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ABSTRACT. The theory of monotone matrix functions has been developed by

K. Loewner; he first gives some necessary and sufficient conditions for a func-

tion to be a monotone matrix function of order  n, and then, as a result of further

deep investigations including questions of interpolation he arrives at the follow-

ing criterion:   A real-valued function f(x) defined in {a, b)  is monotone of arbi-

trary high order n   if and only if it is analytic in  (a, b), can be analytically con-

tinued onto the entire upper half-plane, and has there a nonnegative imaginary

part.  The problem of monotone operator functions of two real variables has recently

been considered by A. Koranyi.   He has generalized Loewner's   theorem on mono-

tone matrix functions of arbitrary high order n  to two variables.  We seek a theory

of monotone matrix functions of two variables analogous to that developed by

Loewner and show that a complete analogue to Loewner's theory exists in two

dimensions.

1. Introduction.  The theory of monotone matrix functions was created by

Charles Loewner in a celebrated paper published in 1934 [5].  This theory concerns

functions of operators on a finite dimensional Hilbert space; the dimension of the

space plays an important role in the theory, and the functions in question become

more and more special as the dimension increases.  A fundamental result of the

theory is generally known as Loewner's theorem, and describes those functions

which are Pick functions; they are analytic in the plane slit along certain parts

of the real axis, and are real and analytic on an interval of that axis, having posi-

tive imaginary part in the upper half-plane.

Not long after the publication of Loewner's work it became clear that consider-

able interest should be attached to the class of monotone operator functions,

namely, the corresponding class of functions associated with an infinite dimensional

Hilbert space.  It was virtually obvious that a monotone operator function should

be a monotone matrix function of arbitrarily high order, and therefore, in view of

Loewner's theorem, a function in the Pick class. Moreover, it was not difficult to
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306 HARKRISHAN VASUDEVA [February

show that any function in that class was a monotone operator function. Accordingly,

the theory of monotone operator functions suffered only one shortcoming: it depend-

ed in an essential way on Loewner's theorem, and the proof of this theorem involved

a long and difficult study of the Cauchy Interpolation Problem.  It therefore seemed

likely that the study of monotone operator functions should be essentially simpler

than the study of monotone matrix functions, the infinite dimensional case being

essentially easier because of the stronger hypotheses. Accordingly, Bendat and

Sherman [l] addressed themselves to the problem of finding a direct, self-contained

analysis of the monotone operator functions depending on the theory of the Hamburger

moment problem.  Their success attracted the interest of Sz.-Nagy and Koranyi

who further simplified the theory of the operator functions in a sequence of papers

([3], [7]).
Throughout this paper we use the term   'matrix  function'   and 'operator func-

tion'  to emphasize that in the one case the dimension of the associated Hilbert

space is finite, while in the other it is infinite. While the theory of the monotone

operator functions may be regarded as the most important extension of Loewner's

work, that work has also been generalized in two different ways.

The first generalization concerns the study of the class of matrix functions of

'bounded  variation'   corresponding to the monotone functions introduced above. A

second paper now in preparation will discuss certain features of matrix functions

of bounded variation.

The second extension and generalization of Loewner's work is due to Koranyi

[4].  That author considers the class of monotone functions of two variables, in-

troduced by W. H. Young and considered at length in [2], This leads immediately

to a definition of monotone matrix functions of two variables associated with the

tensor product of two finite dimensional spaces. Koranyi establishes a complete

analogue to Loewner's theorem for functions of two variables. Thus he shows

that the functions, monotone of arbitrarily high order, are analytic functions of two

variables belonging to a class quite analogous to the Pick functions considered

by Loewner.
The essential results of this paper are in the direction of Koranyi's general-

ization of Loewner's work; that author is concerned throughout with monotone

operator functions, whereas we find a theory of monotone matrix functions of two

variables analogous to that developed by Loewner.

It should be emphasized that the arguments and results would hold equally

well for more than two variables; the statements of the theorems and the formulas

would become unnecessarily complicated if we were to insist on stating all our

results in terms of n variables.

2. Monotone functions of two variables.

Definition.  A real function f(x, y) of two variables defined in an open subset
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of the plane will be called monotonie there if and only if

(i)  it is locally integrable, and
(ii) for every set of points  (x, y), {x + h, y), (x, y + k) and (x + h, y + k)  in

the domain of / where  h  and  k ate positive, the quantity

f(x h h, y V k) ~ f(x +• h, y) - f(x, y y k) + f(x, y)

is nonnegative.

