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a b s t r a c t 

This work aims at investigating multi-criteria modeling frameworks for discrete stochastic facility loca- 
tion problems with single sourcing. We assume that demand is stochastic and also that a service level is 
imposed. This situation is modeled using a set of probabilistic constraints. We also consider a minimum 

throughput at the facilities to justify opening them. We investigate two paradigms in terms of multi- 
criteria optimization: vectorial optimization and goal programming. Additionally, we discuss the joint use 
of objective functions that are relevant in the context of some humanitarian logistics problems. We ap- 
ply the general modeling frameworks proposed to the so-called stochastic shelter site location problem. 
This is a problem emerging in the context of preventive disaster management. We test the models pro- 
posed using two real benchmark data sets. The results show that considering uncertainty and multiple 
objectives in the type of facility location problems investigated leads to solutions that may better support 
decision making. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

A facility location problem consists of deciding where to locate 
one or several facilities in order to serve a set of demand points. 
Often, the goal is to minimize the total cost that includes estab- 
lishing the facilities and supplying the demand. In a discrete set- 
ting there is a finite set of potential locations for the facilities; in 
the single-source variant of the problem, all the demand of a cus- 
tomer must be supplied from a single facility. The reader can refer 
to the book chapter by [20] for a synthesis of the most relevant 
work done on fixed-charge facility location problems that includes 
the single-source capacitated facility location problem as a partic- 
ular case. 

In this paper we investigate the single-source extension of the 
problem that emerges when (i) facilities are capacitated, (ii) de- 
mands are stochastic, and (iii) multiple objectives are to be jointly 
considered. 
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Two well-known paradigms in multi-criteria optimization will 
be considered: vectorial optimization and goal programming. Con- 
cerning stochasticity, we assume that it can be captured mathe- 
matically via a set of probabilistic constraints. 

In addition to proposing different modeling frameworks for a 
general problem, we investigate the relevance of such develop- 
ments by applying the new models to a case study in the context 
of the so-called shelter site location problem, which is a problem 

emerging in the context of preventive disaster management. In this 
case, typically, a weight can be assigned to each facility with larger 
weights indicating larger suitability of the facilities according to 
their purpose. The specific objectives considered in the case study 
are the maximization of the minimum weight among the selected 
facilities; the maximization of the average weight among the se- 
lected facilities; the minimization of the average distance traveled 
by the customers to reach their assigned facility. The first objective 
may not appear as natural/intuitive as the other two. However, its 
relevance is justified by applications in which a focus is put on the 
least advantaged populations/customers. In such cases, the maxi- 
mization of their “benefit” is a way for achieving a more “fair” sys- 
tem. We deepen this discussion in Section 4 when introducing the 
case study. 
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Single-source (capacitated) facility location problems have been 
studied for many years; in fact, many references can be found such 
as those by [5,12,16,22,27,37] , just to name a few. A common aspect 
to all these works is the use of a cost-oriented objective function—
to be minimized. Furthermore, demand is deterministic, i.e, it is 
known in advance and it is not subject to any sort of uncertainty. 

The relevance of developing optimization models and solution 
techniques in the context of facility location under uncertain de- 
mand has been widely recognized by the scientific community. 
This is attested by the literature covering that aspect which, in 
turn, has encouraged new research directions to be explored. For 
additional information the reader can refer to [11] and to the refer- 
ences therein. In the particular case of problems with single sourc- 
ing, we refer to the works by [2,3] , who study the so-called facility 
location problem with Bernoulli demands. This is a single-source 
capacitated facility location problem with unit-demand customers 
and uncertainty in demand. The objective is to minimize the to- 
tal (expected) cost, which includes the setup cost for the facilities 
plus the expected service and outsourcing cost (outsourcing occurs 
when the installed capacity is not enough for handling the occur- 
ring demand). Bieniek [7] worked on the same setting but con- 
sidering other probability distributions for the demand. In these 
works, the problems were formulated mathematically using a two 
stage stochastic programming modeling framework. 

A different type of approach was proposed by [28] . In this case, 
the demand of a customer is measured in terms of the quantity of 
a commodity to be delivered. Again, the goal is to minimize the to- 
tal cost for establishing the facilities and supplying the customers. 
The author considered a service level that is captured mathemat- 
ically using probabilistic constraints. This is motivated by the fact 
that considering “hard” capacity constraints may be meaningless 
when demand is uncertain. Nevertheless, if the uncertain demand 
can be described using a probability law it is possible to consider 
probabilistic constraints stating that the probability of having ca- 
pacity for supplying the occurring demand should be above some 
threshold exogenously defined. 

Kinay et al. [26] also consider a single-source discrete facility 
location problem with stochastic demand. Again, a service level 
constraint is included in the optimization models proposed. How- 
ever, the objective function is of a totally different nature: the goal 
now is to maximize the minimum weight among the installed fa- 
cilities. The problem is motivated by an application in the context 
of humanitarian logistics calling for the potential locations to be 
previously assigned a numerical weight that summarizes quantita- 
tively several relevant features. The maxmin objective considered 
in that work was initially introduced by [25] and raises an interest- 
ing discussion in the context of discrete capacitated single-source 
facility location problems. In fact, that objective is prone in terms 
of producing “plateaus” in the objective function space: one can 
easily find multiple optimal solutions. However, in practice, a de- 
cision maker does not look at these solutions as being “equally”
good/optimal. Accordingly, there is room for considering other ob- 
jectives that may guide the decision maker when the time comes 
for deciding among those alternative optima. The above aspects 
trigger the work done in the current paper. 

The literature focusing on stochastic multi-criteria facility loca- 
tion problems is still scarce. Even if we consider deterministic fa- 
cility location problems, [35] argue that there is still much room 

for investigating the topic. When it comes to the particular case in 
which we have single sourcing even less can be found. To the best 
of the authors’ knowledge, the closest works focusing on that very 
specific type of problems are due to [13] who, focus on a bi-criteria 
single-allocation hub location problem and to [29] who integrated 
the three dimensions we are also considering in our work using a 
weighting approach rather than the multi-criteria approaches that 
we propose. 

The contribution of the current paper to the literature is three- 
fold: (i) to consider multiple objective functions in a discrete ca- 
pacitated single-source facility location problem with probabilistic 
constraints; (ii) to discuss the use of several objectives of practi- 
cal relevance that have not been often used in the context of dis- 
crete facility location problems; (iii) to present a case study show- 
ing that the analysis performed in this work leads to solutions that 
can better adjust to a real setting. 

As already mentioned, in this paper we study two paradigms 
in terms of multi-criteria analysis: vectorial optimization and goal 
programming. In the first case, no hierarchy is associated with the 
objective functions to be considered. In the second case, a hierar- 
chy is assumed for the objectives and thus, each objective can be 
optimized only after the ones higher in the hierarchy have been 
studied and considering the multiple optimal solutions obtained so 
far. 

Concerning the use of vectorial optimization in discrete facility 
location we refer the reader to [34] , who present references un- 
til 2005, to [35] with recent references and to the survey paper 
by [47] . Looking into these references we observe that not much 
work has been published that is related with multi-criteria dis- 
crete facility location problems and let alone when it comes to 
single-source problems. A notable exception is the paper by [15] . 
This is a work proposing an interactive procedure aiming at find- 
ing non-dominated solutions to a bi-criteria single-allocation facil- 
ity location problem. In particular, the authors proposed a specially 
tailored approach for the auxiliary problem considered for finding 
non-dominated solutions. 

The application that triggered the current work and that un- 
derlies the case study to be discussed may call for the use of a 
goal programming approach since it conveys a case in which we 
may easily find a hierarchy between different but relevant objec- 
tives. Looking into the literature, we were able to find two works 
considering the use of goal programming in the context of dis- 
crete facility location problems: these are the papers by [40] and 
[4] . Nevertheless, in both works, multiple sourcing is assumed. The 
closest work to what we are presenting in this paper is the work 
by [43] , who considered fuzzy set theory for capturing vagueness 
and ambiguity that may emerge when considering qualitative cri- 
teria. Nevertheless it is worth pointing out that in fact the authors 
do not consider uncertainty in demand—as we do in the current 
work—but vagueness in the information required for defining the 
criteria to be used. 

Last but not least, we note that although not much work can be 
found in terms of optimization models and tools for multi-criteria 
discrete facility location, the study of several objective functions 
in the context of location analysis in general is far from novel. In 
other words, although related literature have considered a wide 
variety of objective functions, a single objective is considered at 
a time, rather than using a multi-criteria approach. The interested 
reader can refer to the reviews provided by [14,17,47] , as well as to 
the book chapters by [34] and [35] . 

Current et al. [14] classify the objectives of relevance in facility 
location according to: (i) cost minimization, (ii) demand-oriented, 
(iii) profit maximization, and (iv) environmental-oriented. In turn, 
[17] classify the objectives as (i) pull, (ii) push, and (iii) balance 
objectives. [47] specify 9 often-used objectives in location analysis, 
each of which falling in one of the above categories. 

In this paper, we specifically analyze three objective functions 
of relevance in humanitarian logistics, two of which based upon 
measuring the potential locations for opening the facilities with 
a weight previously determined according to several features. Ac- 
cordingly, we consider the maximization of the minimum weight 
among the selected locations and the maximization of the average 
weight (across the selected locations). Additionally, we analyze an- 
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other objective that is related with the overall distance traveled by 
customers. 

The remainder of this paper is organized as follows: in 
Section 2 we discuss modeling aspects related with chance- 
constrained single-source discrete facility location problems. In 
Section 3 we analyze the new objectives considered in this work 
and their inclusion in mathematical modeling frameworks using 
vectorial optimization and goal programming. In Section 4 we 
present a case study and provide some methodological specifica- 
tions required by it. In Section 5 we report the results of exten- 
sive numerical experiments performed for evaluating the relevance 
of the models proposed. The paper ends with an overview of the 
work done. 

