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1 Introduction and summary

Theories of gravity coupled to scalar fields are an important ingredient in many subjects

including cosmology (inflation), large distance gravitational physics (models of dark energy,

modified gravity theories), high energy theory and phenomenology (string theory, super-

gravity, brane world models), as well as in the context of the gauge/gravity duality. The

presence of multiple scalars often makes the physics qualitatively different from the single

scalar case. The latter is relatively manageable when looking for simple solutions in which

the fields depend on only one coordinate (as in the case of cosmology or simple holographic
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renormalisation group flows), since one can use the scalar field as the coordinate which

describes the evolution. That said, in many cases, having multiple scalars with non-trivial

evolution is inevitable, and the reduction to a single-field may be too simplistic. This is

the case for example in cosmology and in gauge/gravity duality, the latter of which will be

the main focus of this work.

The gauge/gravity duality is the conjectured equivalence between a large N gauge

theory in d-dimensional flat space-time (boundary theory), and a higher dimensional theory

with dynamical gravity in higher dimensional curved space-time (bulk theory), [1–3]. In

this context bulk scalar fields correspond to couplings of single-trace scalar operators in the

dual, boundary field theory. Evolution in the bulk geometry corresponds to evolution under

the renormalisation group (RG) in the boundary theory. Solutions of the bulk equations in

which the scalars run along the holographic coordinate (which parametrise a non-compact

direction among those which are extra with respect to the boundary coordinates) are called

holographic RG flow solutions [4–11].

Holographic RG flows have been widely studied, and often (especially in phenomeno-

logical models) it is assumed for simplicity that only one of the scalars runs. However,

from the field theory point of view, it is clear that this is an oversimplification: any QFT

has an infinite number of operators, which will generically mix under the RG flow. Many

operators will start running even when the corresponding couplings are not turned on in

the far UV. Therefore, even though in some cases one can, to a first approximation, hope

to neglect this mixing, in general this will not be possible and one should consider solutions

with multiple scalars evolving.

The need to consider multifield scenarios also arises in a cosmological setting, for

instance inflation, see e.g. [12–14]. This is because in many cases, the truncation to a

single field fails to capture some important aspects of the full dynamics. Similar issues

arise in the context of supergravity truncations, see e.g. [15].

In this work, we consider d+1-dimensional Einstein gravity coupled to N scalar fields

φr with a generic scalar potential, and we focus on flow solutions, which depend on a

single coordinate u (space-like in holography and time-like in cosmology) and which can

be brought to the general form

ds2 = du2 + eA(u)ηµνdx
µdxν , φr = φr(u), r = 1, . . . , N. (1.1)

In holography these solutions describe Poincaré-invariant vacuum (or false vacuum) states

of the dual d-dimensional field theory; in cosmology they represent flat FRW space-times.

Our analysis will be mostly framed in the language of holographic RG flows, but many of

our results carry over unchanged to more general contexts.

When studying solutions of the form (1.1) it has often been very useful to rewrite

Einstein’s equations as first order flow equations, governed by a superpotential W ({φr}) [8,
9, 16], i.e. a function W (φ) on the scalar field manifold such that the ansatz (1.1) solves

the equations

dφr

du
= Grs∂W

∂φs
,

dA

du
= −2(d− 1)W, (1.2)
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where Grs is the (inverse) metric on field space. The superpotential is determined by a

coordinate-invariant differential equation given schematically by

Grs∂rW∂sW −W 2 = V, (1.3)

where V is the scalar field potential. The superpotential formulation is a way of grouping

together solutions into classes which share the same geometric features. Solutions in the

same class differ by the initial condition of the flow equations (1.1). This way of organising

the space of solutions also has applications in cosmology, as argued in [17].

In holography, the superpotential equation in the single field case has been widely

studied and the qualitative features of the solutions are known for general potentials [18–

22]. In particular, the first order formalism is a very convenient way of classifying solutions

close to an extremum of the potential (IR or UV fixed point) and when the scalar runs

to infinity [23]; it determines the holographic β-function for the coupling dual to the bulk

scalar, by β(φ) = −∂φ logW [8, 20]; it provides a c-function which interpolates monoton-

ically between the UV and IR central charges [5, 7, 16]; it gives a simple way to write

counterterms for holographic renormalisation [9, 24, 25] and the gravitational on-shell ac-

tion [20]. The first order formalism also allows one to uncover and classify “exotic” features

which cannot occur in perturbative field theory, such as inversion of the direction of a holo-

graphic RG flow occuring at points where the superpotential becomes multi-valued, as was

observed early on in [26, 27] and discussed in detail in [22]. A generalization of this formal-

ism was recently used in [28] to describe holographic RG-flows for field theories in curved

space-times.

Another important aspect of the superpotential formalism is its connection to the prop-

erties of gravitational stability of the system. In [29, 30] it was shown that, if the potential

is given by (1.3), then the AdS critical point can be proved to be stable perturbatively and,

with some extra assumptions, also non-perturbatively. These results have been generalized

to domain walls in [16, 31].

The multi-field case is much more involved, and a systematic analysis has so far been

missing. The main reason is that the multi-field superpotential equation is a non-linear

partial differential equation (as opposed to an ordinary differential equation in the single-

field case). As a consequence, several properties which are automatic in the simple-field

case (e.g. the very existence of a superpotential, the gradient property of all flows which

we discuss below), are less obvious when many scalars are involved.

Another major difference is that, in the single-field case, the number of integration

constants in the first order formulation is exactly the same as in the standard second order

form of Einstein’s equation. This implies that there is a one-to-one correspondence between

solutions of Einstein equations and solutions of the flow equations, and given a solution

of the form (1.1) there always exists a unique superpotential which can be reconstructed

following an algorithmic procedure. Instead, with multiple scalars, the correspondence

between first order and second order formulation is many to one: the same solution of

the Einstein-scalar system can arise from many different superpotentials, as we will see in

explicit examples.
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This ambiguity goes beyond the usual dependence of the field theory β-functions on

field redefinitions. In holography, once the boundary conditions in the UV are fixed, differ-

ent superpotentials (different β-functions) correspond to different vacua of the same theory.

For a single field, there is a one-to-one correspondence between vacua and β-functions,

whereas in the multi-field case there seem to be many more β-functions to describe the

same set of physical solutions (flows). One of our results will be to show that this degen-

eracy is lifted by appropriate regularity conditions in the IR, which can eliminate all but

one (or a discrete set) of beta-functions.

In this work we pursue two main goals. On the one hand, we perform a general analysis

of the space of solutions in terms of first order flows (1.1). On the other hand, we will

analyse the system from the point of view of Hamilton-Jacobi theory and investigate if

and how the existence of a superpotential is justified, and more generally when one can

describe the space of solutions using only gradient flows.

In the first part of the paper we analyse the space of solutions of the superpotential

equation and the corresponding flows, extending the systematic analysis that was performed

in [22] to the multi-field case. In particular we give a general classification of the behavior

at singular points, where some or all partial derivatives of W vanish. These may be of

two types:

1. Extrema of the potential: these may be reached in the far UV or the far IR, and they

are the endpoints of the flows.

2. Points which are not extrema of the potential: here, one or more directions of the

flow are inverted, and W becomes multi-branched. These are not endpoints, as the

solution can be continued smoothly past these points. They were referred to as

bounces in [22]

Unlike in the case of a single field, a generic extremum of the potential can play the

role both of an IR and a UV fixed point, depending on which directions in field space are

running.1 Close to the extremum, the behaviour of the superpotential is a generalisation of

the single field case: an analytic part which is universal (up to discrete choices), plus a sub-

leading part which contains the integration constants. The new feature in the multi-field

case is that we are now in the presence of integration functions, therefore the description

is highly redundant. We will identify a restricted class of solutions which contain just

enough integration constants to provide all possible solutions of Einstein’s equations of the

form (1.1).

Furthermore, we find that imposing an appropriate regularity condition around minima

of the scalar potential lifts all continuous deformations, leaves only one physical vacuum

(or at most a discrete set), and eliminates the redundancy in the first order description

while still allowing a continuous choice of the UV source parameters. This last requirement

is crucial because we do not want to restrict the values of the UV couplings, which enter

as initial conditions of the flow around a maximum of the potential. Indeed, in a QFT it

1With the exception of a local maximum, which can only be a UV fixed point.
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should be possible to change the couplings continuously, at least in a certain range, without

making the theory inconsistent.2

As in the single-field case, away from extrema of the potential a solution to the super-

potential equation can bounce and become multi-branched at certain special points. When

this occurs, the flow of one or more scalars inverts its direction, causing a breakdown of the

first-order formalism. In the multi-field case the structure of bounces is much richer than

for a single field. First, bounces can now occur on a hyper-surface of any dimension up to

N−1 of the scalar manifold. Second, there are two qualitatively different kinds of bounces:

• Complete bounces, where all the scalars change direction at the same time

• Partial bounces, where only some of the scalars invert their flow.

Complete bounces occur on sub-manifold lying on equipotential hyper-surfaces whereas

partial bounces can occur anywhere in field space except at extrema of V (φ). Close to a

bounce the superpotential has several branches, and we show how to glue them together

so that the flow is smooth. Interestingly, close to a complete bounce, the superpotential

equation takes the same form as the Eikonal equation for geometric optics close to a

surface with vanishing index of refraction. Thus, complete bounces are analogous to the

phenomenon of total internal refraction which gives rise to mirages.

As we have mentioned, in the multi-field case the existence of a superpotential, for

which the flow has the gradient form (1.2) is not obvious. The second part of this work

explores the questions 1) whether a superpotential description is always possible 2) whether

more general descriptions of the space of solutions in terms of non-gradient flows may

sometimes be useful.

The appropriate framework to answer these questions is Hamilton-Jacobi theory, whose

connection with the first order form in holography and cosmology is well known, [8, 32–35].

In Hamilton-Jacobi theory, one can always find a first order gradient flow description in the

extended N + 1 dimensional field space with coordinates (A, φr), generated by Hamilton’s

principal function S(A, φr). However, as we will see, in order to have an N -dimensional

gradient flow on the scalar manifold parametrised by {φr}, S(A, φr) must have a specific

separable form [15]. Gradient flows in extended field space, with a non-separable principal

function, have been shown to arise in connection with black hole solutions [36].

As we will discuss, the answer to both questions raised above is positive. The superpo-

tential description arises from a special class of separable Hamilton-Jacobi (HJ) principal

functions. Locally, any solution of Einstein’s equation can be seen as arising from such a

separable HJ function, which implies that a superpotential can always be found locally in

field space. Although it may not be globally defined as a smooth function, we can use the

results of the first part of this work to glue together consistently solutions in different re-

gions. Furthermore, in the case of holography, separable solutions contain already enough

integration constants to describe all possible RG flows starting from a UV maximum.

2This does not mean that any value of the coupling is allowed, as there could be regions in the space of

couplings which are forbidden. This is true even in perturbative QFT, for example we should require λ > 0

in λϕ4 theory, or g2 > 0 in Yang-Mills theory. However in the allowed regions these parameters may be

changed continuously.
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A situation when it may be useful not to use a separable function is in the presence

of global symmetries: in this case, we find that if we want to classify solutions in terms of

the value of the corresponding conserved charges, a gradient flow description is impossible,

and a superpotential cannot be defined. Classifying solutions according to the value of

conserved charges may be a useful option in multi-scalar cosmology as it may simplify

the treatment.

If we restrict ourselves to holographic RG flows however one can argue that, gener-

ically, all conserved charges must vanish, and non-gradient flows are unnecessary. The

reason is that, in holography, bulk symmetries should be gauged, as they also imply global

symmetries of the boundary theory at the fixed point: there should be bulk gauge fields

corresponding to the boundary conserved currents. As a consequence, in the absence of

non-trivial gauge fields in the solution, the value of all conserved quantities must be zero

by gauge invariance (or, equivalently, by Gauss’s law). An important exception is the one

where a continous symmetry does not leave the UV fixed point invariant, but rather it

connects a family of fixed point along an exactly marginal direction (e.g. the shift symme-

try of the coupling in N = 4 SYM). In this case the symmetry can remain ungauged in

the gravity description (alhtough in the full string theory one expects it to be broken to a

discrete subgroup).

This paper is organised as follows.

In section 2 we lay out our setup and introduce the first order formalism.

In section 3 we discuss holographic RG flows in terms of the superpotential. We

first classify all possible solutions around generic extrema of the scalar potential, their

continuous parameters, and we differentiate between UV and IR solution, in subsection 3.1.

Then, in subsection 3.2, we turn to the analysis of multi-branched solutions.

In section 4 we make the connection with Hamilton-Jacobi theory. In subsection 4.1

we relate non-gradient flows to non-separable solutions of the Hamilton-Jacobi equation.

We discuss global symmetries in subsection 4.2, and in subsection 4.3 we discuss the effect

of the gauging of such symmetries.

Finally in section 5 we summarise our conclusion and propose further directions.

Some of the more technical details of our calculations, as well as a review of Hamilton-

Jacobi theory, are left to the appendix.