A monotone function determines a distribution whose mixed partial derivative

is the distribution limit of the quotients

[f(x + t, y f /) - f(x + t, y) - f(x, y l- /) + f(x, y)]/t2

and, since these are positive, the distribution  d f /dxdy  is a positive measure.

Suppose, next, that p \s a positive Radon measure with compact support in

the plane, and that  H(x, y)  is the characteristic function of the positive quadrant

x > 0, y s 0.  The convolution

f(x, y) - (hi *p)(x, y)      JjH(x - t, y - s)dp(t, s)

is simply the /¿-measure of t < x, s < y.  This is a nonnegative, bounded function,

and in view of Fatou s theorem, this is even a lower semicontinuous function.

Since the mixed partial of H(x, y) is the delta distribution, we have  d f /dxdy = p.

Moreover, it is pretty easy to see that f(x, y) is monotone, since

f(x \ h, y r k) - f(x \ h) - f(x, y \ k) \ f(x, y)

is exactly the /¿-measure of the rectangle determined by the inequalities  x < t < x

f h, y <S < y ■) k.
More generally, then, if p  is a positive Radon measure, we can write  t¿ =

X p. where the family p. is determined by a suitable partition of  unity.  We

then obtain /■-■ £ /.  in a natural way:  / is then a monotone nonnegative lower semi

continuous function whose mixed second partial derivative is the measure p.

It is well known that any distribution  7 , solution of the differential equation

d T'/dxdy     0, is necessarily of the form   T - X -\  Y, where the distribution X

depends only on the  x-coordinate, and   Y only on the y-coordinate.   It follows,

therefore, that the most general function g(x, y) having the mixed second partial
p y_ 0  is necessarily of the form

g(x, y)      f(x, y)   ,   X(x)  I   Y(y)

where f(x, y)  is lower semicontinuous and the functions  X(x) and   Y(y) ate arbi-

trary, measurable functions of one variable.  It now becomes clear that a canonical
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determination is possible for the function / having a given positive p as its mixed

partial derivative:  we simply require   f(x, 0) = /(0, y) = 0, that is, that the function

be lower semicontinuous and vanish on the coordinate axes.  Here we are tacitly

supposing that the coordinate axes intersect the domain of definition of the func-

tion.

In the case of monotone functions of one variable, the first derivative is a

positive distribution; a whole class of monotone functions correspond to that same

derivative, and certain normalization conditions must be imposed to make a canoni-

cal choice of the function.  These conditions are usually twofold:  the requirement

that the function be lower semicontinuous and the requirement that the function

vanishes at the origin.  For higher dimensions the rules are almost the same:   we

need the function to vanish on the coordinate axes and to be lower semicontinuous.

It should be remarked that our definition of monotonicity differs somewhat

from that initially taken by W. H. Young in his study of these functions. The reader
may refer to Hobson [2], However, we find that the use of the terminology of distri-

bution theory considerably simplifies the presentation without departing in an

essential way from the ideas of Young and others.

3. Monotone matrix functions of two variables. Let / be a real-valued Lebesgue

measurable function of two real variables x, y  in (— 1, 1).  Let A  be a selfadjoint

operator in a Hilbert space 7/,, with spectrum contained in (— 1, 1); let A =

/+ , xdE     be its spectral resolution.  Similarly, let  B = i*_,ydF    be a selfadjoint

operator in another Hilbert space H2  with spectrum in (— 1, 1).  The Ex ® F

determines a two parameter spectral family in the tensor product space 77, ® 77,.

By f(A, B), we understand the operator

f{A-e) = il\Sl\f{x-y)dEx ®dF,y
acting on the space 77, ® 77,.  If, in particular, 77,   and 772  are of finite dimensions

m and n respectively, and A = 2"^ X.P.,  B = S*_, p Q ., then

m      n

f(A, B)=ZZ f(X.,p)P. ®Q..¿=i ,=i      !     ;    '        '

In this case, / is called a matrix function of two variables.

