x]. It follows from (2.7) that A2/(x,. + vh,/«,) = 0, v = 0,1,..., «„

v * k - 1, v * «,. - k - 1, / = 0,..., N - 1.

In the case k = «, — k, using (2.9) we have

Be>(x-l «) = -_^h"2Wx +^llft]a'   \x''»tt>>     ft«. («,-2)!U-l]     I  '        n,   n'J

and thus the convexity of 5 implies A2/(x) > 0, x e [x,, x, + 1], i = 0,...,N — 1.

For k < n¡ - k -we have

fi/2)(x,;/,,«,)

= [(x - x,)(x, + 1 - x,)]* _1[a(x - x,)"'    k + ft(x, + 1 - x)"'-2*],

where

If we suppose that / is not C, then A or /x (or both) are negative. Suppose, without

loss of generality, that p < 0. It is easy to see that the polynomial [A(x - x¡)n~2k +

/i(x, + 1 - x)"^2k] has only a simple zero in (x,, x, + 1), and, for some x e [x,, x,+1],

B¡2)(x; /,, «,) < 0, which contradicts the hypotheses.
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MONOTONE AND CONVEX SPLINE INTERPOLATION 207

Moreover, ¿/^(x,; /,, «,) = «,A/(x,)/ft,, and this, together with the fact that any

/ which is C is also IC if A/(x0) > 0, will complete the proof for the IC case. Finally,

if k = n, - k, /' = 0,...,« + 1, then A/(x, + fft,/«,) = A/(x,), v = 0,...,k-\,

A/(x, + eft,/«,) = V/(x, + 1), v = k,..., n — 1, and for any I spline 5 e

BSk[x0, xN], I = Bls is also increasing.

It is now clear that the existence of an I, C or IC interpolating spline, that is the

existence of 5 e BSk[x0, xN] such that s(x¡) = y¡, i = 0,1,..., N; s{X\x) > 0

or/and s(2)(x) > 0, x e [x0, xN], is ensured if it is possible to construct an

interpolating linear spline which is, moreover, I, C or IC. We note that, for any

sequence d¡, i — 0,1,..., TV, there is one and only one / e BSx[t0, t2N+x], such that

l(Xj) = y¡, /(1)(x,) = d¡, i = 0,1,..., N, where the values y¡ are the given data, and

dj, i = 0,1,..., N, are free parameters.

So we can reformulate the problem into the following one: to compute the values

d¡, i = 0,1,...,N, such that the corresponding 5 e BSx[t0,t2N+x] is I, C, or IC.

From definition (2.7) it is simple to obtain the following results, which are stated in

the form of a lemma for notational convenience.

Lemma 3. Let I e BSx[t0,t2N+x\ be such that /(x,) = j„ /(1)(x,) = d¡, i =

0,1,..., N. Then I is I in [x,, xi+1], /' = 0,..., N - 1, //, and only if, (d¡, di+l)e ID¡

where

(2.13.a)   /D, = j(M,!))eR2:«>0,oO,K-H + yA,)    ifk<n,-k,

(2.13.b)    ID,.= {(u,o) eR2: u>0, v > 0, v= -u + 2A,}    ifk = n,-k;

is C if, and only if, id¡, di+x) E CD¡, where

CD, = ((a, v) e R2: u < A,, v > - -^^u + -^A,,

(2.14) '       ;
ni ~ "        "i „

is IC if, and only if, (d¡, á,+ 1)e ICDf, where

(2.15) ICD,- (iu,v) e CD¡: u>0}.

The nonempty convex sets ID¡, CDt, ICD¡ are shown in Figure 1.

We see at this point that the problem of I, C, or IC spline interpolation is reduced

to finding a sequence of slopes d¡, / = 0,1,..., TV, such that every ordered couple

(¿„ di+l), i = 0,..., N - 1, belongs to ID,, CD¡ or ICX>„ respectively.

A more general formulation of this problem is given below. Let G:, i = 0,1,..., N,

be arbitrary nonempty sets, and let the domains D, ç G, X G¡+1, £),- # 0, i =

0,...,N— 1, be given.

