On morphisms from projective space P^{n} to the Grassmann variety $\operatorname{Gr}(\boldsymbol{n}, \boldsymbol{d})$

By
Hiroshi Tango
(Communicated by Prof. Nagata, April 24, 1975)

§ 1. Introduction and notation.

In [6] we proved that there exist no morphisms, expect constant ones, from the m-dimensional projective space $\boldsymbol{P}^{\boldsymbol{m}}$ to the Grassmann variety $\operatorname{Gr}(n, d)$ if $m>n$.

In the present article, we study such a case that $m=n$ and $n-1>d>0$, and we obtain the following:

Theorem. There exist no morphisms, except constant ones, from \boldsymbol{P}^{n} to $\operatorname{Gr}(n, d)$ if one of the following conditions holds:
i) n is even and $n-1>d>0$.
ii) d is even, $n-1>d>0$ and $(n, d) \neq(5,2)$.

In § 3, we give an example of a non-constant morphism from $\boldsymbol{P}^{\mathbf{s}}$ to $\operatorname{Gr}(3,1)$. Furtheremore, in the case when the defining field is of characteristic 2, we give an example of a non-constant morphism from \boldsymbol{P}^{5} to $\operatorname{Gr}(5,2)$. Using this example, we give an example of indecomposable vector bundle of rank 2 on \boldsymbol{P}^{5}.

We use the same notation as in [6], i. e.; \boldsymbol{P}^{n} is the n dimensional projective space defined over an algebraically closed field k of an arbitrary characteristic $p: H$ is a hyperplane of $\boldsymbol{P}^{n} ; \operatorname{Gr}(n, d)$ is the Grassmann variety which parametrizes d dimensional linear subspaces of P^{n}; $E(n, d)$ is the universal subbundle of rank $d+1$ on $\operatorname{Gr}(n, d)$ and $Q(n, d)$ is the universal quotient bundle of rank $n-d$ on $\operatorname{Gr}(n, d)$;

[^0]$\omega_{a_{0}, a_{1}, \ldots, a_{d}}\left(=\Omega_{n-d-a_{0}, n-d+1-a_{1}, \ldots, n-a_{d}}\right)$ is the Schubert cycle of codimension $\sum_{i=0}^{d} a_{i}$ of $\operatorname{Gr}(n, d)$ defined for an arbitary $(d+1)$-tuple of integers ($a_{0}, a_{1}, \cdots, a_{d}$) such that $n-d \geqq a_{0} \geqq a_{1} \geqq \cdots \geqq a_{d} \geqq 0$ (cf. [6]); these Schubert cycles satisfy the following Pieri's formula
\[

$$
\begin{equation*}
\omega_{a_{0}, a_{1}, \ldots, a_{d}} \omega_{h, 0, \ldots, 0}=\sum \omega_{b_{0,}, b_{1}, \ldots, b_{d}} \tag{1}
\end{equation*}
$$

\]

where the summation runs over all the $(d+1)$-tuples of integers (b_{0}, b_{1}, \cdots, b_{d}) which satisfy the relation,

$$
n-d \geqq b_{0} \geqq a_{0} \geqq b_{1} \geqq a_{1} \geqq b_{2} \geqq \cdots \geqq a_{d-1} \geqq b_{d} \geqq a_{d} \geqq 0
$$

and

$$
\sum_{i=0}^{d} b_{i}=\sum_{i=0}^{d} a_{i}+h ;
$$

$\operatorname{Dr}(n, d, 0)=\left\{(x, P) \in G r(n, d) \times \boldsymbol{P}^{n} \mid L_{x} \ni P\right\}$ is the flag variety, where L_{x} is the d-dimensional linear subspace of \boldsymbol{P}^{n} which is represented by $x ; c_{i}(E)$ is the i-th Chern class of a vector bundle E and $c(E)=1+$ $c_{1}(E)+c_{2}(E)+\cdots$ is the total Chern class of $E ; \check{E}$ is the dual vector bundle of E.

§ 2. Proof of the theoren.