2. A modeling framework for stochastic single-source 

capacitated facility location problem 

The basic ingredients for a discrete single-source capacitated fa- 
cility location problem include a set I of potential locations for the 
facilities, a set J of demand points, a value q i associated with each 
location i ∈ I denoting the capacity of a facility if installed in that 
location and a value d j associated with each demand point j ∈ J rep- 
resenting its demand. The decisions to make are twofold: the loca- 
tion of the facilities and the allocation of demand points to the 
open facilities. An optimization model can be formulated consider- 
ing two sets of decision variables: for i ∈ I, x i is equal to 1 is facility 
i is open and zero otherwise; for i ∈ I and j ∈ J, y ij is equal to 1 if 
demand point j is allocated to facility i and zero otherwise. Accord- 
ingly, a generic optimization model for the problem can be written 
as follows (see, for instance, [16,24] , and [20] ): 

minimize f (x , y ) , (1) 

subject to 
∑ 

i ∈ I 

y i j = 1 , j ∈ J, (2) 

∑ 

j∈ J 

d j y i j ≤ q i x i , i ∈ I, (3) 

x i ∈ { 0 , 1 } , i ∈ I, (4) 

y i j ∈ { 0 , 1 } , i ∈ I, j ∈ J. (5) 

Function f ( x, y ) represents the objective function to be mini- 
mized with (x , y ) = ((x i ) i ∈ I , (y i j ) i ∈ I, j∈ J ) denoting the vector of de- 
cision variables; constraints (2) ensure that each demand point is 
allocated to one and only one facility whereas constraints (3) are 
the capacity constraints. These constraints also ensure that a de- 
mand point can be allocated to a facility only if the facility is open. 

Finally, (4) and (5) define the domain of the decision variables. 
We note that the above model can be enhanced in terms of the 
bounds provided by linear relaxation by the inclusion of the so- 
called strong-model inequalities y i j ≤ x i , i ∈ I, j ∈ J (see, for in- 
stance, [22] ). 

As we detailed in the introductory section, in this work we fo- 
cus on the situation where demands are stochastic, i.e., we assume 
that ξ = (d 1 , . . . , d | J| ) is a random vector with a joint cumulative 
distribution function that we assume to be given in advance (e.g., 
estimated using historical data). In this case, the (hard) capacity 
constraints (3) are no longer well-defined. One possibility could be 
to state those constraints using the most conservative values for 
the demands. However, planning for the largest possible demands 
may render a too “fat” namely, if that “scenario” corresponds to 
a very unlikely “future”. An alternative is to consider probabilistic 
constraints ensuring a pre-specified service level. Let us denote by 

γ i a user-defined threshold (or an upper bound) value of the prob- 
ability of exceeding the capacity of plant i , once the plants to be 
opened are decided and the allocations are determined. A service 
level constraint adequate for replacing (3) is 

P ξ

[ 

∑ 

j∈ J 

d j y i j ≤ q i x i 

] 

≥ 1 − γi , i ∈ I. (6) 

The above constraints, which have been considered by other au- 
thors (e.g., [28] and [26] ), lead to a generalization of the original 
model since they reduce to (3) when data are deterministic and all 
demand must be supplied (i.e., a service level equal to 100%). 

In addition to the above service level constraints, there are 
other ways for extending model (1) –(5) . One aspect of relevance 
in some problems is the existence of a minimum throughput that 
justifies opening a facility. This has been discussed in the context 
of logistics applications by [32] and [33] and in a broader context 
by [2,3] . In the context of humanitarian logistics, this aspect may 
also be important as discussed by [25] and [26] . In the latter work, 
the authors propose mathematical expressions for modeling such 
conditions: they consider a minimum threshold denoted by β for 
the utilization rate of a facility and include the following set of ad- 
ditional constraints in their optimization model: 

P ξ

[ 

∑ 

j∈ J 

d j y i j ≥ βq i x i 

] 

≥ 1 − ζi , i ∈ I. (7) 

In the above constraints, ζ i denotes the (exogenous) probability 
that the minimum threshold of shelter i ∈ I is not satisfied (recall 
that demands are random). 

Since we are working with a problem emerging in the context 
of facility location with single sourcing we also consider a fea- 
ture of practical relevance in these problems, which is discussed 
in the paper by [19] as well as in some references therein: the 
need for imposing the so-called closest assignment constraints in 
single-source facility location problems (depending on the appli- 
cation considered). These constraints are used to model situations 
in which the demand points should be assigned to the closest fa- 
cility among those selected to operate. As we will see in the case 
study presented in Section 4 , these constraints help to mimic the 
behavior of people when searching for the closest facility that can 
supply their needs. Several alternatives have been proposed in the 
literature for modeling mathematically the closest assignment con- 
straints. Possibly, the best-known conditions are the original in- 
equalities proposed by [39] and [45] . Kılcı et al. [25] and Kınay et 
al. [26] considered them in the context of humanitarian logistics to 
mimic the behavior of the victims of a disaster when looking for 
help. Espejo et al. [19] showed that [45] ’s closest assignment con- 
straints ( WF ) dominate the ones introduced by [39] ( RR ). Hence, 
they suggest using the former, i.e.: 

| I| 
∑ 

s = r+1 

y i j (s ) , j + x i j (r) ≤ 1 , j ∈ J, r = 1 , . . . , | I| − 1 . (8) 

In the above expression i j ( r ) stands for the r -th closest candidate 
facility location to demand point j ∈ J , r = 1 , . . . , | I| . For every de- 
mand point j ∈ J , one can easily find the above sorted facilities by 
sorting non-decreasingly the distances, say ℓ ij , between the poten- 
tial locations i ∈ I and customers j ∈ J . 

In synthesis, the starting point for our study is the generic 
model 

minimize (1) , 

subject to (2) , (4) − (8) , 

y i j ≤ x i , i ∈ I, j ∈ J. (9) 

We note the need for including the inequalities (9) in the ab- 
sence of inequalities (3) . 
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Before discussing a multi-criteria setting it is important to 
deepen the analysis of the probabilistic constraints (6) and (7) be- 
cause they raise some mathematical difficulties when it comes to 
tackling the model. As we explain next, it is possible to take ad- 
vantage of the fact that we are working with a facility location 
problem in order to overcome such difficulties. 

We first note the well-known fact that in many real-world facil- 
ity location problems the number of demand points is quite large, 
namely when compared to the number of facilities that are even- 
tually open (see, e.g., the discussion presented by [9] ). From a 
demand allocation perspective, this fact leads to “many” demand 
points being assigned to each open facility. Furthermore, often, de- 
mand points are themselves the result of some previous aggrega- 
tion. Accordingly, we often observe that the total demand served 
by a facility is actually the sum of “many small demands”. 

A second aspect to consider is that under uncertainty, demands 
can often be assumed independent. This means that instead of 
working with the joint cumulative probability function associated 
with the underlying random vector ξ = (d 1 , . . . , d | J| ) we can di- 
rectly consider the marginal cumulative distribution functions as- 
sociated with the random variables d 1 , . . . , d | J| . This typically sim- 
plifies the analysis. 

Although starting from a general setting, the above remarks 
allow us to invoke the Central Limit Theorem, thus deriving an 
approximate model for the problem we are investigating. Denot- 
ing by μj and σ

2 
j the expected value and variance of d j ( j ∈ J ), by 

z α the α-quantile of the standard normal distribution and defin- 

ing v i = 

√ 
∑ 

j∈ J σ
2 
j y i j 

√ 
∑ 

j∈ J σ
2 
j 

, i ∈ I, (6) and (7) can be altogether replaced by 

the following deterministic constraints (the reader should refer to 
[28] and [26] for all details): 

∑ 

j∈ J 

μ j 

Ŵ
y i j + z 1 −γi v i ≤

q i 
Ŵ
x i , i ∈ I, (10) 

∑ 

j∈ J 

μ j 

Ŵ
y i j + z ζi v i ≥

βq i 
Ŵ

x i , i ∈ I, (11) 

v 
2 
i = 

∑ 

j∈ J 

σ 2 
j 

Ŵ2 
y i j , i ∈ I, (12) 

0 ≤ v i ≤ 1 , i ∈ I, (13) 

with Ŵ = 

√ 
∑ 

j∈ J σ
2 
j . In (12) we still have the quadratic term v 2 i . 

Since v 2 i ∈ [0 , 1] for all i ∈ I (by definition), [26] proposed approx- 

imating v 2 i for every i ∈ I by a piecewise linear (convex) function 
which they model via integer programming using an ordered set 
of type 2 variables (SOS2) that they denote by { λi 1 , . . . , λin } with 
n representing the number of sub-sets into which the interval [0, 
1] is to be partitioned. We recall that in a SOS2 of non-negative 
variables, at most two such variables can be positive; moreover, if 
exactly two are positive then they must be consecutive in the or- 
dered set [6] . The way of describing mathematically SOS2 variables 
is nowadays commonly known and thus we omit it here. Never- 
theless, the interested reader can refer to [6] or [46] for further 
details. 

If we denote by b m > 0 the m -th break point of interval [0, 1], 
m ∈ { 1 , 2 , ., n } (with b n = 1 ) then, for every i ∈ I, v i and v 

2 
i can be 

approximated by 
∑ n 

m =1 λim b m and 
∑ n 

m =1 λim b 
2 
m , respectively, with 

(i) 
∑ n 

m =1 λim = 1 , (ii) 0 ≤λim ≤1, and (iii) (λi 1 , . . . , λin ) being a 
SOS2. Constraints (10) –(13) can now be reformulated as follows: 

∑ 

j∈ J 

μ j 

Ŵ
y i j + z 1 −γi 

n 
∑ 

m =1 

λim b m ≤
q i 
Ŵ
x i , i ∈ I, (14) 

∑ 

j∈ J 

μ j 

Ŵ
y i j + z ζi 

n 
∑ 

m =1 

λim b m ≥
βq i 
Ŵ

x i , i ∈ I, (15) 

∑ 

j∈ J 

σ 2 
j 

Ŵ2 
y i j = 

n 
∑ 

m =1 

λim b 
2 
m , i ∈ I, (16) 

n 
∑ 

m =1 

λim = x i , i ∈ I, (17) 

λim ≥ 0 , i ∈ I, m = 1 , . . . , n. (18) 

(λi 1 , . . . , λin ) SOS2 , i ∈ I (19) 

In a standard integer programming formulation of SOS2 vari- 
ables, the right-hand side of constraints (17) is usually 1. However, 
in our case, we can enhance the model by considering x i . We also 
note that constraints (14) together with (17) imply (9) (they ensure 
that y i j = 0 when x i = 0 ). Summing up, we proceed with our study 
by considering the model: 

minimize (1) , 

subject to (2) , (4) , (5) , (8) , (14) − (19) . 

