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ABSTRACT: We prove a hierarchy theorem for the 

representation of monotone Boolean functions by 

monotone formulae with restricted depth. 

Specifically, we show that there are functions with 

~k-formulae of size n for which every Ek-formula has 

size exp ~(nl/(k-l)). A similar lower bound applies 

to concrete functions such as transitive closure and 

clique. We also show that any function with a 

formula of size n (and any depth) has a Zk-formula of 

size exp o(nl/(k-l)). Thus our hierarchy theorem is 

the best possible. 

I. Introduction 

Circuits and formulae with unbounded fan-in but 

restricted depth have recently received attention 

for several reasons. They provide a convenient and 

elegant model for an important technology, 

programmed logic arrays, which has made it possible 

to give precise formulations and proofs for some 

widely-held beliefs about this technology (Furstj 

Saxe and Sipser [07] have shown that multiplication 

is "hard", while Chandra, Fortune and Lipton [04], 
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[05] have shown that addition is "easy"). The model 

also provides a counterpart for circuit- and 

formula-based complexity theory of the notion of 

restricted alternation, which arises in a natural 

way in machine-based complexity theory (Furst, Saxe 

and Sipser [07] have indicated how the model might 

be used to establish results about the relativized 

polynomial-time hierarchy, while Sipser [15] 

indicates how even the unrelativized hierarchy can 

be attacked in this way.) Finally, the model can be 

used to obtain bounds on communication complexity (a 

notion introduced by Yao [19], and pursued by 

Papadimitriou and Sipser [14] and by Aho, Ullman and 

Yannakakis [02]). 

When depth is held constant, sizes of circuits 

and formulae are polynomially related, so that 

results such as the ones in this paper apply equally 

to circuits and formulae. We shall state our results 

in terms of formulae and not mention circuits 

further. Our main concern in this paper is with 

monotone formulae, though some bf our results have 

obvious extensions to the non-monotone case. 

2. Lower Bounds 

A H0-formula or Z0-formula is a literal (a 

variable or its negation). A ~klformula 

(respectively, a Zklformula) is a conjunction 
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(respectively, a disjunction) of Zk_l-formulae 

(respectively, of ~k_l-formulae). The depth of a ~k" 

or Zk-formula is k. The size of a ~0" or Z0-formula 

is i, and the size of a ~k" or Zk-formula is the sum 

of the sizes of its constituent Zk_ I- or 

Ek_l-formulae. Formulae compute Boolean functions in 

an obvious way. 

If f is a Boolean function, we shall let L(f) 

(respectively, L~k(f), LZk(f)) denote the minimum 

possible length of a formula (respectively, 

~k-formula, Zk-formula ) computing f. 

A formula is monotone if it involves only 

un-negated variables. If f is a monotone Boolean 

function, we shall let LM(f ) (respectively, LM~k(f), 

LMZk(f)) denote the minimum possible length of a 

monotone formula (respectively, montone ~k-formula, 

monotone Zk-formula ) computing f. 

The study of the complexity measures and 
LH k LZ k 

was initiated by Lupanov [11], [12], who showed that 

for "almost all" Boolean functions f of n variables, 

L(f), L~3(f) and Lz3(f) are all asymptotic to 

2n/log2 n• He also showed that the function 

paritYn(Xl, ..., Xn) , which assumes the value 1 when 

• , assume the an odd number of the variables Xl, .. x n 

value 1, both L~2(paritYn) and Lz2(paritYn) are 

equal to n2 n'l. 

The complexity of monotone formulae for a 

function fm(Xl, ..., Xm, Yi* "''' ym ) of n=2m 

variables relevant to the process of carry 

propagation in addition wasalso studied by Lupanov 

[13]. He showed that, although LM(fm)=2m, if k~2 is 

fixed, then both LM~k(fm) and LMZk(fm) are 

~(ml/(k'l)). The complexity of. monotone and 

non-monotone circuits for this function (and related 

ones) has been studied by Chandra, Fortune and 

Lipton [04], [05]. (Of course, for bounds such as 

these, which lie between linear and quadratic, the 

differences between formulae and circuits are 

important.) 