2 Setup

2.1 Action, field equations and vacuum ansatz

Our starting point is the Klein-Gordon action for N self-interacting scalar fields minimally

coupled to gravity, in d+ 1 dimensions,

S =Md−1

∫

M

dd+1x
√−g

[
R− 1

2
Grs∂aφr∂aφs − V (φr)

]
+ SGH , (2.1a)

SGH = − 2Md−1

∫

∂M
ddx

√
hK . (2.1b)
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Here a = 0, . . . , d and early alphabet letters are space-time indexes, r = 1, . . . , N and

middle alphabet letters are field-space indexes. The field space metric Grs(φ1, . . . , φN ) is

assumed positive-definite and non-degenerate. In the Gibbon-Hawking term, SGH , hab is,

as usual, the induced metric on the space-time boundary ∂M which has extrinsic curvature

Kab. We will consider solutions preserving d-dimensional Poincaré invariance,

ds2 = du2 + e2A(u)ηµνdx
µdxν , φs = φs(u) . (2.2)

In the gauge/gravity duality, these solutions correspond to RG flows in a space of N

coupling constants, each corresponding to one scalar operator. The same ansatz (2.2) can

be applied to cosmology after two Wick rotations.

The Klein-Gordon and Einstein equations are

φ̈r + Γ̃rpqφ̇
pφ̇q + dȦφ̇r − Grp ∂V

∂φp
= 0 , (2.3a)

d(d− 1)Ȧ2 − 1

2
Grsφ̇rφ̇s + V (φ) = 0 , (2.3b)

2(d− 1)Ä+ Grsφ̇rφ̇s = 0 , (2.3c)

where · = d/du, and

Γ̃rpq =
1

2
Grs (∂pGsq + ∂qGsp − ∂sGpq) ,

with ∂p =
∂
∂φp . In the following all field indices (middle of the alphabet) will be raised and

lowered with the field metric and its inverse, and the covariant derivative compatible with

Grs will be denoted by ∇̃ to distinguish it from the space-time covariant derivative.

Equation (2.3c) is redundant as it is a consequence of (2.3a) and the u derivative of

eq. (2.3b). Note that 2N + 1 integration constants are necessary to specify a solution

of (2.3): 2N for the Klein-Gordon equations (2.3a), and 1 for the Einstein equation (2.3b).

The number of integration constants will be important later when discussing non-gradient

flows in the context of Hamilton-Jacobi (HJ) theory.

If the potential has an extremum at φ = φ∗ where V (φ∗) = −d(d− 1)/ℓ2, then equa-

tions (2.3) have an AdSd+1 solution with constant scalars. This solution corresponds to a

CFT. The scale factor is A(u) = −u/ℓ, where ℓ is the curvature radius of AdS and the

boundary is at u→ −∞.

2.2 First order formalism

For the following analysis, it will be useful to rewrite the equations of motion in the

first order formalism, first introduced in the cosmological context for multiple scalar fields

by Salopek and Bond [37], and discussed in great depth in the holographic literature in

e.g. [38]). An underlying assumption is that one of the fields should (at least locally)

have a monotonic evolution so that it can traded for the u coordinate, thus leading to

u-independent first order equations. The starting point is the ‘fake superpotential’ W ,

function of the field values φs only, and defined by

W (φs(u)) := −2(d− 1)Ȧ(u). (2.4)

– 7 –
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The existence of a superpotential is guaranteed for the single-scalar case, piecewise in the

regions where φ(u) is monotonic. As it has been argued [26, 39], and as we will discuss

in more detail in section 3 this is true locally in field space also for the multi-field case.

Throughout this section we will simply assume that, for any solution of the form (2.2),

a superpotential W (φ) satisfying equation (2.4) exists. We will return to this point in

section 4 where we will critically assess this assumption.

From action (2.1a), we define the field momentum densities by πr := Grsφ̇s. They

differ from the canonical momenta by a factor of −√−g . Since the field-space metric is

non-singular

φ̇s = Grs(φ)πr ≡ πs(φ). (2.5)

We can rewrite equation (2.3c) using the definitions (2.4) and (2.5), obtaining

πr (πr − ∂rW ) = 0 . (2.6)

This implies that πr = ∂rW + ξr, with π
rξr = 0. In the special case ξr = 0, we are in the

presence of a gradient flow.

To characterise the non-gradient part ξr, we express equations (2.3a) and (2.3b) in

terms of W and πr,

πq∇̃qπ
p − d

2(d− 1)
Wπp − Gps∂pV = 0, (2.7)

1

2
πrπ

r − d

4(d− 1)
W 2 − V = 0. (2.8)

Taking a derivative of eq. (2.8) and subtracting (2.7) so as to eliminate the potential V

leads to

πp = ∂pW +
2(d− 1)

d W
πsFsp , Fsp ≡ ∇̃sπp − ∇̃pπs. (2.9)

It is thus clear that

ξr =
2(d− 1)

d W
πsFsr, (2.10)

and the flow is gradient iff πsFsr vanishes. If this is the case, the gradient property and

the definition of Fsp in equation (2.9) also imply Fsp = 0.

In this section we only restrict to gradient flows. The possibility of having non-gradient

flows will be considered in section 4.2.

For gradient flows the independent equations become

1

2
Grs∂rW∂sW − d

4(d− 1)
W 2(φ) = V (φ) , (2.11a)

φ̇r(u) = Grs(φ)∂sW (φ) , (2.11b)

Ȧ(u) = − 1

2(d− 1)
W (φ) . (2.11c)

Given a superpotential W (φ), integration of (2.11b) and (2.11c) introduces N +1 integra-

tion constants. For a given potential V (φ), W (φ) itself is obtained by solving the partial
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differential equation (PDE) (2.11a), referred to as the superpotential equation. A solution

W (φ) to (2.11a) is specified by an integration function of N − 1 variables. On the other

hand, as we have seen the total number of integration constants should be 2N + 1. Hence

this formalism is highly redundant: the same flow is expected to arise from infinitely many

superpotentials W (φ). It follows that it is enough to consider a subclass of solutions to the

superpotential equation (2.11a) which contains N independent integration constants3 [34].

3 Holographic flows

We now focus our attention to holographic RG flows: these are solutions which have

an interpretation in gauge/gravity duality as deformations away from conformality of a

UV conformal fixed point, which corresponds to an extremum of V . Solutions which

are everywhere regular connect the UV extremum to a second extremum of the potential,

interpreted as another conformal fixed point in the IR. For simplicity we consider potentials

which are strictly negative. This avoids complications resulting from the bulk curvature

becoming small along the flow, or from transitions to cosmological solutions.

The holographic β-functions of the scalar couplings are given by [8, 20]

βr ≡ φ̇r

Ȧ
= −2(d− 1)Grs πs(φ)

W (φ)
(3.1)

which, the case of gradient flows, reduces to

βr(φ) = −2(d− 1)Grs∂sW (φ)

W (φ)
. (3.2)

Before proceeding, we list two important properties of the superpotential W (φ).

1. It follows from (2.11a) that W is bounded from below by a positive function

W (φ) > B(φ) > 0, where B(φ) :=

√
−4(d− 1)

d
V (φ) . (3.3)

Note that we have chosen W > 0 without loss of generality (since the superpotential

equation is invariant under W → −W ). This implies, through equation (2.11c), that

Ȧ is always negative, so A(u) is monotonically decreasing with u.

2. The superpotential is a monotonic function of the holographic coordinate u,

dW

du
= φ̇r∂rW = Grs∂rW∂sW > 0 . (3.4)

Property 2 implies that W increases monotonically along flows and is stationary only

when all the β functions, defined in (3.2), vanish simultaneously, implying φ̇r = 0. However,

this does not necessarily mean that the flow reaches a fixed point: for this one also needs

φ̈r = 0 at the same point. From equation (2.3a), this can only happen if ∂rV = 0.

3In Hamilton-Jacobi theory this is referred to as a complete integral. We will make this connection in

section 4.
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Therefore, true fixed points occur only when extrema of W (φ) are also extrema of V (φ).

The case of an extremum of W (φ) which is not an extremum of V (φ) corresponds to

a bounce, i.e. a regular point of the geometry where the flow is inverted in some of the

directions.4 Bounces will be discussed in detail in subsection 3.2, and we now turn to the

analysis around extrema of V (φ).

3.1 Near-extremum analysis

We start with a short review of the holographic dictionary around an extremal point of the

potential V (assumed to be at the origin without loss of generality). We assume V has an

analytic expansion around the extremum,

V (φ) = −d(d− 1)

ℓ2
+

N∑

r=1

m2
r

2
(φr)2 +

N∑

r,s,p,=1

grsp
ℓ2

φrφsφp +O(φ4). (3.5)

Note that we have chosen coordinates in field-space such that the mass matrix is diagonal

at the extremum [21], and we have included terms up to cubic order in the scalar fields,

controlled by arbitrary dimensionless coefficients grsp.

Solutions of equations (2.3) with the potential (3.5) have the asymptotic expansion

A(u) = A0 −
u

ℓ
+ . . . (3.6a)

φr(u) = φr−e
∆−

r u/ℓ (1 + . . . ) + φr+e
∆+

r u/ℓ (1 + . . . ) , r = 1, . . . , N, (3.6b)

where

∆±
r =

d

2
± 1

2

√
d2 + 4m2

rℓ
2 . (3.7)

The parameters A0, φ
r
− and φr+ are 2N + 1 integration constants, and hence fixing these

asymptotics completely determines the solution. One usually sets A0 = 0, corresponding

to the boundary theory living on Minkowski space with metric ηµν . The parameters φr−
and φr+ are then related to the source Jr and vacuum expectation values (VEVs) of the

corresponding CFT operators by:5

Jr = ℓ−∆−

r φr−, 〈Or〉J = (2∆+
r − d)ℓ−∆+

r φr+ , (3.8)

and ∆−
r and ∆+

r are interpreted as the conformal dimension of the source Jr and the

operator Or, respectively.

While ∆+
r > 0, ∆−

r can have either sign depending on whether the operator Or is rele-

vant or irrelevant. For an extremum with M negative and N−M positive mass eigenvalues

m2
r , it is convenient to split the N directions in field space into two sets, r̂ = 1 . . .M and

ř =M + 1 . . . N , and to introduce the notation:6




∆−
ř 6 0 , m2

ř > 0 , ř =M + 1, . . . , N irrelevant operator.

0 6 ∆−
r̂ <

d
2 , − d2

4ℓ2
< m2

r̂ 6 0 , r̂ = 1, . . . ,M relevant operator.
(3.9)

4In the single field case this was discussed in [22]
5We are working in the so-called standard dictionary. In the mass range −d2/4 < m2 < −d2/4+1 there

is an alternative dictionary, in which the roles of φ+ and φ
−

are interchanged.
6The symbols are chosen so that r̂ labels direction along which φ = 0 is a maximum, whereas ř labels

those directions along which the extremal point is a minimum.
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The lower bound on negative values of m2 is the Breitenholer-Freedman bound and is

required for perturbative stability of the solution.

The expansions (3.6a)–(3.6b) must hold as φ→ 0. Depending on the signs of the ∆−
r ,

this corresponds to either u→ +∞ or u→ −∞. The allowed combinations of integration

constants are

UV:

u→ −∞, expA(u) → +∞, φr̂− 6= 0, φř− = 0, φr+ arbitrary. (3.10)

From the field theory perspective, one can only turn on the sources φr̂− corresponding

to relevant operators, for which ∆−
r̂ > 0, and we have to set to zero those correspond-

ing to irrelevant operators (∆−
ř < 0). Also, we are free to turn on any combination

of vevs φr+.

IR:

u→ +∞, expA(u) → 0, φř− 6= 0, φr̂− = φr+ = 0 . (3.11)

In this case only the sources φř− for the irrelevant operators can be non-zero, because

the IR fixed point is stable under deformations by such operators. However, turning

on any other source or vev would make the flow miss the IR fixed point.

In the following we study flows around the extrema from the point of view of the

superpotential equation rather than the equations of motion. In the single-field case, close

to an extremum of V the superpotential has a universal analytic term (which can be of two

different kinds), plus a sub-leading non-analytic piece which contains the single integration

constant to the superpotential equation [20, 22]. As we will see in the next two subsection,

this structure persists in the multi-field case, with the difference that there are many more

branches of analytic solutions, and a larger class of non-analytic deformations parametrised

by an integration function.

3.1.1 Analytic part of the superpotential

We start by looking for analytic solutionsW0(φ) for equation (2.11a) around the origin, with

the potential V (φ) in equation (3.5) such that both have extrema at φr = 0, following [21].

We use Riemann normal coordinates on the scalar manifold Mφ

Grs(φs) = δrs −
1

3
Rrpsqφ

pφq − 1

6

(
∇̃mRrpsq

)
φpφqφm +O(φ)4 , (3.12)

where Rrpsq is the Riemann curvature tensor associated with Grs.
Expanding both sides of equation (2.11a) in powers of φr around φr = 0, it is easy

to show that there are 2N analytic solutions of equation (2.11a), parametrised by a string

σ = (σ1, . . . , σN ) where σi = ±,

W σ
0 (φ) =

2(d− 1)

ℓ
+

1

2ℓ

N∑

r=1

∆σr
r (φr)2 +

N∑

p,q,r=1

gpqrφ
pφqφr

ℓ(∆
σp
p +∆

σq
q +∆σr

r − d)
+O

(
φ4
)
. (3.13)
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B(ϕ)
W0

(--)

B(ϕ)
W0

(-+)

B(ϕ)
W0

(+-)(ϕ)
B(ϕ)
W0

(++)

Figure 1. This figure shows the four leading solutions of the superpotential equation close to a

minimum of the potential, of the form (3.13), in the two-field case. The yellow surface is the critical

curve B(φ).