Definition 3.1. A measurable function / is a monotone operator function, if

for any 77, and 77-, and for any selfadjoint operators A, A in 77,, B, B in 77,

whose spectrum is contained in (— 1, 1) and for which A   > A,  B   > B holds, then

(1) f(A', B') - f(A", B) - ¡(A, B') + f(A, B) > 0.
If we consider operators on Hilbert spaces of finite dimensions only, a func-

tion f(x, y) with property (1) is called a monotone matrix function of two variables.
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The collection of monotone matrix functions of two variables, monotone of

order m  in the first variable and of order n  in the second variable, shall be denoted

by  P      .
The following observations are obvious:

1. A Lebesgue  measurable  function   / is in  P        if and only if° ' m ,n

f(A', B') - f(A , B) - f(A, B') + f(A, B) > 0
where A   — A  = sP, B   — B = tQ,  P and Q ate one dimensional projections and

s, / > 0.
2. f(x, y)  is a monotone matrix function of two variables and g(x), h(y) ate

arbitrary matrix functions.  Then

K(x, y) = f(x, y) + ag(x) + ßh(y) + y
is a monotone matrix function.

3. Let f (x) and g(x) be monotone matrix functions of one variable in (— 1, 1).

The product h(xy y) = f(x)g(y) is a monotone in two variables.

4. P        is a convex cone, that is af + ßg £ P        whenever /, g £ P        and
m,n '       <^° m,n ' ' 6 m ,n

a, ß> 0.
5. P    ,     C P      ,  P        . C P      .

m + l ,n —      m,n        m,n + \  —    m ,n
6. P        is closed in the topology of pointwise convergence.

Examples.   h(x, y) = x^yv where  0 < p, v < 1   and h(x, y) = log x log y where

x; y > 0  are monotone matrix functions of two variables.

Let / be a real-valued function of two real variables  x, y  in (—1,1).  Assume

(i) f(x, 0) = f(0, y) = 0 for all x, y and (ii) the first partial derivatives and the mixed

second partial derivatives of / exist and are continuous.  For such a function /

and for x. < x   < . • ■ < x   ; y l < y   < • • ■ < y  ; we introduce the matrix

(2) M(f) = [f[xtxk; y¡y,\j¡kíl
where

f(x., y ) - f(x., y¡) - f(xk, y ) + f(xk, y¡)

denotes the element in the  (i, ^)th row and  (/', /)th column. f\x x,; y.y,]  denotes

df(x ., y )/dx - df(x ., y ̂ /dx

yry,
df(x., y)/dy - df(xk, y)/dy

if  X . = X ,,
Z Ä

X . - X ,

d2f(x ,   y )

dxdy

if y, = yP

if x . = x,   and x . = y,,i       k j       '

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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The higher divided differences are defined inductively:

/t*l*2  ■•• X„ + l; ^1^2  ---yJ

= ^iy2 • • • v y^2 • • • yj - f[xix2 •••*„.ixn+i;yiy2--- yj _
X     - X       ,

« Í7 + I

Theorem 3.2.   Let f be a real-valued function of two real variables  x, y   in

(— 1, 1). Assume (i) f(x, 0) = /(0, y) = 0 /or a// x, y, «zz<7 (ii) the first partial

derivatives and the mixed second partial derivatives of f exist and are continuous.

Then f is a monotone matrix function of two variables of order (m, n) if and only

if, for x j < x2 <• • •< x   ', y i <y2 < • • •< y  , the matrix

where  1 < i, k < m,  1 < /,   I < n, is nonnegative definite.

Remark.  Since the addition of functions of one variable to / does not change

its monotone character, the differentiability hypotheses on / are not automatically

satisfied as in one variable case.

Proof.  Since the proof of the necessary part of the theorem is exactly the

same as the proof of a theorem of Koranyi [4, Theorem 4], we omit it here. Con-

versely, assume for x. < x    <• • • < x   , y. < y    <• • • < y  , the matrix

M(f) = [f[x xk; y-y¡H\iik.k¡,' I <i, k<m,     I < j, I <n,

is nonneeative definite. We shall show that f £ P      .  Let G be the collection of& ' m ,n
all selfadjoint operators on a finite dimensional Hilbert space 77, each having its

spectrum in  (— 1, 1).  G  is an open subset of the space of selfadjoint operators

on 77, that is, $(77). For if [A, p]  contains the closed, convex hull of the spectrum

of A £ G, d= inf(|A+ 1|, \p- 1|), then NA = \X £$(77): ||X - A || < d/2\ is an open
neighbourhood of A   contained in G. Let G = G . (i = I, 2), Now / induces a map

of Gj x G2   into $(77j ® 77.,).
Suppose A  belonging to $(77.) and B £ MH A have simple spectra !x.|m,

and {y. i"_.   respectively.  Then the eigenvectors e. corresponding to the eigen-

values x.,  i = 1, • • •, m, and the eigenvectors /. corresponding to the eigenvalues

y., j = 1, • • • , n, constitute bases for 77j   and 772  respectively.  P and Q denote

one dimensional projections and their matrices relative to the bases  íe.¡"\   and