The complexity of formulae computing parity was 

further studied by Furst, Saxe and Sipser [07] and 

independently by Ajtai [01]. They showed that for 

every k~2 and £, 

LHk(parity n) = LZk(parity n) = ~(n £) 

(that is, there are no fixed depth, polynomial size 

formulae for parity)• In fact, Ajtai has shown by a 

modification of the argument in [01] that for every 

k~2, 

L~k(paritYn) = LZk(paritYn) = exp ~((log n)2). 

It seems unlikely that this result is the best 

possible; the sharpest upper bound known is 

Lnk(paritYn) = Lzk(paritYn) = exp o(nl/(k'l)). 

For the purpose of obtaining results about 

relativized polynomlal-tlme computations, it would 

be useful to know that for every k.~2 and £, 

L~k(paritYn) = Lzk(paritYn) = exp ~((log n)£), 

but this seems beyond the range of current 

techniques• 

The foregoing results concerning parity also 

apply to the function majoritYn(Xl, ..., Xn) , which 

assumes the value 1 if more than one-half of the 

variables Xl~ ..., x n assume the value i, since 

parity is reducible in fixed depth and polynomial 

size to majority (see Furst, Saxe and Sipser [07]). 

Since majority is monotone, one may hope to obtain 

stronger results for monotone formulae computing 

majority• This has been done by Yao [20], who has 

shown that 

LMH3(majoritYn) = LMz3(majoritYn) = exp ~(nl/10), 

and by Boppana [03], who has shown that for every 

k~2, 
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LM~k(majority n) = LMEk(majoritYn) = exp ~(nl/(k-l)). 

This result cannot be far from the best possible; 

the sharpest upper bound known is 

~k(majoritYn) = 

~Ek(majoritYn) = exp o(nl/(k-l)(log n)l-I/(k-l)). 

Our main interest in this paper is the relative 

complexity of ~k-formulae and Zk-formulae. For 

non-monotone formulae, this question has been 

studied by Sipser [15]. He showed that for every k~2 

and £, there are functions f of n Boolean variables 

such that ~Hk(f)=n , but 

LM~k(f) = ~(ng). 

(He actually states his result is a weaker form 

concerning variants of Z k and Ek-l' but the 

foregoing result is an immediate corollary.) For the 

purpose of obtaining results about relativized 

polynomial-time computations, it would be useful to 

know that 

LEk(f ) = exp ~((log n)~), 

but this seems beyond the range of current 

techniques. 

Our main result in this paper is an analogue of 

the foregoing result for the case of monotone 

formulae. In return for the restriction to monotone 

formulae, we obtain much stronger lower bounds. 

Indeed, we shall see in the next section that our 

result is the best possible. 

Theorem I: For all k~2 and n, there is a monotone 

Boolean function f such that LM~k(f)=n, but 

LMZk(f ) = exp n(nl/(k-l)). 
If f is a Boolean function of the variables x I, 

..., Xn, then the dual of f, which will be denoted 

J! it 
f , is the function -f("xl, ..., ~Xn) , where - 

denotes negation. If f is monotone, then so is f . If 

a formula F computes f~ then the formula obtained 

from F by exchanging conjunction and disjunction 

(and, if F involves constants, exchanging 0 and i), 

which will be called the dual of F and denoted F j 

computes f . If F is a ~k-formula, then F is a 

Zk-formula and vice versa. 

For k~l and mRl, we shall define the Boolean 

function fm,k of nm,k=2mk'l Boolean var iables .  For 

k=l, define fm, l to be the conjunction of nm,l=2 

distinct variables. For k~2, let Xl, ..., Xm be 

sets each comprising nm,k_l=2m k'2 variables disjoint 

(these sets will be called beads). For iS£~m, let 

fm,k_l(X£) denote the result of substituting the 

variables in X£ for the variables of fm,k-l" Define 

fm,k to be the conjunction of the m functions 

fm,k.l(Xl ) , ..., fm,k_l(Xm ) • 

Clearly, LM~k(fm,k)=nm, k. Thus it will suffice to 

show that 

LMEk(fm,k) = exp ~(m), 

1/(k- l))  
since m=~((nm,k) 

Let f be a monotone Boolean function. A subset P 

of the variables of f will be called a a~ for f if 

the funttion obtained from f by substituting 1 for 

the variables in P is identically I. We shall say 

that P is a minimal path if P is a path but no proper 

subset of P is a path. A subset Q of the variables of 

f will be called a cut for f if the function obtained 

from f by substituting 0 for the variables in Q is 

identically 0. We shall say that Q is a minimal cut 

if Q is a cut but no proper subset of Q is a cut. A 

w 

minimal path for f is a minimal cut for f and vice 

versa. 

