Bull. Korean Math. Soc. 46 (2009), No. 4, pp. 803-819
DOI 10.4134/BKMS.2009.46.4.803

ON MULTI-AUTHORITY CIPHERTEXT-POLICY
ATTRIBUTE-BASED ENCRYPTION

SASCHA MULLER, STEFAN KATZENBEISSER, AND CLAUDIA ECKERT

ABSTRACT. In classical encryption schemes, data is encrypted under a
single key that is associated with a user or group. In Ciphertext-Policy
Attribute-Based Encryption(CP-ABE) keys are associated with attributes
of users, given to them by a central trusted authority, and data is en-
crypted under a logical formula over these attributes. We extend this
idea to the case where an arbitrary number of independent parties can
be present to maintain attributes and their corresponding secret keys.
We present a scheme for multi-authority CP-ABE, propose the first two
constructions that fully implement the scheme, and prove their security
against chosen plaintext attacks.

1. Introduction

Ciphertext-Policy Attribute-Based Encryption (CP-ABE) makes it possible
to encrypt data under an access policy, specified as a Boolean formula over
attributes. Ciphertexts can only be decrypted by users who possess all at-
tributes required to satisfy the access policy. Decryption is performed by using
secret attribute keys; one such attribute key corresponds to one attribute of a
user. Thus, only a user who possesses the right number and combination of
these secret keys is able to access the data. Common to most previous ABE
schemes is the existence of a central trusted authority (master) that knows a
secret master key and distributes attribute keys to eligible users. However, for
many practical scenarios that benefit from the use of attribute-based encryp-
tion, there is no central authority that is able to maintain all attributes and
distribute secret attribute keys.

In this paper we introduce the concept of Distributed Attribute-Based En-
cryption (DABE), which allows to mitigate the above-mentioned problem. In
this scenario, a central master is only responsible for the distribution of secret
user keys. In contrast to standard CP-ABE schemes, this party is not involved

Received December 20, 2008.

2000 Mathematics Subject Classification. 94A60.

Key words and phrases. attribute-based encryption, bilinear groups.

The preliminary version of this paper appeared in the proceedings of the International
Conference on Information Security and Cryptology (ICISC) 2008.

(©2009 The Korean Mathematical Society

803

804 S. MULLER, S. KATZENBEISSER, AND C. ECKERT

in the creation of secret attribute keys. The latter task can independently be
performed by several attribute authorities. In our scheme every attribute is
associated with a single attribute authority, but each attribute authority can
be responsible for an arbitrary number of attributes. Every attribute authority
has full control over the structure and semantics of its attributes. An attribute
authority generates a public attribute key for each attribute it maintains; this
public key is available to every user. Furthermore, the attribute authorities
determine eligible users and distribute personalized secret attribute keys over
an authenticated and trusted channel to them.

To encrypt a message, a user first formulates his access policy. Depending
on the construction the form of this policy may be a Boolean formula, a linear
secret sharing scheme, or a different formalism. The user can finally encrypt a
message under a policy by using the public keys corresponding to the attributes
occurring in the policy. To decrypt a ciphertext, a user needs at least access
to some set of attributes (and their associated attribute keys) which satisfies
the access policy. If he does not already possess these keys, he may query the
attribute authorities for the secret keys corresponding to the attributes he is
eligible for. A formal definition of a DABE scheme can be found in Section 2.

Attribute-Based Encryption was first proposed by Goyal et al. [9] in the
form of key-policy attribute-based encryption (KP-ABE), based on the work
of Sahai and Waters [11]. In KP-ABE, users are associated with access poli-
cies and ciphertexts are encrypted with sets of attributes. The access policies
describe which ciphertexts users can decrypt. The first CP-ABE scheme was
presented by Bethencourt, Sahai and Waters [2], followed by some cryptograph-
ically stronger CP-ABE constructions that allowed reductions to the Decisional
Bilinear Diffie Hellman Problem [6, 8], but imposed restrictions that the origi-
nal CP-ABE does not have. There is only one attempt at multi-authority CP-
ABE, proposed by Chase [5] as an extension of her multi-authority threshold
ABE construction. However, the scheme does not provide the full flexibility of
a DABE scheme and can only be used for a constrained type of access policies.

In this paper we first formally define the concept of Distributed Attribute-
Based Encryption and introduce the attacker model considered in the work
(Section 2). Subsequently, we give two DABE constructions (Sections 3 and 4);
the first one is very efficient, but its security can be proven only in an idealized
model (the generic group model), whereas the second construction, which is a
simple extension of a recent work by Waters [14], can be proven secure under a
number-theoretic assumption, but is less efficient and requires a weaker attacker
model. Finally, we conclude in Section 5.

2. Distributed attribute-based encryption

In this section we formally define the concept of Distributed Attribute-Based
Encryption and introduce the attacker model that is used to prove the security
of a DABE scheme.

ON MULTI-AUTHORITY CIPHERTEXT-POLICY 805

2.1. The DABE scheme

The DABE scheme consists of seven algorithms: Setup, CreateUser, Cre-
ateAuthority, RequestAttributePK, RequestAttributeSK, Encrypt and Decrypt.
The description of these algorithms is as follows:

Setup: The Setup algorithm takes as input the security parameter 1%. It
outputs the public key PK which is used in all subsequent algorithms
and the secret master key MK.