These 2N solutions are the generalisation to the multi-field case of the two branches W+,

W− for a single field [22]. When the ∆′s in the denominator of the cubic term sum up to

d, logarithms will appear in the solution.

All solutions W σ
0 have an extremum, which may be a maximum, minimum, or a saddle

point, at φ = 0. However this extremum of W σ
0 does not necessarily have the same

signature (of the Hessian matrix) as the extremum of V . The latter is characterised by

the signature of the mass matrix, which determines whether the corresponding operators

are relevant (φr̂) or irrelevant (φř). The former, W , is determined by the signs of the

∆±
r . These are not necessarily the same as the signs of m2

r since ∆+
r > 0 for any mass,

see equation (3.9). This is illustrated in figure 1: the same minimum of V admits four

different solutionsW σ
0 with different signature of the Hessian matrix, which in our notation

are W
(++)
0 ,W

(+−)
0 ,W

(−+)
0 ,W

(+−)
0 .

Close to φ = 0 the flow equations arising from one of the superpotentials W σ
0 become

linear and decoupled,

φ̇r ≈ ∆σr
r

ℓ
φr, Ȧ ≈ −1

ℓ
. (3.14)

To use the language of dynamical system, we may have both repulsive directions (∆σr
r > 0)

and attractive directions (∆σr
r < 0). A repulsive direction can correspond either to a

relevant operator (r = r̂, and σr̂ = ±) or to an irrelevant operator (r = ř with the choice

σř = +). An attractive direction always correspond to an irrelevant operator with the

choice σř = −.
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(a) (b)

Figure 2. The left figure represents flows associated with aW
(+−)
0 solution around a local minimum

of V (φ) as depicted in figure 1 or the flows from a W
(−−)
0 solution of a saddle of V (φ) with m2

1 > 0

and m2
2 < 0. The right figure represents a possible effect of the non-linear terms which may or not

include non-analytic terms.

When W σ
0 has both repulsive and attractive directions, generically the fixed point will

not be reached, since generic initial conditions will violate both conditions (3.10) and (3.11):

the flow may approach the fixed point but miss it and leave along another direction. This

situation is represented in the two-field case in figure 2 (a), which represents the flow

diagram of a solution of the type W
(−+)
0 with ∆−

1 < 0. Nevertheless, there are special

(fine-tuned) initial conditions (namely φ1− = 0 or φ2+ = 0) which satisfy either (3.10)

or (3.11), and such that the flow will reach φ = 0 in the UV (blue line) or the IR (red

line), respectively.

Notice that the same solution (3.13) with a given σ can describe both a UV and an

IR fixed point, depending on the choice of initial conditions for the first order flow (3.14).

This is very different from the single field case where each branch around an extremum can

be unambiguously assigned to the UV or the IR, independently of the initial conditions for

the first order flow [22].

3.1.2 Deformations of the analytic solution

As mentioned earlier, a solution W (φ) of equation (2.11a) is specified by an integration

function of N − 1 variables. The 2N analytic solutions (3.13) on the contrary, do not

depend on any continuous parameter. The reason is that, on any of the 2N branches, the

leading analytic behaviour close to a fixed point is universal, and the difference between

solutions arises through sub-leading, non-analytic terms [18, 20]. Therefore we now consider
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subleading deformations7 of the 2N solutions W σ
0 of (3.13),

W (φ) =W σ
0 (φ) + δW (φ). (3.15)

The linearised equation for δW following from (2.11a) is

Grs∂rW σ
0 ∂sδW =

d

2(d− 1)
W σ

0 δW (3.16)

which, to leading order in powers of the scalar fields, becomes

N∑

r=1

∆σr
r φ

r∂rδW = dδW. (3.17)

The general solution is a linear superposition of separable solutions

δWS = f1(φ
1)f2(φ

2) . . . fN (φ
N ). (3.18)

From (3.17), the fs are given by

fs = |φs|κs/∆
σs
s ,

N∑

s=1

κs = d (3.19)

where κs are N constants. Therefore, to leading order around φr = 0, the general solution

to (3.16) is a superposition of all the special solutions (3.19), namely

δW =
1

ℓ

∫
dκ1· · ·

∫
dκN

N∏

r=1

(φr)κr/∆
σr
r K(κ1, . . . , κN ) δ

(
N∑

s=1

κs − d

)
. (3.20)

Although the distribution K(κi) is largely arbitrary, it is subject to some constraints: for

instance it must have support on those κr which have the same sign of the corresponding

∆r, otherwise δW will not vanish close to φr = 0. There will also be bounds on K at

infinity from the convergence of the integral, whose detailed analysis is beside the point

here. What is important is that equation (3.20) gives a huge multiplicity of deformations.

A significant qualitative difference with respect to the single field case is the follow-

ing. For a single scalar, solutions of the type W+ and infra-red solutions of the type W−

(reaching a minimum of V ) are isolated and do not allow continuous deformations. As a

consequence, imposing that W (φ) reaches a minimum of the potential fixes the superpo-

tential completely, and once this choice is made all flows will automatically reach the IR

fixed point. In the multi-field case instead, solutions with any number of ∆+
r or negative

∆−
r still admit deformations.

There is one case in which the deformation is forbidden. When φ = 0 is a minimun of

V , all ∆−
r < 0. The solution W

(−,−...−)
0 in (3.13) corresponding to the choice σr = − for all

components has only attractive directions, with two consequences: 1) a generic flow arising

7Throughout this section we have assumed m2
r 6= 0. The case when one of the masses vanishes, corre-

sponding to ∆
−
= 0,∆+ = d, (i.e. the operator is marginal) can be treated along the same lines, as it was

done for the single field case in [22].
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from this superpotential reaches the IR fixed point; 2) the deformation is identically zero

because the δ-function cannot be saturated while having all κr < 0 at the same time, which

is required in order that only positive powers of the fields arise. These two facts have very

important consequences, as we will discuss at the end of this section in subsection 3.1.3.

The deformation δW can turn on a flow velocity even in those directions which, to

leading order, were attractive. This occurs by giving vevs to the corresponding operators

by mixing, as we now illustrate with a simple two-field example.

Two fields example. Consider a saddle point with one irrelevant (m2
1 > 0) and one

relevant (m2
2 < 0) direction, and choose the analytic solution with σ = (−−):

W
(−−)
0 (φ) =

2(d− 1)

ℓ
+
∆−

1

(
φ1
)2

2ℓ
+
∆−

2

(
φ2
)2

2ℓ
+O(φ3), ∆−

1 < 0 , 0 < ∆−
2 <

d

2
. (3.21)

We neglect the cubic term for now (see below for a comment on its effect). The flow

diagram is again represented by figure 2 (a). Close to the origin, to this order, the flow

equations (2.11b) are

φ̇1 =
∆−

1

ℓ
φ1 + . . . , φ̇2 =

∆−
2

ℓ
φ2 + . . . , (3.22)

and their general solution is

φ1 = φ1−e
∆−

1 u/ℓ + . . . , φ2 = φ2−e
∆−

2 u/ℓ + . . . . (3.23)

We can take the limit of u → ±∞ only if either φ1− = 0 (UV fixed point) or φ2− = 0

(IR fixed point). In the single field case, it would be impossible to turn on a non-analytic

deformation corresponding to a vev along the attractive direction φ1. Now we will show

that, instead, a non-vanishing φ1+ can be can be generated by φ2− through the following

non-analytic deformation:

δW = C1φ
1
(
φ2
)∆+

1 /∆
−

2 , (3.24)

which corresponds to a separable deformation of the kind (3.18) with κ1 = ∆−
1 , κ2 = ∆+

1 .

Notice that this is allowed since by definition ∆−
1 +∆+

1 = d.

Adding the sub-leading term (3.24) to (3.21) changes the flow equations to:

φ̇1 = ∆−
1 φ

1 + C1

(
φ2
)∆+

1 /∆
−

2 (3.25)

φ̇2 = ∆−
2 φ

2 . (3.26)

Integration of (3.25) and (3.26) lead to the following expansions where only the first non-

zero contribution from W0 and from δW is presented for each field:

φ1(u) =
C1

2∆+
1 − d

(
φ2−
)∆+

1 /∆
−

2 e∆
+
1 u/ℓ + . . . (3.27)

φ2(u) = φ2−e
∆−

2 u/ℓ + . . . (3.28)
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We can see from equation (3.27) that the deformation (3.24) has the effect of generating a

vev-type term for φ1 from a source-type term for φ2,

φ1+ =
C1

2∆+
1 − d

(
φ2−
)∆+

1 /∆
−

2 . (3.29)

Even if we start on the φ2 axis, φ1 will start to flow, as shown in figure (2(b)). Notice that,

although it is possible to generate the same effect “perturbatively” using the cubic terms in

the analytic solution, one will not obtain the correct scaling for a vev-type sub-leading term.

Notice that the same flow (3.27)–(3.28) can also be obtained starting from a solu-

tion of the kind W
(+−)
0 without deformation. This is an example of the redundancy of

the superpotential description, and of the fact that the same flow can be obtained from

different superpotentials.

We now return to the general N -field case. Given this redundancy, it is desirable

to find a “minimal” set of deformations which encodes all possible flows that reach an

extremum of the potential, and depends on a finite number of parameters. Such a minimal

set is given by

δW =
1

ℓ

N∑

r=1

Cr (φ
r)d/∆

σr
r . (3.30)

The expression (3.30) is essentially the sum of N single-field deformations. In this case we

have to impose the restriction

0 < ∆σr
r < d/2, (3.31)

because we want all terms in equation (3.30) to have powers which are both positive and

sub-leading with respect to the leading quadratic terms in W0. Since by equation (3.7)

∆+
r > d/2, we conclude that the deformation of the form (3.30) have to satisfy:

either
{
∆σr
r = ∆−

r and ∆−
r > 0

}
or Cr = 0, (3.32)

i.e, as in the single field case, it can only appear on for relevant operators for which the

leading term in W σ
0 corresponds to turning on a source φ−. The constants Cr, as in the

single field case, determine the sub-leading (vev) terms in these directions,

φr+ =
Crd

∆−
r ∆

+
r

(
φr−
)∆+

r /∆
−

r . (3.33)

It is easy to check that, for a generic UV extremum with M relevant and N − M

irrelevant directions, the deformations in the class (3.30) are enough to have as many

integration constants as there are boundary conditions satisfying the constraint (3.10):

there are M Cŝ in δW , plus N initial conditions for the flow equations. These correspond

to the M source terms φr̂− and N vev terms φr̂+ which are needed to fix the asymptotics in

the UV, see equation (3.10). The remaining N −M integration constants (which should in

principle be there) are necessarily set to zero if the flow has to reach the UV fixed point.

Thus the deformations of the type (3.30), constrained by (3.32), are enough to obtain all

(non-generic) solutions which reach an extremum.
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∆ m2 type of fixed point type of operator source vev Deformation

+ > UV Irrelevant 0 6= 0 No

+ < UV Relevant 0 6= 0 No

− > IR Irrelevant 6= 0 0 No

− < UV Relevant 6= 0 6= 0 Yes

Table 1. A classification of the deformation of the type (3.30) in terms of the signs of the squared

masses and the choice of ∆+
r or ∆−

r . The nature of the fixed point when reached along φr, i.e.,

where all the φs with s 6= r are set to zero, is indicated. When all the masses have the same sign

and the dimensions are of the same kind, we can unambiguously classify the fixed points, otherwise

a single extremum may belong to different categories above.

If we start from an extremum which is a local maximum of the potential V , all the

∆−
r are positive and the deformation (3.30) contains N arbitrary integration constants Cr,

which is the number needed to describe a generic solution. This is what we will refer to in

the next section as a complete integral, to use the terminology of Hamilton-Jacobi theory.

Therefore solutions of this form which arrive at UV maxima are generic.8 In the case of a

minimum, all m2
r are positive and all the Cr in (3.30) are constrained to vanish.

In table (3.1.2) we summarise the allowed deformations of the special type (3.30) and

the interpretation of the corresponding operator in the holographic language.

To summarise, around an extremum of V with M negative and N −M positive mass

eigenvalues, the set of superpotentials

W σ =
2(d− 1)

ℓ
+

1

2ℓ

(
N∑

r=1

∆σr
r (φr)2 +O (φ)3

)

+
∑

r̂=1...M andσr̂=−

Cr̂

(
φr̂
)d/∆−

r̂
(
1 +O(φ3)

)
(3.34)

encodes all flows arriving to or departing from the extremum. It is important to re-

mark that, when considering solutions which connect different extrema, generically one

can choose the special form (3.34) only close to one of them. For the others, the deforma-

tion will have a more general form of the type (3.20).

If we include the sub-leading cubic term in W σ
0 from equation (3.13) in solving equa-

tion (3.16), the corresponding solution reads

δW (φ) =
∑

∆=∆−

r̂

Cs (φ
s)d/∆s−1


φs+

N∑

p,q=1

3 d gspq φ
p φq

∆s (∆s +∆p +∆q − d) (∆s −∆p −∆q)
+O(φ)3


 .

(3.35)

The denominators of the cubic term can vanish for certain combinations of dimensions,

in which case the corresponding terms in the expansion are replaced by terms containing

8This does not mean that all solutions will arrive at a given maximum, e.g. if there are multiple local

maxima. However one does not need to tune the integration constants to arrive there, unlike the case for

generic extrema.
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logarithmic contributions. There are further corrections to this expression, organised in

a double series expansion in φr and Cr. The general form in the single field case can be

found in [21].