Problem P. Do there exist elements g, e G„ 1' = 0,1,..., N, such that (g,, g/+1) E

D„i = 0,...,N-V.

Defining the projective operators IT/I+1: G¡ X Gi+X -* Gj, j = i,i + 1, / =

0,...,N - 1, and the sets #, ç G¡, i = 0,\,...,N, where

(2.16) Bt,- n;v+1(A),    i-0,...,AT-l;        BN = GN,

we introduce the following algorithm and lemma and give an answer to Problem P.
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Figure 1

The domains ID,, CD,, I CD, for (a) k < n,■ — k, (b) k = n,■ — k.

Algorithm A.

l.Set A0 = B0, J = N.

2. For/ = \,...,N

l.P = n>_u({Ai_xxG,}nD,_x);
2. A, = B, n P;

3. If A,= 0, set J = i and stop. Otherwise continue.

3. Stop.

Lemma 4. Let J be computed as in Algorithm A.

(a) /// = N, then there are solutions to Problem P.

(b) If J = N and g, e G¡, i = 0,1,..., N, are such that g¡ E A¡ for some j,

1 < j < N, then the sequence g,, /' = 0,1,..., N, is not a solution to Problem P.

(c) If J = j # N, then there are no solutions to Problem P.

Proof. Let J = N and gN e AN. It follows from steps 2.2, 2.1 in the algorithm

that gN e U^_x N({AN_X X GN} n DN_X) and so, from (2.16), there exists gN_x e

G,v_! such that (gA,_1,giV)e DN_X and gN_x eAN_v

Since the above arguments hold for any i, i = N,..., 1, the proof of statement (a)

follows from the induction principle.

Now let J = N, g, e G„ i = 0,1,..., N, and gj E Ap 1 < j < N. We note that

steps 2.1 and 2.2 are equivalent to setting

(2.17) Al~U.'l.u({Al_ly.Bl)nDt_l),

and so (g/_x, gj) E [Aj_x X Bj) n Dj_v Hence, if (gj_x, gj) E Dj x, the proof of

statement (b) is complete. Suppose that (g,_i,g.) e D_j and, consequently,

(g,_!,g,) € {^_! X Bj}. If g/ E Bj = nj./ +!(£>.), we have (gy,g,+1) E D, and

again (b) is proved. If gj_x E Aj_x, we can repeat the above arguments for the index

j — 1. We note that ^0 = 50 = íIq^Do) and, from g0 E /40, it follows immediately

that (g0, g,) E DQ. This completes the proof of statement (b).
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Figure 2

Geometric interpretation of steps 2.1, 2.2 of Algorithm A.

(a) I data, k < n,_x - k; (b) I data, k = n,_x - k; (c) ICdata,

k < «,_[ - k; (d) ICdata, k = n,_x - k.

Finally let J = j * N. This means that A- = 0, ^_j * 0 and, from (2.17),

[Aj_xx Bj} n Dj_x= 0. Since this implies that, for any sequence g,, /'=

0,1,..., N, (gj-!, gj) E {Aj_x X Bj) O £),_!, the proof of statement (c) is similar to

the previous one.

Now we can apply Lemma 4 to the sets ID,, CD^ ICD, given in Lemma 3. Before

doing so, we point out that, in this case, G, = R, i = 0,1,..., N, B¡ = [0, n¡a¡/k] or

B, = (-QO, A,] or B, = [0, A,], i = 0,..., N - 1, for I, C or IC data, respectively. A

geometric interpretation of steps 2.1 and 2.2 of Algorithm A, for I or IC data is

given in Figure 2. We note that C and IC cases have an identical representation.

Setting a{X) = inf{«E/l,.}, a<2) = sup{« e^,}, /' = 0,1,..., N, and using (2.13),

(2.14), (2.15), it is possible to rewrite the general Algorithm A in more detailed

forms, for I, C or IC data, respectively.

Algorithm A/I.

1. Set a(0l) = 0, a02) = «0A0/Â:; J

2. For/ = l,...,N

1. a'1' = 0 if k <«,_! - k, ora,(1» =

a¡2> = min{«,A,A; -û«  + n,_xA^x/k}.