CreateUser(PK, MK, u): The CreateUser algorithm takes as input the
public key PK, the master key MK, and a user name u. It outputs a
public user key PK,, that will be used by attribute authorities to issue
secret attribute keys for u, and a secret user key SK,, used for the
decryption of ciphertexts.

CreateAuthority (PK,a): The CreateAuthority algorithm is executed
by the attribute authority with identifier a once during initialization.
It outputs a secret authority key SK,.

RequestAttributePK(PK, A, SK,): The RequestAttributePK algorithm
is executed by attribute authorities whenever they receive a request
for a public attribute key. The algorithm checks whether the authority
is responsible for the attribute 4. If this is the case, the algorithm
outputs a public attribute key PK 4, otherwise NULL.

RequestAttributeSK(PK, A, SK,, u,PK,): The RequestAttributeSK
algorithm is executed by the attribute authority with identifier ¢ when-
ever it receives a request for a secret attribute key. The algorithm
checks whether it has authority over attribute A and whether the user
u with public key PK,, is eligible for A. If this is the case, RequestAtiri-
buteSK outputs a secret attribute key SK 4, for user u. Otherwise,
the algorithm outputs NULL.

Encrypt(PK, M,A,PK4,,...,PK4,): The Encrypt algorithm takes as
input the public key PK, a message M, an access policy A and the
public keys PK 4,,...,PK 4, corresponding to all attributes occurring
in the policy A. The algorithm encrypts M with A and outputs the
ciphertext CT.

Decrypt(PK, CT, A, SK,,,SK A, v, .-, 5K 4y u): The Decrypt algorithm
gets as input a ciphertext CT produced by the Encrypt algorithm,
an access policy A under which CT was encrypted, and a key ring
SKu, SK 4, u, -+, SKay u for user u, which includes the secret user
key SK, and secret attribute keys SK4, 4, ..., 5K, for attributes
Ai,..., Ay. The algorithm Decrypt decrypts the ciphertext CT and
outputs the corresponding plaintext M if the attributes Ajp,..., Ay
were sufficient to satisfy A; otherwise it outputs NULL.

Note that this scheme differs from CP-ABE [2] in that the two algorithms

CreateAuthority and RequestAttributePK were added, and the algorithm Key-
Gen of CP-ABE is split into CreateUser and RequestAttributeSK. It also differs

806 S. MULLER, S. KATZENBEISSER, AND C. ECKERT

from the construction [5], where all attribute authorities are maintained by the
central authority. It is crucial that RequestAttributeSK does not need any com-
ponents of the master key MK as input, so that every attribute authority is
able to independently create attributes. However, we still require that a trusted
central party maintains users (by running CreateUser).

2.2. Security model

We model the security of DABE in terms of a game between a challenger
and an adversary, where the challenger plays the role of the master and all
attribute authorities.

Setup: The challenger runs the Setup algorithm and gives the public key
PK to the adversary.

Phase 1: The adversary asks the challenger for an arbitrary number of
user keys. The challenger calls CreateUser for each requested user and
returns the resulting public and private user keys to the adversary.
For each user the adversary can request an arbitrary number of secret
and public attribute keys, which the challenger creates by calling Re-
questAttributeSK or RequestAttribute PK, respectively. During the first
request for a public or private key for an attribute of an authority a,
the challenger creates the authority by a call to CreateAuthority; he
stores the secret authority key for future use (but does not make the
key available to the attacker).

Challenge: The adversary submits two messages My and M; and an
access policy A such that none of the users that he created in Phase
1 satisfies A. (If any user from Phase 1 satisfies A, the challenger
aborts.) The challenger flips a coin b, encrypts M, under A, and gives
the ciphertext CT to the adversary.

Phase 2: Like in Phase 1, the adversary may create an arbitrary number
of users. He can also request more secret attribute keys for the users
he created in Phase 1 and 2, but if any secret attribute key would
give the respective user a set of attributes needed to satisfy A, the
challenger aborts. As before, the adversary can always request any
public attribute key.

Guess: The adversary outputs a guess b’ of b.

The advantage of the adversary in this game is defined as e = Pr[b) = b] —
%, where the probability is taken over all coin tosses of both challenger and
adversary. A DABE scheme is called secure if all polynomial time adversaries
have at most a negligible advantage in the above game, i.e., if €, viewed as
a function of the security parameter k used for initialization of the scheme,

satisfies €(k) < 1/p(k) for all polynomials p(-) and sufficiently large k € N.

ON MULTI-AUTHORITY CIPHERTEXT-POLICY 807

3. DABE construction

We next give a first and very efficient construction of a DABE scheme,
which is based on bilinear groups and requires access policies in the form of
Boolean formulas written in Disjunctive Normal Form (DNF); the algorithms
introduced in Section 2 are implemented as follows:

Setup: The Setup algorithm chooses a pairing e : G X G — Ggp of
order p [3]. Next it chooses a generator ¢ € G, and two random
group elements P,Q € G. The public key of the system is PK =
{G,Gr,e,g,P,e(g,Q)}, while the secret master key is given by MK =
Q. Note that our construction can easily be modified to work with
asymmetric pairings e : G; X Go — G, which can be more efficient for
high security settings [7]. In this case, let g be a generator of Gy and
choose the random elements P, Q € Go.

