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ON MONOTONE TRAJECTORIES

JANUSZ MIERCZYÑSKI

(Communicated by Kenneth R. Meyer)

Abstract. In this paper C strongly monotone dynamical systems are investi-

gated. It is proved that the set of points with precompact orbits which converge

to a not unstable equilibrium but whose trajectories are not eventually strongly

monotone is nowhere dense. This improves on and extends a recent result by

P. Polácik [13].

For a metric space X with metric d, by a semiflow on X we mean a

continuous mapping tp: [0, oo) x X —► X satisfying the following (we denote

<Pt(-) = cP(t,-)):

(51) </»o = idx
(52) <pto<Ps = (Pt+s,for j,/g[0,oo).

The trajectory of x £ X is the mapping t i-> cptx, t £ [0, oo). The set

{tptx : t £ [0, oo)} is called the orbit of x £ X. An equilibrium is a point e £ X

such that tpte — e for all t > 0. We say a point x £ X (or its trajectory) is

convergent (to an equilibrium e £ X) if d(cptx, e) —> 0 as t -> oo . It is easy

to check that x £ X is convergent to í 6 I if and only if the orbit of x is

precompact and co(x) = {e} , where the co-limit set co(x) := {y £ X : 3tk —► oo

such that tpt x —> y as A: —» oo} .

A real Banach space  V with norm | • |  is called strongly ordered if V is
o

endowed with a closed cone V+ having nonempty interior V+ . For v , w £ V,

we write v < w if w - v £ V+, v < w if w - v £ V+\{0}, and v < w if
o

!í)-«6F+. A semiflow cp on an open subset of a strongly ordered Banach

space V is said to be strongly monotone if, for each t > 0, x, y g X, the

inequality x < y implies tptx -C tpty .

In a strongly monotone semiflow tp, the trajectory of x £ X is called even-

tually strongly decreasing (resp. eventually strongly increasing) when there is a

r > 0 such that if T < tx < t2, then <pt x » tpt x (resp. 0r x < 0( x). A

trajectory that is eventually strongly decreasing or eventually strongly increasing

is called eventually strongly monotone. As proved in [6, Theorem 6.4], if the tra-
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jectory of x £ X is eventually strongly decreasing (resp. eventually strongly in-

creasing), it is convergent to some equilibrium e and e <. cptx (resp. e » tptx)

for t > T, provided that x has precompact orbit.

The abstract theory of strongly monotone semiflows was initiated indepen-

dently by Morris W. Hirsch in [6] (for an early survey see [5, Chapter III])

and by Hiroshi Matano in [9] and [10]. It is well known that a second order

parabolic partial differential equation (PDE) satisfying some smoothness and

growth conditions generates a semiflow on an appropriate subset of a Banach

space V, where F is a (possibly proper) subspace (defined by some of the

boundary conditions) of a fractional power space for Lp (see [4]), or of C',

i = 0, 1 (see [11]), or else of a more abstract interpolation space for Lp (see

[1,2]).
If the PDE together with the boundary conditions admits the strong compar-

ison principle and the space V is strongly ordered via the cone V+ of nonneg-

ative functions, then the resulting semiflow tp is strongly monotone (for details

of the proof see [6, §4] or [13, §2]). Another source of strongly monotone

(semi)flows is strongly cooperative systems of ordinary differential equations

(for a survey of such systems the reader is referred to [14] and the papers men-

tioned therein).

To mention one result in the theory of strongly monotone semiflows, assume

that the ambient Banach space V is separable and that each point x £ X has

precompact orbit. Then the set of points whose &)-limit sets consist of equilibria

is residual in X ([6, Corollary 7.6]).