Let Pm,k denote the set of minimal paths for fm,k 

and let Q denote the set of minimal cuts for 
m,k 

fm,k" Let Pm,k=IPm,k I and let qm,k=lQm,k 1. From the 

definition of fm,k' we have Pm,l=l, qm,l=2 and the 
( m 

recurrences Pm,k = qm,k_l ) , qm,k=mPm,k_l • 
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Let G be a monotone Boolean formula, let P belong 

to Pm,k and let Q belong to Qm,k" We shall say that 

G recognizes P if P is a path for G and that G 

recognizes Q if Q is a cut for G. We shall say that G 

approximates fm,k if G recognizes at least Pm,k/m 

paths in Pm,k and at least qm,k/2 cuts in Qm,k" 

Proposition !.!: For all kZ2 and mZ3, if G is a 

Ek-formula that approximates fm,k' then 

L(G)>2m/2/2m. 

Proof: Suppose that G is a Ek-formula that 

approximates fm,k and that L(G)K2m/2/2m. We shall 

derive a contradiction. 

Since G is a Zk-formula, it is the disjunction of 

some set {Gi, ..., Gj} of ~k.l-formulae. If 

j>2m/2/2m, we are done, so suppose j~2m/2/2m. Since 

G is monotone, if G recognizes a pathP, then one of 

the subformulae Gi, ..., Gj must recognize P. Since 

G recognizes at least Pm,k/m paths in Pm,k' some 

subformula G. for l~i~j must recognize at least 
1 

(Pm,k/m)/(2m/2/2m)=Pm,k/2m/2"Ipaths in Pm,k" Of 

course, if G recognizes a cut Q, then ~ach of the 

subformulae Gi, ..., Gj must recognize Q. Thus G i 

also recognizes at least qm,k/2 cuts in Qm,k" 

We now proceed by induction on k. If k=2, then G. 
i 

p /2m/2"i=2 m/2+l 2 m recognizes at least m,2 of the 

paths in Pm,2 and at least qm,2/2=m/2 of the m cuts 

in Qm,2" Since O i is a ~l-formula, it is the 

conjunction of some set F. of variables. The cuts in 
1 

Qm,2 are the beads Xl, ..., Xm, and G i recognizes a 

cut X~ for l~£Sm if and only if r i includes a 

variable in X£. Thus F i contains at least m/2 

variables. The paths in Pm,2 are the systems of 

distinct representatives from {Xi, ..., Xm} , and G i 

recognizes a path {Xl, ..., Xm} if and only if {Xl, 

..., x m} contains F i. The number of such paths is at 

most 2m'm/2=2 m/2, contradicting the assumption that 

G i recognizes at least 2 m/2+l paths in Pm,2" This 

completes the proof for k=2. 

Now suppose k~3. If l~E~m and PE is a minimal path 

for (fm,k.l(X~)) , we shall say that G i respects 

Pgif G i recognizes some path in Pm,k that contains 

P~. For IS£Sm, let a£ denote the number of minimal 

paths for (fm,k.l(XE)) that are respected by G i- 

If G i recognizes a path P in Pm,k' then for 

iSESm, it respects the intersection of P and XE, 

which is a minimal path for (fm,k_l(XE)) • Since G i 

recognizes at least Pm,k/2 m/2"l paths in Pm,k' we 

have Pm,k/2m/2"l~al...am . 

w 
Since a minimal path for (fm,k.l(X£)) is a 

minimal cut for fm,k(XE), we have aE&qm,k_l. Let us 

say that a bead X E is weak if a£<qm,k_i/2. Let m' 

denote the number of weak beads. Then 
! t 

al...am~(qm,k_i/2)m (qm,k_l)m'm Combining these 

inequalities for al...a m and using the relation 

pm,k=(qm,k_l )m, we obtain m'~m/2-1. 

