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Genome-wide association studies (GWAs) have identified thousands of DNA loci

associated with a variety of traits. Statistical inference is almost always based

on single marker hypothesis tests of association and the respective p-values with

Bonferroni correction. Since commercially available genomic arrays interrogate hundreds

of thousands or even millions of loci simultaneously, many causal yet undetected loci are

believed to exist because the conditional power to achieve a genome-wide significance

level can be low, in particular for markers with small effect sizes and low minor allele

frequencies and in studies with modest sample size. However, the correlation between

neighboring markers in the human genome due to linkage disequilibrium (LD) resulting

in correlated marker test statistics can be incorporated into multi-marker hypothesis

tests, thereby increasing power to detect association. Herein, we establish a theoretical

benchmark by quantifying the maximum power achievable for multi-marker tests of

association in case-control studies, achievable only when the causal marker is known.

Using that genotype correlations within an LD block translate into an asymptotically

multivariate normal distribution for score test statistics, we develop a set of weights for

the markers that maximize the non-centrality parameter, and assess the relative loss of

power for other approaches. We find that the method of Conneely and Boehnke (2007)

based on the maximum absolute test statistic observed in an LD block is a practical and

powerful method in a variety of settings. We also explore the effect on the power that prior

biological or functional knowledge used to narrow down the locus of the causal marker can

have, and conclude that this prior knowledge has to be very strong and specific for the

power to approach the maximum achievable level, or even beat the power observed for

methods such as the one proposed by Conneely and Boehnke (2007).

Keywords: genome-wide association studies, linkage disequilibrium, multi-marker tests, multiplicity adjustment,

single nucleotide polymorphisms

INTRODUCTION
Genome-wide association studies (GWAs) are a prominent

approach to search for single-nucleotide polymorphisms (SNPs)

associated with disease or other phenotypes. To date, results from

more than 1000 GWAs have been reported, identifying over ten

thousand DNA loci to be statistically associated with one or more

of hundreds of phenotypes investigated (http://www.genome.

gov/gwastudies). Typically test statistics and p-values are reported

for each marker on the genomic array, and genome-wide sig-

nificance for a SNP is declared if the p-value after Bonferroni

correction is below a threshold for a desired family-wise error

rate. Commercially available genomic arrays interrogate the geno-

types of individuals at hundreds of thousands or even millions

of loci, and p-values less than 5 × 10−8 are usually required to

achieve genome-wide significance. Obviously, these levels of sig-

nificance are difficult to reach unless the signal is very strong or

the sample size is very large. However, the correlation between

neighboring markers in the human genome due to linkage

disequilibrium (LD) can be incorporated into statistical tests, and

thereby increase the power to detect association under the same

family-wise error rate.

Reducing test-multiplicity by taking advantage of the observed

marker correlation in LD blocks has been a very active field of

research. Haplotype-based methods can be an attractive option to

decrease the testing burden (Schaid et al., 2002; Chapman et al.,

2003), especially in settings where genetic diversity between sub-

jects is low and/or markers are densely typed. However, most

approaches avoid the phasing step for haplotype estimation and

use the observed genotypes and/or the respective marginal test

statistics and p-values instead to generate a single test statistic

and p-value for the entire LD block. The approaches most sim-

ilar to the traditionally employed Bonferroni method are those

that estimate the “effective number of tests” based on the correla-

tion structure and use those instead of the actual number of tests

to control for the family-wise error rate (Nyholt, 2004; Li and Ji,

2005; Moskvina and Schmidt, 2008). Fisher’s inverse chi-square
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test statistic (Fisher, 1932) is another choice to quantify departure

from randomness in a set of multiple p-values. However, for cor-

related data such as the p-values stemming from the markers in an

LD block the inference has to be based on a proper null distribu-

tion generated either by permutations (Chapman and Whittaker,

2008) or adjustments to the degrees of freedom in the χ2 distri-

bution (Makambi, 2003; Chai et al., 2009). Other methods based

on the observed genotypes include some traditional multivariate

procedures such as Hotelling’s T2-test (Xiong et al., 2002), prin-

cipal components analysis (Horne and Camp, 2004; Gauderman

et al., 2007) and Fourier transformations (Wang and Elston,

2007), but also concepts borrowed from the statistical learn-

ing and regularization literature, such as kernel methods (Schaid

et al., 2005; Kwee et al., 2008; Mukhopadhyay et al., 2010; Wu

et al., 2010; Pan, 2011), penalized regression (Basu et al., 2011),

and the LASSO (Shi et al., 2007; Wu et al., 2009). Further, biosta-

tistical concepts employed include latent variables (Wang et al.,

2009a), empirical Bayes methods (Goeman et al., 2006), likeli-

hood ratio tests that simultaneously compare genotype means

and variances across cases and controls (Wang et al., 2009b), and

even hybrids that combine several of those approaches (Pan et al.,

2010). While the above methods are based on the observed data

only, other approaches also include additional information such

as publicly available data bases (Li et al., 2009) or gene sets and

ontologies (Wang et al., 2007; Chasman, 2008; Holden et al., 2008;

O’Dushlaine et al., 2009). The results of some comparisons of

multi-marker tests in case-control studies to detect association

with SNP sets have been reported, for example by Chapman and

Whittaker (2008) and Ballard et al. (2010).