CreateUser(PK, MK, u): The algorithm CreateUser chooses a secret
mk, € Z, and outputs the public key PK, := mku and the private
key SK, := MK -P™ku = @ . P™ku for user w.

CreateAuthority(PK,a): The algorithm CreateAuthority chooses uni-
formly and randomly a hash function H,, : {0,1}* — Z,, from a large
finite family of hash functions, which we model as random oracles. It
returns as secret key the index of the hash function SK, := z,.

RequestAttributePK (PK, A, SK,): If A is handled by the attribute au-
thority a, RequestAttributePK returns the public attribute key of A,
which consists of two parts:

PRy i= (PR i= g% (), PR, 1= e(g, Q) o (V).

This public key can be requested from the attribute authority by any-
one, but RequestAttributePK can only be executed by the respective
authority, as it requires the index of the hash function SK, as input.

RequestAttributeSK (PK, A, SK,, u, PK,): After determining that the
attribute A is handled by a, the authority tests whether user u is
eligible for the attribute A. (The implementation of this operation is
application-dependent and thus outside the scope of this paper.) If this
is not the case, RequestAttributeSK returns NULL, else it outputs the
secret attribute key SK 4 ,, := PK, Tsxa (A) — g™k Hsika (A) - Note that
the recipient u can check the validity of this secret key by testing if
e(PK'4,SK,) = PK'} -e(SK 4.4, P).

Encrypt(PK, M, A, PK 4,,...,PK4,): A policy in DNF can be written

as
N
A=\ A 4],
j=1 \ Aes;
where N sets Si, ..., Sy denote attributes that occur in the j-th con-

junction of A. The encryption algorithm iterates over all j =1,..., N,

808 S. MULLER, S. KATZENBEISSER, AND C. ECKERT

generates for each conjunction a random value R; € Z, and constructs
a tuple CT; = <Ej, E;,E;’>, where

(1) Ej:==M-(]] PKD™, Ej:=P%, and Ef :=([] PK)™.
Aes; Aes;

The ciphertext CT is obtained as tuple CT := (CTq,...,CTy).
Decrypt(PK,CT, A, SK,,, SK A, u,---,5K 4y,4): To decrypt a ciphertext
CT, Decrypt first checks whether any conjunction of A can be satisfied
by the given attributes, i.e., whether the input SK 4, 4,...,SKay 4
contains at least secret keys for all attributes occurring in a set .S; for
some 1 < j < N. If this is not the case, the algorithm outputs NULL,

otherwise
e([T SKiu, E})
i€S;
e(BY,SKy) -
It is easy to see that the decryption is correct. Let a; := 3~ 45 Hsk, , (A),
where for all A, a4 is the attribute authority of A. Then

(2) Ej =M e(g,Q)“"%, EJ =g

and

M=E;-

e([T SKiu, E})
€S,

7 e(EY,SK,)

e(g™e s, P
(g»iFi Q- Pmku)
e(g’ P)Rj mk,, a;
e(g, Q) Bi - e(g, P)Rimkua

= M.e(g’Q)a‘jRj . c

=M -e(g, Q)ajRj =M.

3.1. Security

We closely follow the structure of the security proof of the CP-ABE scheme
introduced in [2]. First we show how any adversary who plays the DABE game
of Section 2.2 (denoted Adv; in the following) can be used to construct an
adversary in a slightly modified game (denoted Advsy). Then we prove that no
such Advs can exist, so no Adv; can exist, either. We define the modified game
in the following manner: The phases Setup, Phase 1, and Phase 2 are equal
to the DABE game. In the Challenge phase, the adversary submits an access
policy A such that none of the users that he created in Phase 1 satisfies A.
The challenger flips a coin b, and creates a ciphertext for the access policy A
according to Eq. (1), but instead of computing E; as in Eq. (2), he computes
E; as

e(gag)ej, lfb:()v
where all 0; are uniformly and independently chosen random elements of Z,,.

The task of Adv, is thus to distinguish the two group elements e(g, Q)% and
6(97 g)ej of GT'

aiRi i p =
Ej:{e(g,c)) L ifb=1

ON MULTI-AUTHORITY CIPHERTEXT-POLICY 809

Lemma 1. If there exists an adversary Advy who has advantage of € to win
the original game, then there exists an adversary Advy which wins the modified
game with advantage €/2.