!/.!"_j  respectively are [a   ] and [r.;], e,   and t2  are arbitrary positive real num-

bers. We now state the following lemma:

Lemma. / has a mixed differential, that is, there exists an operator L

from $(77j) x $(/72) — $(77   ® H2), such that
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||/(A + íxP, B + c2Q) - f(A + cxP, B)

*2«f(A, B + c2Q) + f(A, B) -  l/'1   ''2    (A, ß)|| = o(e)

(e.P.e 2Q)
where the matrix of L (A, ß) relative to the basis e . ® /. (i = 1, • • •, m, j = 1, • • •, n)

is given by the following:
(e   P.e   Q)

L (A>B)\1,r,k,i = (ie2f[x1xk'y,yi]c,lkTJi>

and f = e.fT, X, p > 0 and X + p > 3.

We assume the Lemma and proceed to show that f £ P      . With A  and ß ther ' m ,n

same as in the Lemma, we have

¡(A +ilP, B + e2Q)-f(A +(XP, B)- f(A, B + (2Q) + f(A, B)
,L(e^e2Q)(A,B) + 0(e).

Thus

([f(A + (XP, B + e20) - f(A + (XP, B) - f(A, ß + e2Q) + f(A, B)]qb ® >>, cp ® iff)

= (L    l   '   2    (A, B)é ® i/r, cp ® t/f) + 0(e),

where   ||c/>|| = ||t/z|| = 1. Define F(fj, e2) by

F(fj, c2) = (/(A + i^P, B + e2Q)cp ® i/r, <p ® t/f),       fI)(;!> 0.

F(cj, f2)  has a nonnegative, mixed partial derivative  w.r.t. fj   and e2, that is,

c5 F/delde2 > 0. Hence, F  is a monotone function of two variables. Therefore

F(e., £,) - F(e,, 0) - F(0, <r J + F(0, 0) > 0. That is, f £ P      .1      l 1 ¿ — ' ' m,n
In general, when A  and B  do not have simple spectra, we perturb A  and ß

to obtain A    and ß    with simple spectra. Then

f(A' +exP, B' +e2Q)-f(A' +f]P, B') - f(A', ß' +(2Q) + f(A', ß') > 0,

and in the limit, we have

f(A + ixP, B + e2Q) - f(A + f,P, B) - f(A, B + (2Q) + f(A, ß) > 0.
Proof of the Lemma.
Case I,  If /  is a polynomial p(X, p)  of degree k. When   k = 1, p(X, p) - aX +

ßn + y,
p(A + CjP, ß + (2Q) - p(A + cxP, B) - p(A, B + e2Q) + p(A, ß)

= a (A + fjP) ® 7 + ßl ® (B + c2Q) + y(7 ® /) - a (A + fjP) ® 7

- 73/ ® ß - y(7 ® 7) - a(A ® /) - /S7 ® (ß + c2ö)

- y(7 ® 7) + 73/ ® ß + y(7 ® 7) + aA ® /

= 0;
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Llt^Q)(A,B)\..kl
i,r,k, l

[ax. + ßy} + y- ax. - ßy¡ - y - axk - ßy   -y + axk+- ßyl + y]
=  (.(   O..T..-—-.-

1   2    ik  ¡t t M \
(xi-xk){y,-yi)

= 0.
Thus

||p(A + tjP, B + (20) - p(A + cxP, B)
(e.P.t   Q)

-p(A, B + e2Q) + p(A, B)-L    x      2    (A, ß)||   = 0.
Suppose the assertion is true for polynomials of degree  k — 1. We shall show

that it is true for polynomials of degree  K. We may assume without loss of gener-

ality that p(0, 0) = 0, for otherwise we may begin with p(X, p) - p(0, 0). Then

p(A, p) = XR(X, p) + pS(X, p).
p(A + tjP, B + e20) - p(A + <fjP, B) - p(A, B + e2Q) + p(A, B)

