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We describe a method for finding monotone solutions of some classes of difference equa-
tions converging to the corresponding equilibria. The method enables us to confirm three
conjectures posed by the present author in a talk, which are extensions of three conjec-
tures by M. R. S. Kulenovi¢ and G. Ladas, Dynamics of Second Order Rational Difference
Equations. With Open Problems and Conjectures. Chapman and Hall/CRC, 2002. It is in-
teresting that the method, in some cases, can be applied also when the parameters are
variable.
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1. Introduction

Recently there has been a great interest in studying nonlinear difference equations of or-
der greater than one. Many of these equations stem from mathematical biology, economy,
population dynamics , and so forth (see, e.g., [5, 7-9, 11, 14] and the references therein).
An interesting problem in the theory of difference equations is finding monotone solu-
tions. This paper is devoted to this problem.

Motivated by [8, Conjectures 5.4.6 and 6.10.3] in a talk (see, [16]) we posed the fol-
lowing three conjectures. The first one concerns a generalization of (1.2).

CoNJECTURE 1.1. Show that for every p > —1, the following equation:

Xt = p+ = m=o,1,., (1.1)

Ziz_() AiXp—i

wherek e N, a; 20,i=0,....,k—1, and Zf:ol a; = 1, has a positive solution which remains

above the equilibrium X, = p+1 foralln = —k.
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2 Monotone solutions of difference equations

In [6] DeVault et al. investigate the behavior of the positive solutions of the difference
equation

X
xn+1=p+”—k, n=0,1,..., (1.2)
Xn

where p >0 and k € N is fixed. Among other things they have proved that all nonoscillatory
solutions of (1.2) converge to the positive equilibrium x = p + 1.

Based on this observation they have posed the following open problem.

Open problem 1.2. Do there exist nonoscillatory solutions of (1.2)?
The following conjectures are generalizations of [8, Conjectures 5.4.6 and 6.10.3].

CoNJECTURE 1.3. Show that the following equation:

1+x,-
Xn+1=k717nk, 1’l=0,1,..., (13)
2,-:0 iXn—i
wherek €N, ;>0,i=0, ..., k—1, and Zf;ol a; = 1, has a nontrivial positive solution

which decreases to the equilibrium x, = (1++/5)/2.
CoNJECTURE 1.4. Show that the following equation:

o+ X,k

-x}‘l+1 = k—1
I+ Zi=0 KiXp—i

, n=0,1,..., (1.4)

wherek e N, a >0, 2; >0,i=0,...,k— 1, and 2;:01 a; = 1, has a positive solution which
decreases to the equilibrium x3 = \/a.

Our aim in this paper is to confirm the above mentioned conjectures.
The linearized equation for (1.1), respectively, (1.3) and (1.4), about the correspond-
ing positive equilibrium X;, i € {1,2,3}, is

(p+1D)yns1 +aoyn+ -+ A1 Yn—k+1 — Yn-k = 0, (1.5)
%2 (Yns1 + 0o Yn+ - -+ 01 Ynks1) — Yn-k = 0, (1.6)
(1+vVa) ynr +Va(@oyn + - - + Q-1 Yn—k+1) — Yn-k = 0. (1.7)

The characteristic polynomial associated with (1.5), respectively, (1.6) and (1.7), is

pi(t) = (p+ Dt vtk +- -+t —1=0, (1.8)
pz(t)ZJ_Cz(tkH'l'(Xotk‘f" "+06k_1t)—1 =0, (19)
p3(t) = (1 + V)t + Va(apt + - - - +ag_1t) —1=0. (1.10)

Since p1(0) = —1<0, py(1) = p+1, and pi(t) = (p+ 1)(k+ 1)t* + okt + -+ - +
ax—1 >0 for ¢ € (0,1], it follows that for each p > —1, there is a unique positive root #
of the polynomial (1.8) belonging to the interval (0,1).
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Similarly, it can be shown that (1.9) and (1.10) have also a unique positive roots t, and
t3 in the interval (0,1).