Let f be a morphism from \boldsymbol{P}^{n} to $\operatorname{Gr}(n, d)$. Let c_{i} and d_{j} be the integers such that

$$
\begin{cases}c_{i}\left(f^{*} \check{E}(n, d)\right)=c_{i} H^{i} & 1 \leqq i \leqq d+1 \tag{2}\\ c_{j}\left(f^{*} Q(n, d)\right)=d_{j} H^{j} & 1 \leqq j \leqq n+d\end{cases}
$$

Then, we have

$$
\begin{align*}
& \left(1-c_{1} t+c_{2} t^{2}+\cdots+(-1)^{d+1} c_{d+1} t^{d+1}\right)\left(1+d_{1} t+d_{2} t^{2}+\cdots+d_{n-d} t^{n-d}\right) \tag{3}\\
& :
\end{align*}
$$

where t is an indeterminate, cf. [6].
When $c_{d+1} d_{n-d}=0$, we see easily that $c_{1}=0$. This implies that $f\left(\boldsymbol{P}^{n}\right)$ is one point, cf. the proof of [6, Corollary 4.2]. Thus we may assume that $c_{d+1} \ddot{d}_{n-d} \neq 0$. The theorem is proved if we show that this assumption leads to a contradiction. Since $n d$ is even, we have that c_{1}, c_{2}, \cdots, $c_{d+1}, d_{1}, d_{2}, \cdots, d_{n-d}$ are positive integers and $a={ }^{n+1} \sqrt{c_{d+1} d_{n-d}}$ is a po-
sitive integer, by virtue of [6, Lemma 3.3]. Set

$$
G(t)=1-C_{1} t+C_{2} t^{2}+\cdots+(-1)^{d+1} C_{d+1} t^{d+1}
$$

and

$$
H(t)=1+D_{1} t+D_{2} t^{2}+\cdots+D_{n-d} t^{n-d}
$$

where

$$
C_{i}=c_{i} / a^{i} \text { and } D_{j}=d_{j} / a^{j} \quad(1 \leqq i \leqq d+1,1 \leqq j \leqq n-d)
$$

Then, we have

$$
\begin{equation*}
G(t) H(t)=1+(-1)^{d+1} t^{n+1}, \tag{4}
\end{equation*}
$$

and hence C_{i}, D_{j} are positive integers.
Case (i). Suppose that n is even and $n-1>d>0$. Since $\operatorname{Gr}(n, d)$ and $\operatorname{Gr}(n, n-d-1)$ are isomorphic to each other and since $d+1$ or $n-d$ is odd, we may assume, furtheremore, that $d+1$ is odd. By virtue of the equality (4), we have

$$
G(-1) H(-1)=2 .
$$

Hence, we have

$$
1+d+1 \leqq 1+C_{1}+C_{2}+\cdots+C_{d+1}=G(-1) \leqq 2
$$

This contradicts the assumption that $d>0$.
In order to prove the theorem in case (ii), we need the following lemma.

Lemma 1. Let n be odd, d even, and $n-1>d>0$. Suppose that there exists a non-constant morphism from P^{n} to $\operatorname{Gr}(n, d)$. Let C_{i} and D_{j} be as above, then $n+1=2(d+1)=2(n-d), C_{1}=C_{2}=$ $\cdots=C_{d}=D_{1}=D_{2}=\cdots=D_{n-d-1}=2$ and $C_{d+1}=D_{n-d}=1$.

Proof. Set $2 s=n+1$. We may assume that $n-d \geqq s .1-t$ divides $G(t)$ since $G(1) H(1)=0$ and $H(1) \neq 0$. Hence, we have

$$
\frac{G(t)}{1-t} \cdot H(t)=1+t+t^{2}+\cdots+t^{n}
$$

Therefore, $H(1)$ divides $n+1(=2 s)$. This and the fact that $H(1)=$ $1+D_{1}+D_{2}+\cdots D_{n-d} \geqq 1+n-d \geqq 1+s$, show that $H(1)=2 s$. Now we show that $D_{1} \geqq 2$. Assume that $D_{1}=1$. Then, by (4), we have

$$
C_{2}=D_{1}^{2}-D_{2}=1-D_{2} \leqq 0
$$

This contradicts the assumption that $C_{2}>0$. Next we claim that D_{1}, D_{2}, $\cdots, D_{n-d-1} \geqq 2$. In order to see it let us suppose to the contary, that there exists a positive interger $i \leqq n-d-1$ such that $D_{i}=1$. The assertion is proved if we show that this assumption leads a contradiction Set $j=\min \left\{i \mid D_{i}=1\right\}$. Since $D_{1} \geqq 2, D_{j-1} \geqq 2$. It is easy to see that $H(t)$ $=t^{n-d} H\left(t^{-1}\right)$ cf. [6, §3]. Hence, we have