Despite the advances made in methods development for multi-

marker tests and the additional power that can be gained, the

standard approach to analyze GWAs data still is to carry out single

marker tests with Bonferroni correction. The somewhat limited

use of the novel statistical methods is arguably due in part to the

fact that some of these methods can be computationally demand-

ing or that open source software is not always available. However,

there are powerful multi-marker tests that are very easy to imple-

ment and scale, including the approaches proposed by Seaman

and Müller-Myhsok (2005) and Conneely and Boehnke (2007).

Both methods are based on marginal score tests for each SNP, and

the authors demonstrate how genotype correlations within an LD

block translate into an asymptotically multivariate normal distri-

bution for the test statistics, with a variance-covariance derived

from the estimates of LD. As an alternative to computationally

intensive permutation tests, Seaman and Müller-Myhsok (2005)

propose to sample from this multivariate distribution to calcu-

late the statistical significance of an observed test statistic, while

Conneely and Boehnke (2007) propose to directly use the mul-

tivariate cumulative distribution function to calculate p-values,

particularly for the multi-marker test based on the maximum

of the absolute values of the observed marginal test statistics.

Computational procedures to assess multivariate normal cumu-

lative distribution functions are readily available, for example as

implemented in the statistical software environment R (Genz and

Bretz, 2009; Genz et al., 2011). Both of these approaches are com-

pletely data driven and do not require prior biological knowledge

or external reference data.

In what follows, we quantify the maximum power achievable

for multi-marker tests to detect association in case-control stud-

ies, which relies on the hypothetical assumption that the locus of

the causal marker in an LD block is known. Similar to the deriva-

tions in Seaman and Müller-Myhsok (2005) and Conneely and

Boehnke (2007) we show that genotype correlations within an LD

block translate into an asymptotically multivariate normal distri-

bution for the score test statistics, and develop a set of weights for

the markers that maximize the non-centrality parameter in the

overall test statistic. We assess the relative loss of power of some

alternative, data driven, and thus practical methods without such

prior knowledge. We also use some simulations to explore the

effect on the power that prior knowledge used to narrow down the

locus of the causal marker has, and how much of the maximum

achievable power it can reach.

METHODS

SCORE TEST STATISTICS AND CORRELATION STRUCTURES

In a case-control setting we assume the retrospective risk relation

to be

πx = Pr(G = 1|x) = F(µG + θGx) , (1)

where x ∈ {0, 1} is the fixed binary disease status indicator, and G

is a function of the genotype that specifies the genetic model. In

the following we assume that G ∈ {0, 1}, for example encoding a

dominant model for a bi-allelic marker (the more general coding

is considered in the supplementary materials), but for simplicity

still refer to G as the genotype. In this setting G is the random

variable with E(G) = π, the relative frequency of G = 1 in the

study population. As usual, the parameters µG and θG describe

the relationship between x and π via the link F, with θG being the

parameter of interest. We denote the disease status indicator for

individual i ∈ {1, . . . , n} by xi, and the genotype for individual i

by gi. Thus,
∑

xi is equal to the number of cases and n −
∑

xi is

equal to the number of controls.

Henceforth, we assume that F is inverse-logit. To test the

hypothesis of no genotype/phenotype association at a specific

marker H0 : θG = 0 (or equivalently, H0 : π0 = π1 = π) we use

the score test statistic

ZG =
∑n

i = 1 (xi − x̄)
(

gi − π̂
)

√

nx̄(1 − x̄)π̂(1 − π̂)
= TG

DG
, (2)

where x̄ = 1
n

∑

xi and π̂ = ḡ (introduced for example in Agresti,

2012). In a study with an equal number of cases and controls we

have x̄ = 1/2 and thus, the above simplifies to

ZG = 1

2

√
n

(

π̂1 − π̂0

)

√

π̂(1 − π̂)
, (3)

where π̂1 and π̂0 are the sample means for g in the cases and

controls, respectively. Under the null hypothesis θG = 0, the ran-

dom variable ZG has mean 0 and variance 1 and its distribution is

approximately normal for sufficiently large n.