If l~m and QE is a minimal cut for 

(fm,k_l(XE)) , then Q~ is also a minimal cut for 

fm,k" For IK~m, let b E denote the number of minimal 

cuts for (fm,k_l(XE)) that are recognized by G i- 
e 

A cut in Qm,k is a minimal cut for (fm,k_l(XE)) 

for some iK£~m. Since G.z recognizes at least qm,k/2 

cuts in Qm,k' we have qm,k/2~bl+...+b m. 

w 
Since a minimal cut for (fm,k_l(X£)) is a 

minimal path for fm,k_l(XE), we have bESPm,k_l. Let 

us say that a bead X E is poor if b£<Pm,k_i/m. Let m'' 
denote the number of poor beads. Then 

bl+...+bmSm''Pm,k_I/m+(m-m")Pm,k. I. Combining 

these inequalities for bl+ .... +bm and using the 

relation qm,k=mPm,k_l , we obtain m''Km2/2(m-l). 

Since m~3, m'+m"<m, so there is some bead X E 

that is neither weak nor poor. This means that G. 
1 
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respects at least qm,k_i/2 minimal paths for 
w 

(fm,k.l(X£)) and recognizes at least Pm,k_i/m 

minimal cuts for (fm,k_l(X£))*. 

Let H be the formula obtained from G. by 
l 

substituting the variables of fm,k_ifor the 

variables in X£ and substituting 1 for all other 

variables, not in X£. Then ~ is a Zk.l-formula that 

approximates fm,k-l" Since L(H*)NL(Gi)~2m/2/2m, 

this contradicts the inductive hypotheses, o 

We shall conclude this section with some 

Corollaries of Theorem I. The proofs of these 

corollaries are omitted from this preliminary 

version. 

Our first corollaries extend the lower bound of 

Theorem 1 to functions such as transitive closure 

and clique. This extension goes by way of monotone 

projections and completeness (see Valiant [17] and 

Skyum and Valiant [16]). 

Let patht(Xl,2, ..., Xt_l,t) be the Boolean 

function that assumes the value 1 if the acyclic 

directed graph with vertices corresponding to the 

indices {i, ..., t} and edges corresponding to the 

variables {xi,j}l<i<jS t has a path of edges 

corresponding to l's from verEex 1 to vertex t. We 

can prove 

Valiant [18] showed that 

LM~3(clique2t,t) = exp £(ti/2), 

and Yao [20] showed that 

~E4(clique2t,t) = exp ~(t z) 

for some unstated value of ~>0. We can prove 

Proposition 4: The function fm,k is a monotone 

projection of cliques,t, where s=2m k-l, t=2rm q and 

k=2q+r with 0St<2. 

Combining this with Theorem 1 yields 

Corollary 5: For every k~2, 

~Ek(Clique2t,t ) = exp ~(tl/(k-l)). 

Finally, let us mention an application of Theorem 

1 to communication complexity. Consider a function f 

of 2n Boolean variables {x I .... ' Xn' Yl .... ' Yn } 

Consider a distributed computation of f by two 

participants: X, who has access to the variables 

{Xl, ..., Xn} , and Y, who has access to the variables 

{Yi' "''' Yn } (we are considering a fixed partition 

of the variables). We shall let Ck,x(f) 

(respectively, Ck,y(f) ) denote the communication 

complexity of computing f when at most k messages 

are sent and X (respectively, Y) sends the first 

message. 

Proposition 2: The function f 
m,k 

projection of path t for t=4m k'l. 

is a monotone 

Combining this withTheorem 1 yields 

Corollary 3: For every k~2, 

~Ek(patht) = exp ~(tl/(k'l)). 

Let cliques,t(Xl,l, ..., Xs,s) be the Boolean 

function that assumes the value i if the s-by-s 

matrix of O's and l's {xi~j}iSiSs,iSjS s contains a 

'~Tby-t principal minor consisting entirely of l's. 
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Corollary 6: There is a function f of 2n Boolean 

variables such that Ck,x(f)=O(log n), but 

Ck,y(f)=~(nl/(k'l)). 