Proof. Given an adversary Adv; that has advantage € in the DABE game, we
can construct an adversary Advs as follows. Advy simulates Advy. In the phases
Setup, Phase 1, and Phase 2, Adv, forwards all messages he receives from
Adv; to the challenger and all messages from the challenger to Advy. In the
Challenge phase, Adv, receives two messages My and M; from Adv; and the
challenge C' (which contains elements F; that are either e(g, Q)% or e(g, g)%
for all 1 < j < N) from the challenger. He flips a coin 3, multiplies all E; of C
by Mg, and sends the resulting ciphertext as C’ to Advy. When Adv; outputs a
guess (', Advy outputs 1 if 5/ = 3, and 0 if 3’ # 3. If the components E; of C
satisfy E; = e(g, Q)% %, then Advy’s challenge given to Adv; is a well-formed
DABE ciphertext and Adv; has advantage € of guessing the correct 8 = 3. If
E; = e(g,9)%, the challenge is independent of the messages My and M, so
the advantage of Advsy is 0. Thus, we have

Pr[Adv, succeeds] = Pr[E; = e(g,Q)aiRJ] Pr[f =B E; = e(g7Q)ajRj]
+Pr[E; =e(g,9)"] Pr[B’ # B|E; = e(g,9)"]
Jo(l,), 11 e
- 2\2 2 2 2

and the overall advantage of Advs is 5, as required. O

We prove the security of our DABE construction in the generic group model
[12], with the extensions for bilinear groups with a pairing e : G; X Gy — Gr
developed in [4], which we simplify slightly for our case where G; = Go. In
particular, we show that any polynomial time adversary Advs, who plays the
modified game cannot have non-negligible advantage to distinguish e(g, Q)% %
from e(g,g)% in his view of the protocol. Lemma 1 finally implies that there
exists no efficient successful attacker Advy either, which proves the security of
the DABE scheme.

In the generic group model, the adversary is given only encoded versions
of all group elements, which look like random strings. For groups G and G
of prime order p and a generator g € G we use random maps &, &7 : Z, —
{0,1}™ for sufficiently large m to encode any element §* or e(g, §)* as a random
string £(z) or &r(x). The maps £ and & must be invertible, so that the
representations of group elements can be transformed back to elements of G
and Gr. To manipulate these encoded group elements, the attacker gets access
to five oracles, which compute multiplication and division operations in G and
G and the pairing operation e. All oracles take as input string representations
of group elements. Given two string representations £(a) and £(b) of elements
§% 3% € G, the adversary can query two different oracles (the multiplication

and the division oracle) for the result of the group operations §*-§” and §*-§—°.

810 S. MULLER, S. KATZENBEISSER, AND C. ECKERT

Both oracles will map the coded inputs £(a) and £(b) back to the respective
elements of G using !, execute the group operation and map the result to a
string using £. From the view of the adversary, the multiplication oracle returns
&(a + b), while the division oracle returns £(a — b). The oracles for computing
multiplications and divisions in G operate analogously, by using the encoding
&r instead of €. Note that no oracle will accept input from different encodings
(for example, one cannot feed a value &7 (b) into an oracle for a group operation
of G). The pairing oracle can be implemented easily: Given two encodings &(a)
and £(b), the encoding of the pairing is given by &7 (ab). A scheme proven secure
in this model is called generically secure and can only be broken by exploiting
specific algebraic properties of the groups used in an implementation.

Theorem 1. Let Advs be a polynomial time adversary in the generic group
model who plays the modified DABE security game and makes q oracle queries.
Then Adve has advantage at most O(q?/p) to win the modified game, where p
is the order of the bilinear group.

Proof. Let Advy be a polynomial time adversary against the modified security
game. Advs plays against a simulator, who takes over the role of the challenger
and manages all oracles. In particular, the simulator operates in the following
way:
Setup: The simulator chooses G, Gr, e, g and random exponents p,q €
Z,,. Furthermore the simulator chooses two random encoding functions
&, &r for the implementation of the group and pairing oracles. The
public key is given to the adversary in encoded form, i.e., the adversary
obtains £(1),£(p) and &r(G) as encoded versions of g, P and e(g, Q).
Phase 1: When the adversary calls CreateUser for some u, the simulator
chooses a random mk,, € Z, and returns encoded versions §(mk,,) and
&(@+ p - mk,,) of the user keys PK,, and SK,,.

Whenever the simulator gets a request involving an attribute A that
the adversary has not used before, he chooses a new unique random
value mk 4, which simulates the term Hgk, (A) of an attribute .A main-
tained by attribute authority a; the association between values mk 4
and attributes A is stored internally by the simulator. If the adversary
queries for an attribute A that was used before, the value mk 4 is re-
trieved from storage. During every request of a public attribute key for
A (a call to RequestAttributePK), the simulator returns £(mk_4) and
ér(Gmky) as encoded versions of the public attribute keys PK’y and
PKZ‘. If queried for a secret attribute key (through a call to Request-
AttributeSK), the simulator returns &(mk, mk 4) as encoded secret key
SK 4 -

Whenever the adversary makes oracle queries for group operations
or the pairing, the adversary gets the desired result: on input &7 (a) and
&r(b), the multiplication oracles returns {7 (a+b) and the division oracle
returns &r(a — b). Similarly, on input £(a) and £(b), the multiplication

ON MULTI-AUTHORITY CIPHERTEXT-POLICY 811

oracle returns £(a + b) and the division oracle returns £(a — b). On
input £(a) and £(b), the pairing oracle returns &r(ab).

Challenge: When the adversary asks for a challenge by submitting the
access policy A, the simulator flips a coin b. Then he chooses a random
R; € Z, for each conjunction in A and computes a; = ZAeSj mKk 4.
If b = 0, he sets 6; to a random value from Z,, otherwise 0; :=
ga;R;. Finally he returns encoded components of the ciphertext CT}
as (61(0,), E(5R;), E(a; ;)).