= [(A + (TjP) ® l]R(A + tjP, B + e2Q) + [/ ® (B + c2Q)]S(A + e^P, B + e2Q)

- [(A + íjP) ® 7]R(A + fjP, B) - [7 ® B]S(A + tjP, B)

- [A ® 7]R(A, B + e2Q) - [l ® (B + t2Q)]S(A, B + e2Q)

+ [A ® 7]7?(A, B) + [7 ® B]5(A, ß)

= (A ® 7)[R(A + <;,?, B + i20) - R(A + £jP, B) - R(A, B + e2Q) + R(A, B)]

(4)    + (7 ® B)[S(A +clP, B + c2Q) - S(A + cxP, B) - S(A, B + e2Q) + S(A, ß)]

+ (fjP ® 7)[R(A + exP, B + e2Q) - R(A + e^P, ß) - R(A, B + c2Q) + R(A, ß)]

+ (7 ® e2Q)[S(A + cxP, B + e2Q) - S(A, B + c2Q) - S(A + e,P, ß) + S(A, ß)]

+ (f,P ®7)[R(A, B + e2Q)-R(A, B)] + (l ® e2Q)[S(A + txP, B) - S(A, ß)]

= (A ® l)L{ÍRl   ''2   \a, B) + I®BlIiP,Í2Q\a, ß) + (eiP®7)WA, B + c2Q)-R(A, ß)]

+ (I ®e2Q)[S(A +(lP, B)-S(A, B)] + (cxP ® ÙLp1   '2   \a, b)

+ (l®t2Q)L*lP,(2Q)(A, B).

The last two terms on the right side may be neglected, since they are of higher

order in (.  Moreover,

(A ® 7)L(RflP'£2G)U, B)\Uikr2ZxPimS.nR[xmxk; ynyi\omkrnl

= Ac2x,R[xtxk' yyV^iiJn
and

(7 ® B)¿llP-Í2Q)(A, B)\.ykJ = el(2yS[xxk; y .y ̂ .¡r.,.
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We assert that

R(xk,y)-R(xk,y¡)
(5)     ((.P ® I)[R(A, B + e7Q)- R(A, ß)]| . .     . =e.e.a..r.,

and

S(x ., y,) - SGc,, y,)
(7 ® e 2)[5(A + ( P, B)-S(A,B)]\. ..   , =e,t.ar.t_111_k     l

¿ 1 i,j;k,l 12   ik  ;/
X . — X ,

I        k

Then the (z, /'; k, l)th element of the right-hand side of (4)

= ei€2a ikTjiYiR[xtxk' yjVi] + y,5[v*; y,y/]

P(xfe, y.) - R(xk, y,)       S(*., y/) - S(xk, V/)l

=£ ie2a ikr, iP[x tx k'y,y i]'

which is the (z, /'; k,  /)th element of the left-hand side of (4),  In order to complete

the proof of assertion (3), when / is a polynomial of degree k > 1, we need to prove

assertion (5).  We proceed to show that

R(x     y)-R(x     y )
(t. P ® I)[R(A, B + e.Q) - R(A, B)]\ . . . , = V?" V-, -—--—-,

y i ~~ y i
where R   is a polynomial

RU.fl)-   ̂ Aaß^V-
a,ß

Writing out the (•/', ;'; k, l)th element of X ft , and neglecting the terms of higher

order in (,

(e.P ®7)[Aa ®(B + t2Q)ß-Aa ®Bß]. ..  ,
1 ¿ i,j;k,l

= (ejP ®7)Aa «(^ß^-^ + ejß^-^ß+^ß^-^ß2 + . .. + e2QBß~ l)\ .

- € xe2[(PAa ® Bß~lQ) + (PAa® Bß~2QB) + ... + (PAa ® QBß~ !)]| . j;k ,

= flJ(Za.  xa8  ky£yß-l8.r .)+...]
1   ¿|\ im   m    mk/ \     J ; jn  nl /

= íie2a^r7Zíffe(yf-yf)/(y7-y/)-

Therefore, the (z, /; ¿,  7)th element of (tjP ® /)[P(A, ß + ^Q) - R(A, B)]  is

fie2aikrn{R{xk- y? - R(xk- >P) /(y, - y,)-.
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The proof the second part  of the assertion (5) is similar.