$$
1=D_{n-d}, D_{1}=D_{n-d-1}, \quad D_{2}=D_{n-d-2}, \cdots
$$

Therefore, we have $2 j \leqq n-d$. Since ($)_{, j, 0, \ldots, 0}$ is numerically non-negative, so is $f^{*}\left(\omega_{j, j, 0, \ldots, 0}(c f . \quad[6\right.$, Corollary 1,2]). On the other hand

$$
\begin{aligned}
& f^{*} \omega_{j, j, 0 ; \ldots, 0}=f^{*}\left(\omega_{j, 0, \ldots, n}^{2}-\omega_{j+1,0, \ldots, 0} \omega_{j-1,0, \ldots, 0}\right) \quad \text { (cf. (1) and (2)) } \\
& \quad=f^{*}\left(c_{j}(Q(n, d))\right)^{2}-f^{*}\left(c_{j+1}(Q(n, d))\right) f^{*}\left(c_{j-1}(Q(n, d))\right) \\
& \quad=\left(d_{j}{ }^{2}-d_{j+1} d_{j-1}\right) H^{2 j} \\
& \quad=\left(D_{j}{ }^{2}-D_{j+1} D_{j-1}\right) a^{2 j} H^{2 j} .
\end{aligned}
$$

Since $\mathrm{D}_{j}{ }^{2}-D_{j+1} D_{j .-1} \leqq 1-2<0$, this contradiets the fact that $f^{*} \omega_{j, j, 0, \ldots, 0}$ is numerically non-negative. Hence, we have

$$
\begin{aligned}
n+1 & =H(1)=1+D_{1}+D_{2}+\cdots D_{n-d} \leqq 1+2(n-d-1)+1 \\
& =2(n-d) \leqq 2 s .
\end{aligned}
$$

This shows that $n-d=s$ and $D_{1}=D_{2}=\cdots=D_{n-d-1}=2$. It is easy to see that $C_{1}=C_{2}=\cdots=C_{d}=2$ by virtue of (4). q.e.d.

Let us continue the proof of the theorem.
Case (ii). Let n be odd, d even, $n-1>d>0$ and $(n, d) \neq$ $(5,2)$. Assuming that there exists a mon-constant morphism from \boldsymbol{P}^{n} to $\operatorname{Gr}(n, d)$, we show that this assumption leads to a contradiction. Let a and D_{i} be as above. Since $(n, d) \neq(5,2)$, we have $d \geqq 4$ and $D_{1}=D_{2}$ $=D_{3}=2$. Therefore, we have

$$
\begin{aligned}
f^{*} \omega_{2,2,0, \ldots, 0} & =f^{*}\left(\omega_{2,0, \ldots, 0}^{2}-\omega_{3,0, \ldots, 0} \omega_{1,0, \ldots, 0}\right) \\
& =\left(D_{2}{ }^{2}-D_{3} D_{1}\right) a^{4} H^{4}=0 .
\end{aligned}
$$

This shows that

$$
\begin{aligned}
0 & =f^{*}\left(\omega_{2,2,0, \ldots, 0}\left(\omega_{n-d-2,0, \ldots, 0}\right)\right. \\
& =f^{*}\left(\omega_{n-d, 2,0, \ldots, 0}+f^{*}()_{n-d-1,2,1,0, \ldots, 0}\right. \\
& +f^{*} \omega_{n-d-2,2,2,0, \ldots, 0} \quad(\mathrm{cf.} .(1)) .
\end{aligned}
$$

Since $f^{*} \omega_{n-1-1,2,1,0, \ldots, 0}$ and $f^{*}\left(\omega_{n-d-2,2,2,0, \ldots, 0}\right.$ are numerically non-negative, we have that $f^{*} \omega_{n-d, 2,0, \ldots, 0}=0$. On the other hand we have,

$$
\begin{aligned}
& f^{*}\left(\omega_{n-d, 2,0, \ldots 0}=f^{*}\left(\omega_{\left.\left.n-d, 0, \ldots, 0^{(}\right)_{2,0,0, \ldots, 0}\right)}\right.\right. \\
& \quad=f^{*}\left(c_{n-1}(\Omega(n, d))\right) f^{*}\left(c_{2}(\Omega(n, d))\right) \quad(\text { cf. (6) }) \\
& \quad=D_{n-d} D_{2} a^{n-d+2} H^{n-d+2} \neq 0 .
\end{aligned}
$$

This is a contradiction.
q.e.d.