3.1.3 Lifting the arbitrariness in W : IR regularity

As we have seen, the solution W (−,−...−) at a minimum of V does not admit continuous

deformations. This fact has very far reaching consequences. In fact, as we will argue

below, W (−,−...−) is the only one among all the W σ which fulfills an important regularity

condition. If this condition is imposed, the uniqueness of W (−,−...−) lifts the redundancy

in the superpotential description and completely fixes the solution W everywhere in field

space. Thus, the theory has only one physical vacuum (or at most a finite number, if there

is more than one local minimum of V ) for any value of the UV initial conditions for the

flow (which do not enter in the superpotential).

We now discuss the regularity condition. In holography, not all bulk solutions are

allowed, but only those which satisfy certain conditions in the IR. If one requires strict

regularity (finiteness of the curvature invariants), then in the class of solutions (2.2), the

only possibility is that the flow reaches an IR asymptotically AdS fixed point. However,

one does not want to check regularity individually for each flow. This is where the super-

potential formulation is useful: it gives a way of imposing regularity for whole classes of

flows at the same time. With this in mind, the most economic regularity requirement is

that all flows around a minimum of V reach the minimum as an IR fixed point. This is

the case if, around the minimum, W is chosen to be W (−,−...−). This choice is reasonable,

because it leaves the possibility of slightly deforming the initial conditions in the UV (i.e.

the values of the UV sources) without spoiling the IR behavior. This is crucial from the

dual QFT point of view: for example, every time we compute a correlation function we

perturb the sources, and we do not want to worry about the fact that a small deformation

may render the theory inconsistent. Of course, a big change in the source may still lead the

flow elsewhere, therefore ultimately the range of allowed values may be restricted. But this

is not unusual even in perturbative field theories, where it is known that certain theories

make sense only in certain continuous ranges of couplings (e.g. for λφ4 theory we must

restrict to λ > 0). The fact that not all ranges of couplings lead to IR-regular solutions

was also observed in holographic RG flows in [22]: there, we saw an example where for

negative UV source an IR fixed point may be reached, whereas for positive UV source no

regular solution exists.

To summarize, imposing that the superpotential around a minimum of V has the form

W (−,−,...,−) completely fixes the full W while at the same time not restricting the values of

the UV sources.

Of course, if we impose this condition, there is no guarantee that the solution in the UV

will look like one with the special class of deformation, (3.34). In general, the subleading

non-analytic part will have the form (3.20), with some fixed function K(κr).

3.2 Bounces

We now study the geometry close to an extremum of W which is not an extremum of V .

At these points, the flow inverts its direction (it “bounces”). In the single-field case this
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behavior was analysed in detail in [22] where it was shown to lead to a breakdown of the

first-order formalism and to multi-branched superpotentials. In the multi-field scenario,

there is a much richer a variety of bounces. We begin with a brief review of the single

field case.

Review of single-field bounces. Here we set N = 1 = G11, as can always be done for

a single-field. The superpotential equation is

V =
1

2
W ′2 − d

4(d− 1)
W 2 (3.36)

where W ′ = dW/dφ. Suppose W ′ vanishes at a point φ = φB where the potential has

a regular expansion and non-vanishing first derivative. Then, expanding the superpoten-

tial equation (3.36) around φB one finds two branches of W (φ) that meet at φB. For

concreteness consider V ′(φB) > 0. There are two solutions connecting to φB,

W↑(φ) ≃ WB +
2

3

√
2V ′(φB) (φ− φB)

3/2,

φ > φB, (3.37)

W↓(φ) ≃ WB − 2

3

√
2V ′(φB) (φ− φB)

3/2,

where

WB ≡W (φB) =

√
−4(d− 1)

d
V (φB) ≡ B(φB). (3.38)

Equation (3.38) means that bounces occur when the flow reaches the critical curve which

bounds the forbidden region defined in equation (3.3). The two branches can be merged

into a fully regular solution for the metric and the scalar: integrating the flow equations

we obtain

φ(u) = φB +
V ′(φB)

2
(u− uB)

2 +O(u− uB)
3 =

{
φ↑(u) for u > uB,

φ↓(u) for u < uB,
(3.39)

A(u) = AB −
√

V (φB)

d(d− 1)
(u− uB) +O(u− uB)

4. (3.40)

It is clear from (3.39) and (3.40) that at the point φB both the scalar field and the metric are

regular. The bounce corresponds to a point where the first (but not the second) derivative

φ̇(u) vanishes at some point u = uB, and the superpotential becomes double-valued because

φ ceases to be a good coordinate. The two branches correspond to u > uB and u < uB,

and φ < φB on both branches.

Multi-field bounces. When many flows of a family have a field component which is

reversed along its flow, the velocity field is multi-valued. This means that a superpotential

required to describe such flows has different branches. We will call a bounce a point

(or a set of points) in field space around which a solution W (φ) to the superpotential

equation (2.11a) has more than one branch, i.e. some of the scalars reverse their direction

along the flow. When n scalars reverse direction simultaneously we call this an order n

bounce. The special case of n = N will be called a complete bounce to distinguish it from

the cases where n < N , which we will call partial bounces.
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3.2.1 Complete bounces

Complete bounces are defined as loci φ = {φrB} where a solutionW (φ) of the superpotential

equation (2.11a) reaches its lower bound,

WB ≡W (φB) =

√
−4(d− 1)

d
V (φB) ≡ B(φB) . (3.41)

These may be isolated points, or may form a co-dimension p sub-manifold, ΣN−p, of the

scalar manifold Mφ. In the latter case ΣN−p lies on an equipotential surface of V (φ), since

by the superpotential equation (2.11a) all derivatives of W must vanish at all points on

ΣN−p. Hence W , and thus V from (3.41) is constant.

Because an equipotential is a co-dimension-one sub-manifold ofMφ, the simplest exam-

ple of a bounce is obtained by giving the superpotential equation initial condition (3.41) on

an entire connected piece of an equipotential,9 which we will denote ΣN−1. There remains

just one direction orthogonal to ΣN−1 which we call ψ, along which W must vary. The su-

perpotential equation then becomes effectively one-dimensional leading to a two-branched

superpotential as in the single-field case. More generally, we can impose that (3.41) holds

only on a sub-manifold ΣN−p ⊂ ΣN−1, with 1 6 p 6 N .

In order to write explicit solutions it will be convenient to choose coordinates such that

ΣN−p corresponds to fixing p of the coordinates, which we label ψ ≡ ψi, i = 1, . . . , p, to

their values ψiB. The remaining coordinates will be denoted by Λα with α = 1, . . . , N − p.

In other words,

φ = (ψ1, . . . , ψp,Λα, . . . ,ΛN−p) ≡ (ψ,Λ), (3.42)

ΣN−p =



φ ∈ Mφ | φ = (ψ1

B, . . . , ψ
p
B,Λ

α, . . . ,ΛN−p) ≡ (ψB,Λ) ,
∂V

∂Λα

∣∣∣∣∣
(ψB ,Λ)

= 0



 ,

(3.43)

where the second condition is the equipotential condition. We will also often use the

notation φB = (ψB,Λ). In the vicinity of ΣN−p, the superpotential can be expanded as

W (φ) =WB + δW, δW
ψ→ψB−−−−→ 0. (3.44)

As we assume V (φ) is analytic, we can write

V (ψ,Λ) =VB +

p∑

i=1

∂V

∂ψi

∣∣∣∣∣
(ψB ,Λ)

δψi +O(δψ)2 (3.45)

where δψ = ψ−ψB. Inserting the expansions (3.44)–(3.45) in the superpotential equation

gives, to lowest order in δψ and δW ,

1

2
∂rδW∂rδW − d

4(d− 1)
(2WB + δW ) δW =

p∑

i=1

∂V

∂ψi

∣∣∣∣∣
(ψB ,Λ)

δψi , (3.46)

9Typically, an equipotential is the union of disjoint hyper-surfaces and to consider bounces in the se-

quence we will only consider connected equipotentials.
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where we have kept linear terms in δψ but up to quadratic terms in δW , because as we

will see in a moment some of these terms are of the same order as δψ. Indeed, suppose

that δW is of order (||δψ||)γ , γ > 0. It follows that the three terms on the left hand side

of equation (3.46) scale as

WBδW ∼ (||δψ||)γ , (δW )2 ∼ (∂ΛδW )2 ∼ (||δψ||)2γ , (∂ψδW )2 ∼ (||δψ||)2γ−2.

(3.47)

Of the three terms above, if γ < 2 the third is the dominant one for small δψ, whereas

the first term dominates if γ > 2. In the latter case however it is impossible to match the

linear term on the right hand side. Therefore it is the third term in equation (3.47) which

dominates over the first two, and we conclude that γ = 3/2 as in the single-field bounce

case. Equation (3.46) can then be approximated as,

∂rδW∂rδW = 2

p∑

i=1

∂V

∂ψi

∣∣∣∣∣
(ψB ,Λ)

δψi . (3.48)

Notice that equation (3.48) is similar to the Eikonal equation of geometrical optics, with the

left-hand side playing the role of the square of the refractive index. Bounces are analogous

to total internal refraction (i.e. mirages) off a region with vanishing refraction index.

There are many types of solutions to equation (3.48). Those which are closest to the

single-field case (3.37) is the following set of solutions, differing by 2p sign combinations:

δW (ψB,Λ) =
2

3

p∑

i=1

(−1)si

√[
2

Gii
∂V

∂ψi

]

(ψB ,Λ)

δψi δψi +O(δψ)2 , si = 0, 1 . (3.49)

We have written the solution so that the expression under the square root is positive for

both signs of ∂V/∂ψi. Although all solutions (3.49) are valid close to the bounce surface Σp,

only certain combinations can be glued together, as in the single field case, to obtain regular

flows φr(u). To find which ways of gluing are consistent, we write the flow equation (2.11b)

using equation (3.49)

ψ̇i = (−1)si

√[
2Gii ∂V

∂ψi

]

(ψB ,Λ)

δψi +O(δψ) , si = 0, 1 , (3.50a)

Λ̇α = O(δψ)3/2 . (3.50b)

Integration of (3.50), with the initial condition φr(ub) = (ψB,ΛB), leads to

ψi(u) = ψiB +
1

2

[Gii
2

∂V

∂ψi

]

(ψB ,Λ)

(u− uB)
2 +O(u− uB)

3 , (3.51a)

Λα(u) = ΛαB +O(u− uB)
3, (3.51b)

where in each direction we need to impose the consistency condition

(−1)si
[
∂V

∂ψi

]

(ψB ,Λ)

(u− uB) > 0 . (3.52)
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As in the single field case, the two sign choices si = 0, 1 in each direction give the solution

for u > uB and u < uB, respectively. However, all fields ψi(u) must be in the same range

(u > uB and u < uB) for the solution to be smooth. Therefore the condition (3.52) fixes

all but an overall sign choice, which out of the set (3.49) leaves only two solutions which

glue consistently across the bounce,

W (ψ,Λ) =WB ± 2

3

p∑

i=1

sign

([
∂V

∂ψi

]

ψB

)√[
2

Gii
∂V

∂ψi

]

ψB

δψi δψi +O(δψ)2 . (3.53)

The ± sign actually characterise two branches of the same multi-valued superpotential, as

follows from the fact that both branches describe the same set of flows but for different

ranges of u.

There exist other consistent solutions to (3.48) and many of them share an interesting

feature: they extend ΣN−p to a higher-dimensional sub-manifold of ΣN−1. For example,

take the following solution,

W (ψ,Λ) =WB ± 2
√
2

3

{[
p∑

j,k=p−n+1

Gij ∂V
∂ψj

∂V

∂ψk

]−1/2

(ψB ,Λ)

(
p∑

l=p−n+1

[
∂V

∂ψl

]

(ψB ,Λ)

δψl

)3/2

+

p−n∑

i=1

√[
1

Gik
∂V

∂ψi

]

(ψB ,Λ)

δψi δψi

}
+O(δψ)2 . (3.54)

For this solution there is a bounce at ψ = ψB as before, but now this point belongs to a

line of bounces defined by
n6p∑

l=1

[
∂V

∂ψl

]

(ψB ,Λ)

δψl = 0 . (3.55)

The bounce manifold is now N − p + 1 dimensional. By a change of coordinates, we can

recast the solution (3.54) in the form (3.49) by defining one more Λ-coordinates for the

directions satisfying (3.55) and removing one ψ-coordinate.

Below we illustrate these features by considering complete bounces in a simple two-

scalar example.

Two-field example. We set φ = (φ1, φ2), and to make things simple we consider a flat

field space metric10 Grs = δrs. The equipotentials are one-dimensional, therefore by our

general discussion we can have bounces at isolated points or along lines. We first assume

that φB is an isolated point, thus all coordinates will be of the ψi type. We will see below

that the solutions in which bounces occurs on a line naturally appear in this framework.

For a generic complete bounce,

∂1V (φB) 6= 0, ∂2V (φB) 6= 0. (3.56)

10By the use of Riemann normal coordinates, (3.12), this assumption turns out to be a general at the

order in φr in which we will work.
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Figure 3. Two fields — a complete bounce given, to leading order in φ− φB , by equation (3.60).

The associated vector field is depicted in figures 4, with the lower (upper) branch in green (blue).

