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Abstract

A popular approach to cost-sensitive learning is to
rescale the classes according to their misclassification
costs. Although this approach is effective in dealing
with binary-class problems, recent studies show that it
is often not so helpful when being applied to multi-
class problems directly. This paper analyzes that why
the traditional rescaling approach is often helpless on
multi-class problems, which reveals that before apply-
ing rescaling, the consistency of the costs must be ex-
amined. Based on the analysis, a new approach is pre-
sented, which should be the choice if the user wants
to use rescaling for multi-class cost-sensitive learn-
ing. Moreover, this paper shows that the proposed ap-
proach is helpful when unequal misclassification costs
and class imbalance occur simultaneously, and can also
be used to tackle pure class-imbalance learning. Thus,
the proposed approach provides a unified framework
for using rescaling to address multi-class cost-sensitive
learning as well as multi-class class-imbalance learning.

Introduction
In classical machine learning and data mining settings, the
classifiers usually try to minimize the number of errors they
will make in classifying new instances. Such a setting is
valid only when the costs of different errors are equal. Un-
fortunately, in many real-world applications the costs of dif-
ferent errors are often unequal. For example, in medical di-
agnosis, the cost of erroneously diagnosing a patient to be
healthy may be much bigger than that of mistakenly diag-
nosing a healthy person as being sick, because the former
kind of error may result in the loss of a life.

Actually, cost-sensitive learning has attracted much atten-
tion from the machine learning and data mining communi-
ties. As it has been stated in the Technological Roadmap
of the MLnetII project (European Network of Excellence in
Machine Learning) (Saitta 2000), the inclusion of costs into
learning has been regarded as one of the most relevant topics
of future machine learning research.

During the past years, many works have been devoted to
cost-sensitive learning. The learning process may involve
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many kinds of costs, such as the test cost, teacher cost, in-
tervention cost, etc., among which the most studied one is
the misclassification cost (Turney 2000). The works on mis-
classification cost can be categorized into two classes fur-
ther, i.e. works on example-dependent cost and on class-
dependent cost. The former assumes that different exam-
ples can have different misclassification costs even though
they belong to the same class and are misclassified to an-
other same class, while the latter assumes that the cost of
misclassifying any example of a certain class to another
certain class will be the same. Although there are a few
works on the former (Zadrozny & Elkan 2001; Zadrozny,
Langford, & Abe 2002; Brefeld, Geibel, & Wysotzki 2003;
Abe, Zadrozny, & Langford 2004), more investigations are
on the latter (Breiman et al. 1984; Domingos 1999; Elkan
2001; Ting 2002; Drummond & Holte 2003; Maloof 2003).
Note that the example-dependent cost-sensitive learning and
class-dependent cost-sensitive learning are with quite differ-
ent properties. On one hand, misclassifying a concerned ex-
ample into different classes will result in the same cost in
the former but usually different costs in the latter. On the
other hand, in most real-world applications it is feasible to
ask a domain expert to specify the cost of misclassifying a
class to another class, while only in some special tasks it is
easy to get the cost for every training example. It is note-
worthy that the outputs of the research on class-dependent
cost-sensitive learning have been deemed as good solutions
to learning from imbalanced data sets (Chawla et al. 2002;
Weiss 2004). This paper will focus on this kind of cost-
sensitive learning and hereafter class-dependent will not be
mentioned explicitly for convenience.

A popular approach to cost-sensitive learning is to rescale
(or rebalance called by Elkan (2001)) the classes such that
the influences of different classes on the learning process are
in proportion to their costs. A typical process is to assign the
training examples of different classes with different weights,
where the weights are in proportion to the misclassification
costs. Then, the weighted examples are given to a learn-
ing algorithm such as C4.5 decision tree to train a model
which can be used in future predictions (Elkan 2001; Ting
2002). Note that besides weighting the training examples,
the rescaling approach can also be realized in many other
ways, such as sampling the training examples (Elkan 2001;
Drummond & Holte 2003; Maloof 2003) and moving the
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decision thresholds (Domingos 1999; Elkan 2001).
Although the rescaling approach has been shown effective