Case II.  To prove the lemma in general, we  shall construct a polynomial

p(A, p) satisfying the  following conditions:

(i)  p(x., y.) = /U., y.);
(ii) dp(x., y.)/dx = df(x., y.)/dx,  dp(x., yAldy = df(x., y.)/dy,  i = 1, • • • , m,

j ¡= 1, • • • , n ; and
(iii)   d2p(x., y.)/dxdy = d2f(x., y.)/dxdy.
Show that / and p have the  same  mixed differential.  Let yj = f — p.  For \fi,

the first partial derivative,  mixed  second partial derivatives exist, are continuous

and vanish   at (x ., y. ) (i = 1, • • • , m;  j = I, • • • , n).  Let x!   (i = 1,« • •, m) and

y.    (i = !,'•• ,n) be the eigenvalues  of A + e.P, and   B + c Q respectively.   Then

I*!  -*.|<ei||P||(i-l, ••■,«)     and     |yf  -y.|<i2lß|     (i = 1, . .. , n).

Now,

\\iff(A + tjP, B + c2Q) - iff(A + tjP, ßV- xfj(A, B + e2Q) + t//(A, ß)||

ip(x'., y'.) - l/fix'., y¡) - ifj(xk, y'.) + ifj(xk, y¡)

{x'i - xk){y'1 - y¡]

Each term in the  matrix on the right-hand side  of (6) is arbitrarily small for

small  e., (j.   Thus  the  mixed differential  of if/ is  zero,  that is, / and  p  have the

same  mixed differential.   This  completes the proof.

Remark 3.3.   Let  (p(x, y) be a positive, C   -function  of two variables  which

vanishes   outside   the   disc  x   + y   < 1  and which is also normalised that

I <p(x, y) dx dy - 1.

Given  such a function, we form for c > 0, the family of functions  <f> (x, y) =

(1/e )(p(x/e, y/f); each (f>   is a positive, C°°-function vanishing outside the disc of

radius  e, and  ff <p\ (x, y) dx dy - 1.  Let  / be a monotone matrix function of order

(m, n).  We form the régularisation of /,

(7)
f((x, y) =  J J (f>( (x - u, y - v)f(u, v)dudv

= i_   ftâ-ZZ, y-^\f{u, v)dudv.

Since a function representable in the form (7) is, on every compact subset, a uni-

form limit of positive   linear combinations  of monotone matrix functions, it follows

that f(x, y) is also a monotone  matrix function.

Theorem 3.4.   If g(x, y) = f((x, y)  is the régularisation of f(x, y)  in  Pm n

then the  matrix D(g(x, y)), where
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D(g(x, y)) =
1 1 di+j+k+l-2f

(i + h-Dl     (/ + /-!>!   r7^^Xxdi + l-l
y/U;k,l

i, k = 1, • • • , m,    j, l = 1, • • • , n,

is nonnegative definite.

Proof. Since g(x, y) is a monotone matrix function of order (m, n), it follows

from the proof of Theorem 3.2 that for

xj < x[ < x2 < x'2 < ... < xm < x'm; yl<y[<y2<y'2<---<yn< y'„,

the matrix

(8) [«t<x*;y,:yp]>°-

We divide the determinant of (8) bv

L =     n     U¿ - *fc)"U; - x'kY    IT     (yy - y,)m(y' - y¡)m,
i,k = l;i>k j, /=!;;>/

and proceed with the quotient

(9) („)

«K*i; y[y¿ • • ■ gK*,; yiyj ■ ■ ■ g[vm; n'yil • • ■ glx[xm; y[y]

«W*i ; y>i] • • • «ly, ; y>„] • • • «[*(*„; y'ny¿ ■ • • g[*;*m; y'ny]

^Kxi; yiyj] • • • gWmxl-, y[y] •.. gwmxm-, y[yi]... gwmxm-, y[y]

s[xLxi ; y>i] • • • &Kxi ; y>*] ■ • ■ s[*>m; y>i] - • • «K x    ; y y  J
m   m' JnJ n

as follows; subtract the (n - l)th column from the nth, the (n - 2)th column from

the  (n — l)th, • • •, the 1st from the 2nd and take in each time the corresponding

denominator (yn - yn_l),---, (y2 - yj).  Repeat this process starting with the sub-
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traction of the (n — 2)th column from the rath. During this process we divide by

(y   — y _2'> • " • > (yj _ Vi)- Continuing this way, at the (ra — l)th step we are left

with the subtraction of the 1st column from the rath column and division by  (y    -

y A.  Repeat this process for each of the blocks from the (ra + l)th column to the