In addition to G, consider a second marker H and let ξx =
Pr(H = 1|x). As in Equation (2) above, the relevant score statistic
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is

ZH =
∑n

i = 1 (xi − x̄)
(

hi − ξ̂

)

√

nx̄(1 − x̄)ξ̂(1 − ξ̂)

= TH

DH
(4)

with ξ̂ = h̄. Setting E(H) = ξ, the conditional distribution of H

given G is ph|g = Pr(H = h|G = g), providing a measure of the

LD between G and H. Consequently ξ = p1|0 + π
(

p1|1 − p1|0
)

and

cor(G, H) =
(

p1|1 − p1|0
)

{

π(1 − π)

ξ(1 − ξ)

}1/2

. (5)

In the following, we derive the relation between the correlation of

the test statistics ZG and ZH and the correlation between G and

H under the null hypothesis (θG = 0) and local alternatives, and

defer the derivations for global alternatives to the supplementary

material.
Under the null hypothesis of no association, cov(ZG, ZH) =

E(TGTH). Using Equations (2) and (4) we have that

E (TGTH) = E

{

∑

i

(xi − x̄)
(

gi − π̂
)

×
∑

i

(xi − x̄)
(

hi − ξ̂

)

}

(6)

= E

{

E

[

∑

i

(xi − x̄)
(

gi − π̂
)

×
∑

i

(xi − x̄)
(

hi − ξ̂

)

| g

]}

= E

{

∑

i

(xi − x̄)
(

gi − π̂
)

×
∑

i

(xi − x̄)
(

p1|gi
−

[

p1|0 + π̂ ×
(

p1|1 − p1|0
)])

}

The last line follows from

E
{(

hi − ξ̂

)

| gi

}

=
(

1 − ξ̂

)

p1|gi
− ξ̂

(

1 − p1|gi

)

= p1|gi
− ξ̂. (7)

Assuming that the participants are unrelated and that π̂ ≡ π, the

above expectation simplifies to

E (TGTH) = E

{

∑

i

(xi − x̄)2
(

gi − π
)

×
{(

p1|gi
−

[

p1|0 + π ×
(

p1|1 − p1|0
)])}

}

=
∑

i

(xi − x̄)2 E
{(

gi − π
)

p1|gi

}

= nx̄(1 − x̄)E
(

gip1|gi

)

− πE
(

p1|gi

)

= nx̄(1 − x̄)
(

p1|1 − p1|0
)

π(1 − π), (8)

which is equal to zero if p1|0 = p1|1 = p (no linkage between G

and H), and equal to nx̄(1 − x̄)π(1 − π) if p1|0 = 0 and p1|1 = 1

(perfect linkage). If π and ξ were known then the denominators

DG and DH are constants, and thus

cor(ZG, ZH) =
nx̄(1 − x̄)

(

p1|1 − p1|0
)

π(1 − π)

nx̄(1 − x̄)
√

π(1 − π)ξ(1 − ξ)

=
(

p1|1 − p1|0
)

{

π(1 − π)

ξ(1 − ξ)

}1/2

= cor(G, H). (9)

Thus, under the null hypothesis and local alternatives, subject to

the approximation that π̂ and ξ̂ are constants, the correlation

between the test statistics at two markers equals the correlation

between the marker genotypes. If there is no correlation between

G and H (linkage equilibrium) and H is not independently causal,

then H is not associated with disease status. If H is in LD with G,

an association with the disease status is induced by G.

For a local alternative (θG = O(1/
√

n)) a first-order Taylor

series approximation yields

ZG ≈ N(�G, 1) with

�G = θG

{

nx̄(1 − x̄)π̂(1 − π̂)
}1/2

(10)

If G is “causal” for the trait of interest but H is not, then the cor-

relation between G and H induces a non-zero θH in the score test.

Specifically,

ZH ≈ N (�H, 1) with

�H = θH

{

nx̄(1 − x̄)ξ̂(1 − ξ̂)

}1/2

= θG ×
(

p1|1 − p1|0
)

{

nx̄(1 − x̄)ξ̂(1 − ξ̂)
}1/2

, (11)

where the last line follows from ξ̂ = p1|0 + π̂ × (p1|1 − p1|0).

Note that �H is induced, so that in case of linkage equilibrium

(p1|1 = p1|0) we have �H = 0. Also note that θH depends on both

the odds ratio at the causal marker (θG) and the covariation of the

genotypes.

MULTI-MARKER TESTS FOR ASSOCIATION

Let Z = (Z1, . . . , ZK) be the score test Z statistics from an LD

block with K markers.

The maximum z-statistic Zmax

We define the maximum z-statistic as Zmax = max1≤k≤K {|Zk|}.
The null distribution of Zmax depends on the correlation matrix

R of the test statistics Z, and for large samples we have Z ∼
NK(0

¯
, R). The two-sided p-value for Zmax can be derived from

this multivariate distribution by calculating

pmax = 2 × {1 − �R(Zmax ◦ 1K)} (12)

where �R is the cumulative distribution function of the multi-

variate normal distribution with mean vector 0
¯

and correlation

matrix R, 1K is a vector of ones of length K, and the symbol ◦
denotes the dot product.
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The Bonferroni corrected p-value

We compute the Bonferroni p-value in a set of K markers as K

times the p-value stemming from the most significant marker as

given by Zmax = max1≤k≤K {|Zk|}.

