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Abstract: Minimum spanning tree problem (MSTP) has allured many researchers and practition-
ers due to its varied range of applications in real world scenarios. Modelling these applications
involves the incorporation of indeterminate phenomena based on their subjective estimations. Such
phenomena can be represented rationally using uncertainty theory. Being a more realistic vari-
ant of MSTP, in this article, based on the principles of the uncertainty theory, we have studied a
multi-objective minimum spanning tree problem (MMSTP) with indeterminate problem parameters.
Subsequently, two uncertain programming models of the proposed uncertain multi-objective mini-
mum spanning tree problem (UMMSTP) are developed and their corresponding crisp equivalence
models are investigated, and eventually solved using a classical multi-objective solution technique,
the epsilon-constraint method. Additionally, two multi-objective evolutionary algorithms (MOEAs),
non-dominated sorting genetic algorithm II (NSGAII) and duplicate elimination non-dominated sort-
ing evolutionary algorithm (DENSEA) are also employed as solution methodologies. With the help
of the proposed UMMSTP models, the practical problem of optimizing the distribution of petroleum
products was solved, consisting in the search for symmetry (balance) between the transportation cost
and the transportation time. Thereafter, the performance of the MOEAs is analyzed on five randomly
developed instances of the proposed problem.

Keywords: uncertain programming; multi-objective minimum spanning tree problem; epsilon-
constraint method; NSGAII; DENSEA; distribution network management

1. Introduction

The quest for studying network optimization problems has been emphasized for
long time. Subsequently, being a crucial and significant network problem, the minimum
spanning tree problem (MSTP) has captivated many researchers. The applications of MSTP
are varied and include brain networks [1], cluster analysis [2], and image segmentation [3].
Borüvka [4] first studied classical minimum spanning tree (MST) with crisp parameters.
Since then, different researchers proposed various effectual algorithms, including Jarník [5],
Kruskal [6] and Prim [7] while revisiting the problem. Furthermore, there have been various
developments on the solution methodologies of the multi-objective MSTP including the
exact algorithms [8–10] and evolutionary [11–13].

The MMSTP is an upfront generalization of MSTP, where multiple criteria are associ-
ated with each edge. Many classical applications [14,15] allow the inclusion of multiple
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criteria while exploring a minimum spanning tree which essentially requires the modelling
of MMSTP. In this context, we provide an example of modelling MMSTP. In this example,
we consider a transportation company, which is eager to begin its bus facilities to link the
major cities of a country. Accordingly, the management of the company recognized possible
intercity bus routes, which will connect the cities. Furthermore, in the course of a journey,
the company offers an attractive payback of $50 if the estimated travelling time between
the source and destination cities of the passenger availing the bus service of their company
is delayed or interrupted by 45 min. In the following quarter, the management should plan
a bus schedule so that the cost of availing bus services among the cities and the estimated
travelling time between the cities is minimized. For such networks, it is usually observed
that there prevails conflicting nature in the travelling cost and the expected travelling time.
Moreover, for this problem, the bus service network can be realized by a connected graph,
where a city implies a vertex and an intercity bus route is denoted by an edge. If an edge of
such a graph connecting two cities, X and Y is associated with two edge weights, namely,
cost of availing intercity bus service and the estimated travel time then the problem can be
considered as MMSTP, where the cost of providing intercity bus services and the estimated
travel time between the cities can be considered as two different objective functions of
the corresponding MMSTP. Here, the expense of providing bus service and estimated
travel time between the cities depend on many indeterminate factors such as fuel price,
labor charge, overhaul and maintenance costs, slower bus speed and increased vehicular
queuing due to traffic congestion of the buses, which essentially fluctuate with time. There-
fore, usually, the decision makers (management of the company) become indeterminate
while estimating the travelling costs for availing intercity bus facilities and the estimated
travel time.