2. If a,(2> < a(l) set J = /' and stop. Otherwise continue.

3. Stop.

N; nN - k; AN= +oo.

+ 2A,_, if k,(2)
i     1 «,_, - k;
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Algorithm A/e.

1. Set a(0l) = - oo, a02) = A0; J = N; AA, = + oo.

2. For i = 1.N

1. a}1' = -(*/(«,-! - *))ai?i + «/-A-j/K-, - *);
a<2> = min{A,; -((«,_, - /c)/^)«^^ + n,_xA,_x/k}.

2. If a}2) < a(X) set 7 = /' and stop. Otherwise continue.

3. Stop.

Algorithm A/IC.

1. Set a$] = 0, a02) = A0; J = jV; An = + oo.

2. For i = 1,..., N

1. a*1» = -(*/(»/-i - *))*& + «i-iA,-^«,-! - k);

a?> = min{A,; -((n,., - fc)/*:)«^ + n^A^iA}-
2. If a¡2) < a,a) set J = /' and stop. Otherwise continue.

3. Stop.

Linking together Lemmas 1, 2 and 4, we can state the following

Theorem 1. Let I, C or IC data (x„ y¡), i = 0,1,..., N, be given, and let J be

computed by Algorithm A/1, A/C or A/IC, respectively. There exist I interpolating

splines s e BSk[x0, x^] if J = N. If k = n, - k, i = 0,..., N — 1, there exist I

interpolating splines s only if J = N. There exist C or IC interpolating splines

s e BSk[x0, xN] if, and only if, J = N.

We conclude this section by noting that, if k < n,- k, i = 0,..., N — 1, and the

data are increasing, then Algorithm A/I will yield a(X) < a{2), i = 0,1,..., N. In

other words, we obtain the well-known fact (see e.g., [5]) that there always exists an I

interpolating spline s e S*[x0, x^] whenever k < n - k.

3. Degree-Dependent Existence Conditions. In the previous section we noted that

it is always possible to find an I interpolating spline s e Sk[x0, xN] when k < n — k.

On the other hand, it is shown in [9] that, if C interpolation is desired, then the data

can force « to be very large, and that this fact is inherent in the nature of C spline

interpolation. These considerations suggest to investigate the relationship between

the degrees «, of the various polynomial pieces of the spline, and the " roughness" of

data in case of C or IC interpolation. The results, which are easily obtained from

Algorithms A/C and A/IC, are collected in two theorems.

Theorem 2. Let A,+1 > A,, i = 0,...,N-2, and let the sequence «,, i =

0,..., N - 1, be such that

(3-!) -ckfc.fcV1"?'-1',.       /-l.....*-2.

«0 ^ 2k;        nN_x > 2k,

it # > m»|-A(_A( ^

Then there exist C interpolating splines s e BSk[x0, x^]. //A0 > 0 and

Í A,
(3.2) n0 > max 12k, k -re-

ifte« there exist IC interpolating splines s e BSk[x0, xN].
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Proof. If we execute step 2.1 of Algorithm A/C for /' = 1, we obtain a[X) = A0,

a[2) = Aj and so a[1] < a[2). Now suppose that, for some /", 2 < i < N - 1, a^_}x =

A,_2, a{2}x = A,.,. Step 2.1 gives

a!1» = A,.,,       a? = minJA,; - !!^rAA,_2 + ̂ A,^},

and, from (3.1), we have again a(X) = A;1, a,(2) = A,; a,(1) < a,(2). Step 2.1 for /' = N

gives

fl(D=A (2)=  _ "v-i ~ k A ,   "Af-iA

and so aj11 < a^.

The proof of the first statement is completed using Theorem 1. Executing step 2.1

of Algorithm A/IC for /' = 1, we obtain a[l) = A0 and a(2) = min{A,; n0A0/k}.

Since (3.2) implies A, < «0A0//c, the proof of the second statement is identical to

the previous one.

The next step is to give an analogue of Theorem 2 for nonstrictly C or IC data.