This partially answers a question raised by 

Papadimitroiu and Sipser [14]. A much more 

satisfactory answer has been given by Duris, Galil 

and Schnitger [06]. They show that there is a 

function f of 2n Boolean variables such that, for 

and partition of the variables into 2 sets of n 

variables, Ck,x(f)=0(log n), but Ck,y(f)=~(n). 



3. Upper Bounds 

In this section we shall show that monotone 

Boolean functions that have small monotone formulae 

(with any depth) also have monotone formulae with 

restricted depth and sub-exponential size. This 

result shows that the lower bound of Theorem 1 is the 

best possible. 

Theorem 7: For every k~2 and every Boolean function 

f, if LM(f)=n , then 

~k(f) = exp o(nl/(k'l)). 

The proof of this theorem follows the paradigm of 

the final proposition of Valiant [IS]. We regard a 

formula as a tree and use a "fragmentation lemma" to 

break the tree into small pieces. We construct 

formulae with restricted depth simulating each 

piece, then combine these into a formula with 

restricted depth computing the original function. 

A binary tree consists of a node called the root, 

which may have no children (in which case it is a 

leaf) or which may have two children that are the 

roots of binary trees tin which case it is art 

internal node). If T is a binary tree, p(T) will 

denote the root of T and i(T) will denote the number 

of leaves in T. The following two lemmas generalize 

the well known 41/3, 2/3)-Lemma of Lewis, Stearns 

and Hartmanis [08]. 

Lemma 7.1: For ~ a real number and T a binary tree, 

if l<_~k(T), then there is a node v in T such that 

~X(Tv)<2~. 

some w in {x, y}. We also have X(Tw)<k(T), so by 

inductive hypothesis, there is a node v in T (and 
w 

therefore in T) such that ~Sk(Tv)<2~. o 

By a forest we shall mean a set of binary trees. 

If ~ is a forest, I~ will denote the number of trees 

in ~. Let T be a binary tree and let W be a set of 

nodes of T that are neither p(T) nor leave s of T. We 

may decompose T into a forest # by splitting each 

node w in W into two new nodes, one a new leaf with 

the same parent as w, the other a new root with the 

same children as w. 

Lemma 7.2: For ~ a real number and T a binary tree, 

if ~2 and k(T)~2, then T can be decomposed into a 

forest ~ such that l~l~(k(T)+~-3)/(~-l) and, for 

each tree S in ~, k(S)<2~. 

Proof: We proceed by induction on k(T). If I(T)<2~, 

then we may take ~=(T}, since k(T)~2 implies 

(X(T)+~-3)/(~-i)~I. If X(T)~2~, then by Lemma 7.1, 

there is a node v in T such that ~k(Tv)<2~. Let T' 

be the tree obtained from T by substituting a leaf 

for T v. Then k(T')=&(T)-k(Tv)+i. Since ~(T)~2~ and 

k(Tv)<2~, we have ~(T')~2. Since ~(Tv)~2 , we have 

k(T')~k(T)-I. Thus, by inductive hypothesis, T' can 

be decomposed into a forest ~' such that 

~'IK(k(T')+~-3)/(~-l)~(k(T)-2)/(~-l) and, for 

every tree S in ~', l(S)<2~. If we take ~ to be the 

union of ~' and {Tv}, then I~I~ 

(i(T)-2)/(~-I)+I=(k(T)+~-3)/(~-i), which completes 

the proof, o 

Proof: We proceed by induction on X(T). If k(T)=i, 

then 6=1 and we may take v=p(T). If ~(T)~2, then p(T) 

has two children, say x and y. If A(T)<2~, then we 

may again take v=p(T). If k(T)Z2~, then ~(Tw)~ for 

Corollary !.~: For ~ a real number and T a binary 

tree, if A(T)~6, then T can be decomposed into a 

forest ~ such that l~l~3k(T)/~ and, for every tree S 

in ~, ~(S)~,. 
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Proof: Let ~=n/2. Since ~3, (~+~-3)/~ is a 

non-increaslng function of ~. Since %(T)~2~, we have 

(~(T)+~-3)/k(T)S(2~+~-3)/2~=3(~-I)/2~. This implies 

that (~(T)+~-3)/(~-I)S3I(T)/2~. Thus applying Lemma 

7.2 yields a forest ~ such that ]#IS3%(T)/2~=3%(T)/~ 

and, for every tree S in ), X(S)<2~=D. o 

For k~2 and n->6, let ~(n) denote the maximum of 

~Zk(f ) over all monotone Boolean functions f such 

that ~(f)~n. Since ~k(f)=~Zk(f ) and 

* LMnk(f ) ~(f )=~(f), Ak(n ) is also the maximum of 

over all f such that ~(f)~n. 