Recently Peter Polácik in a series of papers [12, 13] has been investigating the

asymptotic behavior of trajectories for strongly monotone semiflows generated

by abstract semilinear parabolic differential equations:

(1) u' + Gu = f(u),

with G being a sectorial operator on a Banach space V and /: X —> V having

derivative satisfying the Lipschitz condition, where X is an open subset of

a fractional power space Va for some a £ [0,1) (for the theory of such

equations see [3]). One of Polácik's principal results (cf. [13, Theorem 1])

states that if all points have precompact orbits and 0 £ X is an equilibrium,

with the principal eigenvalue of G-f'(0) positive, then the set of points whose

trajectories are convergent to 0 but that are not eventually strongly monotone

is nowhere dense in the (open) set of points convergent to 0. In a sufficiently

small neighborhood of 0, the former is equal to the one-dimensional "strongly

stable" manifold at 0.

The main points of the present article are Theorems 1, l', and 2. They are,

in fact, reformulations of Polácik's results in the more abstract setting of C

strongly monotone semiflows, the theory of which covers quasilinear parabolic

PDE's (not necessarily covered by the existing theory of (1)). Moreover, our

method of proof enables one to get rid of the restrictive (although generic)

assumption contained in [13] that the equilibrium 0 be simple.
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A semiflow tp on X is said to be of class C if the mapping tp restricted to

(0,oo)xl has a continuous derivative. For t > 0, x £ X, Dtpt(x) denotes

the derivative of tp with respect to the second variable. By the continuity of that

derivative, the assignment (t, x) h-> Dtpt(x) is continuous as a mapping into

the Banach space ¿?(V) of bounded linear operators on V with the operator

norm. From (S2) we deduce the following cocycle property:

(2) DtPt+s(x) = DtPt(tPsx)DtPs(x)   forx£X, s,t>0.

By (2), the formula

(3) Dtp(t,x,v):=(tptx,Dcpt(x)v)   for t > 0, x £ X, v £ V

defines on the (product) tangent bundle X x V an object having all properties

of semiflow except perhaps continuity at t = 0. Slightly abusing the language,

we call Dtp the derivative semiflow of tp.

For x £ X, let
" 'JCl

Fx:=
t=\dt

Differentiating (S2) in s , we obtain

(4) Dtp(tpxx)Fx = Fcp.x   fort>0,x£X.

We say that tp is a C strongly monotone semiflow if the following conditions

are fulfilled:

(Ml) cp is a semiflow of class C1 ,

(M2) tp is strongly monotone, and

(M3) £>r>((F+\{0})cF+,forany t>0, x £ X .

Notice that if X is convex (in particular, if X is an order interval; see [6,

p. 8]), the property (M2) follows from (M3).

For conditions guaranteeing that the semiflow generated by a PDE be of class

C1, the reader is referred to [3, §3.4] or to [1, 2]. In such cases the derivative

semiflow is generated in a natural way by the linearized equation, so the property

(M3) is simply the comparison principle for (nonautonomous) linear parabolic

PDE's.
Now we state a result (due to D. Henry) which will be extensively used in

the sequel:

Proposition 1. Assume that A is a bounded linear operator on a Banach space

U, such that there are positive reals X" < X' and closed invariant complementary

subspaces U', U" with o(A \ U') c {z £ C : \z\ > X'} and a (A | U") c

{z £ C : \z\ < X"} where o(-) denotes the spectrum. Denote the corresponding

projections by P', P", respectively.

(a) Let un £ U\{f)}, n e N, be a sequence such that

K+i ~AuJ = °(KD   asn^oo.
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Then the following alternative holds: Either \P'un\/\P"un\ -> oo and \un\/pn —►

oo for each p £ (X",X'), or \P'un\/\P"un\ ->• 0 and \un\/pn -* 0 for each

p £ (X", X').
(b) Let {S(t) : t > 0} be a strongly continuous semigroup of bounded linear

operators on U, such that A := 5(1) satisfies the assumption of part (a). Let

u : [0, oo) —► C/\{0} be a continuous function such that

\u(t + s)-S(s)u(t)\ = o(\u(t)\)   as t -> oo,

uniformly for s £ [1, 2]. Then the following alternative holds:

Either \P'u(t)\/\P"u(t)\ -> oo and \u(t)\/p' -> oo for each p e (X", X'),

or \P'u(t)\/\P"u(t)\ -* 0 and \u(t)\/p' -» 0 for each p £ (X", X').