This fact motivated us to believe that there are solutions of (1.1), (1.3), and (1.4) which
have the following asymptotics:

Xy =X+at! +o(th), (1.11)

where a € R and ¢, i € {1,2,3}, are the above mentioned roots of polynomials (1.5),
(1.6), and (1.7), respectively .

We solve the open problem, showing that such solutions exist, developing Berg’s idea
in [2] which are based on asymptotics. Asymptotics for solutions of difference equations
has been investigated for a long time by L. Berg and S. Stevig, see, for example, [1-4, 10—
15] and the reference therein. We solve it by constructing two appropriate sequences y,
and z, with

Vn < Xn < 2y (1.12)

for sufficiently large 7. In [1, 2], some methods can be found for the construction of these
bounds, see, also [3, 4].

From (1.11) and results in Berg’s paper [2], we expect that for k > 2 such solutions
have the first four members in their asymptotics in the following form:

@ = X+at" +bt*" + ct". (1.13)

2. The inclusion theorem

We need the following result in the proof of the main theorem. The proof of the result is
similar to that of [2, Theorem 1].

Tueorem 2.1. Let f : I¥*? — I be a continuous and nondecreasing function in each argu-
ment on the interval I C R, and let (y,) and (z,) be sequences with y, < z, for n = ny and
such that

Ynk < f(MYntstsee s Vne1)s [ (MZnoiitse s Znt1) < Znks (2.1)

forn>mno+k—1.
Then there is a solution of the following difference equation:

Xn—k = f(n)xn—k+la~--)xn+l)) (22)

with property (1.12) for n = ny.

Proof. Let N be an arbitrary integer such that N > n + k — 1. The solution (x,) of (2.2)
with given initial values xn,xN+1,...,Xn+k satisfying (1.12) for n € {N,N + 1,...,N + k}
can be continued by (2.2) to all n < N. Inequalities (2.1) and the monotonic character
of f imply that (1.12) holds for all n € {ny,...,N +k}. Let Ay be the set of all (k+1)-
tuples (xp,,...,Xn,+k) such that there exist solutions (x,,) of (2.2) with these initial values
satisfying (1.12) for all n € {ny,...,N +k}. It is clear that Ay is a closed nonempty set
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for every N > ng +k — 1, and that Ay41 C Ay. It follows that the set A=nN7 | Ay isa

nonempty subset of R*! and that if (x,,,,...,Xu,+k) € A, then the corresponding solutions
of (2.2) satisfy (1.12) for all n = ny, as desired. [l

3. The main result

In this section we prove the main result of this paper, which confirms Conjectures 1.1,
1.3,and 1.4.

TueoreM 3.1. The following statements are true:
(a) leta; >0,i=0,...,k—1, Zf;ol a; = 1,and p > —1. Then (1.1) has a positive solution
which remains above the equilibrium Xn=p+1

(b) let; >0,i=0,...,k—1, Z, o & = 1. Then (1.3) has a nontrivial positive solution
which decreases to the equilibrium xz,
(c)leta>0,a;>0,i=0,....,k—1, z, o & = 1. Then (1.4) has a nontrivial positive

solution which decreases to the equilibrium % = \/a.

Proof. (a) Note that (1.2) can be written in the following equivalent form:
F(Xu—t>--orXmXnt1) = (Xne1 — p) (ct0xn + + + + + Qk—1Xn—k+1) — Xn—k = O. (3.1)

We expect that solutions of (1.2) have asymptotic approximation (1.13). Thus, we calcu-
late F(@u—k>--.>@Pn>@n+1). We have

F = (1+at"! 4 b2t 4 £t
X (p+1+anpt"+---+aog 1" K+ bagt? + - - - + bay_ £2FD 1+ 0(£))

— (p+1+at" k4 b2k 4 37k

Xk—1 —k
=at”((p+1)t+a0+- +tk—17t )

+t2”<b<o¢0+---+ F1 )+a2t(ao+- +—>+b(p+1)t2 t2k>+@(t3").