Another way of writing the Eikonal equation (3.48) is

~∇(δW ) =

√√√√2
2∑

r=1

∂rV |B δφr ~m+O(δφ)2 ≡
√
X ~m+O(δφ)2 (3.57)

for some, generally φ1 and φ2-dependent, unit vector ~m. One can write this as ~m = d~r/du

where ~r(u) is the ‘light ray’ with u an affine parameter along the path. An equivalent form

of (3.57) is

∂1δW (φ) =
√
X cos(g(φ)) ∂2δW (φ) =

√
X sin(g(φ)) (3.58)

where g is a function satisfying, to leading order in δφ = (φ − φB), a constraint equation

derived from ∂[1∂2]W = 0, namely

(X∂2g + ∂1V |B) sin g + (X∂1g − ∂2V |B) cos g = 0. (3.59)

One solution is

W (φ) =WB ± 2
√
2

3

[
∂1V (φB)δφ

1 + ∂2V (φB)δφ
2
]3/2

‖∂sV | (φB) ‖
+O(δφr)2 (3.60)

corresponding to tan g = [∂2V/∂1V ]B. The solution (3.60) is represented in figure 3 and

the gradients of its two branches are shown figures 4. Notice that the bounce occurs along

a line given by the solution to X = 0 with X defined in equation (3.57). It corresponds,

therefore, to the maximal dimension of an equipotential in two dimensions.

Another solution to equation (3.59) is given by

W =WB ± 2

3

2∑

r=1

sign
(
∂rV |φB

)
δφr
√
2 ∂rV |φB δφr +O(δφs)2 , (3.61)

where the choice of signs was fixed using the consistent solutions (3.53) and the ± sign is

related to the range of u in the expansion (3.51a) by

± = sign
[
(u− uB)∂rV |φB

]
. (3.62)
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(a) Upper branch of ∂rW from (3.60).
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(b) Lower branch of ∂rW from (3.60).

Figure 4. The superpotential (3.60) gives rise, to leading order in (φr − φrB), to the vector fields

depicted above. In figure (a) the green arrows correspond to the gradient of the lower branch of

W (φ) depicted in figure 3, the choice of a negative sign in (3.60). Figure (b) represents the gradient

of the upper branch from figure 3, a positive sign in (3.60). Each flow line goes back along itself

close to this complete bounce.

Figure 5. Two fields — a complete bounce given, to leading order in δφr = φr − φrB , by equa-

tion (3.61). The two branches meet at a point.

While for the first solution, (3.60), the bounce occurs on a line, for this second solu-

tion, (3.61), the bounce takes place only at the point φ = φB because this is the only place

where ‖∂rW‖ in equation (3.61) vanishes.

One apparent drawback of the expansion (3.61) is that the the reality condition for the

superpotential, Vr (φ
r − φrB) > 0, defines a quarter of the plane with origin at the point

φB and we cannot obtain the full solution which extends outside of this region from this

expansion. However, from figure 6 we observe that the velocity field is contained in this

range, meaning that no solution of the form (3.61) has flows escaping this region of the

plane and an extension is, in practice, unnecessary.
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Figure 6. The gradient of the superpotential given by equation (3.61) and depicted in figure 5.

The velocity field focus on the point φ = φB = 0. The fact that the W (φ) cannot be continued for

negative φr − φrB , as follows from (3.61) and from the signs of ∂rV |φB
for our potential, is not a

problem since the paths this superpotential generates do not cross the lines δφ1 = 0 and δφ2 = 0.

Thinking in terms of the Eikonal equation (3.48), complete bounces can be seen as a

total internal reflection on a meta-material with a refractive index that vanishes linearly

as we approach the critical curve.

3.2.2 Partial bounces

Partial bounces occur on loci where some, but not all field components have vanishing

speed, in contrast with the complete bounces treated in subsection 3.2.1. A more precise

definition is the following:

A partial bounce corresponds to a change of branches of the superpotential

occurring on a sub-manifold ΣN−p of Mφ, such that ‖∂rV |ΣN−p
‖ is non-

zero and the superpotential W (φ) does not equal B(φ) on ΣN−p.

At a partial bounce, as at a complete bounce, a single-valued superpotential fails

W (φ) to describe locally geodesically complete solutions. A bounce is also characterised

by the existence of a second superpotential which coincides with W (φ) on Σ and which

makes the flows locally geodesically complete. The superpotential should be seen as locally

double-branched and its integral lines fail to define local coordinates around the bounce.

For concreteness, we start by determining the behaviour of W (φ) around a partial

bounce occuring on a co-dimension one sub-manifold. Bounces will no longer correspond

to equipotentials and we will see below which changes this implies with respect to the

complete bounces of subsection 3.2.1. We compute the explicit form of the holographic

β-function perturbatively near the bounce. We show that the β-function has two branches,

as in the single-field case [22] and we highlight the differences from that case.
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Our choice of coordinates on an open neighbourhood of a co-dimension one bouncing

manifold, ΣN−1, is such that

‖∂W‖2 = Gψψ
(
∂W

∂ψ

)2

+ Gij ∂W
∂Λi

∂W

∂Λj
, (3.63)

where ΣN−1 in these coordinates is characterised by ψ = ψB. We can rewrite the super-

potential equation (2.11a), in these coordinates, as

∂W

∂ψ
= ±

√
1

Gψψ
(
2V (ψ,Λ) +

d

2(d− 1)
W 2(ψ,Λ)− Gαβ ∂W

∂Λα
∂W

∂Λβ

)
, (3.64)

with α = 1, . . . , N − 1. Equation (3.64) becomes degenerate for a given ψ = ψB in the

following if

∂W

∂ψ

∣∣∣∣∣
(ψB ,Λ)

= 0 , Gψψ(ψB,Λ) 6= 0 and ∂ψV (ψB,Λ) 6= 0. (3.65)

The condition that Gψψ is non-zero is, for metrics of the form (3.63) equivalent to the non-

degeneracy of G. This ensures that the vanishing of ∂ψW at ΣN−1 is not a consequence

of ill-defined coordinates. By analogy with the one-dimensional case, we expect a pair of

solutions to the superpotential equation that meet at ΣN−1, corresponding to the ± sign

in (3.64).

From (3.64), (3.65) and our definition of a bounce, it follows that when W (φ) is

restricted to ΣN−1 it must satisfy:

VB(Λ) ≡ V (ψB,Λ) =
1

2

[
Gij ∂W

∂Λi
∂W

∂Λj

]

(ψB ,Λ)

− d

4(d− 1)
W 2(ψB,Λ) . (3.66)

This is nothing but the N − 1 dimensional superpotential equation (2.11a). Therefore,

partial bounces occur along solution of the lower-dimensional superpotential equation re-

stricted to the directions Λi.

Around ψ = ψB we can expand V and W as follows:

V (ψ,Λ) = VB(Λ) + δψ
∂V

∂ψ

∣∣∣∣∣
(ψB ,Λ)

+O (δψ)2 , with δψ ≡ (ψ − ψB) , (3.67a)

W (ψ,Λ) =WB(Λ) + δW (ψ,Λ) ≡WB(Λ) + δW. (3.67b)

where

WB(Λ) ≡W (ψB,Λ) (3.68)

is a solution to (3.66). Proceeding in the same way as for the complete bounce, we arrive

at the solution close to a partial bounce,

W (ψ,Λ) =W (ψB,Λ)±
2

3
δψ

√
2

[
Gψψ

∂V

∂ψ

]

(ψB ,Λ)

δψ +O(δψ)2 . (3.69)
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(a)

ϕ1
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Figure 7. Figure (a) represents in yellow the curve B(φ) and a two-branched superpotential W in

green and blue. B(φ) is associated with the potential V (φ) through equation (3.3). The plot is in

the linear regime (3.71) with parameters V0 = −1, V1 = 0.44, V2 = 3.31. The two branches of W (φ)

are given by equations (3.72) and (3.73). The upper branch of the superpotential corresponding to

the + sign in (3.72) is in blue and the lower branch of W is in green. Figure (b) shows the flow lines

around a bounce, from equation (3.74), differing by the choice of φ10. Even though no individual

line is self-intersecting, the ensemble of the flow lines gets superposed after the bounce.

The similarity with the single-field case and with the complete bounces of the previous

subsection is manifest. The dependence of W on δψ has the same power 3/2 and the

solutions are restricted to ψ < ψB or ψ > ψB, with two possible signs defining branches.

Both branches should again be seen as belonging to the same superpotential in order to

make the flow φr(u) locally geodesically complete. The difference lies in the fact that

W (ψB,Λ) and the term under the square root are functions of Λα and not constants.

Therefore, along a partial bounce the flow has non-vanishing speed along the surface ΣN−1.

When all velocities vanish at the bounce we are back to the case of a complete bounce which

we analysed in subsection 3.2.1.

As in the case of complete bounces, a partial bounce can also occur on a sub-manifold

of Mφ with co-dimension p > 1, ΣN−p. The solutions (3.53) generalise to partial bounces

by the simple replacement:

WB →WB(Λ
α) with i = 1, . . . , p and α = 1, . . . , N − p . (3.70)

as long as WB(Λ
α) ≡ (ψiB,Λ

α) solves (3.66) and, of course, as long as the potential and

the metric to be such that Gir∂rV is non-zero on ΣN−p.

One important distinction needs to be made between partial and complete bounces: a

flow with a partial bounce can also be derived from a superpotential with no bounces, as

a consequence of the large redundancy of the superpotential formalism in the multi-field

case. On the other hand, in a complete bounce the flow has to reach the critical curve, and

this will be the case for any choice of superpotential.

To conclude this section we give an example of a partial bounce in the case of two

scalar fields.
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Two-field example. Consider two scalars with a flat metric and a potential in the linear

approximation such that:

V (φ1, φ2) = C + V1φ
1 + V2φ

2 +O(φ)2, V1 > 0, V2 > 0 . (3.71)

For simplicity we will consider a pair of superpotentials of the form:

W =W0 +W2φ
2 ±

√
2V1φ1 φ

1 +O(φ)5/2 (3.72)

The expansion (3.72) means that we have set
[
∂2W/∂(φ2)2

]
(0,0)

to zero. Equation (3.66)

in this case is a single-field superpotential equation which has a continuum of solutions

parametrised by an integration constant. Imposing W (φ) is of the form of (3.72) already

fixes this constant, fixing also the relation between W0, W2 and the coefficients appearing

in (3.71):

W0 =

√√√√2(d− 1)

d

(√
V 2
0 +

2(d− 1)

d
V 2
2 − V0

)
(3.73a)

W2 = −

√√√√V0
V2

+

√(
V0
V2

)2

+
2(d− 1)

d
(3.73b)

The flows coming from the superpotential (3.72) after solving (2.11b) are of the form:

φ1(u) = φ10 +
V1
2
(u− uB)

2 +O(u− uB)
3 (3.74a)

φ2(u) =W2(u− uB) +O(u− uB)
3 (3.74b)

Figure 7(a) shows the two branches of the superpotential (3.72) plotted together with

the potential (3.71) for a specific choice of parameters. Figure 7(b) displays the flows (3.74)

for different values of φ10. The flow lines return to themselves after the bounce, so we

cannot use the flow lines to define one of the coordinates unless we choose a single branch

of the superpotential. This figure suggests pursuing the analogy with geometrical optics

which is suggested by the Eikonal equation (3.48) and the flow equation (2.11b). As noted

previously, a complete bounce is the analogous of a total reflection. What figure 7 suggests

is that a partial bounce can be thought of the analogue of a mirage.

4 Comments on the canonical formalism for multi-field gravity

The superpotential formalism used in the previous section is closely related to the Hamilton-

Jacobi formalism. In this section we will turn to the general formulation in terms of the

Hamilton-Jacobi principal function to gain a more precise understanding why the gradient

flows assumption is generic. We will also argue that a description in terms of non-gradient

flows may be useful in some situations, like in the presence of a global symmetry (this

situation however does not apply in the context of holography).

We begin by recalling a few facts from Hamilton-Jacobi (HJ) theory. This provides

a procedure to map solutions (q(t), p(t)) of the equations of motion into constants (β, α)
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which are functions of the initial conditions (q0, p0) by means of a canonical transformation.

The generating function of such a canonical transformation is called Hamilton’s principal

function and is usually denoted by S(qi, αi, t) where αi, i = 1, . . . , n, are independent inte-

gration constants which define the new constant momenta. The canonical transformation

defined by the principal function is such that:

pi =
∂S
∂qi

, (4.1a)

βi =
∂S
∂αi

, (4.1b)

H

(
qi,

∂S
∂qi

, t

)
+
∂S
∂t

= 0, (4.1c)

where H(q, p, t) is the Hamiltonian of the mechanical system and (4.1c) is called the

Hamilton-Jacobi equation.

Only derivatives of S appear in (4.1c) implying that S is determined only up to an

additive constant. S is a function of n + 1 variables and equation (4.1c) places a single

constraint on this function. To integrate (4.1c) it is therefore necessary to specify an in-

tegration function of n variables. However, for S to define a canonical transformation to

new constant coordinates (α, β) it is necessary that it contains n independent, non-additive

integration constants, showing that this formalism is highly redundant. The remaining n

integration constants which are necessary to specify a solution are obtained by integrat-

ing (4.1a), where the momenta pi are written in terms of the velocities q̇i.