3. Multi-criteria approaches 

As we mentioned in Section 1 , the objective function f ( x, y ) of- 
ten considered in single-source facility location problems is the to- 
tal cost for opening facilities and serving the customers (see, e.g., 
[10,12,16,20,23,24] ). Even when stochastic demands have been con- 
sidered, authors have assumed so [2,3] . 

Specific applications/problems may call for the use of other ob- 
jective functions. Eiselt and Laporte [17] provide a classification of 
objectives of relevance in the context of facility location problems. 
This is highlighted by [47] , who revisit those objectives. When it 
comes to such applications we find several examples. For instance, 
equitable response time is often an objective when locating emer- 
gency services (see, for instance, [42] and [38] ). Marsh and Schiling 
[30] revisit different models for capturing equitable distribution of 
customers to facilities. Erkut et al. [18] investigate a multi-criteria 
facility location problem in the context of solid waste manage- 
ment. The authors consider economic and environmental criteria 
such as the greenhouse effect and energy consumption. 

More recently, [25] and [26] discuss a single-source facility lo- 
cation problem emerging in the context of preventive humanitar- 
ian logistics: the shelter site location problem. They focus on ob- 
jectives other than cost-oriented ones. Since these objectives are at 
the core of our case study, we specify them in detail. 

In the shelter site location problem, each potential location for 
a shelter is given a weight previously computed using data corre- 
sponding to different aspects related with each location. These as- 
pects help determining the “suitability” of potential locations and 
include terrain slope, distance to health institutions, soil type, elec- 
trical infrastructure, sanitary system, ownership status, et cetera . 
The goal is to select the locations for sheltering in such a way 
that the minimum weight among the open facilities is maximized. 
This represents, in fact, a so-called Rawlsian objective 2 that is usu- 
ally imposed by the organizations leading the process of building 

2 Taking after the 20 th century American philosopher John Rawls and based upon 
his notable ideas on justice as fairness stated in his work, entitled “A Theory of 
Justice”, published in 1971. 
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shelters. In such a case, the objective function to consider (and to 
be maximized) is f (x , y ) = W min = min i ∈ I| x i =1 { w i } , where w i repre- 
sents the weight of location i ∈ I . This is a maxmin non-linear ob- 
jective function that can be linearized straightforwardly. 

An alternative objective function is briefly mentioned by 
[26] but not considered explicitly in the models presented in that 
paper: the average weight of the open facilities. This is an objective 
function that also makes use of the weights w i , i ∈ I . It is formally 
defined as 

f (x , y ) = W avg = 

∑ 

i ∈ I w i x i 
∑ 

i ∈ I x i 
(to be maximized) . 

This particular objective is not novel (see for instance [14] ); how- 
ever, its use in a multi-criteria context along with a Rawlsian ob- 
jective is. On the other hand, linearizing this objective is not as 
straightforward as it is for W min . Nevertheless, it can be done by 
defining a new set of nonnegative auxiliary variables. For i ∈ I we 
define τi = W avg × x i . By summing in i ∈ I we obtain 
∑ 

i ∈ I 

τi = W avg ×
∑ 

i ∈ I 

x i (20) 

Using a set of appropriate constraints we can eventually ensure 
that W avg represents, in fact, the average of the weights of the se- 
lected facilities by using the following constraints to linearize con- 
straint (20) [46] : 

τi ≤ W avg × x i , i ∈ I (21) 

τi ≤ W avg , i ∈ I (22) 

τi ≥ W avg −
[

(1 − x i ) ×W avg 
]

, i ∈ I (23) 

∑ 

i ∈ I 

τi = 

∑ 

i ∈ I 

(w i × x i ) , (24) 

τi ≥ 0 , i ∈ I, (25) 

W avg ≥ 0 . (26) 

In the above constraints, W avg denotes the upper bound for 
W avg . In the shelter site location problem it can be set equal to 1. 
Constraint (21) ensures that τ i is equal to 0 when the correspond- 
ing x i is 0. Constraints (22) and (23) ensure that τ i equals to W avg 

when x i is equal to 1. Constraint (24) is the linear representation 
of constraint (20) which is obtained by replacing W avg according 
to its definition provided before. The rest of the constraints are the 
domain constraints for the new variables τ i and W avg . 

Finally, we refer a third objective of relevance in some applica- 
tions: minimizing the average distance traveled to a facility. This 
is a relevant objective to consider in single-source facility location 
problems when the closest assignment constraints are considered. 
In fact, when the facilities have a limited capacity, the satisfaction 
of those constraints does not necessarily mean that the total trav- 
eled distance is minimized. As before, denote by ℓ ij the distance 
between candidate facility location i and demand point j ; then the 
average distance traveled per person can be defined as: 

f (x , y ) = Average Distance Traveled (ADT) = 

∑ 

i ∈ I, j∈ J ℓ i j d j y i j 
∑ 

j∈ J d j 
. 

The fact that several objective functions can be considered 
within the context of single-source facility location problems raises 
a question: is a single objective function selected among those 
ones enough to capture the goals of a decision maker? If not, then, 

a multi-criteria setting becomes more appropriate. As mentioned 
in Section 1 , not much work can be found in terms of multi- 
criteria discrete facility location problems and let alone when 
it comes to problems with single sourcing. Next, we fulfill this 
gap by considering multiple objectives in a chance-constrained 
single-source discrete facility location problem. We study two well- 
known paradigms in multi-criteria optimization: vectorial opti- 
mization and goal programming. 

3.1. Vectorial optimization 

Suppose that we have L objective functions of interest, denoted 
by f ℓ ( x, y ), ℓ = 1 , . . . , L . If no hierarchy is established between the 
objectives then the problem can be formulated as a vectorial opti- 
mization problem: 

minimize f (x , y ) = ( f 1 (x , y ) , . . . , f L (x , y ) ) , 

subject to (2) , (4) , (5) , (8) , (14) − (18) . 

It is well-known that in general there will be no single solu- 
tion that simultaneously optimizes all objectives individually. This 
leads to replacing the concept of optimality by Pareto optimality or 
efficiency [21] . The main question becomes the determination of 
Pareto solutions. 

Two popular methods for generating Pareto solutions in vecto- 
rial optimization problems are the weighting method and the ε- 
constraint method (see, e.g., [31] ). We focus our attention on the 
latter due to the advantages it often has when compared with the 
former (the interested reader can refer to the above-mentioned 
reference for a deeper discussion). 

In the ε-constraint method we optimize one objective function 
after setting the others as constraints (the so-called side objec- 
tives). The problem can be stated as follows (w.l.o.g.): 

minimize f 1 (x , y ) , 

subject to f ℓ (x , y ) ≤ ε ℓ , ℓ = 2 , . . . , L, 

(x , y ) ∈ S, 

with S denoting the feasibility set, i.e., the set of solutions ( x, y ) 
satisfying (2), (4), (5), (8) , and (14) –(18) . The Pareto solutions are 
obtained by performing a parametric variation in the vector of co- 
efficients (ε 2 , . . . , ε L ) 

T . 
In the particular case of two objective functions (the most 

common in the location analysis literature), we can implement 
this method quite efficiently. In this case we have f (x , y ) = 

( f 1 (x , y ) , f 2 (x , y )) . 
Denote by f 1 = ( f 1 1 , f 

1 
2 ) and f 

2 = ( f 2 1 , f 
2 
2 ) two points in the cri- 

teria space such that f 1 1 ≤ f 2 1 and f 
1 
2 ≤ f 2 2 . Using the terminology 

introduced by [8] , we define by R ( f 1 , f 2 ) the rectangle in the crite- 
ria space induced by f 1 and f 2 . 

A point f in the criteria space corresponding to a feasible solu- 
tion with objective function values in R ( f 1 , f 2 ) that corresponds to 
a solution with smallest value for f 2 ( x, y ) among all solutions with 
smallest value for f 1 ( x, y ), if it exists, is denoted by 

f = lex min 
(x , y ) ∈ S 

{

f 1 (x , y ) , f 2 (x , y ) | f (x , y ) ∈ R ( f 1 , f 2 ) 
}

and can be determined by solving the sequence of optimization 
problems 

f 1 = min 
(x , y ) ∈ S 

{

f 1 (x , y ) | f (x , y ) ∈ R ( f 1 , f 2 ) 
}

and 

f 2 = min 
(x , y ) ∈ S 

{

f 2 (x , y ) | f (x , y ) ∈ R ( f 1 , f 2 ) ∧ f 1 (x , y ) ≤ f 1 
}

. 

Using the same terminology we can represent the process of 
finding a point in the criteria space corresponding to a feasible 
solution and with objective values in the rectangle R ( f 1 , f 2 ) with 



112 Ö.B. Kınay et al. / Omega 83 (2019) 107–122 

smallest value for f 1 ( x, y ) among all solutions with smallest value 
for f 2 ( x, y ). 

Assume that all the Pareto solutions (corresponding to the so- 
called efficient frontier in the criteria space) are sequenced non- 
decreasingly according to the values of the first objective function. 
The first and the last of such points are, respectively 

f ∗ = lex min 
(x , y ) ∈ S 

{ f 1 (x , y ) , f 2 (x , y ) | f (x , y ) 

∈ R ((−∞ , ∞ ) , (−∞ , ∞ )) } 

and 

f ∗∗ = lex min 
(x , y ) ∈ S 

{ f 2 (x , y ) , f 1 (x , y ) | f (x , y ) 

∈ R ((−∞ , ∞ ) , (−∞ , ∞ )) } . 

Now, all the efficient solutions can be obtained starting from f ∗

and iteratively finding the non-dominated point that is closest to 
the last non-dominated point, say f l , by solving 

lex min 
(x , y ) ∈ S 

{

f 1 (x , y ) , f 2 (x , y ) | f (x , y ) ∈ R ( f l − (0 , ε) , f ∗∗) 
}

with ε denoting a small constant. This is done until f ∗∗ is reached. 
In Section 4 we present results obtained after applying this 
methodology to a specific problem. 