The optimal linear combination Zopt

We consider a block of correlated markers as the region of inter-

est and assume that one of these SNPs is biologically associated

with the trait of interest. The statistical associations at neighbor-

ing markers are thus controlled by the strength of the correlation

between the causal marker and other loci in the analysis. With

locus-specific Z-scores being approximately normally distributed,

a linear combination (L′Z) is optimal. Generalizing from the

two-locus case to a block of K SNPs with πk = pr(Gk = 1) for

k ∈ {1, . . . , K}, we define

�k = E(Zk) = θkBk

Bk =
{

nx̄(1 − x̄)π̂k

(

1 − π̂k

)}1/2
(13)

The values Bk are known and depend on the minor allele fre-

quency, but in general the θk are unknown. The optimal linear

combination depends on the relative sizes of the �k and so an

assumption on the relative sizes of the θk is needed, and certain

cases are discussed below and in the next section. We let Z denote

the vector of the Zk and � denote the vector of the �k.

We need to identify the K-dimensional vector Lopt that

maximizes the non-centrality {E(L′Z)}2 = L′
��

′L subject to

L′RL = 1, with the correlation matrix R computed from the

genotype correlation structure. This is equivalent to finding

the L̃ that maximizes L̃′HL̃ subject to L̃′L̃ = 1, where L =
R−1/2L̃ and H = R−1/2

��
′R−1/2. A standard matrix theory

result (which can formally be derived using Lagrange multipli-

ers) yields that L̃ is the normalized first principal component

loading vector of H, and we have Lopt = R−1/2L̃ so that Zopt =
L′

optZ.

Note that Lopt depends only on the relative sizes of the �s.

If �k ≡ �, then Lopt = R−11/(R−1
++)1/2 where R−1

++ is the sum

of all entries of R−1. Further, in the case that all minor allele

frequencies in the block are the same, then all Bk are identical

and � is the product of a constant and the row (or column)

of R corresponding to the locus which is biologically associated

with the trait of interest. (This follows from an extension of

Equations (10) and (11) to more than two markers.) In this case,

H has a degenerate form with all but one entry (the entry on

the diagonal position corresponding to that of the causal locus)

equal to 0. This yields that Lopt is simply a vector equal to 1 at

the causal locus, and zero otherwise, i.e., Zopt = Zcausal for sets

of markers with equal minor allele frequency. Thus, even though

the associations in the remaining markers of the block are only

induced by the causal SNP, there is in general more information

in the optimal linear combination of score statistics than in the

statistic from the causal locus alone, since the minor allele fre-

quencies across a set of markers are virtually always non-identical,

unless the markers are in perfect LD (and thus, every marker con-

tains the same information about statistical association with the

phenotype).

We also note that the expectation of the optimal linear com-

bination is E(Zopt) = L′
opt� = (�′R−1

�)1/2, and thus the non-

centrality is

{

E
(

Zopt

)}2 =
(

L′
opt�

)2
=

(

�
′R−1

�
)

. (14)

If K is very large, care is needed in computing R−1. However, in

most situations either R will be relatively small (limited to the size

of an LD block) or will have considerable structure with many

zeros and non-communicating subsets and so only matrices of

small to medium size will need to be inverted.

The “agnostic” linear combination Zeq

As in the case of the optimal linear combination Zopt above we

consider a linear combination of z-scores, albeit without any prior

knowledge of the location of any causal variant. This lack of

knowledge comes into play in choosing a value of �, and we

assume a uniform prior over the set of possible causal variants.

In this case, the expected non-centrality is

{

E
(

L′Z
)}2 = L′

[

1

K

∑

k

�(k)
[

�(k)
]′

]

L

where �(k) is the vector of expected values of the test statistics,

assuming that marker k is the causal marker. More specifically,

�(k) is the kth column of R that has been component-wise mul-

tiplied by the Bks. In this case, we proceed as described above to

find Lopt, with our matrix H given by

H = R−1/2

[

1

K

∑

k

�(k)
[

�(k)
]′

]

R−1/2

This approach maximizes the pre-posterior expected non-

centrality, although this does not guarantee better performance

than Zmax.

The sequence kernel association test (SKAT)

For comparison with the above methods, we also include the

sequence kernel association test (SKAT), a widely used method

for SNP-set analysis based on a logistic kernel-machine approach

that allows for flexible, covariate adjusted relations between a

genotype and the outcome of interest (Wu et al., 2010). Analyses

were carried out using the publicly available SKAT R pack-

age (http://cran.r-project.org/web/packages/SKAT) with default

settings that produce a linearly weighted kernel, with weights

inversely proportional to minor allele frequency.