One very useful aspect of Hamilton-Jacobi theory is that it straightforwardly incorpo-

rates the relationship between conserved quantities and symmetries. For example, when the

Hamiltonian H does not depend explicitly on time, energy is conserved and we can write:

S(q, P, t) = W(q, P )− Et . (4.2)

The function W(q, P ) is called Hamilton’s characteristic function. When (4.2) holds, equa-

tion (4.1c) takes the following form:

H

(
qi,

∂W
∂qi

)
= E. (4.3)

In other words, principal functions of the form (4.2) group solutions to the equations of

motion which have the same energy. Similarly, when one of the momenta pî is conserved

and has the specific value P̂î, by integrating (4.1a) one can isolate the dependence of S on qî:

S(qi, pi) = Ŝ + P̂îq
î (4.4)

where Ŝ is independent of qî.

4.1 Gradient flows revisited

We will now implement the HJ formalism outlined above in the case of gravity coupled to

multiple scalars. This is a well known procedure [33, 34] and here we want to focus on the
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question of what sets apart gradient flows with respect to the more general non-gradient

flows mentioned in section 2.2. More specifically, we would like to answer the question

of when is it necessary to consider the non-gradient case. As we will see, this question is

related to the separability of the A-dependence in the HJ principal function S(A, φr).
An effective Lagrangian which leads to the equations of motion (2.3) is given by

L(A, φr, Ȧ, φ̇r, N) = NedA
[
d(d− 1)

N2
Ȧ2 − 1

N2
Grsφ̇rφ̇s − V (φ)

]
. (4.5)

where ˙ = d
du : the “time” for the evolution of the scalars and the scale factor is the

holographic coordinate. In (4.5) the variable N does not have a u-derivative and represents

a constraint. The equations of motion following from (4.5) are

d(d− 1)

N2
Ȧ2 − 1

2N2
Grsφ̇rφ̇s + V (φ) = 0 , (4.6a)

[
Grs
N

(
φ̈r + Γ̃spqφ̇

pφ̇q + dȦφ̇s − Ṅ

N
φ̇s

)
−N∂rV

]
= 0 , (4.6b)

[
d(d− 1)

N

(
2Ä+ dȦ2 − 2Ȧ

Ṅ

N

)
+

d

2N
φ̇2 + d N V

]
= 0 . (4.6c)

Because N is not dynamical, we can set N = 1, in which case equations (4.6) become the

original equations of motion (2.3). The canonical momenta are

ps = −edAGrsφ̇r , (4.7a)

pA = edA2d(d− 1)Ȧ . (4.7b)

and the Hamiltonian is given by

H(A, φr, pA, pr) = e−dA
(

p2A
4d(d− 1)

− 1

2
prp

r

)
+ edAV (φ) . (4.8)

Written in terms of the H, equation (4.6a) is just the Hamiltonian constraint,

H = φ̇rpr + ȦpA − L = 0. (4.9)

This reduces the number of independent integration constants from 2N +2 to 2N +1 (the

dynamics is constrained to stay on the zero-energy surface).

The HJ principal function S is such that

pA =
∂S
∂A

, pr =
∂S
∂φr

, (4.10)

and it satisfies the HJ equation following from the Hamiltonian constraint (4.9):

e−dA

[
1

4d(d− 1)

(
∂S
∂A

)2

− 1

2
Grs ∂S

∂φr
∂S
∂φs

]
+ edAV (φ) = 0. (4.11)

Comparing (4.11) with (4.2) and (4.1c) we see that Hamilton’s principal function S is the

same as the characteristic function W, since E = 0. This also means that we need N
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independent integration constants in S in order to have a well defined map from (q, p) to

the initial conditions S. Together with the N + 1 additional ones coming from the first

order flow equations (4.10), this makes up the needed 2N + 1 integration constants.

A special class of Hamilton’s principal functions S is of the following separable form

between A and φr,

S = −edAW (φ) . (4.12)

With this ansatz, equation (4.11) reduces to the superpotential equation (2.11a) and equa-

tions (4.7) become the flow equations (2.11b) and (2.11c). Moreover, the flow is automat-

ically gradient, as πr = ∂rW .

The converse statement is slightly more subtle: given a solution which can be written

in terms of a gradient flow, it does not follow that the associated principal function has

the separable form (4.12). On the other hand, one can show that in this case there exists

at least one separable solution to Hamiton-Jacobi equation (4.11). Moreover, all non-

separable solutions coincide with the separable one on-shell. This point is developed in

more detail in appendix A, where we also show how to recover non-gradient flows of the

form (2.5) with non-zero curl (2.9)–(2.10) from a non-separable solution S(A, φr).
We can conclude that, if solutions of equation (4.11) of the separable form (4.12)

contain enough independent integration constants, one can be sure that any solution of the

full system can be written in the form of a gradient flow. In the context of holography, when

solutions connect to a fixed point in the UV which is a local maximum of the potential,

this is indeed the case, as we have seen in section 3: close to the UV fixed point, the set of

solutions with asymptotic form given in equation (3.34) provides all integration constants

to reproduce any near-boundary asymptotics of the form (3.6). Moreover, if the solution

goes through a bounce, there is a unique way to connect the two branches into a regular

solutions, meaning that one does not introduce possible non-gradient flows at bounces.

It has also been noted (see e.g. [26, 39]) that, away from a bounce, locally any solu-

tion can be embedded in a non-gradient flow with an appropriate superpotential (which

however may not be globally defined on field space). We show how to perform this local

reconstruction of the superpotential to lowest order in In appendix C.

It follows from the discussion above that, at least in holography, one may safely for-

get non-gradient flows. However, there are situations in which using a non-separable HJ

function may actually be convenient: this is the case when there are global symmetries on

the scalar manifold and we may decide to classify solutions in terms of the corresponding

conserved quantities. This will be the subject of the next subsection.

4.2 Symmetries vs. gradient flows

As we have discussed in the previous section, locally all flows can be put in a gradient

form, and in holography gradient flows are enough to generate all bulk solutions which

connect to a maximum of the potential in the UV. However, in this section we argue that

in some contexts it can be useful to consider non-separable principal functions, giving rise

to non-gradient flows, in particular when symmetries of the scalar sector are present.
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Consider a system in our setup characterised by an O(2) isometry in field space with

Killing vector field ks(φ). We associate a coordinate Θ to the motion along the integral

lines of this vector field. For an infinitesimal transformation that takes Θ to Θ+δΘ we have

δΘφ
s := ks(φ)δΘ. (4.13)

Invariance of the potential translates into:

δΘV (φ) = δΘ ks∂sV (φ) = 0. (4.14)

As a result of the symmetry (4.14) and the fact that it is an isometry, the momentum

conjugate to Θ, pΘ, is a constant of the motion:

pΘ = −edAGΘs(φ
α)φ̇s, ṗΘ = 0, α = 1, . . . , N − 1, φN = Θ (4.15)

It is therefore, possible to write a Hamilton’s principal function that groups flows with the

same angular momentum pΘ = L as follows:

S = SL(A, φ1, . . . , φN−1) + LΘ. (4.16)

The principal function (4.16) is clearly non-factorisable but is advantageous in practice as

it allows to group solutions according the value of conserved charge L. From (4.16) we

define ŴL(φ
α, A) by

ŴL(φ
α, A) ≡ −e−dA (SL(φα, A) + LΘ) , α = 1, . . . , N − 1, φN = Θ . (4.17)

The canonical momenta associated with A and φr can be obtained from the principal

function (4.16) by the use of equation (4.10). However, in order to know if a flow is gradient

on the scalar manifold, it is necessary to eliminate the A-dependence in the momenta. This

can be achieved by finding a function A(φ) which equals A(u) on flows and, as explained

in appendix A, is a solution to the differential equation:

Grs [∂rS(φ,A)]A=A(φ) ∂sA =
1

2d(d− 1)
∂AS(φ,A)

∣∣
A=A(φ)

. (4.18)

Once a solution A(φ) is provided, we can use it to “project” the momenta onto the scalar

manifold. It is convenient to define

W (φ) := −d−1e−dA(φ) [∂AS(φ,A)]A , (4.19a)

πr(φ) := −e−dA(φ) [∂rS(φ,A)]A , (4.19b)

because when equations (4.19) are combined with (4.10) we obtain

Ȧ = − W (φ)

2(d− 1)
, (4.20a)

φ̇r = Grsπs = πr (4.20b)

which are precisely equations (2.4) and (2.5).
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Clearly, the procedure we have defined to project on the scalar manifold is not unique,

as it depends on the choice of A(φ) among the infinite family of solutions to equation (4.18).

However, the gradient property does not depend on the particular choice of projection, but

only on how S depends on A. This point is explored in detail in appendix A.

By projecting in the same way the Klein-Gordon equations and the Einstein equations

which are derived from (4.7), (4.10) and (4.11) one obtains, as shown in appendix A,

πp = ∂pW +
2(d− 1)

d W
πs
(
∇̃sπp − ∇̃pπs

)
. (4.21)

which are nothing but equations (2.9). The term in parenthesis in (4.21) is the curl of the

vector field πr, which we can compute from S(A, φ) after solving (4.18). In other words,

we can map the principal function S(A, φ) to the velocity field πr(φ) it generates on field

space and determine the curl of πr.

For the special case in which one wants to classify solutions in terms of conserved

charges, equation (4.21) is necessary if working in field-space only. An example is provided

by the principal function (4.16) which is associated with the conserved charge L. The sym-

metries of the problem imply that a solution A(φ) to (4.18) can be taken to be independent

of Θ. It is then possible to define WL(φ), the function W (φ) associated with a given value

of the conserved charge L from (4.17) and (4.19a).

WL(φ
α) := W̃L(φ

α,A(φα)), α = 1, . . . , N − 1 , φN = Θ. (4.22)

Once this is done, the component of the velocity field associated with the conserved charge,

πΘ, satisfies

∂αWL∂απΘ =
d

2(d− 1)
WL πΘ . (4.23)

If WL is non-zero, equation (4.23) implies that a non-vanishing πΘ will necessarily have

a φα dependence. We also know from (4.16) and the Θ-independence of A(φα) that the

other components of the velocity field, πα, are also Θ-independent. As a consequence, the

velocity field will have a non-zero curl

FαΘ ≡ ∂απΘ − ∂Θπα = ∂απΘ 6= 0. (4.24)

The principal function (4.16) leads to a non-gradient velocity field over Mφ

It is important to remark that the conservation of angular momentum does not forbid

the existence of factorisable principal functions, i.e. of the form (4.12). A factorisable

solution corresponds in this case to a family of flows in which different flows have different

angular momenta, while in the non-separable solutions of the form (4.16) all the flows have

the same angular momentum L.

UV behaviour. It is instructive to make the above discussion explicit close to a UV

fixed point holographic RG flows.

Consider the case of two scalar fields (φ1, φ2) with flat field-metric and a potential

V (R), which has a maximum at R = 0 (which will serve as a UV fixed point), where
{
φ1 = R cosΘ

φ2 = R sinΘ
(4.25)
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The metric components are:

GRR = 1, GΘΘ = R2, GRΘ = 0. (4.26)

We are interested in constructing paths which define Archimedean spirals:

R = α (Θ−Θ0), Θ0 ∈ [0, 2π) . (4.27)

Close to R = 0 the solution has the expansion (3.6) with ∆1 = ∆2 > 0 and u→ −∞.

If we now write the conserved angular momentum using (4.13), (4.25) and (4.26) we obtain:

L = φ1p2 − φ2p1 = edA(u)
(
φ1φ̇2 − φ2φ̇1

)
(4.28)

Using the asymptotic expansions (3.6) of φr and A we obtain

L = (2∆+ − d)
(
φ1−φ

2
+ − φ2−φ

1
+

)
, (4.29)

Therefore, fixing L places a constraint relating the sources φr− and the VEVs φr+ in the

UV, in contrast with the usual procedure of keeping only the sources fixed.

Close to the UV we can also obtain an approximate expression for the non-separable

Hamilton principal function with fixed L. The computation is presented in appendix D.

The final result takes the form of an expansion in e−dA, which tends to zero in the UV,

SL(A,R,Θ) = −edAW0(R) + LΘ+ e−dAW2(L,R) +O
(
e−2dA

)
, (4.30)

where W (R) satisfies a radial superpotential equation which is independent of L. The last

term is proportional to L2 and its explicit form is given in equation (D.7).

Notice that L enters at sub-leading order in the expansion, and in the UV S is again

separable. This is consistent with the fact that L is proportional to the VEV terms in

the solution.

4.3 Back to holography: gauging global symmetries

From a gravitational perspective, the solutions in the previous sub-section coming from a

non-gradient velocity field over the scalar manifold are perfectly acceptable. However, as

we will explain below, in holography these solutions are unphysical, since all symmetries of

the scalar manifolds must be gauged. As we will see, this implies that Poincaré-invariant

solutions have necessarily zero charge.