For the three-objective case, the methodology for finding all the 
Pareto solutions is not as straightforward as the lexicographic one 
just revisited for the bi-objective case. In particular, an algorithmic 
approach is necessary for a successful and efficient implementa- 
tion. In fact, it is well-known that the components of the ε-vector 
should be determined appropriately in order to ensure that the se- 
quence of mono-objective problems defined by the application of 
the ε-constrained method allows finding all the Pareto solutions. 

A particular case of interest for us is the one in which one of 
the objective functions can take values in a finite set of rather 
small cardinality. This idea was explored by [1] in the context 
of a relief item distribution problem in the event of a disaster. 
Those authors aimed at minimizing the total transportation time 
of the items, the number of first-aid workers required, and the 
non-covered demand among all affected areas. A three-criteria op- 
timization problem was considered and a procedure for determin- 
ing all the Pareto solutions was developed. Taking advantage of the 
fact that one of the objective functions takes integer values in a fi- 
nite set, the authors choose as the single objective function to op- 
timize one that takes fractional (continuous) values. The remain- 
ing objective functions induce two constraints. The integrality of 
one of the objective functions set as constraints makes it simpler 
to develop an iterative methodology for implementing ε-constraint 
method. In fact, all possible values of the one-sided objective are 
known in advance since they are finite (and they are just a few). 
Therefore, in the approach proposed in that work the authors set 
this objective function to its lowest possible value and perform the 
classical ε-constraint method for two objective functions as long 
as the model generates feasible solutions. When infeasibility is de- 
tected, the algorithm proceeds with the selection of the next value 
of the integer objective function. The process continues until all 
possible values of the integer objective function have been consid- 
ered. The interested reader can refer to [1] for further details and 
for a detailed proof of their methods. 

The above mentioned methodology can be applied even if one 
objective function can take fractional (continuous) values provided 
that only a finite number of values are possible. This is the case if 
we consider an objective function such W min . We elaborate on this 
idea later in Section 4 . 

3.2. Goal programming 

When a hierarchy between the multiple objectives of interest is 
previously established by the decision maker, vectorial optimiza- 
tion is not the appropriate paradigm to consider for finding Pareto 

solutions. In that case, each objective function should be optimized 
only after the objective functions that are higher in the hierarchy 
have been optimized: a goal programming procedure emerges. The 
candidate optimal solutions in each level of the hierarchy are the 
multiple optimal solutions (if they exist) obtained in the previous 
levels. 

Like in the previous section, we assume that there are L objec- 
tive functions of interest, denoted by f ℓ ( x, y ), ℓ = 1 , . . . , L . A goal 
programming model can be stated by assigning a different prior- 
ity level to each goal. The priority levels are numbers in { 1 , . . . , K} , 
with K denoting the total number of goals. A goal typically involves 
the achievement (or failure by the smallest amount possible) of 
“target” values for one or several objective functions. Moreover, a 
goal is optimized only after all the previous goals in the hierarchy 
have been optimized. Accordingly, when we write P k [ f k ] we are in- 
dicating that function f k should be the k 

th to be optimized. The 
problem can be written generically as follows: 

minimize 
K 

∑ 

k =1 

P k 

[ 
L 

∑ 

ℓ =1 

α+ 
ℓk d 

+ 
ℓ + 

L 
∑ 

ℓ =1 

α−

ℓk d 
−
ℓ 

] 

, 

subject to (2) , (4) , (5) , (18) , (14) − (18) , 

f ℓ (x , y ) + d −ℓ − d + ℓ = G ℓ , ℓ = 1 , . . . , L, 

d −ℓ , d 
+ 
ℓ ≥ 0 , ℓ = 1 , . . . , L. 

In this model, the overall objective function is conceptual since 
P 1 , . . . , P K are denoting priority levels; they represent neither a 
quantity nor a measure. This “objective function” indicates that 
first we optimize 

∑ L 
ℓ =1 α

+ 
ℓ 1 d 

+ 
ℓ + 

∑ L 
ℓ =1 α

−
ℓ 1 d 

−
ℓ ; afterwards we opti- 

mize 
∑ L 

ℓ =1 α
+ 
ℓ 2 d 

+ 
ℓ + 

∑ L 
ℓ =1 α

−
ℓ 2 d 

−
ℓ in the set of multiple optimal so- 

lutions found for the first function; et cetera . The process stops ei- 
ther when the functions in all priority levels have been consid- 
ered or when we reach a priority level for which multiple optima 
are no longer available. In this case, the single solution at hand is 
the optimal solution to the overall problem. In the above model, 
G ℓ denotes the target value for objective function f ℓ ( x, y ); d −ℓ and 
d + 

ℓ denote the shortage and the surplus with respect to the tar- 
get ( ℓ = 1 , . . . , L ). Finally the coefficients α+ 

ℓk 
and α−

ℓk 
define the in- 

volvement (and its extent) of objective function f ℓ ( x, y ) in goal k . 
The above model is interesting when one goal at a higher level 

in the hierarchy is prone to render multiple optimal solutions. This 
is exactly what happens in real world problems such as those dis- 
cussed by [25] and [26] and that we will consider in the next sec- 
tion for illustrative purposes. 

4. A case study 

In order to show the relevance of the modeling aspects and 
procedures discussed in the previous sections, we consider a spe- 
cific problem emerging in the context of humanitarian logistics: 
the shelter site location problem. 

The handbook by the [41] emphasizes that having previously 
established shelter areas is crucial when it comes to disaster recov- 
ery. For the victims who lose their homes under some unfortunate 
event, it is critical to find a safe and secure shelter in which they 
can preserve their lives with dignity. The problem emerging in the 
preparedness phase for disaster relief that consists of choosing lo- 
cations for sheltering is the so-called shelter site location problem 

and it has been studied by [25] and [26] . 
There are several features specific to the shelter site location 

problem that were considered in the aforementioned studies. First, 
candidate shelter locations are identified in advance and each of 
them is assigned a weight, which is a value in [0, 1]. The weights 
are computed taking many aspects into account (see [25] for all 
the details). The candidate locations can be parks, yards, school 
gardens, parking lots, et cetera ; i.e. a spot that can be character- 
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ized as safe in the event of a disastrous situation. Second, there 
are service level requirements, which are related with capacity and 
minimum utilization rates for the shelters. 

One specific case the authors are aware occurs in Turkey. In 
this country, the current methodology for selecting shelter areas 
considers as a primary objective the maximization of the mini- 
mum weight of open shelter areas [25] . As discussed before, this 
maxmin objective can be looked at as a Rawlsian approach to 
the problem since it targets fairness for the least advantaged vic- 
tims of a disaster. This objective was introduced mathematically in 
Section 3 ( W min ). In th current work, it is also chosen as the pri- 
mary objective. 

While raising the minimum weight of the selected shelter loca- 
tions to the possible maximum level, the above Rawlsian objective 
does not ensure that the best-weighted locations are utilized al- 
though this is of relevance in the shelter site location problem. In 
other words, there may be alternative optima w.r.t. W min but with 
a different value for the average weight across the selected shel- 
ters, i.e., for W avg . In fact, as discussed before, an objective function 
such as W min is prone to generate plateaus in the objective space. 
In other words, one can easily obtain multiple optimal solutions 
when considering that measure alone. This provides strong evi- 
dence that by considering only a Rawlsian perspective we may ob- 
tain solutions in which the available resources are not used in the 
best way. Hence, a second objective (maximizing W avg ) emerges as 
relevant for ensuring a better public welfare. 

Finally, when considering an optimization model for supporting 
decision making in the shelter site location problem, the closest as- 
signment of populations to shelters is a key constraint to consider 
so that the models can “mimic” the behavior of people moving to- 
wards open facilities. Although these constraints aim at achieving 
a desirable outcome, they may not guarantee the best solution in 
terms of total distance traveled, which decreases its applicability. 
Similarly, it is easy to see that by only minimizing the total dis- 
tance we cannot guarantee the closest assignment of the victims 
to the open shelters. Accordingly, another important objective to 
consider is the minimization of the average distance traveled—ADT 
(Recall the definition introduced in Section 3 ). 

In synthesis, the three measures introduced in Section 3 are of 
great relevance in an application such as the shelter site location 
problem. Hence, we proceed with the analysis of our case study by 
considering the three objectives induced by those measures. 

4.1. Modeling specifications 

The general formulation presented in Section 2 can be spec- 
ified for the single ( Rawlsian ) objective chance-constrained prob- 
lem. Such specification leads to the optimization model that is in- 
troduced by [26] : 

maximize W min , (27) 

subject to W min ≤ w i x i + (1 − x i ) , i ∈ I, (28) 

(2) , (4) , (5) , (8) , (14) − (18) . 

In the above model it is assumed that w i ∈ [0, 1], i ∈ I . This for- 
mulation poses one difficulty if we wish to consider the objective 
function W min within a vectorial optimization modeling frame- 
work. In fact, if a lexicographic approach such as the one described 
in Section 3 is considered, the objective function (27) will be rep- 
resented as a constraint in some iterations ( W min = W ∗min ) ensuring 
that the value of W min does not deteriorate from W ∗min ( W ∗min rep- 
resents the optimal solution of the counterpart model solved in 
the previous iteration with objective function (27) ). In this case, 
constraint set (28) is not enough to ensure that the outcome in 
terms of W min represents, in fact, the minimum weight across the 

selected shelters. In other words, we may have an inconsistency 
in terms of the meaning of W min and its actual value produced 
by a lexicographic approach. What is more, this may lead to skip- 
ping some potential non-dominated solutions. These issues can be 
prevented by including a few additional constraints and a set of 
auxiliary binary variables denoted by a i , ( i ∈ I ), as follows: 

W min = 

∑ 

i ∈ I 

(w i · a i ) , (29) 

∑ 

i ∈ I 

a i = 1 , (30) 

a i ≤ x i , i ∈ I, (31) 

a i ∈ { 0 , 1 } , i ∈ I. (32) 

Before presenting the data and the results for our case study, 
we emphasize that when dealing with W avg , the constraints (21) –
(26) are appended to the corresponding models. 