RESULTS

SIMULATIONS BASED ON ASSUMED LD AND ALLELE FREQUENCIES

We simulated a “naive” population under a dominant disease

model using the R package bindata (http://cran.r-project.

org/web/packages/bindata). We simulated 5-locus haplotype

blocks with exchangeable (compound symmetry, CS) and auto-

regressive lag-1 (AR1) correlation structures, with correlations

between 0 and 0.8. For all markers in the haplotype blocks we
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chose constant minor allele frequencies in this simulation, set

at either 5 or 25%. One causal marker was selected and haplo-

types were sampled to generate cases and controls as given by the

genetic risk model, using a variety of odds ratios (1, 1.1, 1.4, and

1.7). We generated 50,000 samples of 1000 cases and 1000 con-

trols, and carried out marker-specific score tests to generate sets

of test statistics.

We investigated the type I error and power for the approach

using the maximum z statistic, the optimal linear combination

of the test statistics with known causal locus (combopt), and the

“agnostic” linear combination of the test statistics assuming equal

prior probabilities for each marker in the block to be causal

(combeq). In addition, to mimic some limited biological infor-

mation available, we show results for a linear combination of test

statistics assuming equal prior probabilities for the causal and one

additional marker, narrowing the set of potentially causal mark-

ers to two out of five (combpair). For the compound symmetry

simulations each pair of markers that contains the causal one is

equivalent. For the auto-regressive lag-1 simulations, we show a

pair of markers with correlation ρ and a pair of markers with cor-

relation ρ2. Estimates of type I error and power are the fraction

of simulations with p-values lower than the set significance level

assuming two-sided tests. We also include the results derived for

the Bonferroni correction with the significance level divided by

the number of markers assessed. In addition to the typical sig-

nificance level α = 0.05, we also assessed the different methods

using a much stricter significance level for type I error con-

trol, as is usually done in GWAs. These extreme tail probabilities

were estimated using importance sampling (see supplementary

material).

With the exception of the conservative Bonferroni correc-

tion all methods were well calibrated under the null hypoth-

esis, for both types of correlations (compound symmetry and

auto-regressive) and both minor allele frequencies considered

(Figure 1). For much stronger type-I error control however all

approaches can be slightly conservative, in particular in settings

with auto-regressive correlation structure (see supplementary

material).

As expected, the optimal linear combination with correctly

specified causal locus outperforms all other methods, yielding the

largest power for odds-ratios of 1.1, 1.4, and 1.7. For this method,

the estimated power was virtually constant for all magnitudes

of correlations across markers within a block, for both simu-

lated compound symmetry at low (Figure 2) and high (Figure 3)

minor allele frequencies, as well as auto-regressive correlation

structures (Figures 4, 5, respectively). Also as expected, the rela-

tive loss of power for the other methods is worst for uncorrelated

markers, and decreases with increasing correlation. For perfectly

correlated markers, all methods except Bonferroni are equivalent.

The data-driven maximum z-statistic which does not require any

biological knowledge or other input generally performs better

than combeq and Bonferroni, and thus, is a practical and more

powerful method than conventionally employed approaches.

Not surprisingly, the relative power of the Bonferroni method

is particularly poor for highly correlated markers with com-

pound symmetry when the genetic signal is weak (Figures 2, 3,

left column). If the prior information about the locus for the

causal variant is not very strong, little if any improvement can

be achieved compared to the maximum z-statistic method. In the

hypothetical case when the causal locus can be narrowed down

to one of two loci in the LD block, combpair occasionally yields

modestly higher power than the maximum z-statistic method, but

this is typically only the case when the two markers are in strong

LD. However, for large effect sizes and weak correlations in the

LD block, combpair performs at times even worse than multiple

comparison correction via Bonferroni, and particularly notice-

able at low minor allele frequencies (Figures 2, 4, right columns).

As expected, combpair with ρ always yields higher power than

combpair with ρ2 in the auto-regressive setting (Figures 4, 5).

The performance of combeqis arguably the worst, and particularly

poor in settings with high minor allele frequencies and strong

signal (Figures 3, 5, right columns).

SIMULATIONS BASED ON GENOMIC DATA

As realistic examples of LD and minor allele frequencies, we also

simulated data based on haplotypes in two regions of chromo-

some 10 and one region on chromosome 22 delineated from the

genome scans (Illumina Human660W-Quad BeadChip array) of

4251 European American participants in the Lung Health Study,

a NHLBI-supported multi-center randomized clinical trial in the

United States and Canada to determine whether or not a program

of smoking intervention and use of an inhaled bronchodilator

could slow the rate of decline in pulmonary function in smokers

with mild airflow limitation (Kanner et al., 1999).