2rath column, • • • , the ((m — l)ra + l)th column to the (mn)th column.  Thus all terms

II" ,_,   .. (y . - y >)m are used up. Subtract the &th column of the (m — 2)th block,

• • • , the &th column of the 1st block from the &th column of the 2nd block, and take

in each time the corresponding denominator (x    — x      .),..., (x_ - x_), for  k =r ° m m— 1 I \

1, • • • , ra.  Repeat the above process starting with the subtraction of the kú\ column

of the (m - 2)th block from the kx\\ column of the zzzth block.  During this process we

divide by  (x    - x   _2), • • • , (x, - x,).  Continuing this way at the (ra - l)th step,

we are left with the subtraction of the kúi column of the 1st block from the kx\\

column of the mtn block and division by  (x    - x,),  k = I, • • • , n.  Thus all terms
J        m 1

II"2,   j  .  , (xj - x )" ate used up.  If one carries out this process with rows, and

allows  x ., x. —► x (i = I, 2, • • • , m), y. , y. —► y  (i = 1, 2, • • ■ ,ra), then the determi-

nant reduces to a determinant which has

ii+j+k + l- 2 ,
1_1— (i, k= 1, ••-,«;      /, /= 1, •••, ra)

(i + k-l)l   (;+/- 1)!   di+k-lxdj + l-l^

as an element in the (z, &)th row and the (/',  zOth column.  Thus the new determinant

and all determinants of lower order on the main diagonal are nonnegative.   From this

it follows by the usual algebraic reasoning that the matrix  D(g(x, y)) is nonnegative

definite.  This completes the proof.

Lemma. Let f (x, y)  be a sequence of nonnegative convex functions defined

on   (— 1,  1 )  x   (— 1, 1 )   which  converges  as a sequence  of distributions  to

some distribution  T.   Then  there  exists a subsequence   f     (x,  y)   which

converges uniformly on compacts to some convex function fQ(x, y), and the distribu-

tion f0(x, y)  coincides with  T.

Proof.  We show that the sequence is equicontinuous on compact sets. It follows

from the Ascoli-Arzela theorem that there is a subsequence converging uniformly on

compact subsets, and it is evident that the limiting function is convex and represents

the limiting distribution  T.
Let M(x, y) = sup   / (x, y). We shall show that M(x, y) is finite in (- 1, l) x

(- 1, l).   If not, let  (x  , y A be a point in the square where  M(xQ, yQ) is infinite.

Then there exists a subsequence  (/   (x, y))  such that /   (xQ, yQ) approaches  + <*>

as  ra,   approaches  + <*>.  Consider a circle S (x  , y A wholly contained in  (- 1, l) x

(- 1, l).  Since  /      is convex, thus subharmonic for each  ra, , we have
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f    (xn,yn)<-ff /    (x, y) dxdy,
(10)      n> ° y° - |s>0. y0)l "*/*.•>«/%

\S(xQ, y0)|  =   rtr2.

The left-hand side of (10) approaches    + oo   as   n,   approaches   + oo.  Thus

Jfs . , f   (x, y)dxdy  is arbitrarily large for large  n,. Let <b be a positive

test function which is  > 1   on  S   and vanishes outside  S      . Then

(11) 11/     (x, y)(p(x, y) dx dy >    If /     (x, y)(p(x, y) dx dy,
JJ   "k JJSr(x0'y0)   "k

and the right-hand side of (11) is arbitrarily large for large n,. This contradicts

the fact that / converges as a distribution. Thus M(x, y) is finite and hence

convex.

We shall show that / (x, y) is uniformly Lipschitzian on compacts.

Let   K be a compact subset in (— 1, 1) x (— 1, 1).  Surround   K by an arc   C

lying completely within  (— 1, 1) x (- 1, 1).  Let d denote the distance from  K to

C, and note that for any / (x, y) in the sequence and (x, y) e K,

\dfn(x, y)/dx\ < max (\dfn(a, y)/dx\ \dfjiß, y)/dx\)

where (a, y) and (ß, y) are the points in which the horizontal line through (x, y)

meets the boundary of  K and  a < 73.  But

dfn(ß, y)/dx < (fn(ß W, y) - fn(ß, y))/d

< (fn(ß + d, y) + fn(ß, y))/d < 2M/d

where  M denotes the maximum of  M(x, y) over the curve   C.  Also  — 2M/d <

df (a, y)/dx; since  f (x, y) is convex, - 2M/d <df (a, y)/dx < df (ß, y)/dx <
2M/dt that is, \df (x, y)/dx\ < 2M/d.  Obviously, the same argument serves to show

that   |c9/ (x, y)/(9y| < 2M/d, and therefore  4M/d is a uniform bound for   |grad / |

over   K.  It is now clear that the functions of the sequence are uniformly Lipschitzian,

hence equicontinuous.