We need an intermediate result given in the lemma below.

Lemma 5. Let A, + 1 > A,, i = 0,..., N - 2, and let the sequence «,, /' = 0,...,

N — 1, be such that

n0 > 2k,       nN_x > 2k,

I A2 - A0) A2 - A0
nx > max^; kj^j~J,       », > kj^T^*

(3.3) /       k2(\0-A3) + knx(A3-Ax)\
«2 > max(2k; —-————-— >,

\ («1-/c)A2 + /cA0-«1A1   /

n¡> max/ 2k; k   , + 1_~    '''],        i=3,...,N -2.

Then there exist C interpolating splines s E BSk[x0, xN] such that

(3.4) d0 = s^ix0) = \;        dN = sVixN) = AN_v

Proof. In this case we must apply directly Algorithm A with G, = R, i =

0,1,...,TV;

D, = CD,,       i = l,...,N-2 (see (2.14));

D0 = CD0n{(u,v) e R2: « = A0} = {(A0,A0)}

and

DN_X = CDN_X n{(u,v) eR2:v = AN_X) = {(A^.A^)}.

The boundary conditions (3.4) are implicitly introduced by the above definitions,

and so it will be sufficient to prove that Algorithm A will yield J = N. We note also

that, in this case, Algorithm A is a slightly modified version of Algorithm A/C.

Steps 2.1 and 2.2 for /' = 1 give a{X) = a[2) = A0 and, for /' = 2, we have (see A/C;

step 2.1)
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and, by (3.3), a22) = A2, a2X) < a22\ For / = 3 steps 2.1, 2.2 give

a(X) = A2;       a32) = min/A3; - -^ya^ + ^A.
( «2 — K k      '

and (3.3) implies a(2) = A3 and consequently a3l) < ai2). Now it is not difficult to

proceed as in Lemma 5 and show that A,_j = a,a) < a,(2) = A,, i = 4,...,N — 2.

Finally, steps 2.1, 2.2 for / = N — 1, / = A' and the definition of DN_x, give

aJvL, = aff-i = AA,_1 and a)1' = a^1 = AA,_1. Theorem 1 then completes the proof.

We note that, for IC data, A0 > 0, and the boundary conditions (3.4) imply that

the interpolating spline s E BSk[x0,xN] is also IC. For nonstrictly C or IC data, it

is worthwhile to note that if

(3.5) A,_2 = A,._j * A, = A, + 1    for some /', 2 < /' < N - 2,

it is impossible to find differentiable interpolating C or IC functions. When the data

have no "contiguous linear pieces", an extension of Theorem 2 can be given. The

idea is to divide the data (x¡,y¡), i = 0,l,...,N, into more subsets of linear or

strictly C data, and use Lemma 5 to guarantee the existence of more C interpolating

splines, sharing the same boundary conditions. A formal description is given in

Theorem 3, whose proof is a consequence of Lemma 5.

Theorem 3. Suppose the C or IC data do not satisfy (3.5). Let L = {/' e N,

0 < /' < N - 2: A, = A, + 1} and I = {/' E N, 0 < /' < N - 1: / E L}, and let the

sequence «,, /' = 0,..., N — 1, be such that

n, > 2k for i = 0, i = N - 1 or i E L;

Á2k; *V "/'"I        "<'"A A
\ A, - A,._!   / A,., -A

, A, + 1 - A,_x\ , A,,, - A,> max{2k; k-^—z-^—l-  ,        n,■> k-
'i+i

and
/,,    ^2(A,-1-A, + 2) + fe«,(A, + 2-A,)

«, + 1 > max(2/c; —--—-——-
\ (n,-k)A, + 1 + kA,_1-n,ài

«,_j ^ 2k   for i — 2e Land i — 1 e L;

«, > max(2/c; k—^—.   '-1 >    otherwise.

Then there exist C or IC interpolating splines s e BSk[x0, xN].