4.2. Specialization of the ε -constraint method for the 3-criteria 
stochastic shelter site location problem 

In Section 3 we pointed out that the ε-constraint method con- 
sists of solving a sequence of single objective problems consider- 
ing one of the objective functions and incorporating the other ones 
(the side objectives) as constraints. We also mentioned the paper 
by [1] where an exact approach is proposed for finding all Pareto 
solutions in a 3-criteria problem when one of the objective func- 
tions takes values in a finite set (of small cardinality). Next, we 
adapt those ideas to our 3-criteria shelter site location problem. 

In our problem we are considering the following three objective 
functions: 

f 1 ( x, y ) : ADT (minimize); 
f 2 ( x, y ) : W avg (maximize); 
f 3 ( x, y ) : W min (maximize). 

f 3 can take values in a finite set (whose cardinality is at most 
that of I ). Hence, a single objective problem that we can consider 
for determining Pareto solutions is the following: 

minimize f 1 (x , y ) , 

subject to f 2 (x , y ) ≥ ε 2 (33) 

f 3 (x , y ) ≥ ε 3 

(2) , (4) , (5) , (8) , (28) , 

(14) − (18) , (21) − (26) , (29) − (32) (34) 

We denote this problem by P 1 ( ε2 , ε3 ). We also consider a second 
problem to be used in our algorithmic approach, that we denote 
by P 2 ( ε2 , ε3 ), which results from replacing in P 1 ( ε2 , ε3 ) (34) by 

f 3 (x , y ) = ε 3 . 

Note that in constraints (33) and (34) we are using “≥ ” instead of 
“≤ ” because both objective functions f 2 ( x, y ) and f 3 ( x, y ) are to be 
maximized. Accordingly, some changes are necessary with respect 
to the “pure” minimization context considered in Section 3 . 

The proposed algorithm for finding all the Pareto solutions con- 
sists of two main stages. In the first one, we find all the non- 
dominated and (weakly) dominated solutions. In the second stage, 
we iteratively eliminate the latter. 

The first stage is detailed in Algorithm 1 . In this algorithm, we 
denote by ˆ f 1 , ˆ f 2 , and ˆ f 3 the current values of the objective func- 
tions considered. Recall that | I | denotes the cardinality of poten- 
tial shelter sites (which implies the maximum number of distinct 
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Algorithm 1 A Methodology for 3-Objective ε-constraint Method. 

1: SS := ∅ ; ε 2 := 0 ; ε 3 := 0 
2: Solve P 1 (ε 2 , ε 3 ) and set W min := ˆ f 3 . 
3: for iter = 1 : | I| do 
4: while P 2 (ε 2 , ˆ f 3 ) is feasible do 
5: Solve P 2 (ε 2 , ˆ f 3 ) 
6: X := opt[ ̂  f 1 , ˆ f 2 , ˆ f 3 ] 
7: SS := SS ∪ { X} 
8: ε 2 := ε 2 + k 2 
9: end while 

10: ε 2 := 0 and ε 3 := ˆ f 3 + k 3 
11: if P 1 (ε 2 , ε 3 ) is infeasible then 

12: break for 

13: else 

14: Solve P 1 (ε 2 , ε 3 ) and find the next feasible W min := ˆ f 3 . 
15: end if 

16: end for 

weight values). Furthermore, we denote by opt[ ̂  f 1 , ˆ f 2 , ˆ f 3 ] the opti- 
mal solution to the current model P 2 ( ε2 , f 

3 ). Finally, SS denotes the 
solution set (to be obtained by the execution of the algorithm). 

We first solve the model P 1 (0, 0) which will produce an ini- 
tial value for W min (line 2). Even though W min can take values 
from a discrete set, it is not necessary to start from the lowest 
possible value. In fact, P 1 (0, 0) will yield the lowest such value 
for a non-dominated solution, i.e., all the values for W min smaller 
than the one obtained when solving P 1 (0, 0) render either infea- 
sible or dominated solutions. In lines 4–9 of the algorithm, us- 
ing P 2 (ε 2 , ˆ f 3 ) , we fix W min and solve the model as if it is a bi- 
objective one while increasing the second objective function value 
by k 2 until infeasibility is reached. In the meantime, we save the 
results in our solution set. Afterwards, we detect the next possible 
W min value by solving P 1 (0, ε3 ) where ε3 is assured to be strictly 
greater than the previous W min . The procedure is repeated until 
all the range of values for W min has been covered. Adequate val- 
ues for the step sizes should result from a preliminary analysis 
performed using the specific data involved in an instance of the 
problem. For the data we considered in our study, we provide the 
details in Section 5 . 

This algorithm may produce (weakly) dominated solutions. 
These can be eliminated using a simple post processing procedure: 
a solution is compared with all other solutions; if it is associated 
with lower W min and W avg values and higher distance value than 
some other solution, then it is removed from the solution set. The 
procedure is detailed in Algorithm 2 . ParetoSet denotes the set of 

Algorithm 2 Post Processing of Solutions to Obtain the Pareto 
Frontier. 
Require: SS // Solution set that is obtained from Algorithm 1. 
1: ParetoSet := SS
2: for i = 1 : | SS − 1 | do 
3: for j = i + 1 : | SS| do 
4: if f 1 (SS j ) ≤ f 1 (SS i ) and f 2 (SS j ) ≥ f 2 (SS i ) and f 3 (SS j ) ≥

f 3 (SS i ) then 

5: (SS i ) is dominated, ParetoSet := ParetoSet \ { SS i } 
6: else 

7: (SS i ) is a non-dominated solution. 
8: end if 

9: end for 

10: end for 

Pareto solutions obtained at the end of the whole procedure, and 
SS i is the i -th solution in set SS (the incumbent solution set). 

The proof that the overall approach ( Algorithm 1 and 2 ) pro- 
vides the exact Pareto frontier for our problem follows exactly the 
same reasoning as the similar proof presented by [1] for their spe- 
cific context. 

Remark 1. In the above specialization of the ε-constrained method 
we chose ADT to be optimized (i.e., we set f 1 (x , y ) = ADT ). We 
could have chosen W avg (making the necessary adjustments to 
Algorithm 1 ). The resulting Pareto front would, of course, be the 
same (we are determining all the Pareto solutions). However, a 
set of preliminary computations showed that minimizing the ADT 
results in significantly lower run times compared to maximizing 
W avg . 

4.3. Specialization of the goal programming model for the 
multi-criteria stochastic shelter site location problem 

As explained by [25] and [26] the existing quantitative ap- 
proaches for the shelter site location problem call for a primary 
objective function to be optimized: W min . If a decision maker looks 
at such objective as clearly more relevant than any other, then we 
should use an approach that enables us to solve the problem for 
that objective and then consider the set of (likely to exist) multi- 
ple optimal solutions to optimize other objectives. In other words, 
other objectives of interest can be optimized in the restricted set 
of solutions that contains the multiple optimal solutions to W min . 
This motivates the use of a goal programming approach. Using the 
terminology presented in Section 3.2 a goal programming model 
can be generically formulated for the shelter site location problem 

as follows (we consider without loss of generality that W avg has 
priority 2 and ADT priority 3): 

minimize P 1 [ d 
−
1 ] + P 2 [ d 

−
2 ] + P 3 [ d 

+ 
3 ] , 

subject to W min + d −1 = w 
MAX , 

W avg + d −2 = w 
MAX , 

ADT − d + 3 = 0 , 

(2) , (4) , (5) , (8) , (28) , 

(14) − (18) , (21) − (26) , (29) − (32) 

d −1 , d 
−
2 , d 

+ 
3 ≥ 0 

In the above model, w MAX denotes again the maximum value 
across all weights associated with the shelters. Moreover, the vari- 
ables d + 1 , d 

+ 
2 and d −3 (that according to the general model of 

Section 3.2 should be included in our model) are not being consid- 
ered. We could have considered them but they are trivially equal 
to 0 due to the specification made for the goals. In fact, neither 
W min nor W avg can be greater than w MAX and ADT cannot be neg- 
ative. In case we only wish to consider W min with one side objec- 
tive we can simply set P 2 = 0 or P 3 = 0 , depending on the objective 
we wish to exclude. In case we do not consider objective W avg we 
should also omit constraints (14) –(18) . 

5. Computational experiments 

In this section, we consider two different data sets to test 
the multi-criteria chance-constrained modeling frameworks spec- 
ified for our case study. We start by presenting the data we have 
worked with and then we analyze the results obtained. 

5.1. Data sets 

The first data set corresponds to Kartal, which is the 11 th most 
populated district among the 39 districts of the metropolitan area 
of Istanbul. Kartal has more than 425,0 0 0 inhabitants and it is a 
38.54 km 2 district located near the western extension of the North 
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Table 1 

Used data sets’ specifications. 

K45 IST220 

Number of candidate shelter location 25 100 
Number of demand points 20 120 
Minimum weight 0.674 0.140633 
Maximum weight 0.982 0.893454 
Mean weight 0.827 0.575811 
Standard deviation of weights 0.097 0.202467 

Anatolian fault. This area is considered to be a first degree earth- 
quake threat zone which indicates its vulnerability against a future 
disaster. 

The Kartal data set contains 45 relevant points that include the 
potential shelter locations and the possibly affected populations in 
case of an earthquake. This data was collected by [44] and has al- 
ready been used in the literature ( [25] and [26] ). This data set will 
be referred as K45 in the upcoming sections: “K” stands for Kartal 
and “45” for the total number of points involved in this set. 

Istanbul is the world’s 5 th most crowded and 6 th most densely 
populated city. It has 35% of its total population located in the east 
side of the Bosphorus, which is known as the Anatolian Side. The 
seismic research [36] shows that a catastrophic earthquake will in- 
evitably hit the city in the near future. For this reason, in our study, 
we decided to consider the whole Anatolian side of Istanbul: it cor- 
responds to our second data set. Naturally, it is significantly larger 
compared to K45 . This data set will be referred to as IST220 in the 
upcoming sections: “IST” stands for Istanbul and “220” stands for 
the number of points involved in this set. 

The specifications of the two data sets just introduced are given 
in Table 1 . In both cases, population data was obtained from the 
Turkish Statistical Institute. 