in dealing with binary-class problems (Breiman et al. 1984;
Domingos 1999; Elkan 2001; Ting 2002; Drummond &
Holte 2003; Maloof 2003), recent studies (Zhou & Liu 2006)
show that it is often not so useful when being applied to
multi-class problems directly. In fact, almost all previ-
ous research on cost-sensitive learning studied binary-class
problems, and only some recent works started to investigate
multi-class cost-sensitive learning (Abe, Zadrozny, & Lang-
ford 2004; Zhou & Liu 2006). Although multi-class prob-
lems can be converted into a series of binary-class problems
to deal with, the user usually favors a more direct solution.
This is just like that although multi-class classification can
be addressed by traditional support vector machines via pair-
wise coupling, researchers still attempt to design multi-class
support vector machines.

In this paper, the reason why the traditional rescaling ap-
proach is often not effective on multi-class problems is ana-
lyzed, which reveals that before applying rescaling directly,
the consistency of the costs must be examined. Based on
the analysis, a new approach is proposed, which should be
the choice if the user wants to use rescaling for multi-class
cost-sensitive learning. This paper also shows that the new
approach is helpful when unequal misclassification costs and
class imbalance occur simultaneously, and can also be used
in tackling pure class-imbalance learning. Thus, it provides
a unified framework for using rescaling to address multi-
class cost-sensitive learning as well as multi-class class-
imbalance learning.

The rest of this paper starts with analyzing why traditional
rescaling approach is often helpless on multi-class problems.
Then, the new new rescaling approach is presented and ex-
periments are reported, which is followed by the conclusion.

Analysis
Let εij (i, j ∈ {1..c}, εii = 0) denote the cost of misclassi-
fying an example of the i-th class to the j-th class, where c
is the number of classes. It is evident that these costs can
be organized into a cost matrix whose element at the i-th
row and the j-th column is εij . Let ni denote the number
of training examples of the i-th class, and n denote the total
number of training examples. In order to simplify the discus-
sion, assume there is no class imbalance, that is, ni = n/c
(i ∈ {1..c}).

Rescaling is a general approach which can be used to
make any cost-blind learning algorithms cost-sensitive. The
principle is to enable the influences of the higher-cost classes
be bigger than that of the lower-cost classes. On binary-class
problems, the optimal prediction is the 1st class if and only
if the expected cost of this prediction is not bigger than the
expected cost of predicting the 2nd class, as shown in Eq. 1
where p = P (class = 1|x).

p × ε11 + (1 − p) × ε21 ≤ p × ε12 + (1 − p) × ε22 (1)

If the inequality in Eq. 1 becomes equality, then predict-
ing either class is optimal. Therefore, the threshold p∗ for
making optimal decision should satisfy Eq. 2.

p∗× ε11 +(1− p∗)× ε21 = p∗× ε12 +(1− p∗)× ε22 (2)

Elkan Theorem (Elkan 2001): To make a target probabil-
ity threshold p∗ correspond to a given probability threshold
p0, the number of the 2nd class examples in the training set
should be multiplied by p∗

1−p∗
1−p0

p0
.

When the classifier is not biased to any class, the threshold
p0 is 0.5. Considering Eq. 2, the Elkan Theorem tells that the
2nd class should be rescaled against the 1st class according
to p∗/ (1 − p∗) = ε21/ε12 (reminding ε11 = ε22 = 0),
which implies that the influence of the 1st class should be
ε12/ε21 times of that of the 2nd class. Generally speaking,
the optimal rescaling ratio of the i-th class against the j-th
class can be defined as Eq. 3, which indicates that the classes
should be rescaled in the way that the influence of the i-th
class is τopt(i, j) times of that of the j-th class. For example,
if the weight assigned to the training examples of the j-th
class after rescaling (via weighting the training examples) is
wj , then that of the i-th class will be wi = τopt(i, j) × wj

(wi > 0).

τopt(i, j) =
εij

εji
(3)

In the traditional rescaling approach (Breiman et al. 1984;
Domingos 1999; Ting 2002; Drummond & Holte 2003;
Maloof 2003), a quantity εi is derived according to Eq. 4
at first.