Phase 2: The simulator behaves as in Phase 1. However, the simulator
refuses any secret attribute key that would give the respective user a
set of attributes satisfying A.

Due to the restriction of the generic group model, all values that the adver-
sary can access at any time during his attack are either encodings of random
values of Z, (namely 1,p,§, mk,, mky and), encodings of combinations of
these values given by the simulator (such as mk, mk 4 representing SK 4 ,,), or
results of oracle queries, which are encodings of sums and differences of such
values. We keep track of the knowledge of an attacker by using symbolic alge-
braic expressions over these variables which represent inputs of oracle queries.
For simplicity of notation, we will often drop the encoding functions; however
we stress that the attacker only has encoded values available.

Due to the random choice of £ and &7, two terms that evaluate to different
values over Z, yield different encodings when mapped by & and &7, except if
due to the choice of the random encodings two different values “accidentally”
are mapped to the same string. Similar to the proof in [2] it can be shown that
the probability of this event is O(¢?/p) where ¢ is the number of oracle queries
that the adversary makes. In the following we will condition on the event that
no such random collisions occur.

Now, under this assumption consider how the adversary’s views differ be-
tween the case where the 6, is random (b = 0) and the case where 0; = ga,;R;
(b = 1). We claim that the views are identically distributed for both cases
and therefore any adversary has no advantage to distinguish between them in
the generic group model. To prove this claim, assume the opposite. Since the
adversary can only test for equality of strings he receives (and all representa-
tions of group elements are random), the only possibility for the views to differ
is that there exist two different terms known to the attacker that evaluate to
the same value in the view where §; = ga;R; (b = 1) for some j, and to a
different value in the view corresponding to b = 0. Call two such terms 4, and
vy and fix the index j. Since 6; only occurs as £r(6;), representing E;, and
elements encoded with & can not be paired, the adversary can only construct
expressions by using the multiplication and division orales for G, resulting in
queries where ¢; appears as an additive term. Thus, v4 and v2 can be written

812 S. MULLER, S. KATZENBEISSER, AND C. ECKERT

as

v =mb; + 1/{,

vy = Y20; + 14
for some v and v that do not contain 6;. Since by assumption 6; = ga;R;
results in 11 = vy, we have y1Ga;R; + V] = 7Y2Ga;R; + v5. Rearranging the
equation yields

vy — vy = (72 — m1)qa; R

Thus, the adversary can construct an oracle query for a term ~yga;R; with
v # 0, by using terms v; and v} in his possession. (We can, without loss
of generality, add the query yga; R; to the queries made by the attacker). It
remains to be shown that, without having a sufficient set of attributes satisfying
A, the adversary cannot construct a query of the form &r(yga,;R;) for any
v € Zp and j from the information that he has. This contradicts the assumption
that the views in the modified game are not identically distributed and proves
the theorem.

After Phase 2, the adversary received the following information from the
simulator, all in encoded form:

e The tuple PK, i.e., £(1),£(p) and £7(G).

e PK, and SK, for an arbitrary number of users, i.e., {(mk,) and £(¢ +
P - mky,).

e PK’, and PK/j for an arbitrary number of attributes, i.e., {(mk4) and
§r(Gmka).

o SK 4, for an arbitrary number of attributes and users, i.e., {(mk,mk 4),
with the restriction that for no user u, he has a sufficient set of secret
attributes keys that satisfies A.

e I, B, and EY of the challenge ciphertext, i.e., {7(0;),£(pR;) and
§(a;Ry).

Furthermore, he possibly obtained arbitrary combinations of these encodings
through queries to the five oracles that implement group operations and the
pairing.

Since ¢ and all R; are random, and a; is defined as a sum of random values
over Z,, the only way to construct &r(vda;R;) is to pair two representations
of terms of G by querying the pairing oracle, so that each of the components
¢,a;, and R; is contained in any of the terms.

First we show how the adversary can find terms containing a; = > ,. s mKk 4
in G, since a; is contained in the required term and thus needs to be contained
in an input term for the pairing oracle. Aside from E; and E;-’ , aj can only
be constructed by querying the multiplication oracles for encodings of terms
containing mk 4 for all A € S; and some j with 1 < j <n. These values occur
only in PK'y, PK’}, and SK 4 ,,. Since PK’; € Gr, it cannot be used as input of
the pairing. Thus, the only possibility for the attacker is to combine any PK’A
and SK 4 ,,. Multiplying representations of PK’, (by calling the multiplication

ON MULTI-AUTHORITY CIPHERTEXT-POLICY 813

oracle) yields representations of terms of the form v} , mk 4 for some v, and
multiplying this by SK 4 ,, for some u and A yields representations of terms of

the form
> <% mky, > Yau mkA> +y) mky
A

u A

for some 7, v, and y4,. Since the adversary does not have all secret attribute
keys corresponding to one user u to satisfy any conjunction of A, no sum
> aYAumky will evaluate to the required a;. Furthermore, the simulator
chooses all mk 4 randomly, so any oracle query involving any sum over) , mk 4
with a set of attributes that does not precisely correspond to the attributes of
the challenge A will not yield a term containing a;. Thus, the first sum of the
above term can not yield a;. The only way that the sum)" , mk 4 evaluates
to a; for some j is as a product of corresponding public attribute keys, which
is obtained by querying the multiplication oracle with all representations of
PK/4, A € S, yielding £(a;). It follows, that to construct a term containing a;,
the adversary has no other option than to use either Ej, EY, or [] 4¢ s; PK/4.
Other terms containing mk 4 are not useful for him.