Proof. See [4, Theorem 2 and the subsequent Corollary].   D

We recall a version of the Krein-Rutman theorem:

Proposition 2. Assume that A is a compact linear operator on a strongly ordered
o

Banach space V, with the property A(V+\{0}) cV+. Then V decomposes into

a direct sum of two closed invariant subspaces Vx,   V2 such that dim Vx = 1,

Vx\{0} CV+ U- V+, V2nV+ = {0}, o(A \VX) = {p(A)}, and a (A \ V2) C
{z £ C : \z\ < v}, where v < p(A)   (= the spectral radius of A).

In the applications of Proposition 2, w always stands for the (unique) unit
o

vector contained in VXD V . Moreover, any time a Banach space V is repre-

sented as a direct sum Va®Vb with the corresponding projections Pa, Pb, we

assume that the norm satisfies \v\ = max(|.Pau|, \Pbv\) for every v £ V .

Let 0 £ X be an equilibrium for a strongly monotone semiflow cp.   K(e)

denotes the closed ball of center 0 and radius e > 0. Define

B(e) := {x £ K(e) : \cptx\ -+ 0 as t -> oo},

•P+(£) := {x £ B(e) : the trajectory of x is eventually strongly decreasing},

B_(e) := {x £ 5(e) : the trajectory of x is eventually strongly increasing},

B0(e):=B(e)\(B+(e)uBJe)).

Let us formulate our Standing Hypothesis:

0 is an equilibrium for a C    strongly monotone semiflow cp

such that Dcpx(0) is compact with spectral radius p < 1 .

Theorem 1. There exists e > 0 such that B0(e) c W2(e) where W2(e) is the

local "strongly stable" invariant Cx manifold tangent at 0 to the subspace V2 in

the Krein-Rutman decomposition for Dtpx(0). In particular, BQ(e) is nowhere

dense in K(e).

Proof. Let v be as in Proposition 2. By [8, Corollary 5.4], for some e > 0

the local "strongly stable" invariant manifold W2(e) for the time-one mapping

tpx\K(e) is equal to {x £ K(e): \tpnx\/pn -* 0 for each p £ (v, p)}. Fix

x £ B0(e).
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If FtpTx = 0 for some x > 0, then (2) and (4) imply that Ftptx - 0 for

t >x; hence 11-> Dcpt(x) is constant for t > x + 1 . From this we conclude that

x £ W2(e) .

Assume Fcptx ¿ 0 for all t > 0. Put Í7 := F, f/' := Vl, U" := K,,

u(t) := Ftptx , t £ [0, oo), and s e (0, oo). We have

u(t + s) = Fcpt+sx = Dtpt+s(tpxx)Fx

= Dtps(tpt+Xx) • Dtpt(cpxx)Fx = Dcps(tpt+xx)Fcptx,

so

\u(t + s)- S(s)u(t)\ = \(DtPs(tPt+xx) - DtPs(0))FtPtx\

<\DcPs(cPí+xx)-DcPs(0)\.\FcPtx\.

Due to the continuity of the mapping (s, x) i-> Dtps(x) for s > 0, the assign-

ment xh(jh Dtps(x)) £ C([l, 2], ^(V)) is continuous. We have tptx -5 0,

so \Dtps(cpt+xx) -D<ps(0)\ -> 0 as í -» oo uniformly for 5 £ [1, 2]. By Proposi-

tion 1(b), we get either \PxFtplx\/\P2Fcptx\ —► 0 and \Ftptx\/p' —> 0 as t ->■ oo,

for /i e (i/, p), or |i31/r</>ix|/|i52irç!ijX| -> oo and \Ftptx\/p' -* oo as í —> oo,

for p £ (v, p), where P¡, ¿=1,2 are projections onto Vi.