In his Ph.D. thesis, [44] indicates that approximately 12.5% of 
the population of Istanbul would be in need for temporary hous- 
ing if an earthquake occurs [25] . named this value as the Percent 
Affected Ratio ( PAR ) and performed an extensive analysis with that 
specific percentage. However, [26] note that this parameter can- 
not be known in advance since it is dependent on many aspects of 
an uncertain-in-nature event; therefore, when shelter locations are 
being decided, demand variability should be accounted for. In this 
study, we have included such variability via the PAR value using 
two different scenarios, both centered in the original value consid- 
ered by [25] and [44] . In particular, we follow the same procedure 
introduced in [26] : 

Scenario 1 — Low Variability: PAR = 0 . 125 ×U[0 . 95 , 1 . 05] ; 
Scenario 2 — High Variability: PAR = 0 . 125 ×U[0 . 85 , 1 . 15] . 

In the above scenarios, U [ a, b ] denotes a pseudo-random ran- 
dom number generated according to a continuous uniform distri- 
bution in the interval [ a, b ]. For each scenario, 10 values were gen- 
erated for PAR and each one was then multiplied by the number 
of inhabitants to obtain demand samples. From each such sample, 
μj and σ

2 
j are computed for all demand points j ∈ J to be used in 

constraints (14) –(16) . 
In order to observe the behavior of the models proposed in the 

previous sections we also consider different values of β—the min- 
imum allowed utilization rate of a shelter. The alternative values 
tested were 0.30, 0.50 and 0.70. These alternatives lead to a vary- 
ing size of the solution space, which enriches our analysis. 

The chance constraint parameters γ i and ζ i ( i ∈ I ) used in con- 
straints (6) and (7) were set to 0.90 and 0.10, respectively. 

For both data sets, 10 breakpoints, b 1 = 0 . 1 , . . . , b 10 = 1 , are 
used in the piecewise linear approximation considered for v 2 i and 
represented by constraints (14) –(18) . This means that the interval 
[0, 1] was always partitioned into 10 equal sub-intervals. In fact, a 

Table 2 

Step sizes to consider in the ε-constraint method. 

Objective function Step size K45 Step size IST220 

W min 10 −3 10 −6 

W avg 10 −5 10 −5 

ADT 10 −3 10 −3 

set of preliminary tests showed that this number ensures an accu- 
rate approximation for the value of v 2 i . 

All of the models presented in this work were coded in Java API 
of CPLEX and solved using IBM CPLEX v12.6.1 that runs on a Linux 
OS with 4xAMD Opteron Interlagos 6282SE 16 Core 2.6GHz 16MB 
L3 cache server processors with 96 GB of RAM. 

5.2. Results for 2-criteria vectorial optimization models 

In this section, we present the computational results obtained 
when considering a vectorial optimization modeling framework for 
the chance-constrained shelter site location problem we are inves- 
tigating. We perform pairwise comparisons with our primary ob- 
jective, W min . 

While implementing the lexicographic approach, we need to 
define the step sizes for the transitions between consecutive iter- 
ations while not leaving out any non-dominated solutions (or to 
be adequately sensitive as required by the decision makers). It can 
be said that larger step size values speed up the computations of 
the models; whereas constitute a potential for overlooking some 
non-dominated solutions. Thus, it is essential to determine the step 
sizes so that they are sufficiently small to determine all solutions 
on the Pareto front and large enough to yield shorter computa- 
tional times. To come up with suitable step size values for our case, 
we performed computational experiments with different values to 
find the most suitable ones. The weight data for candidate shelter 
sites of K45 and IST220 data sets have 3 and 6 decimals, respec- 
tively. Therefore, since the smallest difference of W min values be- 
tween two solutions can be 10 −3 and 10 −6 , we set these numbers 
to be the stepsize of W min values for of K45 and IST220 . For the 
step size of the W avg measure, we started with 10 −3 and changed 
it by the factor of 0.1 until 10 −6 . By the extensive computational 
analyses, we realized that 10 −5 is sufficiently small for the step 
size of W avg . Likewise, the stepsize of ADT measure is set to be 1 
meter ( 10 −3 kilometers) for both data sets. The step size values for 
each measure and data set are shown on Table 2 . 

5.2.1. Data set K45 
We look into Pareto solutions for two different bi-criteria prob- 

lems: in the first one we aim at maximizing both W min and W avg ; 
in the second one we aim at maximizing W min along with the 
minimization of ADT. 

W min vs. W avg . The results obtained when considering the objec- 
tive functions W min and W avg can be found in Table 3 . This table 
contains two sub-tables, each of which are for a different variabil- 
ity level. In each sub-table we distinguish the different values of β
analyzed. For each such value, we present a first line corresponding 
to max W min . In this line, we observe the values obtained for the 
objective functions W min and W avg when the single objective prob- 
lem corresponding to maximizing W min only was solved to opti- 
mality. Then, we present all the Pareto solutions obtained when 
a vectorial optimization modeling framework was considered in- 
volving both W min and W avg . We also provide the number of lo- 
cated shelters for each solution on a third column in each subtable 
headed by “# ”. 

Observing Table 3 we conclude that in all of the 6 combina- 
tions of β and variability levels, the optimal solution to the single 
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Table 3 

Results for K45 —W min vs. W avg . 

Scenario 1: Low variability 

W min W avg # 

β = 0.3 max W min 0.847 0.89825 4 
Pareto solution 1 0.847 0.89825 4 
Pareto solution 2 0.827 0.93740 6 

β = 0.5 max W min 0.847 0.88167 3 
Pareto solution 1 0.847 0.88167 3 
Pareto solution 2 0.827 0.9374 5 

β = 0.7 max W min 0.847 0.88167 3 
Pareto solution 1 0.847 0.88167 3 

Scenario 2: High variability 

W min W avg # 

β = 0.3 max W min 0.847 0.89825 4 
Pareto solution 1 0.847 0.89825 4 
Pareto solution 2 0.827 0.91360 5 
Pareto solution 3 0.809 0.93220 5 

β = 0.5 max W min 0.847 0.88167 3 
Pareto solution 1 0.847 0.88167 3 
Pareto solution 2 0.803 0.91560 4 
Pareto solution 3 0.801 0.9156 5 

β = 0.7 max W min 0.847 0.88167 3 
Pareto solution 1 0.847 0.88167 3 

objective problem (max W min ) provides directly a Pareto solution 
(it always coincides with the Pareto solution 1). This can be ex- 
plained by the fact that the data set under consideration is small 
and thus the number of Pareto solutions is itself small and not very 
“rich”. This is confirmed by the fact that for the setting where the 
solution space is the smallest ( β = 0 . 7 ), we only have one Pareto 
solution which is also provided by the single-objective solution for 
W min . We note also that not all the Pareto solutions obtained for 
the low variability setting are Pareto solutions in the high variabil- 
ity one and vice versa. It could also be observed that the number 
of located shelters tends to be larger for lower β values and tends 
to increase when the W avg improves. 

W min vs. ADT. For the second objective pairing, i.e., W min and ADT, 
the results are provided in Table 4 . This table reads as Table 3 . 

Like observed when working with W min and W avg not all the 
Pareto solutions obtained for the low variability setting are Pareto 
solutions in the high variability one and vice versa. This indicates 
that capturing uncertainty (i.e., taking variability into account) is 
relevant since different solutions may be obtained . 

Concerning the number of shelters selected, we can observe 
that it is quite similar to what was observed in Table 3 . 

Another interesting aspect is that, for β = 0 . 3 (the less restrict- 
ing value of β), the single objective solution corresponding to max- 
imizing W min is weakly dominated by the first Pareto solution 
in both variability scenarios. This shows the ability of our multi- 
criteria framework to look for the alternative optimal solution for 
W min that minimizes ADT. 

Observing Table 4 we also conclude that significant improve- 
ments can be achieved in ADT if we allow deteriorating the value 
of W min a little. Those improvements range between 28% and 50%. 
Taking into account that ADT is an average value (per person), such 
improvements mean that the total distance traveled by all disas- 
ter victims can be significantly reduced in some cases. Hence, by 
using a multi-criteria approach thus obtaining a set of Pareto so- 
lutions we can provide the decision makers with a deeper insight 
concerning the trade-off between different objectives. 

5.2.2. Data set IST220 
The same scheme applied for K45 was also used for IST220 with 

the results reported next. This is a much larger data set and thus, 

Table 4 

Results for K45 —W min vs. ADT. 

Scenario 1: Low Variability 

W min ADT # 

β = 0.3 max W min 0.847 2.983 4 
Pareto solution 1 0.847 2.911 4 
Pareto solution 2 0.827 1.698 5 
Pareto solution 3 0.801 1.572 7 
Pareto solution 4 0.694 1.500 8 

β = 0.5 max W min 0.847 3.068 3 
Pareto solution 1 0.847 3.068 3 
Pareto solution 2 0.827 1.728 5 
Pareto solution 3 0.694 1.671 7 

β = 0.7 max W min 0.847 3.068 3 
Pareto solution 1 0.847 3.068 3 
Pareto solution 2 0.827 1.789 5 

Scenario 2: High Variability 

W min ADT # 

β = 0.3 max W min 0.847 3.068 3 
Pareto solution 1 0.847 2.911 3 
Pareto solution 2 0.809 2.077 6 
Pareto solution 3 0.803 1.990 6 
Pareto solution 4 0.801 1.532 7 
Pareto solution 5 0.694 1.505 8 

β = 0.5 max W min 0.847 3.068 3 
Pareto solution 1 0.847 3.068 3 
Pareto solution 2 0.809 2.435 4 
Pareto solution 3 0.803 1.211 4 
Pareto solution 4 0.801 1.974 5 

β = 0.7 max W min 0.847 3.068 3 
Pareto solution 1 0.847 3.068 3 
Pareto solution 2 0.809 2.732 4 
Pareto solution 3 0.801 2.424 4 
Pareto solution 4 0.674 2.217 5 

Table 5 

Results for IST220 —W min vs. W avg . 