εi =
c∑

j=1

εij (4)

Then, a weight wi is assigned to the i-th class after rescal-
ing (via weighting the training examples), which is com-
puted according to Eq. 5.

wi =
(n × εi)

c∑
k=1

(nk × εk)
(5)

Reminding the assumption that ni = n/c, Eq. 5 becomes:

wi =
(c × εi)

c∑
k=1

εk

(6)

So, it is evident that in the traditional rescaling approach,
the rescaling ratio of the i-th class against the j-th class is:

τold(i, j) =
wi

wj
=

(c × εi) /
c∑

k=1

εk

(c × εj) /
c∑

k=1

εk

=
εi

εj
(7)

When c = 2,

τold(i, j) =
εi

εj
=

2∑
k=1

εik

2∑
k=1

εjk

=
ε11 + ε12

ε21 + ε22

=
ε12

ε21
=

εij

εji
= τopt(i, j)
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This explains that why the traditional rescaling approach
can be effective in dealing with the unequal misclassifica-
tion costs on binary-class problems, as previous research
shows (Breiman et al. 1984; Domingos 1999; Ting 2002;
Drummond & Holte 2003; Maloof 2003).

Unfortunately, when c > 2, τold(i, j) becomes Eq. 8,
which is usually unequal to τopt(i, j). This explains that
why the traditional rescaling approach is often not effective
in dealing with the unequal misclassification costs on multi-
class problems.

τold(i, j) =
εi

εj
=

c∑
k=1

εik

c∑
k=1

εjk

(8)

The RESCALEnew Approach
Suppose each class can be assigned with a weight wi (wi >
0) after rescaling (via weighting the training examples). In
order to appropriately rescale all the classes simultaneously,
according to the analysis presented in the previous sec-
tion, it is desired that the weights satisfy wi

wj
= τopt(i, j)

(i, j ∈ {1..c}), which implies the following (c
2) number of

constraints:
w1

w2
=

ε12

ε21
,

w1

w3
=

ε13

ε31
, · · · , w1

wc
=

ε1c

εc1

w2

w3
=

ε23

ε32
, · · · , w2

wc
=

ε2c

εc2

· · · · · · · · ·
wc−1

wc
=

εc−1,c

εc,c−1

These constraints can be transformed into the equa-
tions shown in Eq. 9. If non-trivial solution w =
[w1, w2, · · · , wc]T can be solved from Eq. 9, then the classes
can be appropriately rescaled simultaneously, which implies
that the multi-class cost-sensitive learning problem can be
solved with rescaling directly.





w1 × ε21−w2 × ε12 +w3 × 0 + · · ·+wc × 0 = 0
w1 × ε31 +w2 × 0 −w3 × ε13 + · · ·+wc × 0 = 0
· · · · · · · · · · · · · · · = 0
w1 × εc1 +w2 × 0 +w3 × 0 + · · ·−wc × ε1c = 0
w1 × 0 +w2 × ε32−w3 × ε23 + · · ·+wc × 0 = 0
· · · · · · · · · · · · · · · = 0
w1 × 0 +w2 × εc2 +w3 × 0 + · · ·−wc × ε2c = 0
· · · · · · · · · · · · · · · = 0
· · · · · · · · · · · · · · · = 0
w1 × 0 +w2 × 0 +w3 × 0 + · · ·−wc × εc−1,c = 0

(9)

Eq. 9 has non-trivial solution if and only if the rank of its
coefficient matrix (which is a c(c−1)

2 × c matrix) shown in
Eq. 10 is smaller than c, which is equivalent to the condition
that the determinant |A| of any c× c sub-matrix A of Eq. 10
is zero. Note that for a ( c(c−1)

2 × c) matrix (c > 2), the rank
is at most c.





ε21 −ε12 0 · · · 0
ε31 0 −ε13 · · · 0
· · · · · · · · · · · · 0
εc1 0 0 · · · −ε1c

0 ε32 −ε23 · · · 0
· · · · · · · · · · · · 0
0 εc2 0 · · · −ε2c

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 · · · 0 · · · −εc−1,c





(10)

For example, when all the classes are with equal costs,
unit vector can be solved from Eq. 9 as a non-trivial solution
of w, and thus the classes should be equally rescaled (in this
case the problem degenerates to a common equal-cost multi-
class learning problem).