Next we consider how to obtain terms containing ¢ - ;. None of the values
that the adversary has contains both ¢ and R;. Thus to get a representation
of a term containing the product ¢ - R;, the adversary needs to pair two terms
from G, where each of the values is contained in any term. The only values in
G that contain ¢ are SK,,. We examine all possible results from pairing some
vSK, with some other value. As shown above, we need not consider terms
containing mk 4, since these are not useful for the adversary.

TABLE 1. Results of pairings

Source Term Pairing with SK,, Pairing with E}
PKu/ mku/ Hlku/ (j + ﬁ mku mku/ mku ﬁRJ
SKu/ q+pmky ¢+ qp(mky +mky) GPR; + PP mk, R;
+ 52 mk,, mk,
H PK?A Q zjaj +ﬁmku a; CLjﬁRj
AeS;
E; ﬁR] dﬁR] +]52 mku Rj ﬁQ RJQ
E}I ajRj cjajRj —i—;ﬁmku ajRj ajﬁRJQ-

The first three columns of Table 1 list all remaining combinations. It can be
seen that the only result that contains all ¢, a; and R; is the pairing of some
SK, and some E7 which results in a representation of

ér (ﬁRJ mk,, a; + (ﬁ%Rj).

In order to obtain the required term {7 (vga; R;), the adversary has to eliminate
the first term, pR; mk, a;, which can be done by a call to the division oracle of

814 S. MULLER, S. KATZENBEISSER, AND C. ECKERT

Gr if the adversary has a value &7 (pR; mk,, a;) available. To construct this, he
needs to pair a term containing p with another term. Thus we need to examine
all possible results from pairing SK, or EJ/ (the only terms depending on p)
with another value. Once again, Table 1 lists all possible combinations not
containing terms involving results of the hash oracle. (Including terms given
by the oracles one gets terms of the above form that will not help, either.) We
can conclude from the case analysis that no term of the form &7 (pR; mk, a;)
can be constructed through oracle calls, so &7(vda;R;) cannot be constructed
either. (]

3.2. Performance

Compared to other ABE schemes, the proposed DABE construction is very
efficient. Nearly all operations are group operations in G and Gp. The only
computationally expensive operation, the pairing e : G x G — G, is needed
during decryption exactly two times, no matter how complex the access policy
is. No pairings are needed for any other algorithms. In all other known ABE
schemes, the number of pairings grows at least linearly with the minimum
number of distinct attributes needed for decryption.

4. Waters’ construction

It is easy to modify the CP-ABE constructions from [14] in order to obtain a
DABE construction since the structure of the secret attribute keys is similar to
the DABE construction given in the preceding section. For this construction
the access policy A must be given as a linear secret sharing scheme. For a
formal definition of secret sharing schemes and access structures we refer the
reader to [13]. We define a linear secret sharing scheme (LSSS) as follows [1]:

Definition 1. A secret-sharing scheme IT over a set of parties P is called linear
(over Zy) if

(1) The shares for each party form a vector over Z,.

(2) There exists a matrix M called the share-generating matrix for IT. The
Matrix M has £ rows and n columns. Let p: {1,...,¢} — P a function
that maps each row of M to a party. When we consider the column
vector v = (s,ro,...,T,) where s € Z, is the secret to be shared, and
T2, ...,y € Zyp are randomly chosen, then Muv is the vector of £ shares
of the secret s according to II. The share A; := (Muv); belongs to party

p(i).

It has been shown in [1] that if S is a set of parties that is allowed to receive
the secret according to II (i.e., an authorized subset of the access structure
realized by IT) and I = {i| p(i) € S} is the set of rows of M corresponding to the
elements of S, then there exist constants {w; € Z, }ier, such that) ., wid; = s
for the shares A\; = (Mwv); = M,v. These constants can be found in polynomial
time. In our setting, the parties P resemble attributes, so an encryptor first

ON MULTI-AUTHORITY CIPHERTEXT-POLICY 815

needs to formulate his access policy as a secret sharing scheme II and construct
a matrix M along with a row-labeling function p for it. As in the original
scheme, the encryptor also needs the public keys PK 4 of all attributes used
in the access policy as input to the encryption algorithm. Using the notation
from Section 3, the construction is as follows:

Setup: The Setup algorithm chooses a pairing e : G x G — G of order
p. Next it chooses a generator g € G, and two random group elements
P,Q € G. The public key of the system is PK={G, Gr,e, g, P,e(g,Q)},
while the secret master key is given by MK = Q.

CreateUser(PK,MK, u): The algorithm CreateUser chooses a secret
mk, € Z, and outputs the public key PK, := g™« and the private
key SK,, := MK -P™k« = @ - P™ku for user u.