The above mentioned example implies that studying MMSTP under indeterminate
environment is significant. Therefore, a proper representation of the uncertain parameters
is necessary while building any real-world problem under an uncertain paradigm. Usually,
the existence of sufficient historical data for any problem parameter motivates us to possibly
estimate its distribution function and the analysis of the problem can be performed by
following the fundamental principle of probability theory. In this context, for the first time,
Ishii et al. [16] modeled an MSTP with edges having random weights whose probability
distributions are not known. Frieze [17] determined an MST for a complete graph, where
the edge lengths are represented as a nonnegative independent stochastic variable, which
is identically distributed. Ishii and Matsutomi [18] designed an algorithm with polynomial
execution time, in the extended work of Ishii et al. [16], where the parameters of proba-
bility distributions are not known in advance to solve the problem. Later, Dhamdhere
et al. [19] discussed a two-stage stochastic MSTP and accordingly presented an approxi-
mation algorithm. Under fuzzy paradigm, Orazbayev et al. [20] studied the production
plan optimization problem under fuzzy constraints and solved the problem using a unique
heuristic method, which is based on the expert information of the decision maker. Later,
Zhumadillayeva et al. [21] developed optimization models to solve the production problem
and waste management consumption problem under the fuzzy environment.

Although it is unanimously considered that, a large number of samples are looked-for
while building stochastic models, but, in many cases, estimation of probability distribution
becomes infeasible due to the unavailability of sufficient samples. Under such circum-
stances, there are no other choices but to depend on the domain experts for estimating
the belief degrees of the occurrence of events. Consequently, Liu [22] investigated the
uncertainty theory to address the belief degree of an event.

Uncertainty theory has been progressively developed as an important area of math-
ematics, which can express and model human uncertainty. In this aspect, to tackle op-
timization problems with uncertain parameters, the concept of uncertain programming
is presented by Liu [23]. Successively, a project-scheduling problem is first formulated
by Liu [24], where the duration times are expressed as uncertain variables. Thereupon,
Gao [25] conceptually presented the shortest path with a chance (confidence) level α and
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the most measured shortest path along with their corresponding uncertainty distributions.
Consequently, Zhang and Peng [26] extended the Chinese postman problem under un-
certain paradigm and presented three uncertain programming models of the problem.
Subsequently, a project-scheduling problem under an uncertain environment is proposed
by Zhang and Chen [27], where the elapsed time for the activities is represented as uncer-
tain variables. Moreover, Zhang et al. [28] proposed sum-type and minimax-type uncertain
programming models for α-MST, and solve the crisp equivalents of the models using classi-
cal optimization methods. Consequently, Zhang et al. [29] proposed a chance-constrained
model to solve an inverse spanning tree problem with indeterminate problem parameters.
Furthermore, Zhou et al. [30] defined the path optimality conditions of uncertain expected
MST and uncertain α-MST. Moreover, for an uncertain network, the authors proposed an
uncertain most MST and established its relation with uncertain α-MST. In the following
year, Zhou et al. [31] proposed an ideal uncertain α-MST by using the concept of uncertain
α-MST. Further, the authors also proposed the definition of uncertain distribution of MST
based on the concept of ideal uncertain α-MST. Moreover, different other uncertain opti-
mization problems including quadratic MST [32], uncertain degree constrained MST [33],
uncertain random MST [34], uncertain random degree constrained MST [35] and uncertain
routing problem on multi-depot emergency facilities [36] are studied as an application of
uncertain programming.

The MMSTP is an important variant of the classical MSTP, which can address many
real world problems, where the state of indeterminacy is a vital concern as in the case
of above mentioned example. However, considering the existing studies of the MST in
uncertain environment, to the best of our knowledge, a study on UMMSTP in indeterminate
framework based on uncertainty theory is yet to be investigated. Accordingly, in this article,
we have formulated a multi-objective minimum spanning tree problem following the
principles of uncertainty theory. Consequently, in our study, the following contributions
are emphasized.

1 A multi-objective minimum spanning tree problem with indeterminate parameters
based on uncertainty theory is studied.

2 The expected value model (EVM) and chance-constrained model (CCM) are formu-
lated for the proposed UMMSTP.

3 The deterministic equivalent models of the corresponding EVM and CCM of UMMSTP
are proposed and solved using the epsilon (ε)-constraint method [37]. Furthermore,
two MOEAs: NSGAII) [38] and DENSEA [39] are also used as solution methodologies
for the proposed problem.