It is noteworthy that when the rank of the co-efficient ma-
trix is c, Eq. 9 does not have non-trivial solution, which
implies that there will be no proper weight assignment for
rescaling all the classes simultaneously. Therefore, rescal-
ing can hardly be applied directly, and in order to use rescal-
ing, the multi-class problem has to be decomposed to many
sub-problems (usually a series of binary-class problems by
pairwise coupling) to address.

Based on the above analysis, the RESCALEnew approach
is proposed and summarized in Table 1.

Table 1: The RESCALEnew approach

For a given cost matrix, generate the co-efficient matrix in the
form of Eq. 10 and see whether its rank is smaller than c:

If yes (the cost matrix is called as a consistent cost matrix),
solve w from Eq. 9, use w to rescale the classes simul-
taneously, and pass the rescaled data set to any cost-blind
classifier.

Otherwise (the cost matrix is called as an inconsistent cost
matrix), decompose the multi-class problem to (c

2) number
of binary-class problems by pairwise coupling (that is, ev-
ery equation in Eq. 9 corresponds to a binary-class prob-
lem), rescale each binary-class data set and pass it to any
cost-blind classifier, while the final prediction is made by
voting the class labels predicted by the binary-class classi-
fiers.

Experiments
The proposed RESCALEnew approach (denoted by NEW) is
compared with the traditional rescaling approach (denoted
by OLD) used in previous works (Breiman et al. 1984;
Domingos 1999; Ting 2002; Drummond & Holte 2003;
Maloof 2003). Here the scheme of weighting the training
examples is used to realize the rescaling process. Since C4.5
decision tree can deal with weighted examples, it is used
as the cost-blind learner (denoted by BLIND) in the experi-
ments. Note that in this way, the OLD approach reassembles
the C4.5CS method (Ting 2002).

Twenty multi-class data sets are used in the experiments,
where the first ten data sets are without class imbalance
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Table 2: Experimental data sets (A: # attributes, C: # classes)

Data set Size A C Class distribution

mfeat-fouri 2,000 76 10 [200*10]
segment 2,310 19 7 [330*7]
syn-a 1,500 2 3 [500*3]
syn-b 3,000 2 3 [1,000*3]
syn-c 6,000 2 3 [2,000*3]
syn-d 2,500 2 5 [500*5]
syn-e 5,000 2 5 [1,000*5]
syn-f 10,000 2 5 [2,000*5]
vowel 990 13 11 [90*11]
waveform 3,000 40 3 [1,000*3]

abalone 4,177 8 3 [1,307; 1,342; 1,528]
ann 7,200 21 3 [166; 368; 6,666]
balance 625 4 3 [49; 288; 288]
car 1,728 6 4 [65; 69; 384; 1,210]
cmc 1,473 9 3 [333; 511; 629]
connect4 67,557 42 3 [6,449; 16,635; 44,473]
page 5,473 10 5 [28; 88; 115; 329; 4,913]
satellite 6,435 36 6 [626; 703; 707; 1358;

1508; 1533]
solarflare2 1,066 11 6 [43; 95; 147; 211; 239; 331]
splice 3,190 60 3 [767; 768; 1,655]

while the remaining ten are imbalanced. There are 14 UCI
data sets (Blake, Keogh, & Merz 1998) and 6 synthetic data
sets. The synthetic ones are generated as follows. Each
synthetic data set has two attributes, three or five classes,
and its examples are generated randomly from normal dis-
tributions under the following constraints: the mean value
and standard deviation of each attribute are random real val-
ues in [0, 10], and the coefficients are random real values
in [−1,+1]. Information on the experimental data sets are
summarized in Table 2.