FIGURE 1 | Calibration under the null hypothesis for compound

symmetry (left) and auto-regressive (right) correlation structures,

assuming equal minor allele frequencies of 5% (top) and 25% (bottom)

in a block of 5 markers. The fraction of rejected null hypotheses of no

association (estimated type I error, y-axis) simulated in 50,000 data sets

each is shown as a function of the between-marker correlation (x-axis). Each

line represents a different method (see the following figures for details),

with the Bonferroni method (red) showing the sharp decline as ρ increases.
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FIGURE 2 | Comparing analytic strategies in the setting with

compound symmetry correlation structures, assuming equal minor

allele frequencies of 5% in a block of 5 markers. The fraction of

rejected null hypotheses of no association (power, y-axis) in 50,000

simulated data sets is shown as a function of the between-marker

correlation (x-axis) for assumed odds-ratios of 1.1 (left), 1.4 (middle),

and 1.7 (right). Each row highlights a different method, as labeled along

the right-hand side.

On chromosome 10 we chose two smaller blocks of 8 and 7

markers respectively (top of Table 1 with lower minor allele fre-

quencies and weaker LD; top of Table 2 with larger minor allele

frequencies and stronger LD). On chromosome 22 we chose a

larger block of 24 markers (mean R2 of 0.35, minor allele frequen-

cies between 0.07 and 0.41, median of 0.28, see supplementary

material). This block is part of a previously identified region of

strong LD observed in a Caucasian population (Dawson et al.,

2002). We used inferred haplotypes in these regions to simulate

case-control data sets with varying degrees of association between

a hypothetical causal locus and the phenotype. For each block and

a set of five different effect sizes (odds-ratios of 1, 1.1, 1.25, 1.4,

and 1.7) we generated 50,000 samples of 1000 cases and 1000 con-

trols, and carried out marker-specific score tests to generate sets

of test statistics.

In the eight marker block with the lower minor allele fre-

quencies and weaker LD, we observed that all methods were

well-calibrated under the null hypothesis (odds ratio equal to

1), with the exception of the conservative Bonferroni correc-

tion. The optimal linear combination with correctly specified

causal locus again outperformed all other methods, yielding the

largest power for odds-ratios of 1.1, 1.25, 1.4, and 1.7 (bottom

Frontiers in Genetics | Statistical Genetics and Methodology December 2013 | Volume 4 | Article 252 | 6

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Taub et al. Multi-marker tests for association studies

FIGURE 3 | Comparing analytic strategies in the setting with

compound symmetry correlation structures, assuming equal minor

allele frequencies of 25% in a block of 5 markers. The fraction of

rejected null hypotheses of no association (power, y-axis) in 50,000

simulated data sets is shown as a function of the between-marker

correlation (x-axis) for assumed odds-ratios of 1.1 (left), 1.4 (middle),

and 1.7 (right). Each row highlights a different method, as labeled along

the right-hand side.

of Table 1). The data-driven maximum z-statistic which does

not require biological knowledge or other input showed a slight

loss in power compared to the optimal method, however per-

formed substantially better than any of the other approaches

considered, including the hypothetical cases where the causal

locus could be narrowed down to one of two loci (combpair

in Table 1), even when those two markers were in somewhat

strong LD (correlation of 0.68 between marker 4 and the

causal locus 5). In this example, the “paired” approach per-

formed even worse than multiple comparison correction via

Bonferroni.

For the seven marker block with the larger minor allele

frequencies and stronger LD we observed similar results (bot-

tom of Table 2). However, the hypothetical case where the causal

locus could be narrowed down to one of two loci yielded

higher power when the two markers were in strong LD (cor-

relation of 0.81 between marker 3 and the causal locus 4).

Interestingly, the sequence kernel association test showed very dif-

ferent performances for these two simulation scenarios. While

properly calibrated under the null, the power for the simula-

tion on the block of eight markers with overall lower minor

allele frequencies and weaker LD was substantially lower than
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FIGURE 4 | Comparing analytic strategies in the setting with

autoregressive correlation structures, assuming equal minor allele

frequencies of 5% in a block of 5 markers. The fraction of

rejected null hypotheses of no association (power, y-axis) in 50,000

simulated data sets is shown as a function of the between-marker

correlation (x-axis) for assumed odds-ratios of 1.1 (left), 1.4 (middle),

and 1.7 (right). Each row highlights a different method, as labeled

along the right-hand side.

the power of most of the other methods (Table 1). On the

other hand, for the simulation on the block of seven markers

with larger minor allele frequencies and stronger LD, the per-

formance was very competitive. One possible explanation for

this behavior is the weighting scheme in SKAT - by default,

low frequency variants carry higher weights than common vari-

ants. In the first setting, the marker with the lowest minor

allele frequency (i.e., the highest weight) has only a very
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FIGURE 5 | Comparing analytic strategies in the setting with

autoregressive correlation structures, assuming equal minor allele

frequencies of 25% in a block of 5 markers. The fraction of

rejected null hypotheses of no association (power, y-axis) in 50,000

simulated data sets is shown as a function of the between-marker

correlation (x-axis) for assumed odds-ratios of 1.1 (left), 1.4 (middle),

and 1.7 (right). Each row highlights a different method, as labeled

along the right-hand side.

weak correlation to the causal, much more variable SNP (ρ =
−0.14), while in the second setting all markers have about

the same minor allele frequency, and are much more strongly

correlated.