4. Some Remarks. As previously mentioned in the introduction, the well-known

results of [9], [7] can be deduced from those presented here. In this paper all the

lemmas and theorems are stated for k fixed. However, they are still valid if we

introduce, together with the polynomial degrees «,, /' = 0,..., N — 1, the sequence

k,, i = 0,..., N — 1. This means (see (2.4)) that t2l + x = x, + k,h¡/n¡, t2i+2 = x, +

(n,- k,)h,/n,, i = 0,...,JV - 1, and that n = max{«„ i = 0,...,N - \}, k =

min{/r,, /' = 0,..., N - 1}. Moreover, if we are interested in the construction of

linear splines with only one knot in (x,, x,+ 1), / = 0,..., N — 1, the restriction

k¡ < n¡ — k¡ is no longer useful and it is sufficient to require k¡< n¡, /' = 0,...,

N — 1 with k = min{A:,; «, - k,; i = 0,..., N — 1}. So we placed ourselves in the

hypotheses of Passow and Roulier, and Theorem 2 of [9] can be deduced by a

slightly modified version of Theorem 1. Setting a, = k,/n,, i = 0,..., N - I, and,
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as in the previous sections, d, = l{V>(x¡) = s{X)(xi), i = 0,1,..., N, if the interpolat-

ing linear spline / has a knot at x, + a,ft,, then

y, + dub,: = y¡ - di+1(l - a,)ft,.

If we require that / is IC then we obtain

id„di+1)e l(u,v)<=R2:0^u^A,; v= -y^« + tzT^Y

i = 0,...,N -\,

and Algorithm A and Lemma 4 applied to this problem are equivalent, respectively,

to Alpha-Algorithm and Theorem 3.2 of [7].

If we are interested in the problem of finding a C or IC interpolating spline

s e BSk[x0, xN] for «, > 2, i = 0,..., N — 1, and k fixed, then the use of splines

with two knots (instead of only one) in (x,, x,+1), not only enlarges the family of

data sets which allow C or IC spline interpolation, but has another practical

advantage. In fact,a change of the slope d, at x, has a local effect in [x,_x,xi+x]

(since it is absorbed by the contiguous linear segments in [r2,_i> t2i] and [t2i+1, i2/+2D

while in the other case the effect is extended to the whole interval [x0, xN]. From a

practical point of view, this implies that, if Algorithm A/C or A/IC gives J = j # N,

we can apply it again from j to N, construct two (or more) splines interpolating the

sets (x,, y¡), i = 0,...,j, and (x;, y¡), i=j,...,N, and then join together their

derivatives at x¡. Hence the resulting spline is C or IC everywhere except for, at

most, x e [*•_,, xJ + x], but can still be I.

With respect to Algorithm A and Lemma 4, it is worthwhile to note that they are

stated in a general form, and seem useful for the construction of "constrained

separable splines", that is, splines which can be locally defined between every pair of

knots, and are subject to some restrictions. For instance, they are used in [4] for the

construction of piecewise quadratic histosplines. We remark that Algorithm A does

not require that the data are all I or C or IC, and, with a suitable definition of the

sets Dj, i = 0,..., N — 1 (see Problem P), the resulting code can produce shape-pre-

serving spline interpolation without preliminary subdivisions of the points. More-

over, auxiliary Hermite interpolation conditions can be added at some knots (see the

proof of Lemma 5), as well as any other local constraint. From a theoretical point of

view, interpolating splines could be introduced without the use of Bernstein poly-

nomials. For example, an IC interpolating 5 e Sj[x0,x^] is determined requiring

s<1)(xi) = dj, i(2)(x,) = e,, 1 = 0,1,..., N, and the problem is reduced to the

following: Determine the sequences d¡, e,, i = 0,1,..., N, such that (d¡, e¡, di+x,

e, + 1)eZ),, 1 = 0,...,N — 1, where D, c R4 is the IC region for polynomials

p e P5. Unfortunately, it is practically impossible to implement steps 2.1 and 2.2 of

Algorithm A for general subsets of R" and, even if it were, the computational cost

would be very high. We conclude this section by noting that, since S^Xn, x^] =

BS¡[x0, xN], Theorems (2.2) and (2.3) of [2] can be obtained from Theorem 1.
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