2(k=1) th=1
(3.2)
Let
O— 1
Di(t)=(p+1)t+ag+--- +%—t—k. (3.3)

Choose t € (0,1) such that D;(t) = 0, and a,b € R, a # 0, such that the coefficients in
(3.2) are equal to zero. D, (t) = 0 implies that t = ¢, (see, Section 1). Further we obtain

b= _ a’ty(ag+ -+ -+ - 1t*kﬂ) 3 a2t1(“0+_ g 1t1k+1) )
(P+l)t%+oc0+- (g 1)/t1 —t 2k D, (t%)
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If $, = p+1+at! +qt}", we obtain

F(an—k,.-.,an,an«fl) ~ (qDl(t%) +a2t1 ((Xo T+ +(Xk_1tfk+l))t%n. (35)
Let
Ht1 (q) = qDl(l’%) +a2t1(a0+ e +(Xk71t17k+1). (36)
We have
, kK a (k= 1Dag_y
Dl(t)=p+1+ﬁ*tfz*"'*t7k. (37)
Hence, when t € (0, 1), it follows that
, k o+ -+ (k—1oag_q
Dl(t)>p+1+tk_+l_ s
B (3.8)
ko (k=131 a 1
>p+l+W—T >P+l+tkT >0.

From this, since D;(#;) = 0, and tf < t1, we have that Dl(tf) < 0. Thus, we obtain that
there are g; < b and ¢, > b such that Hy,(¢q1) >0 and Hy,(g2) < 0.
With the notations

Yu=p+1l+atl+qit?",  z,=p+1+at! +qt", (3.9)
we get

F(Yntoo s Yo yni1) ~ (D1 () + @t (o + - - - + a1 t751)) 87 > 0,
(3.10)
F(ZutsersZnsznr1) ~ (@D (£2) + a2ty (oo + - - - + a1 17571)) 137 < 0.

These relations show that the inequalities in (1.12) are satisfied for sufficiently large #,
where f = F+x,_, and F is given by (3.1). Applying Theorem 2.1 it follows that there
is a solution of (1.1) with the asymptotics x, = @, + o(£{"), in particular, the solution of
(1.1) converges monotonically to the positive equilibrium X; = p + 1, when p > —1 and
n = ny. Hence, the solution X1+ converges monotonically for n > —k.

(b) Equation (1.3) can be written in the following equivalent form:

F(Xn—kseosXnsXnt1) = Xnr1 (@oxn + -+ - + k- 1X0—k41) — (1 +x,-) = 0. (3.11)
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Now we calculate F(@u—k,...,Pn @u+1). We have
F = (% +at"™! + b2+ 4 cP3(n))
X (%o +aoot™ + -+ - + acg_ 1 1" 4 bagt? + - - -+ bag_ 20D 1 0(£M))

— (1+x +at"*+ b0 4 o3 n=h)

_ _ Ofe— 1
=at”<X2t+X2(0£0+"'+tk—_ll)—t—k)
on | = Kk—1 2 Xk—1 o 142 -2k 3n
+t (X2b<060+"'+m>+a t(d0+"'+F>+bet — bt )‘I’@(t )

(3.12)

Let

o k- _ (t)
Dz(f)ZX2t+x2<(X0+"'+%>*t k:pth‘ (3.13)
Choose t € (0,1) such that D,(¢t) =0, and a,b € R,a # 0, such that the coefficients in
(3.12) are equal to zero. Since D,(t) = 0 is equivalent to p,(t) = 0, we have that ¢t = t,, and

consequently

b a2ty (g + - - - + o1 £5 1) :_aztz(cxo+---+ock_1t2’k+1). (3.14)
Xtk % (o + - - + (g )/EET) — g%k D, (8)
If §, = X, + at} + qt3", we obtain
F(PrtoeresPrs@us1) ~ (qD2(8) + @ty (g + - - - + o1 t541) ) 137, (3.15)
Let
H,(q) = gD, (83) +a*ty (ag + - - - +ag_1£5°11). (3.16)
Since
o) = X ((k+ D5+ kaot* 1 + -+ - + 1) >0, (3.17)

when t € (0,1), and since p,(t,) = 0, and # < t,, we have that p,(#) < 0, which implies
D,(#3) < 0. Thus, we obtain that there are g3 < b and g4 > b such that H,,(q3) >0 and
Hy,(g4) <0.