The simulation on the 24 marker block yields similar results

in general, but some qualitative differences are noteworthy. The

optimal linear combination again performs best overall, although

for odds ratios of 1.4 the maximum z-statistic shows slightly
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Table 1A | Linkage disequilibrium between SNPs measured by

Pearson’s correlation coefficient along with the SNP minor allele

frequencies in an eight marker LD block on chromosome 10,

simulated based on genome scans of samples from the Lung Health

Study.

1 2 3 4 5 6 7 8

1 1 0.93 0.57 0.78 0.47 0.45 0.07 0.43

2 1 0.61 0.81 0.46 0.49 0.08 0.47

3 1 0.50 −0.14 −0.13 0.29 0.29

4 1 0.68 0.67 0.14 0.53

5 1 0.96 −0.09 0.38

6 1 −0.07 0.39

7 1 0.59

8 1

MAF 0.25 0.22 0.10 0.28 0.17 0.16 0.21 0.43

Table 1B | Estimated type-I errors (for OR = 1.00) and power

(OR = 1.10, 1.25, 1.40 and 1.70) for different methods of addressing

multiple comparisons in the eight marker LD block.

Odds ratio 1.00 1.10 1.25 1.40 1.70

Bonferroni 0.035 0.099 0.520 0.904 1.000

Maximum Z 0.050 0.128 0.576 0.925 1.000

combopt 0.051 0.184 0.688 0.958 1.000

combeq 0.049 0.090 0.266 0.515 0.869

combpair(markers 5 and 4) 0.051 0.121 0.442 0.774 0.986

combpair (markers 5 and 7) 0.050 0.061 0.114 0.192 0.328

SKAT 0.048 0.058 0.118 0.282 0.799

Marker 5 was assumed to be the causal locus.

higher power (Table 3), likely due to the somewhat fragmented

LD across the 24 markers observed in our population (see sup-

plementary figures). As before, the “paired” approach performs

well when the two markers are in strong LD (the causal markers

12 and marker 13 have an R2 of 0.97), and yields unsatisfactory

power when the markers are not in strong LD (R2 of 0.05 between

markers 12 and 3). The performance of SKAT again is affected

by the distribution of minor allele frequencies in the block and

the observed LD. While the causal marker 12 has an appreciable

minor allele frequency of 0.28, some other markers show much

less variation, and thus receive more weight in the default settings.

Here, the lowest minor allele frequency (MAF = 0.07) is observed

for marker 3, which is in very low LD with the causal marker (R2

of 0.05). Overall, and similar to previous results, the largest gain

of power for the optimal linear combination relative to the other

methods is seen at lower odds ratios.

DISCUSSION

We evaluated three approaches to controlling multiplicity in

GWAs: standard Bonferroni, the correlation-calibrated maximum

statistic, and a theoretical benchmark: the optimal linear combi-

nation of locus specific test statistics which requires knowledge

of the causal locus. Computation of the latter two depends on

the correlation among the test statistics; the performance of each

Table 2A | Linkage disequilibrium between SNPs measured by

Pearson’s correlation coefficient along with the SNP minor allele

frequencies in a seven marker LD block on chromosome 10, simulated

based on genome scans of samples from the Lung Health Study.

1 2 3 4 5 6 7

1 1 0.99 −0.96 −0.83 −0.83 0.76 −0.69

2 1 −0.97 −0.84 −0.84 0.77 −0.69

3 1 0.81 0.81 −0.74 0.69

4 1 0.95 −0.84 0.76

5 1 −0.87 0.77

6 1 −0.67

7 1

MAF 0.49 0.49 0.49 0.44 0.45 0.49 0.44

Table 2B | Estimated type-I errors (for OR = 1.00) and power (OR =

1.10, 1.25, 1.40 and 1.70) for different methods of addressing multiple

comparisons in the seven marker LD block.

OR 1.00 1.10 1.25 1.40 1.70

Bonferroni 0.023 0.184 0.843 0.997 1.000

Maximum Z 0.036 0.234 0.879 0.998 1.000

combopt 0.051 0.321 0.937 1.000 1.000

combeq 0.051 0.288 0.904 0.998 1.000

combpair (markers 4 and 3) 0.051 0.293 0.910 0.999 1.000

combpair (markers 4 and 6) 0.051 0.299 0.916 0.999 1.000

SKAT 0.051 0.298 0.920 0.999 1.000

Marker 4 was assumed to be the causal locus.