Theorem 3.5.   If f(x, y)  is a monotone matrix function of order (m, n),  m > n

> 1, then the distribution derivatives d2p+ 2c,~6f/d2p~ixd2'i~iy  (p = 2,---,m;
q = 2, • • •, n) are convex and positive.

Proof.  We form the régularisation g(x, y) = fix, y) oí f(x, y).  By Theorem

3.4, D(g(x, y)) is a nonnegative definite matrix. Hence all its diagonal terms,

namely,
dls_ °2ng J2ms_ d2m+2n-2g
dxdy '' dxd2"-ly ' d2m~Xxdy ' d2m-lxd2n-ly
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are nonnegative. We shall show that

¿2g d2n-2g  .£_

dxdy dxd2"-^ d2m-ixdy
ate convex. We consider for (1 < p < m; 1 < q < n) the  2x2 matrix

02m+2n-6g

d2m-ixd2n-iy

(12)

o2p+2q-4g ¿)2p+2q-

(2p-2)\(2q-2)\    d2p-2xd2q-2y

_       1 d2p+2q-Ag

(2p - 3)\(2q - l)\ d2p-3xd2q-ly

1 d2p+2q-Ag

L(2p - 2)l(2q - 2)! d2p-2xd2q-2y (2p - l)\(2q-3)\   ¿2p-lxd2q-3y _
From the positivity of the matrix (12), it follows that

d2p+2q-4g d2P+2q-4g I     d2p+2q-Ag      \2

d2^-ixd2q-ly Jp^d2^     [d2p- 2xd2«-2y)
2

y^L^llíl.    ^2_^q-J__     (2p-l)(2q-l) I  d2p+2«-4g
"d2p-ixd2q-1yd2p'-1xó2q-iy     (2p-2)(2q-2)   \d2p-2xd2«-2

>o,
>',

that is  d2p+2q-('g/d2p~ixd2q-7ly (1 < p < m; 1 < q < ra)  is convex.  Since

d2p+2q-6fe/d2p-ixd2q'5y (I < p < m;  1 < q > ra)  is convex for every  e, and

d2p + 2q-6^/d2p-ixd2q-3y converges to d2p+2q-6f/d2p-ixd2q-3y  as a distribu-
tion, by the lemma there exists an infinite sequence which converges to

d2P+2q-6f/d2p-lxd2q-3y  uniformly on compacts.   d2p+2q-6f/d2p-3xd2q-iy   (j <
p < m;  1 < q < ra), being the limit of a sequence of convex functions, is itself con-

vex.  This completes the proof.

Acknowledgement. The author is indebted to Professor W. F. Donoghue, Jr.,

for his continued interest and expert supervision.

REFERENCES

1. J. S. Bendat and S. Sherman, Monotone and convex operator functions, Trans. Amer.
Math. Soc.  79(1955), 58-71. MR 18, 588.

2. E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's
series. Vol. 1, Dover, New York, 1958. MR 19, 1166.

3. A. Koranyi, On a theorem of Löewner and its connections with resolvents of self-
adjoint transformations, Acta Sei. Math. Szeged 17 (1956), 63—70. MR 18, 588.

4.  -, On some classes of analytic functions of several variables, Trans. Amer. Math.
Soc. 101 (1961), 520-554. MR 25 #226.

5. K. Loewner, Über monotone  Matrixfunctionen, Math. Z.   38 (1934), 177—216.
6. —-—, Advanced matrix theory, Mimeographed Notes, Stanford University, Stan-

ford, Calif., 1957.

7. Bela Sz.-Nagy, Remarks to the preceding paper of A. Koranyi, Acta Sei. Math. Szeged

17(1956), 71-75. MR 18, 588.

DEPARTMENT OF MATHEMATICS, PANJAB UNIVERSITY, CHAND1GARH-14, INDIA

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