The remaining portion of the article is structured as follows. Some rudimentary notions
relevant to our research are reviewed in Section 2. In Section 3, we illustrate the modelling
of the UMMSTP and formulate the related EVM and CCM. Subsequently, we investigate
the crisp transformations of the respective models of UMSTPP in Section 4. The solution
procedures employ for the deterministic models of the UMMSTP are conferred in Section 5.
The proposed UMMSTP is illustrated numerically with an example in Section 6. In Section 7,
for the proposed problem, we provide the necessary results and their corresponding
discussions. The culmination of the study is reported in Section 8. To end with, we
summarize all the abbreviations related to this study in Appendix A.

2. Preliminaries

The rudimentary notions and important results of uncertainty theory, which constitute
the foundation of our study, are presented in this section.

Let L be a σ-algebra over a non-empty set Γ. An element Λ ∈ L is assigned a
numeric valueM{Λ} to represent the chance of occurrence of the uncertain event Λ, where
M : L 7→ [0, 1] represents a set function. Subsequently,M is known as uncertain measure
if the normality, duality, and countable subadditivity axioms [22] hold forM. Here, the
triplet (Γ,L,M) represents the uncertainty space. Moreover, Liu [40] defined the product
uncertain measure and put forward the product measure axiom. Let (Γr,Lr,Mr) be the
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uncertainty spaces and there exists an arbitrary event Λr to each Lr, r = 1, 2, . . . , thenM is
regarded as product uncertain measure if

M
{

∞

∏
p=1

Λp

}
=

∞∧
p=1

Mp
{

Λp
}

. (1)

Definition 1. (Liu [22]). A measurable function from S to R defines an uncertain variable ξ,
where S=(Γ,L,M) is an uncertainty space. In other words, the set

{ξ ∈ B} = {λ ∈ Γ|ξ(λ) ∈ B} (2)

is an event ∀ B ∈ R, where B is the Borel set.

Definition 2. (Liu [24]). Suppose ξ1, ξ2, . . . , ξn are the uncertain variables defined on the
uncertainty space S=(Γ,L,M). Then the uncertain variable ξ = f (ξ1, ξ2, . . . , ξn) is denoted as

ξ(λ) = f (ξ1(λ), ξ2(λ), . . . , ξn(λ)), ∀λ ∈ Γ, (3)

where f : Rn 7→ R is a measurable function.

Definition 3. (Liu [22]). For any uncertain variable ξ with Φ : R→ [0, 1] as the corresponding
uncertainty distribution satisfies Equation (4) as expressed below.

Φ(x) =M{ξ ≤ x}, ∀ x ∈ R (4)

Definition 4. (Liu [40]). If ξ1, ξ2, . . ., ξn are the independent uncertain variables then for any
Borel sets B1,B2, . . . ,Bn ∈ R

M

 n⋂
p=1

(
ξp ∈ Bp

) =
n∧

p=1

M
{

ξp ∈ Bp
}

. (5)

Definition 5. (Liu [22]). The uncertainty distribution of an uncertain variable ξ represented in
Equation (6)

Φ(x) =


0; i f x < l

x−l
2(m−l) ; i f l ≤ x < m
x+n−2m
2(n−m)

; i f m ≤ x < n
1; i f x ≥ n

(6)

is known as zigzag uncertain variable and denoted by Z(l, m, n) such that l < m < n and
l, m, n ∈ <.

Example 1. Let us consider a zigzag uncertain variable Z(10, 12, 17), then its corresponding
uncertainty distribution is graphically depicted in Figure 1.
Definition 6. (Liu [24]). A continuous and strictly increasing uncertainty distribution function
Φ(x) is regular with respect to x such that

lim
x → −∞

Φ(x) = 0,
lim

x → +∞
Φ(x) = 1. (7)

a function f (x1, x2, . . . , xr) satisfying the conditions, (i) f (x1, x2, . . . , xr) ≤ f (y1, y2, . . . , yr),
when xi ≤ yi and (ii) f (x1, x2, . . . , xr) < f (y1, y2, . . . , yr), when xi < yi, is a strictly increasing
function, where i = 1, 2, . . . , r.
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Figure 1. Zigzag uncertain distribution of ξ, where = Z(10, 12, 17).