Table 3 | Estimated type-I errors (for OR = 1.00) and power (OR =

1.10, 1.25, 1.40 and 1.70) for different methods of addressing multiple

comparisons in a 24 marker block on chromosome 22, simulated

based on genome scans of samples from the Lung Health Study

(correlation and LD structure shown in the supplementary materials).

OR 1.00 1.10 1.25 1.40 1.70

Bonferroni 0.026 0.107 0.634 0.967 1.000

Maximum Z 0.047 0.159 0.717 0.979 1.000

combopt 0.051 0.199 0.741 0.974 1.000

combeq 0.050 0.137 0.528 0.860 0.996

combpair (markers 12 and 13) 0.050 0.192 0.721 0.968 1.000

combpair (markers 12 and 3) 0.048 0.072 0.187 0.361 0.689

SKAT 0.050 0.063 0.136 0.283 0.710

Minor allele frequencies in the region ranged from 0.07 to 0.41, and marker 12

(MAF 0.28) was assumed to be the causal locus. Marker 13 has a MAF of 0.28

and R2 of 0.96 with marker 12, marker 3 has a MAF of 0.07 and R2 of 0.04 with

marker 12.

depends on this correlation. We reiterate that the correlation

among the test statistics is essentially identical to the biologi-

cal correlation amongst the genotypes (the LD structure) and

this can be estimated. For an additional comparison to the

above methods, we included the sequence kernel association

test (SKAT), a widely used method for SNP-set analysis based

on a logistic kernel-machine approach that allows for flexible,
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covariate adjusted relations between a genotype and the outcome

of interest.

Simulations show that the two correlation-dependent

approaches are well-calibrated under the null hypothesis. As

expected, unless the correlations are very small, the Bonferroni

approach is conservative. In the context of the test Z-scores being

well approximated by a multivariate normal distribution, the

optimal linear combination dominates all other approaches, but

this optimality is quite fragile, depending on having identified the

causal locus or one in high LD with it. If the causal locus is poorly

selected, our linear combination using “best guess” weights as

one example, the properly-calibrated Max statistic often performs

better, sometimes by a substantial amount with these relations

depending on the magnitude of the correlations, their pattern

(compound symmetry or auto-regressive), and the magnitude of

the genotype-phenotype association. We do see gains in power

using a linear combination where we have narrowed down the

set of candidate loci in our block, particularly in the case of

very small effect sizes. The haplotype-based simulations produce

similar comparisons, but with generally smaller differences

amongst the approaches.

Overall, the calibrated maximum method is very effective at

maintaining power compared to use of a linear combination.

However, when the causal locus is correctly specified, the optimal

linear combination can confer a considerable increase in power.

Therefore, there is some room for error and we have also provided

an approach by which it is possible to specify prior probabilities

on the loci and then use the induced, optimal linear combination.

As we have shown, if there are two markers in a block that have

a higher prior likelihood of being associated with disease (e.g.,

due to damaging functional prediction), putting higher weights,

or all weight, on these will provide robustness to mis-specification

of the causal locus, while providing more power than the Max

test in some cases, especially for very low effect sizes. However,

our equally weighted case is equivalent to giving each locus equal

prior probability and its generally poor performance indicates

that some focus is needed.

We also found that the sequence kernel association test (SKAT)

run with its default values is a very competitive method in settings

when LD within a block is strong—which also implies similar

minor allele frequencies between markers, as high R2 values are

mathematically not possible between SNPs of very different allele

frequencies. On the other hand, the power in the simulations

with lower minor allele frequencies and weaker LD was lower

for SKAT than the power of both the maximum and the opti-

mal linear combination tests. We conjecture that this is due to the

default weighting scheme in SKAT—up-weighting less common

variants—while in our simulation the marker with the lowest

minor allele frequency and thus the highest weight had only a very

weak correlation to the assumed causal marker. Thus, we believe

that the default SKAT is most useful for blocks with high LD,

and for association tests under the common assumption of higher

penetrance for lower allele frequency variants. We also note that

SKAT allows for weighted burden tests, which we did not consider

in this manuscript.

One challenge for all methods of this type is the dependence

on having pre-defined blocks of interest. There are several existing

methods for estimating LD-structures (e.g., Stephens et al., 2001;

Gabriel et al., 2002; Browning and Browning, 2009) which can

be used to identify LD-blocks. Here, we have estimated the LD

by computing correlation values of the encoded genotypes using

the data set at hand, rather than external databases, which avoids

incorporating mis-specified structure due to differences in sample

populations compared to an external reference. This is in contrast

to the often recommended usage of external data, and it will be

informative to investigate in detail the impact of ambiguous LD

blocks (such as the 24 marker block from chromosome 22) for

any of the considered methods.
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