It has been argued that quantum gravity does not allowed for exact global symmetries

(see e.g. [40]). In the context of the AdS/CFT correspondence, this argument can be made

precise. Indeed, suppose that we are in the presence of an isometry of Grs(φ) which leaves

the potential V (φ) invariant, and suppose the UV is realized at an isolated maximum of

the potential (say at φr = 0). Then, the UV exremum must be mapped into itself under

the action of the symmetry, meaning that the latter is also a global symmetry of the

corresponding CFT, which then possesess the corresponding conserved currents among its

operators. This in turn requires the existence of bulk gauge fields corresponding to these
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currents, and this translates into the requirement that any isometry of Grs(φ) which leaves

the potential V (φ) invariant should be gauged.11

We proceed now to gauge the O(2) isometry of a two-dimensional and flat scalar

manifold. In cartesian coordinates the action of the O(2) isometry on fields φr is linear

and its infinitesimal form is given by:

δΘφ
s := Θǫspφp. (4.31)

where, ǫsp is the Levi-Civita symbol. When the potential is a function only of |φ|, the
transformation (4.31) leaves the action (2.1) invariant. In order to gauge the transforma-

tion (4.31), we introduce the gauge field Aa(x) which transforms as:

δΘAa = ∂aΘ (4.32)

and is minimally coupled to φ. Our convention for the covariant derivative is:

Daφ
s(x) = ∂aφ

s(x)−Aa(x)ǫ
spφp. (4.33)

The associated field strength is denoted by Fab, and the general form of the action is

S =Md−1

∫

M

dd+1x
√−g

[
1

2κ
R− 1

2
GpsDaφ

pDaφs − V (φq)− Z(φ)

4
FabF

ab

]
+ SGH ,

(4.34a)

where the function Z(φ) gives an extra coupling of the scalars to the gauge fields.

The equations of motion following from the action (4.34) are:

Z∇bF
ba + F ba∂bφ

s∂sZ − ǫpsφ
pDaφs = 0 , (4.35a)

Da(D
aφs)− Gsp

(
∂pV +

1

4
FabF

ab∂pZ

)
= 0 , (4.35b)

Rab −
1

2
gabR = κ

[
Gpq
(
Daφ

pDbφ
q − gab

1

2
Dcφ

pDcφq
)

+ gabV (φ) + Z(φ)gIJ

(
F IacF

J ·c
b· − gab

4
F IcdF

Jcd

)]
. (4.35c)

where Da is a gauge and field-space covariant derivative. The most general ansatz preserv-

ing d-dimensional Poincaré invariance is

ds2 = du2 + e2A(u)ηµνdx
µdxν , (4.36a)

φs = φs(u) , (4.36b)

Aa(u) = δuaAu(u) . (4.36c)

11The above argument applies to isolated UV fixed points, but does not extend to the case in which

there is a continous manifold of fixed points connected by exactly marginal directions, and we thank

Thomas Van Riet for pointing this out to one of the authors. In such cases the symmetry is not an

invariance of the boundary CFT, but rather a transformation connecting different inequivalent UV CFTs.

From the bulk point of view, this is related to the breaking of the bulk symmetry by a choice of the UV

boundary conditions. It is not obvious whether the global symmetry should be gauged in this case, from the

supergravity perspective. In this work we will not consider the possibility of exactly marginal deformations,

but we will assume UV fixed point to be isolated.
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The independent equations of motion (4.35) for the ansatz (4.36) are:

0 = φpǫpsDuφ
s, (4.37a)

0 =
[
δpq (∂u + dȦ)−Auǫ

p
q

]
Duφ

q + Γ̃psqDuφ
sDuφ

q − Gpq∂qV, (4.37b)

0 =
d(d− 1)

2κ
Ȧ2 − 1

2
(φ̇−Auφ)

2 + V (φ). (4.37c)

Equations (4.37a) means that the angular component of the covariant derivative is zero for

the pure gauge configuration (4.36c) and it can be rewritten as:

Θ̇(u) = Au(u). (4.38)

This implies that if we gauge the O(2) isometry, any motion along the angular direction

becomes a gauge artefact. Equivalently, we can go to the unitary gauge A = 0 and find

that Gauss’s law (4.37a) implies L = 0.

5 Conclusion

In this work we have performed a systematic analysis of Einstein gravity coupled to N

scalar fields, using the first order formalism of flow equations. Although our results were

mostly framed in the language of the gauge/gravity duality, they can also be used in the

context of cosmology if one trades the holographic coordinate for time and flips a few

signs [33, 38]

Our analysis shows that in holography, when bulk solutions have a maximum of the

potential to connect to in the UV, one can always write the solution as gradient flows

coming from a superpotential function. The latter may have branch points corresponding

to bounces, when one or more of the coordinates on field space invert their flow direction.

We have written the general solution close to an extremum of the bulk potential in terms

a universal analytic superpotential plus and a set of continuous sub-leading deformations,

which carry the integration constants which ultimately determine the fate of the solution

in the infrared.

As in the single-field case, an appropriate regularity condition in the IR at minima of

the scalar potential determines the full superpotential completely.

We have extended to the multi-field case the analysis of bouncing solutions, for which

the superpotential becomes multi-branched. We have shown that complete bounces (all

fields turning around) can occur on any equipotential hyper-surface on dimension ranging

from zero to N − 1, and lying on the critical curve B(φ) ∝
√

−V (φ) . Partial bounces

can also occur away from the critical curve, when only a subset of the fields inverts its

flow direction.

We have pointed out that one may choose not to work with gradient flows, for example

if one wants to classify bulk solutions according to some conserved charges. Rather than

the superpotential, one is then led to use a non-separable Hamilton principal function as a

generating function of a first order flow in the full parameter space of the metric plus scalar

fields. Although the case with global symmetries is not relevant for holography, since there
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all symmetries must necessarily be gauged, it can be useful to consider for cosmological

applications, something that we think would be worth exploring further.

This work may be extended in several ways. In holography, as we have explained, all

symmetries of the scalar manifold must be gauged, and in order for a solution with a non-

zero charge one must turn on a gauge field. This generically breaks Poincaré invariance,

which means a departure from a vacuum solution (e.g. by turning on a chemical potential).

It would be desirable to have a general first order formalism in the presence of multiple

scalars and gauge fields, as it would be of interest both for condensed matter applications

and for holographic models of QCD.

Another way of obtaining non-vacuum solutions is by going to finite temperature and

considering black hole solutions. In this context, already in the case of pure AdS gravity it

was shown how to write the flow equations in terms of a non-separable Hamilton principal

function [36]. It would be interesting to work out the extension of to single- or multi-field

black hole solutions.

Finally, as we have mentioned above, many models of scalar field inflation have multi-

ple fields, and are intrinsically not reducible to the single field case. Multi-field inflationary

models were recently discussed in connection with holography in [41]. It would be interest-

ing to investigate whether the formalism we have developed here can be used to describe

near-de Sitter solutions and whether using non-gradient flows associated with conserved

quantities can simplify the analysis of the space of solution.
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A Non-gradient flows from a non-separable principal function

In this appendix the main equations we will need will be (4.11)

e−dA

[
1

4d(d− 1)

(
∂S
∂A

)2

− 1

2
Grs ∂S

∂φr
∂S
∂φs

]
+ edAV (φ) = 0 , (A.1)

together with the following combination of (4.7) and (4.10):

φ̇r = − e−dAGrs ∂S
∂φs

, (A.2a)

Ȧ =
e−dA

2d(d− 1)

∂S
∂A

. (A.2b)

One simple equation which follows immediately from the HJ (A.1) and will used below can

be derived by first multiplying the HJ equation by exp(dA) and differentiating the resulting
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expression with respect to A:

0 = ∂A

[(
e−dA∂AS

)2

4d(d− 1)
− 1

2
e−2dA (∂rS∂rS)

]
(A.3)

The first equation we can derive from (A.1) and (A.2) and which will be useful below

is (2.3c). We start by differentiating (A.2b) with respect to u

Ä =
1

2d(d− 1)

[
Ȧ∂A

(
e−dA

∂S
∂A

)
+ φ̇r∂r

(
e−dA

∂S
∂A

)]

= − e−2dA

2(d− 1)
(∂rS∂rS)

= − 1

2(d− 1)
Grsφ̇rφ̇s (A.4)

where we used (A.3).

Assume we have one solution S(φ,A) of equation (A.1). From (A.2a) it is clear that

in general the flows are not given by functions of the scalar fields alone. However, it is

possible to project the flows on field space by the following procedure. We start by deriving

the key element of this procedure, the function A(φ) defined over the scalar manifold such

that it coincides with A(u) on solutions:

A(u) = A(φ(u)) (A.5)

The existence of A(φ) on a neighbourhood of any point where S is locally single-valued is

guaranteed provided that one can solve (A.2b) for A(φ) satisfying (A.5):

edAȦ = Grs [∂rS(φ,A)]A=A(φ) ∂sA =
1

2d(d− 1)
∂AS(φ,A)

∣∣
A=A(φ)

(A.6)

The non-linear, first-order partial-differential equation on the scalar manifold (A.6) is ex-

pected to include an integration function of N − 1 variables. Once a solution to (A.6) is

given we can start locally projecting the solution associated with S(φ,A) on the scalar

manifold.12 As there will be many projected quantities, we define the following simpli-

fied notation:

f(φ,A)|A=A(φ) ≡ f |A (A.7)

We define the projected functionsW (φ), Ŵ (φ) and the projected vector field πr(φ) through:

W (φ) := − d−1e−dA(φ) [∂AS(φ,A)]A . (A.8a)

Ŵ (φ,A) := − e−dAS(φ,A) , (A.8b)

πr(φ) :=
[
∂rŴ

]
A
= − e−dA(φ) [∂rS(φ,A)]A . (A.8c)

12As a consequence of this integration function there are infinitely many solutions to (A.6), each one

leading to a different projection. However the results in this appendix do not depend on the specific choice.
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When equations (A.8) are combined with (A.2) we obtain:

φ̇r = Grsπs = πr , (A.9a)

Ȧ = − W (φ)

2(d− 1)
. (A.9b)

The HJ equation (A.1) assumes the same form as (2.8) with πr playing the role of πr:

1

2
πrπ

r − d

4(d− 1)
W 2 − V = 0, (A.10)

A complete equivalence of a generic non-separable principal function S and of non-

gradient flows can be explicitly shown by deriving equation (2.9) from the Hamilton-Jacobi

formalism together with (A.5) and (A.6). We will now prove this equivalence. We start

rewriting (A.4) using the definitions (A.8):

πr (πr − ∂rW ) = 0 . (A.11)

In other words, we can write πr as a sum of a gradient and a non-gradient part:

πr = ∂rW + ξr , πrξr = 0 . (A.12)

With the definitions (A.8) we can explicitly write ξ in terms of Ŵ by a direct comparison

of πr and ∂rW . It is convenient to first write W (φ) in terms of Ŵ by substituting the

definition (A.8b) into (A.8a):

W (φ) =
[
Ŵ (φ,A) + d−1∂AŴ (φ,A)

]
A

(A.13)

By deriving the expression (A.13) with respect to φr we obtain:

∂rW (φ) =
[
∂rŴ (φ,A) + ∂AŴ (φ,A)∂rA+ d−1

(
∂r∂AŴ (φ,A) + ∂2AŴ (φ,A)∂rA

)]
A

=
[
∂rŴ (φ,A)

]
A
+ d−1e−dA∂r

[
edA∂AŴ (φ,A)

]
A

(A.14)

= πr + d−1e−dA∂r

[
edA∂AŴ (φ,A)

]
A

(A.15)

where in the last line we used the definition (A.8c) of πr in terms of ∂rŴ (φ,A). By

comparing (A.12) and (A.15) we obtain the following two equivalent expressions for ξ:

ξr = − 1

d
e−dA∂r

[
edA∂AŴ (φ,A)

]
A

= − d−1
[
∂r∂AŴ (φ,A)

]
A
−
[
∂AŴ (φ,A) + d−1∂2AŴ (φ,A)

]
A
∂rA (A.16)

Contracting (A.16) with πr gives back, after some algebra, equation (A.3), showing that

ξr is indeed orthogonal to πr. To compute the curl of πr we notice that, from (A.12), it

equals the curl of ξr and using (A.16), we obtain:

∂[rξs] = ∂[rWs] = −
[
∂[r∂AŴ (φ,A)

]
A
∂s]A = d ξ[r∂s]A (A.17)
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We can contract (A.17) with πr and use (A.12) both to eliminate the term proportional

to πrξr and to rewrite the result solely in terms of πr and A. The results is the following

expression:

πr (∂rWs − ∂sWr) = −d (πr∂rA) ξs = −d (πr∂rA) (Ws − ∂sW ) (A.18)

Because A is a solution to equation (A.6), we can rewrite this equations in terms of the

quantities defined in (A.8) leading to the following identity on field space:

πr∂rA = − 1

2(d− 1)
W (φ) . (A.19)

Substituting (A.19) into (A.18) leads to the expression:

πr (∂rWs − ∂sWr) =

(
d

2(d− 1)
W

)
(Ws − ∂sW ) (A.20)

When W is non-zero we can rearrange equation (A.20) in the following form:

πs = ∂sW +
2(d− 1)

d W
πr (∂rπs − ∂sπr) . (A.21)

Equation (A.21) is nothing but equation (2.9), proving that when a solution S to the HJ

equations is non-separable and there is a function A(φ) satisfying (A.5)–(A.6), the flows

can be projected on field space and result in a non-gradient velocity field for φr.

The well known fact that when the principal function S factorises, i.e., when Ŵ defined

on (A.8b), is independent of A follows here from the first line of (A.16) where we see that

ξ vanishes identically and from equation (A.12). Imposing that the flow is gradient, i.e.,

ξ vanishes identically, tells us that Ŵ can depend on A but only in specific way that we

show below.