CreateAuthority(PK, a): The algorithm CreateAuthority chooses uni-
formly and randomly a hash function H,, : {0,1}* — Z,, from a large
finite family of hash functions, which we model as random oracles. It
returns as secret key the index of the hash function SK, := z,.

RequestAttributePK (PK, A, SK,): If A is handled by the attribute au-
thority a, RequestAttributePK returns the public attribute key of A:
PK 4 := gfsxa(A),

RequestAttributeSK (PK, A, SK,, u, PK,): After determining that the
attribute A is handled by a, the authority tests whether user u is eligible
for the attribute A. If this is not the case, RequestAttributeSK returns
NULL, else it outputs the secret attribute key SK 4, := PK, sxa (A) =
gmku Hsk, (A)

Encrypt(PK, M, A, PK4,,...,PK4,): Given an access policy of the
form A = (M, p), Encrypt chooses a random vector ¥ = (8,2, .., Yn)
€ Z;“. For ¢ = 1 to £, it calculates the share A; = M, -v. In addition,
it chooses random 74, ...,7r¢ € Zy. The ciphertext is

CT = (C = Me(9,Q)*,C" = ¢°,
Cl = P)\IPKp(l)_Tlle = g””l’

Cy = PMPK,) ", Dy = g™*).

Decrypt(PK,CT, A,SK,,, SKA, u,--.,5Kayw): If the attributes of
SK A, us -+, SK 4y, satisfy the access structure A, let I be the set of
all row indices of M that are associated with the attributes of SK 4, .,
ooy SKay s e, I ={i|p(i) € {A1,..., An}}. As noted above, there
are constants {w; |i € I}, so that), ;w;A; = s, which can be found
in polynomial time. The algorithm computes

e(C',SKy)/ (H(e(Ci,PKu)'e(Di,SKp(i),u))“’) =e(g,Q)’

iel

816 S. MULLER, S. KATZENBEISSER, AND C. ECKERT

and divides the ciphertext component C' by this value, thus retrieving
M.

The only major difference to the construction from Section 3 is in the algorithms
Encrypt and Decrypt.

4.1. Security

To prove the security of his construction, Waters uses a security assumption
that he introduces in his paper, the decisional g-parallel Bilinear Diffie Hellman
Exponent assumption. He shows that any adversary who breaks the scheme
can be used to construct an algorithm that breaks the decisional g-parallel
BDHE assumption.

This proof also works for the DABE modification. However, we have to
weaken the attack model which is considered. In particular we allow only non-
adaptive key queries, similar to the Multi-Authority Threshold ABE scheme by
Chase [5]: In this scheme, a sequence of calls of CreateUser to request user keys
for a user u and an arbitrary number of calls to RequestAttributeSK to request
all attributes for u are treated as a single call. The adversary will only get the
user keys and secret attribute keys after having submitted the complete set of
attributes for the user. This means that an adversary is not able to adaptively
request secret attribute keys to users, but needs to define the whole set of
attributes that a user has at once. If an adversary wants to add attributes to
a user he has already created, he can create a new key ring for the user by
submitting another sequence of CreateUser, RequestAttributeSK calls. Note
that this constraint prevents the attacker from utilizing the complete flexibility
of the DABE scheme.

We also need to change the scheme to a selectively secure scheme, where the
adversary submits the challenge access structure to the challenger in advance
during an additional Initialization phase. The whole attack model is as follows:

Initialization: The adversary submits a challenge access structure A to
the challenger that he wants to be challenged on.

Setup: The challenger runs the Setup algorithm and gives the global key
PK to the adversary.

Phase 1: The adversary asks the challenger for an arbitrary number of
public attribute keys, which the challenger creates by calling Request-
AttributePK. The adversary also requests an arbitrary number of users
by calling CreateUser and secret attribute keys for each user by calling
RequestAttributeSK. However, he will only receive the secret user keys
and secret attribute keys for each user after he has called RequestAttri-
buteSK for all attributes that he wants the user to have. The adversary
cannot request a set of secret attribute keys that would give a user the
ability to satisfy A. During the first request for a public or private key
for an attribute of an authority a, the challenger creates the authority

ON MULTI-AUTHORITY CIPHERTEXT-POLICY 817

by a call to CreateAuthority; he stores the secret authority key for
future use (but does not make the key available to the attacker).

Challenge: The adversary submits two messages My and M;. The chal-
lenger flips a coin b, encrypts M} under A, and gives the ciphertext CT
to the adversary.

Phase 2: Like in Phase 1, the adversary may create an arbitrary number
of users along with secret attribute keys for them. He can not add secret
attribute keys to users that he has already created, and as before, if any
secret attribute key would give the respective user a set of attributes
needed to satisfy A, the challenger aborts.

Guess: The adversary outputs a guess b of b.

As in the original security definition, the advantage of the adversary is de-
1

fined as € = Pr[b’ = b] — 5, where the probability is taken over all coin tosses
of both challenger and adversary. The scheme is called non-adaptive key query
secure if all polynomial time adversaries have at most a negligible advantage
in the non-adaptive DABE game.