Scenario 1: Low Variability 

β = 0.3 W min W avg # 

max W min 0.595974 0.73458 12 
Pareto solution 1 0.595974 0.82540 10 

β = 0.5 max W min 0.595974 0.74345 9 
Pareto solution 1 0.595974 0.80902 7 
Pareto solution 2 0.580393 0.80996 7 

β = 0.7 max W min 0.595974 0.74225 5 
Pareto solution 1 0.595974 0.75822 6 
Pareto solution 2 0.580393 0.78775 6 

Scenario 2: High Variability 

β = 0.3 W min W avg # 

max W min 0.595974 0.74888 9 
Pareto solution 1 0.595974 0.82243 13 

β = 0.5 max W min 0.595974 0.72726 7 
Pareto solution 1 0.595974 0.80902 7 

β = 0.7 max W min 0.595974 0.75822 6 
Pareto solution 1 0.595974 0.75822 6 

we expect to observe the benefits of applying a multi-criteria mod- 
eling framework to the problem more explicitly. 

W min vs. W avg . The results for this setting can be observed in 
Table 5 that reads as the previous tables. The most prominent char- 
acteristic turns out to be the small number of Pareto solutions 
found. Nevertheless, maximizing W min or W avg individually does 
not necessarily lead to the same solution. This can be observed 
in more than one case. We recall that for each setting, the “last”
Pareto solution maximizes W avg . Even though the number of Pareto 
solutions is considerably small, unlike the K45 data set, among the 



Ö.B. Kınay et al. / Omega 83 (2019) 107–122 117 

Table 6 

Results for IST220 —W min vs. ADT—low variability demand. 

Scenario 1: Low Variability

Wmin ADT #

β
=

0.
3

max Wmin 0.595974 4.864 8

Pareto solution 1 0.595974 2.143 9

Pareto solution 2 0.587395 1.837 9

Pareto solution 3 0.580393 1.784 7

Pareto solution 4 0.577434 1.455 8

Pareto solution 5 0.572222 1.416 6

Pareto solution 6 0.502137 1.372 8

Pareto solution 7 0.462376 1.370 8

Pareto solution 8 0.417498 1.325 6

Pareto solution 9 0.376080 1.266 9

Pareto solution 10 0.347547 0.989 8

Scenario 1: Low Variability

Wmin ADT #

β
=

0.
5

max Wmin 0.595974 4.494 10

Pareto solution 1 0.595974 2.247 6

Pareto solution 2 0.580393 1.995 6

Pareto solution 3 0.572222 1.739 4

Pareto solution 4 0.502137 1.636 7

Pareto solution 5 0.471939 1.620 8

Pareto solution 6 0.462376 1.575 7

Pareto solution 7 0.417498 1.326 6

Pareto solution 8 0.347547 1.135 7

Pareto solution 9 0.268146 1.026 7

Scenario 1: Low Variability

Wmin ADT #

β
=

0.
7

max Wmin 0.595974 2.342 5

Pareto solution 1 0.595974 2.342 4

Pareto solution 2 0.572222 1.869 4

Pareto solution 3 0.502137 1.814 7

Pareto solution 4 0.471939 1.680 8

Pareto solution 5 0.417498 1.372 5

Pareto solution 6 0.268146 1.185 7
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Table 7 

Results for IST220 —W min vs. ADT—high variability demand. 

Scenario 2: High Variability

Wmin ADT #

β
=

0
.3

max Wmin 0.595974 4.483 9

Pareto solution 1 0.595974 3.881 16

Pareto solution 2 0.574319 3.830 17

Pareto solution 3 0.556093 3.784 17

Pareto solution 4 0.545592 2.908 20

Pareto solution 5 0.510776 2.859 20

Pareto solution 6 0.502137 2.507 23

Pareto solution 7 0.485232 2.475 23

Pareto solution 8 0.471939 2.464 23

Pareto solution 9 0.456579 2.451 23

Pareto solution 10 0.433190 2.447 25

Pareto solution 11 0.417498 2.403 25

Pareto solution 12 0.410607 2.359 24

Pareto solution 13 0.376080 2.254 25

Pareto solution 14 0.347547 2.226 25

Pareto solution 15 0.335902 2.220 24

Pareto solution 16 0.335560 2.193 24

Pareto solution 17 0.284405 2.165 25

Pareto solution 18 0.253225 2.111 27

Pareto solution 19 0.241292 1.903 31

Pareto solution 20 0.215851 1.780 30

Scenario 2: High Variability

Wmin ADT #

β
=

0
.5

max Wmin 0.595974 5.232 5

Pareto solution 1 0.595974 4.307 8

Pareto solution 2 0.574319 4.286 9

Pareto solution 3 0.556093 4.249 9

Pareto solution 4 0.546913 4.234 10

Pareto solution 5 0.502137 3.296 13

Pareto solution 6 0.456578 3.285 12

Pareto solution 7 0.453114 3.169 13

Pareto solution 8 0.434373 3.131 16

Pareto solution 9 0.410607 2.882 17

Pareto solution 10 0.405868 2.852 16

Pareto solution 11 0.376080 2.598 18

Pareto solution 12 0.335560 2.536 17

Pareto solution 13 0.253225 2.486 20

Pareto solution 14 0.241292 2.218 22

Scenario 2: High Variability

Wmin ADT #

β
=

0
.7

max Wmin 0.595974 5.533 5

Pareto solution 1 0.595974 5.387 6

Pareto solution 2 0.574319 5.235 6

Pareto solution 3 0.502137 4.296 8

Pareto solution 4 0.485232 4.193 8

Pareto solution 5 0.471939 4.136 9

Pareto solution 6 0.440460 3.893 10

Pareto solution 7 0.417498 3.881 10

Pareto solution 8 0.410607 3.578 9

Pareto solution 9 0.376080 3.366 11

Pareto solution 10 0.140633 3.349 11
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5 settings out of 6, the first Pareto solution found immediately 
improves the objective function W avg value significantly when we 
compared to the single-objective solution that maximizes W min . 
In addition to those, on the contrary to what was observed on 
Table 3 and Table 4 , one can notice that the multi-criteria frame- 
work is able to decrease the number of located shelters for two 
cases ( β = 0 . 3 and β = 0 . 5 for low variability). This implies that 
no generalization could be made on the relation between number 
of located shelters and W avg improvement. Nevertheless, the trend 
for an increase in the number of shelters when β decreases is still 
present. 

W min vs. ADT. The results obtained when the objective functions 
considered are W min and ADT are depicted in Tables 6 and 7 . These 
tables read as the previous ones but each one is associated with 
one variability level (small and high, respectively). Since the num- 
ber of Pareto solutions is considerably higher than before, a graph- 
ical representation of the results is also provided at the bottom of 
the tables. 

For the low variability scenario, when β is 0.3 and 0.5 the av- 
erage distance is improved more than 50% when we move from 

the single objective solution corresponding to W min to the first 
Pareto solution found. On the other hand, when β is 0.7 the so- 
lution space seems to be considerably reduced and such changes 
are not immediately observed or else they are not significant. Also, 
for this value of β , fewer Pareto solutions exist. 

Looking into the number of located shelters of the solutions for 
each value of β , we cannot observe a general decremental or incre- 
mental pattern. Interestingly, for β = 0 . 5 , all the Pareto solutions 
have fewer open shelters when compared to the solution rendered 
by the single objective model. 

For the high variability setting, a similar pattern can be ob- 
served in terms of number of Pareto solutions whilst β is increas- 
ing. However, the stochasticity effects are significant on the av- 
erage distance values, specifically in the earlier iterations. There- 
fore, this is again another major indication that (Pareto) solutions 
can be highly affected by the demand variability. Additionally, the 
higher demand variability leads to an increase in the number of 
Pareto solutions found. Although we can observe improvements in 
terms of ADT in the initial iterations of three β levels, the improve- 
ment rates are not as significant as the low variability scenario. 
Compared to what we observed in the low variability scenario, we 
observe a significant increase in the number of selected shelters 
in the Pareto solutions obtained. This is particularly true for the 
lower value of β . Furthermore, we realized that no Pareto solution 
has less shelters selected than the number obtained by the sin- 
gle scenario model. For both low and high variability settings, the 
results show that there may be several quite different trade-off so- 
lutions which gives strength to the need of considering a multi- 
criteria model for obtaining such solutions. This is more evident in 
the large IST220 data set considered. 

5.3. Results for the 3-criteria vectorial optimization model 

We consider now the vectorial optimization problem induced 
by the three objectives identified as relevant for the shelter site 
location problem: W min , W avg , and ADT. 

The preliminary analysis whose results led to the values pre- 
sented in Table 2 can also be used for specifying the step sizes 
necessary to run the ε-constrained method. In fact, the values k 2 
and k 3 required by Algorithm 1 are directly taken from that table. 

Like for the bi-criteria cases, we first present the results for K45 
and then for IST220 . 

Table 8 

Results overview for K45 —3-criteria model. 

Number of 
solutions found 

Number of 
solutions in the 
Pareto Front 

Solution 
time 

Low variability β = 0 . 3 15 10 3.2 sec 
β = 0 . 5 7 4 1.5 sec 
β = 0 . 7 2 2 0.6 sec 

High variability β = 0 . 3 19 17 4.9 sec 
β = 0 . 5 5 5 1.6 sec 
β = 0 . 7 4 4 1.6 sec 

Table 9 

Pareto Solutions for K45—3-criteria model. 