With the notations

Vn =Ko +ath + gst3", Zn = Xo +ath + qut3", (3.18)
we get
F(ynfkw . >yn;)/n+l) ~ th (%)t%” > O)

(3.19)
F(ank)--wznaszrl) ~ th (q4)t§n <0.
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These relations show that the inequalities in (1.12) are satisfied for sufficiently large n,
where f = F+x,_, and F is given by (3.11). Applying Theorem 2.1 it follows that there
is a solution of (1.3) with the asymptotics x, = @, + o(£3"). This solution obviously con-
verges monotonically to the positive equilibrium X, = (1/5+ 1)/2, for n > n;. A suitable
shift of x,, is decreasing for all n > —k.

(c) Equation (1.4) can be written in the following equivalent form:

F(Xn—kse-osXnsXnt1) = X1 (1+ @0xn + -+ - + @k 1Xn-k+1) — (@ +x,-) = 0. (3.20)
We have
F = (% +at™! + bt?tD) 4 30D
X (14 %3 +aaot" + - - - +aax_ " +bagt? + - - - + bag_ 2" KD L O(£))

— (a+x;+at"F 4 b2k 4 R

Af—
= at”((1+563)t+563<oc0+ e +ﬁ) - t*")

Kfe— Ko —
+ 12 (563b<¢xo+ cet tz(ii)) +a2t(a0+ Cet %) +(1+7%3)bt? — bt‘”‘)

+0(£").
(3.21)

Let

D3(t)=(1+5c3)t+5c3(oc0+---+?}f_’11>—t*kzpi—it). (3.22)

Choose t € (0,1) such that D;(t) = 0, and a,b € R, a # 0, such that the coefficients in
(3.21) are equal to zero.
Since

pi() = (1+a) (k+ D)tk + Va(kaot ™ + - - - +ax_1) >0, (3.23)

when t € (0,1], and Ds(t) = 0 is equivalent to p3(t) = 0, we have that ¢ = 3. From this
and (3.21) it follows that

a2t3 ((Xo . (Xk_lt;kﬂ) _ a2t3(0c0 + - +0(k_1t§k+1)

b=— =
(14 a) B+ Ja(ag+ - - + (o )/25 V) — 152 Ds(3)

(3.24)
If §, = Ja+ati +qt3", we obtain
F(Pntserrs@PrsPrr1) ~ (qD3 () +aPt3 (g + - - - + a1 £55H1) ) 127, (3.25)
Let

Hy,(q) = qDs(8) +a’ts(ao + - - - + a1 15°11). (3.26)
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Since Ds(t3) = 0, and £ < t3, we have that D3(#3) < 0. Thus, we obtain that there are
g5 < b and g6 > b such that H, (g5) > 0 and Hy, (gs) < 0.
With the notations

Yn = Ja+ath +qst3", Zn = Ja+ath +qet3", (3.27)
we get
F(Yn—tseeos Vs Ynr1) ~ Hy, (gs) 3" >0, F(zZu—t>-->ZnsZn+1) ~ Hy, (q6) 83" < 0. (3.28)

These relations show that the inequalities in (1.12) are satisfied for sufficiently large n,
where f = F +x,_; and F is given by (3.20). Hence, there is a solution of (1.4) with
the asymptotics x, = @, + o(#3"). The result follows similarly to the above mentioned
cases. 0

From Theorem 3.1(a) with ag = 1 and «; = 0, i # 0, we get the following corollary.
CoROLLARY 3.2. There is a nonoscillatory solution of (1.2).

Remark 3.3. Since a € R\ {0} is an arbitrary parameter, by Theorem 3.1 we find a set of
nonoscillatory solutions of (1.1), (1.3), and (1.4) converging to the corresponding posi-
tive equilibria.

Remark 3.4. Note that using (1.13) better asymptotics for these solutions can be obtained,
that is, x, = @, + o(t?”), i€ {1,2,3}, where b is given by (3.4), (3.14), or (3.24), and ¢ can
be found equating to zero the coefficient nearby .

Remark 3.5. From the proof of Theorem 3.1, we see that we can assume that the parame-
ter pin (1.1) can be replaced by a nondecreasing sequence with the following asymptotics:

pn=p+o(t").
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