This modified model is from an adversary’s point of view equal to the model
of [14]. Thus, the proof of [14], Section 4.1, can directly be applied to the above

construction.

4.2. Performance

Since /¢ pairings are needed for decryption, the complexity is obviously linear
in the number of rows of the secret sharing matrix M. Since ¢ > n (linear
dependant columns can be eliminated), ¢ is a measure for the complexity of
the matrix. In general, the size of M can grow exponentially in the size of
the policy, but depending on the structure of the desired access policy, smaller
matrices can be found.

5. Conclusion

CP-ABE is a promising concept for next-generation access control. To be
usable in a pervasive environment, the extension of CP-ABE to settings which
support multiple authorities is necessary. In this paper, we proposed a scheme
where an arbitrary, non-static set of independent attribute authorities is able
to issue attributes to users, taking as input only public user keys. A central
trusted authority is only needed for the creation of users.

We also proposed a DABE construction that supports every possible access
policy expressed in DNF and proved its CPA security in the generic group
model. Furthermore, we showed how a recent CP-ABE construction can easily
be extended to fit the DABE scheme, but can be proven secure only under a
weaker attacker model than the one used in the first construction.

In both constructions, the size of the ciphertext might be exponential in the
size of the policy, depending on its structure. However, in practical settings
both constructions are likely to achieve small ciphertexts.

818

S. MULLER, S. KATZENBEISSER, AND C. ECKERT

The proofs of both constructions put constraints on the attacker. The proof

of the first constructions uses Shoup’s generic group model, where the attacker
cannot exploit weaknesses of the underlying groups. The second construction
could only be proven non-adaptive key query secure. A construction that can

be

proven secure under the strong attacker model of Section 2.2 and which does

not utilize the generic group model is left for future research.

(1]
2]
3]
(4]
[5]

[6]

[7]
(8]

[9]

(10]

(11]

References

A. Beimel, Secure schemes for secret sharing and key distribution, Ph. D. thesis, Dept.
of Computer Science, Technion, 1996.

J. Bethencourt, A. Sahai, and B. Waters, Ciphertext-policy attribute-based encryption,
IEEE Symposium on Security and Privacy, 321-334, 2007.

D. Boneh, A brief look at pairings based cryptography, FOCS, 19-26, IEEE Computer
Society, 2007.

D. Boneh and X. Boyen, Short signatures without random oracles and the SDH assump-
tion in bilinear groups, J. Cryptology 21 (2008), no. 2, 149-177.

M. Chase, Multi-authority attribute based encryption, Theory of cryptography, 515-534,
Lecture Notes in Comput. Sci., 4392, Springer, Berlin, 2007.

L. Cheung and C. C. Newport, Provably secure ciphertext policy ABE, ACM Conference
on Computer and Communications Security (Peng Ning, Sabrina De Capitani di Vimer-
cati, and Paul F. Syverson, eds.), 456-465, ACM, 2007.

S. D. Galbraith, K. G. Paterson, and N. P. Smart, Pairings for cryptographers, Discrete
Appl. Math. 156 (2008), no. 16, 3113-3121.

V. Goyal, A. Jain, O. Pandey, and A. Sahai, Bounded ciphertext policy attribute based
encryption, ICALP, 2008.

V. Goyal, O. Pandey, A. Sahai, and B. Waters, Attribute-based encryption for fine-
grained access control of encrypted data, ACM Conference on Computer and Communi-
cations Security (Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati,
eds.), 89-98, ACM, 2006.

S. Miiller, S. Katzenbeisser, and C. Eckert, Distributed attribute-based encryption, 11th
International Conference on Information Security and Cryptology, 2008, to appear.

A. Sahai and B. Waters, Fuzzy identity-based encryption, Advances in cryptology—
EUROCRYPT 2005, 457-473, Lecture Notes in Comput. Sci., 3494, Springer, Berlin,
2005.

[12] V. Shoup, Lower bounds for discrete logarithms and related problems, Advances in

cryptology—EUROCRYPT 97 (Konstanz), 256-266, Lecture Notes in Comput. Sci.,
1233, Springer, Berlin, 1997.

[13] D. R. Stinson, An explication of secret sharing schemes, Des. Codes Cryptography 2

(1992), no. 4, 357-390.

[14] B. Waters, Ciphertext-policy attribute-based encryption: An expressive, efficient, and

provably secure realization, Tech. report, SRI International, 2008, work in progress.

SASCHA MULLER

TECHNISCHE UNIVERSITAT DARMSTADT

HOCHSCHULSTR. 10

D —64289 DARMSTADT

E-mail address: mueller@sec.informatik.tu-darmstadt.de

ON MULTI-AUTHORITY CIPHERTEXT-POLICY 819

STEFAN KATZENBEISSER

TECHNISCHE UNIVERSITAT DARMSTADT

HOCHSCHULSTR. 10

D — 64289 DARMSTADT

E-mail address: katzenbeisser@seceng.informatik.tu-darmstadt.de

CLAUDIA ECKERT

TECHNISCHE UNIVERSITAT DARMSTADT

HOCHSCHULSTR. 10

D —64289 DARMSTADT

E-mail address: eckert@sec.informatik.tu-darmstadt.de