On each data set, two series of experiments are performed.
The first series of experiments deal with consistent cost ma-
trices while the second series deal with inconsistent ones.
Here the consistent matrices are generated as follows: a c-
dimensional real value vector is randomly generated and re-
garded as the root of Eq. 9, then a real value is randomly
generated for εij (i, j ∈ [1, c] and i �= j) such that εji can be
solved from Eq. 9. All these real values are in [1, 10], εii = 0
and at least one εij is 1.0. Note that in generating cost ma-
trices for imbalanced data sets, it is constrained that the cost
of misclassifying the smallest class to the largest class is the
biggest while the cost of misclassifying the largest class to
the smallest class is the smallest. This owes to the fact that
when the largest class is with the biggest misclassification
cost, classical machine learning approaches are good enough
and therefore this situation is not concerned in the research
of cost-sensitive learning and class-imbalance learning. The
inconsistent matrices are generated in a similar way except
that one εji solved from Eq. 9 is replaced by a random value.
The ranks of the co-efficient matrices corresponding to these
cost matrices have been examined to guarantee that they are
smaller or not smaller than c, respectively.

In each series of experiments, ten times 10-fold cross val-

Table 3: Misclassification costs on consistent cost matrices

Data set BLIND OLD NEW

mfeat-fouri 519.23 ± 149.11 .894 ± .136 .821 ± .183
segment 49.71 ± 21.60 1.030 ± .170 1.025 ± .123
syn-a 166.41 ± 120.75 .934 ± .124 .831 ± .206
syn-b 357.44 ± 277.53 .879 ± .243 .802 ± .189
syn-c 245.51 ± 264.63 .913 ± .120 .889 ± .154
syn-d 302.07 ± 126.70 .949 ± .061 .868 ± .147
syn-e 690.71 ± 252.04 .914 ± .100 .854 ± .116
syn-f 1511.93 ± 539.57 .890 ± .088 .813 ± .086
vowel 123.17 ± 30.76 1.000 ± .096 .979 ± .120
waveform 211.40 ± 98.57 .926 ± .132 .884 ± .143

ave. 417.76 ± 188.13 .933 ± .127 .877 ± .147

abalone 638.83 ± 191.03 .788 ± .220 .728 ± .212
ann 4.806 ± 1.517 .975 ± .106 .991 ± .069
balance 71.05 ± 43.06 1.016 ± .231 .826 ± .171
car 43.29 ± 13.97 .888 ± .206 .766 ± .172
cmc 243.01 ± 137.35 .888 ± .165 .798 ± .179
connect4 5032.21 ± 3447.36 .928 ± .143 .895 ± .152
page 122.13 ± 106.11 .983 ± .100 .972 ± .085
satellite 502.15 ± 150.72 .970 ± .056 .950 ± .064
solarflare2 194.90 ± 91.46 .876 ± .236 .819 ± .202
splice 56.12 ± 26.99 .983 ± .093 .929 ± .091

ave. 690.85 ± 1460.57 .930 ± .066 .867 ± .087

Table 4: Misclassification costs on inconsistent cost matri-
ces

Data set BLIND OLD NEW

mfeat-fouri 263.16 ± 33.88 .999 ± .036 .833 ± .077
segment 36.97 ± 9.98 1.058 ± .100 1.046 ± .176
syn-a 300.59 ± 74.17 .979 ± .109 .911 ± .132
syn-b 625.74 ± 134.10 .860 ± .131 .715 ± .178
syn-c 318.86 ± 99.70 1.009 ± .072 .945 ± .045
syn-d 313.35 ± 29.72 1.002 ± .038 .939 ± .049
syn-e 940.71 ± 98.86 .968 ± .052 .912 ± .087
syn-f 1928.98 ± 269.45 1.041 ± .081 .924 ± .079
vowel 113.30 ± 9.39 1.008 ± .090 .978 ± .073
waveform 378.27 ± 52.86 .933 ± .120 .850 ± .099

ave. 521.99 ± 81.21 .986 ± .083 .905 ± .099

abalone 1, 035.28 ± 137.58 .643 ± .114 .548 ± .114
ann 7.760 ± 2.606 .927 ± .199 1.234 ± .364
balance 72.77 ± 10.37 .919 ± .125 .930 ± .081
car 71.82 ± 16.63 .974 ± .143 .769 ± .084
cmc 369.41 ± 80.94 .882 ± .091 .870 ± .130
connect4 7135.72 ± 716.50 .942 ± .074 .952 ± .081
page 99.15 ± 13.52 1.007 ± .061 .902 ± .084
satellite 479.25 ± 63.00 .982 ± .038 .870 ± .060
solarflare2 153.46 ± 21.65 .995 ± .063 .940 ± .090
splice 71.21 ± 20.97 .983 ± .042 .913 ± .068