In the first case, integration yields \cptx\/p' -»0 as í -> oo; that is, x £

W2(e). We claim the second case is impossible. In fact, for sufficiently large t

we have

(5)
Ftptx       PxFtptx

¡Ftp^l     \PxFcptx\

P2Fcptx

\PxFtPtx\

\P2Ftptx\

\P{FcPtx\ '

which converges to 0 as t —> oo . Since the range of Px is spanned by the vector
o

w = PxFtptx/\PxFtptx\ belonging to the interior V+ of V+, for some k > 0

we have E(k) := {v £ V : \Pxv\ > k\P2v\} cV+ U- V+ . The right-hand side

of (5) tends to 0, so there is a x > 0 such that Ftptx £ E(k) for t > x. By

integration, we get that the trajectory of x is eventually strongly monotone.

We have thus proved that the set B0(e) is contained in the one-dimensional

manifold W2(e). But the latter is C diffeomorphic to K(e)r\W2, so is nowhere

dense.   D

We also define the following sets:

I+(e) := {x £ B(e) :3T>0 such that tptx » 0 for all t > T},

Z_(e) := {x £ B(e : 3T > 0 such that cptx « 0 for all t > T}, and

I0(e):=5(e)\(z+(e)Ul_(e)).

By [6, Theorem 6.4] we have B+(e) c Z+(e) and B_(e) c Z_(e).

Theorem l'. There exists an e > 0 such that Z0(e) C W2(e).

Proof. The proof goes along the lines of the proof of Theorem 1, (almost) the

only difference being that we put un := cpnx, n e N, and A := Dcpx(0) and
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make use of Proposition 1(a) instead of 1(b). The expression

K+l - Aun\ = \^nX - D(t>\^)4>nX\

is o(\tpnx\), since tpx is of class C1.   G

Theorem 2. Assume that either of the following conditions holds:

(a) The set X0 of points with precompact orbits is dense in K(e).

(b) For each x £ B(e)\{0} we have { := inf{p > 0 : liminf,^ \4>tx\//i' = 0}

>0.
Then Z0(e) = W2(e).

Proof. In view of Theorem l', it suffices to show that Z (e) n W2(e) = Z_(e) n

W2(e) = 0. Suppose to the contrary that some x £ Z+(e) n W2(s).

Assume that (a) is satisfied. Without loss of generality, we can write x » 0

(if not, substitute tpTx for x where T is as in the definition of Z+(e) ). Since

x £ W2(e), for all p £ (v, p) we have \cpnx\/pn —► 0. Define M := {y £

K(e) :0«)í«í}. The set M is open and nonempty (for it contains the

open segment joining 0 and x). The manifold W2(e) is nowhere dense, so,

because X0 is dense, we can find y £ M n XQ\W2(e). Since y » 0, we

have co(y) > co(0) = {0} ; on the other hand, co(y) < co(x) — {0}. Therefore

tpty -> 0 as í -» oo.   Furthermore 0 < cpty <c cptx for t > 0.   Px  is the
o

projection onto the subspace Vx spanned by w £V+ , so 0 < Pxtpty < Pxcptx,

and 0 < \Pxtpty\ < \Pxtp,x\ for all t > 0. Hence it follows that \Pxtpny\/pn -* 0
for all p £ (v, p). Because y 0 W2(e), there exist a number k £ (v, p) and a

subsequence «( —► oo as ¡'-»oo such that

(6) |^n y\/Kn' —»oo   as / —> oo.

This is possible only if \P2tpn y\/Kn> -> oo , which implies that

(7) \PxtPny\/\P2tPny\->0.