A gradient flow given by W (φ) does not necessarily imply a separable principal

function S(φ,A). From now on assume that we know W (φ) for a curl-free velocity

field πr but do not know S(φ,A) and we want to determine it. Equation (A.21) imply

immediately that πr is the gradient of W , so the flows are gradient flows. From the

definition of ξ in equation (A.12) we know that it must vanish and, using the first line

of (A.16) for finite A this means:

0 = ∂r

[
edA∂AŴ (φ,A)

]
A

=⇒
[
edA∂AŴ (φ,A)

]
A
= C d (A.22)

where the factor of d is chosen for later convenience and A is a solution of equation (A.19)

which can be written for gradient flows as:

− 2(d− 1)∂r log(W )∂rA = 1. (A.23)
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We can write the most general solution to (A.23) in terms of an arbitrary vector field ηr(φ)

which contains the integration function which specifies a given A(φ) as follows:

A(φ) =

∫
(Yr + ηr)dφ

r, (A.24a)

Yr(φ) ≡ − W

2(d− 1)

∂rW

∂sW∂sW
, (A.24b)

∂[r
(
Ys] + ηs]

)
= 0 , (A.24c)

Y sηs = 0 . (A.24d)

Equation (A.24c) is integrability condition which is equivalent to the requirement of van-

ishing torsion in field space. Expression (A.24a) naturally incorporates the inhomogeneous

solution to equation (A.23). Equation (A.24c) should be solved for ηs subject to the orthog-

onality constraint (A.24d) and a choice of a field ηs among all possible solutions corresponds

to a choice of a homogeneous solution to (A.23).

Let g(φ,A) be any regular function of the scalar field and the scale factor and A(φ)

any function satisfying (A.24). Equation (A.22) implies, at most, that

∂AŴ (φ,A) = e−dA [C + g(φ,A(φ))− g(φ,A)] d . (A.25)

Integration of (A.25) demands the choice of an arbitrary function of the scalar fields, here

called f(φ):

Ŵ (φ,A) =− e−dA [g(φ,A(φ)) + C]−
∫ A

dBe−dBg(φ,B) d + f(φ). (A.26)

Since we have started with the assumptions that we know πr which is closed, i.e. ∂[rWs]

vanishes, and we know W (φ), we can use equation (A.13) to relate W (φ) and f(φ):

f(φ) =W (φ) +

∫ A

dBe−dBg(φ,B) d+ e−dAg(φ,A) (A.27)

Substitution of (A.27) into (A.26) yields:

Ŵ (φ,A) =− e−dAC +W (φ) +

∫ A

A
dBe−dB [g(φ,B)− g(φ,A)] d. (A.28)

Substituting (A.27) into (A.26) we obtain: having the general expression (A.26) we

can express Hamilton’s principal function in terms of the unknown functions g(φ,A) and

f(φ) by multiplying (A.25) by − exp(dA), as prescribed by (A.8b).

S(φ,A) = C − edAW (φ) +

∫ A

A
dBed(A−B) [g(φ,B)− g(φ,A)] d. (A.29)

It can be convenient to relate the function f(φ) to the function W (φ) defined in (A.8a).

For the special case in which g(φ,A) vanishes, substitution of (A.26) in equation (A.13)

implies that f(φ) equals W (φ):

g(φ,A) =⇒ Ŵ (φ,A) =W (φ)− Ce−dA . (A.30)
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The principal function can be reconstructed via (A.8b) and the result is:

S(φ,A) = −edAW (φ) + C ∼ −edAW (φ) . (A.31)

The last step means that a vanishing and a non-vanishing C are equivalent as S is defined

up to an arbitrary additive constant. Therefore, the absence of a curl implies the existence

of a S which factorises as in (A.28), as Ŵ can be chosen from (A.27) with vanishing C,

but other, non-separable principal functions exist which yield the same gradient flows.

B A non-gradient velocity field for two scalars: analytic example

We can build a non-gradient solution by first choosing the paths that the we want in such a

way that the velocity field they generate has the desired profile. In this example we proceed

with Consider two scalar fields on a flat field-space and we define polar coordinates on Mφ:

{
φ1 = R cosΘ

φ2 = R sinΘ
(B.1)

so that the metric components are:

GRR = 1, GΘΘ = R2, GRΘ = 0. (B.2)

We are interested in constructing paths which define Archimedean spirals:

R = α (Θ−Θ0), Θ0 ∈ [0, 2π) . (B.3)

Each angle in (B.3) defines a curve of the family, as shown in figure 8 for a particular

choice of α. The corresponding velocity field can be written as:

Ṙ(u) =WR(R) ≡ R γ(R), (B.4a)

Θ̇(u) =WΘ(R) := α R γ(R) . (B.4b)

The function γ(R) encodes the rate of change of R through (B.4a) and the factor of R

relating γ toWR is chosen for later convenience in order to make the power series expansion

of γ regular in R. The curl of this velocity field is

FRΘ = ∂RπΘ = α
(
R3γ(R)

)′
. (B.5)

where we used the metric (B.2) to lower the Θ index. This velocity field must be accom-

panied by a function W (φ) which satisfies equation (2.9). We choose it to be rotationally

invariant: W =W (R). With this assumption and (B.5), equation (2.9) become the follow-

ing pair of equations:

WR = ∂RW − 2(d− 1)

d W
WΘα

(
R3γ(R)

)′
, (B.6a)

πΘ = +
2(d− 1)

d W
WRα

(
R3γ(R)

)′
(B.6b)

– 42 –



J
H
E
P
0
7
(
2
0
1
8
)
0
2
2

ϕ1

ϕ2

Figure 8. Archimedean spirals (B.3) with differerent values of Θ0 for α given by (B.10). The

corresponding velocity field (B.4) has a non-zero curl (B.5).

Equation (B.6b) can be seen as defining W (R) in terms of the unknown function γ, as WR

and WΘ are related to it via (B.4):

W (R) = +
2(d− 1)

d R2

(
R3γ(R)

)′
(B.7)

With (B.7) providing the functional form of W (R), equation (B.6a) provides a differential

equation to be solved for γ(R):

0 = ∂R

(
∂R
(
R3γ(R)

)

R2

)
− d

2(d− 1)

(
1 + α2R2

)
Rγ(R). (B.8)

Among the two linearly independent solutions of equation (B.8) the one which provides a

regular velocity field at the origin is

γ(R) =

(
2
√
[ 4]2Γ

(
3
2 −

α+
√

d
2d−2

4α

))(
e

1
2
α
√

d
2d−2

r2
U

(
−
α+

√

d
2d−2

4α ,−1
2 ,−

√
d

2d−2 r
2α

))

√
π
(√

[ 4]2r3
)

−

√
[ 4]2


e

1
2
α
√

d
2d−2

r2
L
− 3

2

α+

√

d
2d−2

4α

(
α
(
−
√

d
2d−2

)
r2
)



(√
[ 4]2r3

)
L
− 3

2

α+

√

d
2d−2

4α

(0)
(B.9)
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However, when α has the following value:

α = −
√

d

2(d− 1)
(B.10)

the regular solution (B.9) vanishes identically and the regular solution to (B.8) is given by

a simple expression in integral form:

γ(R) :=
(d− 1)

ℓR2
e

d
4(d−1)

R2

(
1−

∫ 1

0
exp

(
d
(
x2 − 1

)

2(d− 1)
R2

)
dx

)
(B.11)

For the choice (B.10), it is simple to substitute γ from (B.11) into (B.4) and (B.7) in order

to obtain πr and W , the later simplifying to:

W (R) = 2(d− 1)
1

ℓ
exp(

dR2

4(d− 1)
)−R2γ(R) (B.12)

With these quantities, we can construct the potential V (R) that has these flows as solutions,

by the use of the algebraic equation (2.8). The result is:

V (R) =
1

2
(γ(R)R)2 − d

ℓ

(
(d− 1)

ℓ
− γ(R)R2

)
exp(

d

2(d− 1)
R2) (B.13)

where the function γ(R) is given by (B.11). The first terms of the series expansion of the

potential (B.13) around the origin are:

V (R) = −(d− 1)d

l2
− d2R2

9l2
− 7d3R4

360 ((d− 1)l2)
+O

(
R5
)

(B.14)

Equation (2.11c) with W given by (B.12) leads to a scale factor that diverges as an

asymptotically AdS warp factor as R tends to zero. Through the holographic dictionary

this would naively means that the we should associate a UV fixed point at R = 0 for the

flows solving (B.3). There is of a curl, as follows from (4.24), but in the R expansion the

curl is sub-leading close to the origin. In cartesian coordinates:

φ̇1(u) =
d

3
φ1(u) +O(φ)2, (B.15a)

φ̇2(u) =
d

3
φ2(u) +O(φ)2. (B.15b)

With (B.11) the curl acquires a simpler form in terms of γ and its first derivative:

FRΘ = −
√

d

2(d− 1)
R2
[
3γ(R) +Rγ′(R)

]
. (B.16)

is therefore a sub-leading property of the flows close to the UV, showing that for these

solutions the first term on the right-hand side of equation (4.21) dominates over the second.

In other words, (4.21) mixes leading and sub-leading terms of the R expansion. We will

see now that if we try to interpret this in holographic way, this mixing amounts to fix a

relation between sources and VEVs at the UV and not by fixing the source.
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C Local reconstruction of the superpotential

In this appendix we show how to locally reconstruct a superpotential, given a solution.

The idea is that, around a generic point along a given flow (A(u), φr(u)) we can make

an appropriate coordinate transformation in field space from {φr} → (ξ, ηα) with only

ξ changing along the flow and N − 1 “spectator” coordinates ηα, which parametrise the

directions orthogonal to the flow. In these coordinates one can reduce locally to a single-

field flow, which therefore admits a local superpotential Wloc(ξ), independent of ηα, for

which the flow equation simply become

Ȧ = −2(d− 1)Wloc, ξ̇ =W ′
loc, η̇α = 0. (C.1)

Below we show how this construction works explicitly at lowest order in the u-dependence

of the solution.

We from a solution of equations (2.3), and we expand it in u around a point u0 where

the gradient vector φ̇r is non-vanishing. Without loss of generality we can set u0 = 0 and

A(0) = φr(0) = 0 by coordinate transformations and field redefinitions. To lowest order

around u = 0 we can write:

A(u) = A1u+
1

2
A2u

2 +O(u3), φr(u) = φ̄ru+O(u2), (C.2)

where A1, A2 and φ̄r are constants and by assumption not all the φ̄r vanish. We need to

consider the term A2 because it enters in equation (2.3c) at the same order as φ̇2, which

starts as a constant as u→ 0. Using equations (2.3b)–(2.3c) we can determine A1 and A2

to be

A1 = − 1

2(d− 1)
W1, A2 = − 1

2(d− 1)
Grsφ̄rφ̄s (C.3)

where W1 is determined algebraically by the equation:

d

4(d− 1)
W 2

1 − 1

2
Grsφ̄rφ̄s = −V (0). (C.4)

The velocities φ̄r are then determined by equation (2.3a) from the derivatives of the po-

tential and of the metric.

We now define the new field variable ξ by

ξ = (Grsφrφs)1/2 . (C.5)

Along the flow, around u = 0 it behaves as

ξ(u) = ξ̄u+O(u2), ξ̄ ≡
(
Grsφ̄rφ̄s

)1/2 6= 0. (C.6)

We can in principle define a coordinate transformation around ξ = 0 by adding N − 1

coordinates ηα orthogonal to the flow, which to this order will be independent of u along

the solution.

We now define the local superpotential around the point ξ = 0 by:

W (ξ) =W1 + ξ̄ξ +O(ξ2), (C.7)
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where W1 is the same constant determined from equation (C.4). It is now straightforward

to check that (C.7) serves, locally, as a superpotential for the flow close to u = 0,

φ̇r = Grs∂sWloc, Ȧ = −2(d− 1)Wloc (C.8)

up to terms of order u. This construction works as along as ξ̄ = 0, i.e. if the starting point

around which we expand is not a complete bounce.

D Non-separable solution with angular momentum

We consider the two-field case, with radial and angular variables R and Θ, diagonal and

rotationally invariant metric (GRR(R),GΘΘ(R)) and rotationally invariant potential V =

V (R). We start from HJ equation (4.11) and look for solution of the form (4.16),

S(A,R,Θ) = S0(A,R) + LΘ, (D.1)

for which equation (4.11) becomes,

e2dAV (R) +

[
1

4d(d− 1)

(
∂S0

∂A

)2

− 1

2
GRR

(
∂S0

∂R

)2

− L2

2
GΘΘ

]
. (D.2)

We now look for solutions in an expansion in large edA,

S0(A,R) = −edAW0(R) +W1(R) + e−dAW2(R) + . . . . (D.3)

Inserting this ansatz in equation (D.2) we find:

• Order e2dA:
d

4(d− 1)
W 2

0 − 1

2
GRR

(
dW0

dR

)2

+ V = 0 (D.4)

i.e. the “reduced” superpotential equation with respect depending only on R;

• Order edA:

GRR dW0

dR

dW1

dR
= 0 (D.5)

which implies constant W1 = C1;

• Order e0:
d

2d(d− 1)
W0W2 + GRR dW0

dR

dW2

dR
=
L2

2
GΘΘ (D.6)

This is the lowest order at which L enters in S0 (notice that it enters in S in equa-

tion (D.1) at one order higher through the LΘ term). The solution of equation (D.6) is

W2 = exp

(
− d

2(d−1)

∫
W0

GRRW ′
0

)[
C2+L

2

∫ GΘΘ

GRRW ′
0

exp

(
d

2(d− 1)

∫
W0

GRRW ′
0

)]

(D.7)

where C2 is another integration constant.
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