ave. 949.58 ± 2, 082.99 .925 ± .101 .893 ± .161

idation are performed. Concretely, 10-fold cross validation
is repeated for ten times with randomly generated cost ma-
trices belonging to the same type (i.e. consistent or incon-
sistent), and the average results are recorded.
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Table 5: Summary of the comparison (win/tie/loss) un-
der pairwise two-tailed t-tests with 0.05 significance level
(CCM: consistent cost matrices, ICM: inconsistent cost matrices)

on CCM on ICM

BLIND OLD BLIND OLD

OLD 8/12/0 - 7/13/0 -
NEW 15/5/0 13/7/0 17/2/1 13/6/1

There are some powerful tools such as ROC and cost
curves (Drummond & Holte 2000) for visually evaluating
the performance of binary-class cost-sensitive learning ap-
proaches. Unfortunately, they can hardly be applied to
multi-class problems. Therefore, here the misclassification
costs are compared. The results in the form of “mean ±
standard deviation” on consistent and inconsistent cost ma-
trices are tabulated in Tables 3 and 4, respectively, where
the best performance of each row is boldfaced. Note that for
the cost-blind approach, the absolute misclassification costs
are reported; while for the traditional rescaling approach
and RESCALEnew, the ratios of their misclassification costs
against that of the cost-blind approach are presented.

Tables 3 and 4 reveal that no matter on balanced or imbal-
anced data sets and on consistent or inconsistent cost matri-
ces, the RESCALEnew approach performs apparently better
than the traditional rescaling approach.

In detail, pairwise two-tailed t-test with 0.05 significance
level indicates that on consistent cost matrices, the tradi-
tional rescaling approach is effective on only 8 data sets,
i.e. mfeat-fouri, syn-b to syn-f, abalone and car, while
RESCALEnew is effective on 15 data sets, i.e. mfeat-fouri,
syn-b to syn-f, waveform, abalone, balance, car, cmc, con-
nect4, satellite, solarflare2 and splice; on inconsistent cost
matrices, the traditional rescaling approach is effective on
only 7 data sets, i.e. syn-b, syn-e, abalone, ann, balance,
cmc and connect4, while RESCALEnew is effective on 17
data sets, i.e. except on segment, vowel and ann. More-
over, on consistent cost matrices, RESCALEnew performs
significantly better than the traditional rescaling approach
on 13 data sets, i.e. mfeat-fouri, syn-b to syn-f, waveform,
abalone, balance, cmc, connect4, solarflare2 and splice; on
inconsistent cost matrices, RESCALEnew also performs sig-
nificantly better than the traditional rescaling approach on 13
data sets, i.e. mfeat-fouri, syn-b to syn-f, waveform, abalone,
car, page, satellite, solarflare2 and splice. These compar-
isons are summarized in Table 5, which presents the times
of win/tie/loss of the approach on the row over the approach
on the column.

Note that the performance of RESCALEnew is almost al-
ways significantly better than or at least comparable to that
of the traditional rescaling approach, except that on incon-
sistent cost matrices RESCALEnew degenerates the perfor-
mance on ann. It can be found from Table 2 that the ann
data set is seriously imbalanced, where the largest class is
over 40 times bigger than the smallest one. This may suggest
that in dealing with data sets with unequal misclassification

Table 6: MAUC values on pure class-imbalance learning

Data set BLIND RESCALEnew

abalone .707 ± .005 .713 ± .005
ann .995 ± .001 .999 ± .000
balance .752 ± .013 .757 ± .011
car .975 ± .003 .968 ± .006
cmc .679 ± .010 .690 ± .008
connect4 .843 ± .001 .824 ± .003
page .969 ± .005 .977 ± .003
satellite .962 ± .002 .964 ± .002
solarflare2 .878 ± .003 .903 ± .004
splice .975 ± .001 .975 ± .001

ave. .874 ± .116 .877 ± .114

costs and serious imbalance, using only the cost information
to rescale the classes may not be sufficient. This issue will
be investigated further in future work.