Put Í/ := V, U' := Vx, t/" := F2, ^ := D<px(0), and «„ := <f>ny . We have

l"«+i -^"„Nl^i"«--0^!^)"«!.

which is o(|wn|) (since tpx is C ). In view of Proposition 1(a) we deduce from

(7) that \(pny\/fcn —» 0, which contradicts (6). (The idea of this part of the

proof is taken from the proof of [13, Lemma 3.2].)

Now assume that (b) is fulfilled. The finite-dimensional subspace V3 corre-

sponding to the eigenvalues with moduli in (¿;/2, p] is nontrivial (notice that

t\ < p, in particular Vx c V3). Denote by V4 the subspace of V comple-

mentary to F3, and by P3, P4 the respective projections. The case V4 = {0}

(impossible if dim V = oo) is not excluded. Suppose V3 = Vl. From this we

obtain v < Ç/2. By [7, Corollary 5.4], for each p £ (Ç/2,Ç) C (u, p) we

have \tpnx\/p" -* 0 (since x £ W2(e)).   However, from the definition of Ç
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it follows in a straightforward way that \tptx\/p' -> oo for any p £ (0, Ç), a

contradiction. Therefore Vx is a proper subspace of V3.

Putting U := V, U' :=V3, U" := V4, A := Dtpx(0) and U(t) := <¡>tx and

applying Proposition 1(b), we get that \P3tptx\/\Pxcptx\ —> oo, from which it

follows that P3cptx / 0 for sufficiently large t. This enables us to use Proposi-

tion 1(b) once more, this time with U :— V3, U' :- Vx, U" := V5 := V3nV2,

A := Dcpx(0), and u(t) := P3cptx. We have either \Pxtptx\/\P5cptx\ -► 0 or

\Pxtptx\/\P5tptx\ -4 oo (notice that PXP3 = Px and P5P3 = Ps). For a subset Y

of V3, denote by IÏY the image of T\{0} under projectivization. The above

dichotomy can be formulated thus:

Either   ¿(IU^x, IIKS)-> 0   or   ô(UP3tPtx, nvx) -* 0,

with ô(Nx, N2) := inf{A(a1, a2) : ax £ TV,, a2 £ N2) , where A is a metric on

the projective space IW3. Since x £ Z+(e), we have l\P3tptx £ U.(V+ n V3)

for all t sufficiently large. Because the compact sets IIV5 and fl(V+ n V3)

are disjoint, there is ß > 0 such that ¿(nF5, n(F+ n V3)) > ß. Therefore

ô(UP3cptx, UVX) -* 0, and \Pxtptx\/\P5tptx\ -> oo. Hence \tptx\/p' -» oo for all
p£ (v, p), which is in contradiction to the characterization of W^(e).   D

Corollary. Under the assumptions of Theorem 2, the following equalities hold:

Z0(e) = BQie) = W2(e),        Z+(e) = B+(e),        l_(e) = B_(e).

Proof. By Theorem 2, W2(e) = Z0(e). From [6, Theorem 6.4] we deduce that

Z0(e) c B0(e), while by our Theorem 1, B0(e) c W2(e). From the first equality

it follows that Z+(e) U Z_(e) = B+(e) U B_(e). Since the sets on both sides are

disjoint and, again by [6, Theorem 6.4], B+(e) c Z+(e) and B_(e) c Z_(e),

the remaining equalities follow easily.   D

Concluding remarks. 1. The additional assumptions imposed in Theorem 2

are fulfilled in many cases. For example, hypothesis (a) is satisfied when the

semiflow cp is order compact (for the definition see [6, §2]). For conditions

guaranteeing the fulfillment of hypothesis (b) see [8, Theorem l' in the Ap-

pendix].

2. One can define the global versions of the sets B(s), etc. by replacing

everywhere the condition "x £ K(e)" with "x £ X." All theorems proved in

this article extend to the global case. We shall not go into details here; the

interested reader is referred to [13, §4].
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