§ 3. Examples.

Example 1. Let S_{4} be the quadric hypersurface of \boldsymbol{P}^{5} defined by the homogeneous equation

$$
X_{0} X_{1}+X_{2} X_{3}+X_{4} X_{5}=0
$$

Then, it is well-known that $\operatorname{Gr}(3,1)$ is isomorphic to S_{4} (cf. [2] Chapter XIV). Let f be a morphism from \boldsymbol{P}^{3} to S_{4} defined by

$$
f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\left(x_{0}{ }^{2},-x_{1}{ }^{2}, x_{2}{ }^{2}, x_{3}{ }^{2}, x_{0} x_{1}+x_{2} x_{3}, x_{0} x_{1}-x_{2} x_{3}\right) .
$$

It is easy to see that f is not a constant morphism.

Example 2. Let S_{6} be the quadric hypersurface of \boldsymbol{P}^{7} defined by the homogeneous equation

$$
X_{0} X_{1}+X_{2} X_{3}+X_{4} X_{5}+X_{6} X_{7}=0
$$

For a generic point $P=\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$ of S_{8}, let $h(P)$ be the point of $\operatorname{Gr}(5,2)$ which represents the 2 -dimensional linear subspace of \boldsymbol{P}^{5} spanned by the three points

$$
\begin{align*}
& \left(x_{0}^{2}, 0,0, x_{2}^{2}, x_{2} x_{4}+x_{0} x_{7}, x_{2} x_{6}-x_{0} x_{5}\right) \tag{5}\\
& \left(0, x_{0}^{2}, 0, x_{2} x_{4}-x_{0} x_{7}, x_{4}^{2}, x_{4} x_{6}+x_{0} x_{3}\right) \\
& \left(0,0, x_{0}^{2}, x_{2} x_{6}+x_{0} x_{5}, x_{4} x_{8}-x_{0} x_{3}, x_{8}^{2}\right)
\end{align*}
$$

Lemma 2. h is a morphism from S_{e} to $\operatorname{Gr}(5,2)$.

Proof. The plücker coordinate of $h(P)$ is

$$
\begin{aligned}
& \left(x_{0}^{6}, x_{0}^{4}\left(x_{2} x_{6}+x_{0} x_{5}\right), x_{0}{ }^{4}\left(x_{4} x_{6}-x_{0} x_{3}\right), x_{0}{ }^{4} x_{8}{ }^{2}, x_{0}{ }^{4}\left(x_{0} x_{7}-x_{2} x_{4}\right),\right. \\
& \quad-x_{0}{ }^{4} x_{4}{ }^{2},-x_{0}{ }^{4}\left(x_{4} x_{6}+x_{0} x_{3}\right), x_{0}{ }^{4}\left(x_{1} x_{4}+x_{3} x_{7}\right), x_{0}{ }^{4}\left(x_{1} x_{8}-x_{3} x_{5}\right), \\
& x_{0}{ }^{4} x_{3}{ }^{2}, x_{0}{ }^{4} x_{2}^{2}, x_{0}{ }^{4}\left(x_{2} x_{4}+x_{0} x_{7}\right), x_{0}{ }^{4}\left(x_{2} x_{6}-x_{0} x_{5}\right), x_{0}{ }^{4}\left(x_{5} x_{7}-x_{1} x_{2}\right), \\
& \quad-x_{0}^{4} x_{5}^{2}, x_{0}^{4}\left(x_{1} x_{8}+x_{3} x_{5}\right), x_{0}{ }^{4} x_{7}{ }^{2},-x_{0}{ }^{4}\left(x_{1} x_{2}+x_{5} x_{7}\right), x_{0}{ }^{4}\left(x_{3} x_{7}\right. \\
& \left.\left.\quad-x_{1} x_{4}\right), x_{0}{ }^{4} x_{1}{ }^{2}\right) .
\end{aligned}
$$

Hence, it is easy to see that h is a morphism.
q.e.d.