As mentioned before, cost-sensitive learning approaches
have been deemed as good solutions to class-imbalance
learning (Chawla et al. 2002; Weiss 2004). Therefore, it
is interesting to see whether the RESCALEnew approach can
work well on learning from imbalanced multi-class data sets.
Actually, although class-imbalance learning is a hot topic,
few work has been devoted to the research of multi-class
class-imbalance learning.

For this purpose, experiments are performed on the ten
imbalance data sets shown in the second half of Table 2.
Note that here equal misclassification costs are used. In
other words, the experiments are conducted to evaluate
the performance of RESCALEnew on pure class-imbalance
learning.

In the experiments C4.5 decision tree is still used as
the baseline, which does not take into account the class
imbalance information (still denoted by BLIND). For the
RESCALEnew approach, considering that the influences of
the smaller classes should be increased while that of the
larger classes should be decreased by the rescaling process,
the reciprocals of the sizes of the classes are used as the
rescaling information. For example, suppose the i-th class
has ni number of examples, then εij (j ∈ {1..c} and j �= i) in
Eq. 9 is set to 1/ni. Note that since εij = εik (j, k ∈ {1..c}
and j, k �= i), the resulting Eq. 10 always has non-trivial
solutions, which is somewhat similar to the cases of cost-
sensitive learning with consistent cost matrices.

The MAUC measure (Hand & Till 2001) is used to evalu-
ate the performance, which is a variant of AUC designed for
multi-class class-imbalance learning. The bigger the MAUC
value, the better the performance. Ten times 10-fold cross
validation are executed and the results in the form of “mean
± standard deviation” are tabulated in Table 6, where the
best performance of each row is boldfaced.

Pairwise two-tailed t-test with 0.05 significance level in-
dicates that the performance of RESCALEnew is significantly
better than that of the standard C4.5 decision tree on 6 data
sets, i.e. abalone, ann, cmc, page, satellite and solarflare2,
worse on car and connect4, and there is no significant differ-
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ence on balance and splice. This suggests that RESCALEnew

can also be used to address pure class-imbalance learning on
multi-class problems.

Conclusion
This paper analyzes that why the traditional rescaling ap-
proach is helpful in binary-class cost-sensitive learning but
is often helpless on multi-class cost-sensitive learning. The
analysis shows that applying rescaling directly on multi-
class tasks can obtain good performance only when the costs
are consistent. Although costs in real-world applications are
not random and consistent costs do appear in some practi-
cal tasks, the consistency of the costs should be examined
before rescaling is used. Based on the analysis, this pa-
per presents a new approach, which should be the choice
if the user really wants to use rescaling, instead of other ap-
proaches (Zhou & Liu 2006), to deal with multi-class cost-
sensitive learning. It is shown that the proposed approach is
also helpful when unequal misclassification costs and class
imbalance occur simultaneously, and can even be used to
tackle pure class-imbalance learning. Thus, the proposed ap-
proach provides a unified framework for using rescaling to
address multi-class cost-sensitive learning as well as multi-
class class-imbalance learning.

It has been observed in the experiments reported in this
paper that when unequal misclassification costs and class
imbalance occur simultaneously, using the cost informa-
tion to rescale the classes can work well on most data sets,
but does not on seriously imbalanced data sets. Explor-
ing the ground under this observation and designing strong
rescaling schemes for such cases are important future is-
sues. Moreover, in most studies on cost-sensitive learning,
the cost matrices are usually fixed, while in some real-world
tasks the costs might change due to many reasons. Design-
ing effective methods for cost-sensitive learning with vari-
able cost matrices is another interesting issue to be stud-
ied in the future. Furthermore, developing powerful tools
for visually evaluating multi-class cost-sensitive learning ap-
proaches, such as the ROC and cost curves for binary-class
cases, is also an interesting issue for future work.
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