Scenario 1: Low Variability 

W min W avg ADT # 

β = 0.3 Pareto solution 1 0.694 0.86100 1.500 8 
Pareto solution 2 0.694 0.86400 1.505 8 
Pareto solution 3 0.801 0.90414 1.527 7 
Pareto solution 4 0.801 0.90757 1.532 7 
Pareto solution 5 0.801 0.91067 1.618 6 
Pareto solution 6 0.801 0.91467 1.623 6 
Pareto solution 7 0.827 0.92533 1.698 6 
Pareto solution 8 0.827 0.93740 1.789 5 
Pareto solution 9 0.847 0.89160 2.911 5 
Pareto solution 10 0.847 0.89825 2.921 4 

β = 0.5 Pareto solution 1 0.694 0.87300 1.671 7 
Pareto solution 2 0.827 0.89983 1.728 6 
Pareto solution 3 0.827 0.93740 1.789 5 
Pareto solution 4 0.847 0.88167 3.068 3 

β = 0.7 Pareto solution 1 0.827 0.93740 1.789 5 
Pareto solution 2 0.847 0.88167 3.068 3 

Scenario 2: High Variability 

W min W avg ADT # 

β = 0.3 Pareto solution 1 0.694 0.86400 1.505 8 
Pareto solution 2 0.801 0.90757 1.532 7 
Pareto solution 3 0.801 0.91467 1.623 6 
Pareto solution 4 0.801 0.92100 1.801 6 
Pareto solution 5 0.801 0.93220 1.893 5 
Pareto solution 6 0.803 0.87950 1.990 6 
Pareto solution 7 0.803 0.89883 2.004 6 
Pareto solution 8 0.803 0.90450 2.026 6 
Pareto solution 9 0.803 0.90560 2.096 5 
Pareto solution 10 0.803 0.91240 2.117 5 
Pareto solution 11 0.809 0.88050 2.077 6 
Pareto solution 12 0.809 0.89983 2.091 6 
Pareto solution 13 0.809 0.90550 2.112 6 
Pareto solution 14 0.809 0.90680 2.182 5 
Pareto solution 15 0.809 0.91360 2.204 5 
Pareto solution 16 0.847 0.89160 2.911 5 
Pareto solution 17 0.847 0.89825 2.921 4 

β = 0.5 Pareto solution 1 0.801 0.85400 1.974 5 
Pareto solution 2 0.801 0.91560 2.060 5 
Pareto solution 3 0.803 0.91240 2.117 5 
Pareto solution 4 0.809 0.86350 2.435 4 
Pareto solution 5 0.847 0.88167 3.068 3 

β = 0.7 Pareto solution 1 0.674 0.85040 2.217 5 
Pareto solution 2 0.801 0.86075 2.423 4 
Pareto solution 3 0.809 0.85825 2.732 4 
Pareto solution 4 0.847 0.88167 3.068 3 

5.3.1. Data set K45 
In Table 8 , we can observe algorithm specifications For this 45- 

node instance, it can easily be noticed that the run times are small. 
Furthermore, it seems that the number of non-dominated solutions 
is slightly larger for the high variability scenario setting. In addi- 
tion, the effect of the solution space size is observed on the grad- 
ual decrease in terms of Pareto solutions when we observe the in- 
crease of β . Table 9 shows the solutions defining the Pareto front 
for each setting. 
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Fig. 1. Low variability & β= 0.3. 

Fig. 2. Low variability & β= 0.5. 

Table 10 

Results overview for IST220 —3-criteria model. 

Number of 
Solutions Found 

Number of 
Solutions on 
Pareto Front 

Solution 
time 

Low Variability β = 0 . 3 1323 416 4h 1m 

β = 0 . 5 462 209 3h 8m 

β = 0 . 7 89 62 22m 

High Variability β = 0 . 3 1168 476 4h 3m 

β = 0 . 5 287 153 58m 

β = 0 . 7 40 28 8m 

5.3.2. Data set IST220 
As expected, the number of iterations observed for IST220 is 

significantly higher than for K45 . Table 10 provides an overview of 
the results obtained. For β = 0 . 3 , the number of iterations turns 
out to be more than 10 0 0 along with the total solution time 
slightly exceeding 4 hours for both uncertainty levels. With an in- 
crease of β to 0.5, we observe a decrease of more than 60% in the 
number of solutions while the number of Pareto solutions is dra- 
matically decreased for high variability scenario as opposed to the 
nearly halved state of low variability one. 

Since the number of solutions in the Pareto front is large, a 
tabular identification of such solutions is not informative. For this 
reason we depict those solutions graphically. Figs. 1–3 show the 
non-dominated solutions for the three β levels and for the low 

uncertainty case. Likewise, Figs. 4–6 illustrate the Pareto solutions 
for the high variability case. For better understanding of the field 
of view in the 3-dimensional figures, front and side-views of the 
graphics are also provided. 

Looking into these figures we observe that the solutions define 
a “cascade” pattern. This can be explained by the accumulation of 
solutions around a single value of W min . Moreover, we can observe 
more scattered solutions when β increases; i.e., the solutions seem 

to be more disjoint points than lines of points for higher β . As 
the number of Pareto solutions is scaled up for this 3-criteria set- 
ting (for IST220 ), it could be easily said that for a decision maker, 
the selection of a solution among these will not be as easy as in 
other settings. Nevertheless, a decision maker would certainly have 
a deeper insight concerning the trade-off between the different ob- 
jectives considered. 

5.4. Results for the goal programming model 

The next set of results refers to the application of goal program- 
ming procedure to the multi-criteria shelter site location problem. 
Due to the practical relevance that optimizing W min currently has 
for the institutions responsible for organizing sheltering (see [26] ) 
we always consider that objective as the one with the highest pri- 
ority. Then we study separately its combination with the other two 
objective functions. In other words, we present the results of our 
goal programming model considering (i) W min and W avg ; (ii) W min 
and ADT. 

As before we present results for both K45 and IST220 data sets. 

5.4.1. W min Vs. W avg 

The obtained results are depicted in Table 11 , where we always 
observe two values for W avg . The first one is the value obtained 
when optimizing W min only; the second one results from deter- 
mining the best possible value of W avg when keeping W min to the 
optimal value found. We can observe that for K45 the goal pro- 
gramming approach does not seem to be worth considering. In 
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Fig. 3. Low variability & β= 0.7. 

Fig. 4. High variability & β= 0.3. 

Fig. 5. High variability & β= 0.5. 

Fig. 6. High variability & β= 0.7. 
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Table 11 

Goal Programming results—W min vs. W avg . 

Data set Uncertainty 
level 

β level W min W avg Improvement 

K45 Low 0.3 0.847 0.89825 - 
0.89825 

K45 High 0.3 0.847 0.89825 - 
0.89825 

K45 Low 0.5 0.847 0.88167 - 
0.88167 

K45 High 0.5 0.847 0.88167 - 
0.88167 

K45 Low 0.7 0.847 0.88167 - 
0.88167 

K45 High 0.7 0.847 0.88167 - 
0.88167 

IST220 Low 0.3 0.595974 0.73458 12.2% 
0.82450 

IST220 High 0.3 0.595974 0.74888 9.8% 
0.82243 

IST220 Low 0.5 0.595974 0.74345 8.8% 
0.80902 

IST220 High 0.5 0.595974 0.72726 11.2% 
0.80902 

IST220 Low 0.7 0.595974 0.74225 2.2% 
0.75822 

IST220 High 0.7 0.595974 0.75822 - 
0.75822 

Table 12 

GP results for W min vs. Average Traveled Distance. 

Data Set Uncertainty 
Level 

β Level W min ADT Improvement 

K45 Low 0.3 0.847 2.983 2.4% 
2.911 

K45 High 0.3 0.847 3.068 5.1% 
2.911 

K45 Low 0.5 0.847 3.068 - 
3.068 

K45 High 0.5 0.847 3.068 - 
3.068 

K45 Low 0.7 0.847 3.068 - 
3.068 

K45 High 0.7 0.847 3.068 - 
3.068 

IST220 Low 0.3 0.595974 4.864 55.9% 
2.143 

IST220 High 0.3 0.595974 4.483 13.4% 
3.881 

IST220 Low 0.5 0.595974 4.494 50.0% 
2.247 

IST220 High 0.5 0.595974 5.232 17.7% 
4.307 

IST220 Low 0.7 0.595974 2.342 - 
2.342 

IST220 High 0.7 0.595974 5.533 2.6% 
5.387 

fact, no improvement occurs in W avg . However, as the data set gets 
larger ( IST220 ), we see the improvements achieved by implement- 
ing this approach, especially when β = 0 . 3 and β = 0 . 5 . When β
is set to its maximum value, the benefits seem to diminish signifi- 
cantly. 

5.4.2. W min Vs. ADT 
The results obtained when considering W min and ADT in a goal 

programming modeling framework, are presented on Table 12 . We 
can clearly see that goal programming works extremely well, es- 
pecially for IST220 when low uncertainty is assumed. This is a 
strong indication that the single-objective model can easily gen- 
erate multiple optimal solutions thus providing room for improv- 
ing ADT namely, when the solution space is larger. By using this 

bi-objective setting, we could easily detect the alternative solution 
with the same W min value but an approximately 50% better dis- 
tance value in certain cases. 

6. Conclusions 

In this work we proposed modeling frameworks for multi- 
criteria chance-constrained discrete facility location problems with 
single sourcing. We considered two well-known paradigms in 
multi-criteria decision making: vectorial optimization and goal 
programming. We discussed ways of handling mathematically a set 
of probabilistic constraints that were included in the models. 

We applied our modeling frameworks to the stochastic shelter 
site location problem using real data from Istanbul, Turkey. This 
required specializing existing methods and tools namely, when it 
comes to finding the exact Pareto front for 3-criteria vectorial op- 
timization problems. 

Our results show that the drawbacks of using only the Rawlsian 
approach can be smoothed by considering other objectives both 
when using a vectorial optimization modeling framework or goal 
programming. 

The computational experiments highlight the importance of 
capturing uncertainty in the multi-criteria shelter site location 
problem. Nearly for all tested settings, it is observed that the num- 
ber of efficient solutions found changes according to the demand 
variability. Moreover, the solutions themselves change according to 
the “degree” of uncertainty considered. This gives support to the 
claim that demand variability is worth considering in the decision 
making process as a way for providing resource management plans 
that can better hedged against uncertainty. 

The computational experiments reported in this work show the 
effect of the size of the feasibility set on the relevance of con- 
sidering a multi-criteria modeling framework. We could observe 
that such relevance is higher when large-scale data sets are used 
with “looser” constraint settings (e.g. service level constraints with 
lower β values). Accordingly, by obtaining many efficient solutions, 
a decision maker can be provided with richer information for eval- 
uating the trade-offs between different objectives and select the 
one that emerges as the most convenient or appealing. 

One interesting aspect calling for further research would be the 
development of multi-criteria decision analysis tools such as ana- 
lytical hierarchy process or multi-attribute value theory as a means 
for a rational selection of the best-fitting efficient solution among 
many. This would give a help to the decision maker in the search 
for the solutions that is closest to an “ideal preference”. 

Another research direction includes the development of algo- 
rithmic procedures for tackling larger instances of our problem, 
namely if a much larger number of scenarios is required for ap- 
propriately describing the underlying uncertainty. 
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