Proposition [.4: For all k~3 and real numbers n~,~6, 

Ak(n) S (3n/2m)23n/m Ak_l(m). 

Proof: Let f be a monotone Boolean function such 

that ~(f)Sn and ~Ek(f)=~(n). It will suffice to 

show that 

LMZk(f) ~ (3n/2m)2 3n/m Ak_l(m). 

If f is a function of the variables X, then f is 

computed by some binary tree T with X(T)Sn, where 

the internal nodes of T are labelled with the 

operations "conjunction"and "disjunction" and the 

leaves of T are labelled with variables from X. By 

Corollary 7.3, T may be decomposed into a forest 

such that l~l~3n/m and, for every tree S in ~, 

~(S)<m. 

Define a total order on { in such a way that, for 

any trees S and S' in {, if p(S') is a descendant of 

p(S) in T, then S'<S. This order has a maximal 

element R, and p(R)=p(T). For every S in ~, define 

the segment ~(S) to be the set of all S' in ~ such 

that S'<S. 

For every S in #(R), define a new Boolean 

variable YS' and for every vertex in T that splits 

into a leaf and a root p(S) in ~, label the leaf with 

the variable YS" Let YS denote the set of variables 

ys,for all S' in ~(S). 

For every S in ~, let gS be the monotone Boolea n 

function of the variables X and YS computed by S. (Of 

course, gS might not actually depend upon all of 

these variables.) Since %(S)<m, ~(gs)Sm and thus 

LM~k.l(g s) ~ ~,.l(m), 
Fo~ every subset ? of ~(R), let gS,T be the 

function of the variables X obtained from gS by 

substituting 1 for those variables YS' in YS such 

that 5' belongs to T and substituting 0 for all other 

variables in YS" Clearly, 

LMKk_i(gs,T) ~ Ak_l(m). 

For every subset ? of ~(R), let fT be the 

conjunction of gR,~ and those functions gS,~ for 

which S belongs to T. Since ITl+iS]@l~3n/m, we have 

~Kk_l(fT) ~ (3n/m)Ak_l(m). 

[t is routine to verify that f is the disjunction 

of those functions f? for which T is a subset of 

~(R). Since there are 2]~(R)]~22n/m'l such subsets, 

LMEk(f ) S (3n/2m)23n/m Ak.l(m), 

which completes the proof. [] 

Corollary Z.~: For k~2 and nZ36, 

Ak(n) ~ (3/2)k'2n23(k-l) nl/(k-l). 

Proof: We proceed by induction on k. If k=2, 

disjunctive normal form shows that 

A2(n ) ~ n2 n S n23n. 

If k~3, take m=n(k'2)/(k'l)~6. By inductive 

hypothesis, 

Ak.l(m) ~ (3/2)k'3m23(k'2) ml/(k'2). 

Thus, by Proposition 7.4, 

Ak(n) ~ (3n/2m)23n/m (3/2)k'3m23(k'2) ml/(k'2) 

i/(k-l) 
= (3/2)k'2n23(k-l)n 

which completes the proof. [] 
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The same method of proof can be used to show that 

functions that have small planar monotone circuits 

have monotone formulae with restricted depth and 

sub-exponential size. 

Theorem 8: For every k.~2, if f has a planar monotone 

circuit of size n, then 

LM~2k,l(f) = exp O(n2k'i/(2k'l)). 

The proof, which is omitted in this preliminary 

version, is similar to that of Theorem 7, except 

that the "fragmentation lemma" is obtained from the 

planar separator theorem of Lipton and Tarjan [09], 

[I0]. Theorems 7 and 8 have analogues for 

non-monotone functionsj formulae and circuits; these 

analogues have virtually identical proofs. 
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