Accordingly, following Definition 6, the inverse uncertainty distribution proposed by
Liu [24] is defined as follows. The inverse uncertainty distribution of an uncertain variable
ξ with regular uncertainty distribution Φ is denoted as Φ−1. Later on, considering the
uncertain variables with strict monotone functions, Liu [24] put forward the following
operational law by extending the concept of Φ−1.

Theorem 1. (Liu [24]). Let ξ1, ξ2, . . . , ξr be the independent uncertain variables with regular
uncertainty distributions Φ1, Φ2, . . . , Φr, respectively. If ξ = f (ξ1, ξ2, . . . , ξr) is a continuous and
strictly increasing function, then ξ is an uncertain variable with inverse uncertainty distribution

Φ−1(α) = f
(

Φ−1
1 (α), Φ−1

2 (α), . . . , Φ−1
r (α)

)
. (8)

Example 2. Let ξ = Z(l, m, n) is a zigzag uncertain variable with regular uncertainty distribution
Φ. Then, the inverse uncertainty distribution of ξ is represented as below.

Φ−1(α) =

{
(1− 2α)l + 2αm ; i f α < 0.5
(2− 2α)m + (2α− 1)n ; i f α ≥ 0.5.

(9)

Definition 7. (Liu [22]). The expected value of an uncertain variable ξ is defined as

E[ξ] =
∫ +∞

0
M{ξ ≥ x}dx−

∫ 0

−∞
M{ξ ≤ x}dx, (10)

if at least one of the two integrals is finite.
Furthermore, as useful information, Liu [24] considered the inverse uncertainty distri-

bution of an uncertain variable ξ and redefine the expected value of ξ as

E[ξ] =
∫ 1

0
Φ−1(α)dα. (11)

Example 3. The expected value for a zigzag uncertain variable Z(l, m, n) is calculated as

E[ξ] =
l + 2m + n

4
. (12)
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Theorem 2. (Liu and Ha [41]). Let Φ1, Φ2, . . ., Φr are respectively the regular uncertainty
distributions of the independent uncertain variables ξ1, ξ2, . . ., ξr. If ξ = f (ξ1, ξ2, . . . , ξr) is
strictly increasing with respect to ξ1, ξ2, . . ., ξr then

E[ξ] =
∫ 1

0
f
(

Φ−1
1 (α), Φ−1

2 (α), . . . , Φ−1
r (α)

)
dα (13)

is the expected value of ξ = f (ξ1, ξ2, . . . , ξr).

Moreover, Liu [24] investigated the property of expected value operator for any
independent uncertain variables ξ1 and ξ2 with finite expected values such that

E[aξ1 + bξ2] = aE[ξ1] + bE[ξ2], (14)

where a and b are any real numbers.

3. Problem Description

This section emphasizes on the formulation of the proposed UMMSTP for a graph
with uncertain parameters.

Let G = (V, E) be a weighted connected undirected graph (WCUG), with n = |V| and
m = |E|, where V = {v1, v2, . . . , vn} and E are correspondingly the finite sets of vertices
and edges of G, respectively. Each undirected edge eij ∈ E connects a pair of vertices
vi and vj, and is related to two uncertain weights, namely uncertain cost and uncertain
time, which are respectively represented as ξcij and ξtij hereafter. In a realistic scenario, a
vertex of G may be represented by a city, whereas an edge establishing a link in a pair of
cities may represents the travel cost and travel time between two cities. Here, the objective
may be to connect all the cities with minimum possible overall cost and time. It is usually
observed that in a particular context, some kind of symmetry exists between ξcij and ξtij

while travelling between the cities. Moreover, the travel cost and travel time may contain
indeterminacy due to a number of factors such as the price of fuel, levied toll, vehicle
overhaul costs, and traffic congestion time, varying from time to time. Hence, keeping in
views all these factors, in this study, under the paradigm of uncertainty theory [22] we have
proposed an uncertain multi-objective minimum spanning tree problem (UMMSTP) to deal
with the associated uncertain parameters of the UMMSTP in a legitimate way. Accordingly,
the proposed UMMSTP is formulated in (15).