Let S_{5} be the hyperplane section of S_{6} by $x_{0}-x_{1}=0$ and g be the morphism from S_{5} to \boldsymbol{P}^{5} defined by

$$
\begin{equation*}
g(Q)=\left(y_{3}, y_{5}, y_{7},-y_{2},-y_{4},-y_{6}\right) \tag{6}
\end{equation*}
$$

where $Q=\left(y_{0}, y_{0}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}\right)$ is a generic point of S_{5}. Since

$$
\begin{aligned}
& y_{3}\left(y_{0}^{2}, 0,0, y_{2}^{2}, y_{2} y_{4}+y_{0} y_{7}, y_{2} y_{6}-y_{0} y_{5}\right)+y_{5}\left(0, y_{0}^{2}, 0, y_{2} y_{4}-y_{0} y_{7}, y_{4}^{2},\right. \\
& \left.y_{4} y_{8}+y_{0} y_{3}\right)+y_{7}\left(0,0, y_{2} y_{6}+y_{0} y_{5}, y_{4} y_{6}-y_{0} y_{3}, y_{6}^{2}\right) \\
& \quad=y_{0}^{2}\left(y_{3}, y_{5}, y_{7},-y_{2},-y_{4},-y_{6}\right) .
\end{aligned}
$$

the point $g(Q)$ lies on the plane represented by $h(Q)$. Hence, we have

Lemma 3. (h, g) is a morphism from S_{5} to the flag variety $\operatorname{Dr}(5,2,0)$.

From now on we assume that the defining field is of charactristic 2. Let f be the morphism from P^{5} to S_{5} defined by

$$
\begin{aligned}
& f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \\
& \quad=\left(x_{0} x_{1}+x_{2} x_{3}+x_{4} x_{5}, x_{0} x_{1}+x_{2} x_{3}+x_{4} x_{5}, x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}, x_{5}^{2}\right)
\end{aligned}
$$

It is easy to see that $h \cdot f$ is not a constant morphism.
Set $h^{\prime}=h \cdot f$ and $g^{\prime}=g \cdot f$. Then, Lemma 3 shows that the vector bundle $h^{\prime *}(\check{E}(5,2))$ contains $g^{* *}\left(\mathcal{O}_{\boldsymbol{P}^{5}}(-1)\right)$ as a sublinebundle. We show that the quotient bundle $h^{\prime *}(\check{E}(5,2)) / g^{*}\left(\mathcal{O}_{\boldsymbol{P}^{5}}(-1)\right)$ is an in.
decomposable bundle of rank 2. Let c_{1}, c_{2} and c_{3} be integrs such that

$$
c_{i}\left(h^{\prime *}(\check{E}(5,2))\right)=c_{i} H^{t} \quad i=1,2,3 .
$$

Then, we have $c_{1}=2 a, c_{2}=2 a^{2}, c_{3}=a^{3}$ with a positive integer a, by virtue of Lemma 1. Hence, the total Chern class of $h^{\prime *}(\breve{E}(5,2))$ is

$$
1-2 a H+2 a^{2} H^{2}-a^{3} H^{3}=(1-a H)\left(1-a H+a^{2} H^{2}\right)
$$

This shows that the total Chern class of

$$
\begin{aligned}
& h^{\prime *}(\breve{E}(5,2)) / g^{\prime *}\left(\mathcal{O}_{P 5}(-1)\right) \text { is } \\
& 1-a H+a^{2} H^{2}
\end{aligned}
$$

and the hundle is indecomposable.

Kyoto University of Education

Bibliography

[1] Hartshorne, R. Varieties of small codimension in projective space. To appear.
[2] Hodge, W, V, D, and Pedoe, D. Methods of algebraic geometry 2, Cambridge Univ. Press 1952.
[3] Horrocks, G, and Mumford, D. A rank 2 bundle on \mathbf{P}^{4} with 15,000 symmetries. Topology 12. (1973) 63-81.
[4] Maruyama, M. On a family of algebraic vector bundles. in Number Theory, Algebraic Geometry, and Commutative algebra, Tokyo (1973) 95-146.
[5] Sato, E. On uniform vector bundles. To appear.
[6] Tango, H. On (n-1)-dimensional projective spaces contained in the Grassmann variety Gr ($\mathrm{n}, 1$). J. Math. Kyoto Univ. Vol. 14-3 (1974) 415-460.
[7] Tango, H. An example of indecomposable vector bundle of rand $n-1$ on \mathbf{P}^{n}. To appear.

[^0]: *) The work was supported by Sakkokai Foundation.