Min Z1 = ∑n
i=1 ∑n

j=1,j 6=i ξcij xij

Min Z2 = ∑n
i=1 ∑n

j=1,j 6=i ξtij xij

subject to
∑m

i=1 ∑m
j=1,i 6=j xij = |V| − 1

∑i,j∈Eκ ,i 6=j xij ≤ |κ| − 1, |κ| ≥ 3
xij ∈ {0, 1}, ∀ eij ∈ E,

(15)

where ξcij and ξtij are respectively the uncertain travel cost and the uncertain travel time
from vi to vj using eij, Eκ is a set of edges in the subgraph of G induced by the vertex set κ,
i.e., Eκ is the subset of edges in E having both their endpoints in κ. In the Model (15), the
first constraint is the cardinality constraint, which determines that exactly |V| − 1 edges
are selected. While the second constraint is the packing constraint, which ensures that
there exists no cycle among the selected edges. Here, every xij either accepts 0 or 1. If
xij = 1, then the corresponding edge eij is selected for the formation of a MST. Whereas, if
xij = 0, then eij is not included in the MST. Since Model (15) is an uncertain programming
problem, we formulate the corresponding EVM and CCM of UMMSTP in the subsequent
subsections.
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3.1. Expected Value Model of the Proposed Problem

Expected value model (EVM) introduced by Liu and Liu [42] is regarded as a coherent
and apprehensible method for designing mathematical problems with uncertain parameters.
Larger the expected value, the larger will be the uncertain variable. For the UMMSTP, if the
decision maker wishes to optimize the problem in the sense of the expected value then the
corresponding mathematical model of UMMSTP is shown below.

Min E[Z1] = E
[
∑n

i=1 ∑n
j=1,j 6=i ξcij xij

]
Min E[Z2] = E

[
∑n

i=1 ∑n
j=1,j 6=i ξtij xij

]
subject to

constraints o f (15).

(16)

In Model (16), the objective functions are represented as expected values of the overall
travel cost and total travel time between the cities. These objective functions are essentially
minimized subject to the constraints of (15).

3.2. Chance-Constrained Model of the Proposed Problem

An alternate approach to optimize uncertain programming problem is the chance-
constrained model (CCM) [43]. The central idea of CCM is that the objective function(s) are
minimized or maximized with respect to a deterministic target value(s) at a preordained
confidence level(s) under the chance constraints such that the optimized value(s) of the
objective function(s) does not exceed the corresponding target value(s). The CCM allows the
constraints to be violated. However, at certain confidence levels, it ensures the feasibility
of the constraints. If the decision maker prefers to optimize the UMMSTP under the
constraints, then the corresponding CCM of UMMSTP can be formulated as below.

Min Z1
Min Z2

subject to
M
{

∑n
i=1 ∑n

j=1,j 6=i ξcij xij ≤ Z1

}
≥ α1

M
{

∑n
i=1 ∑n

j=1,j 6=i ξtij xij ≤ Z2

}
≥ α2

constraints o f (15).

(17)

In Model (17), the target values for the first two constraints are respectively represented
as Z1 and Z2. α1 and α2 are the predetermined confidence levels for the first and second
constraints, respectively. Furthermore, as far as the determination of the MST for G is
concerned, the first constraint specifies the total incurred α1-cost while traversing between
the cities at the chance level α1, and the second constraint characterizes the overall α2-travel
time spent while traversing between the cities with respect to the chance level α2.

4. Deterministic Transformation of the Models

In this section, we present the deterministic models corresponding to the EVM and
CCM of the proposed UMMSTP.

Theorem 3. Let ξcij and ξtij are the independent uncertain variables with regular uncertainty
distributions Φξcij

and Φξtij
respectively. Then the deterministic transformation of Model (16) is

presented as 

Min E[Z1] = E
[

∑n
i=1 ∑n

j=1,j 6=i
∫ 1

0 Φ−1
ξcij

(α1)dα1xij

]
Min E[Z2] = E

[
∑n

i=1 ∑n
j=1,j 6=i

∫ 1
0 Φ−1

ξtij
(α2)dα2xij

]
subject to

constraints o f (15).

(18)
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Proof. It is implied from the property of linearity of the expected value operator of an
uncertain variable that 

Min E[Z1] = ∑n
i=1 ∑n

j=1,j 6=i E
[
ξcij

]
xij

Min E[Z2] = ∑n
i=1 ∑n

j=1,j 6=i E
[
ξtij

]
xij

subject to
constraints o f (15).

(19)

Moreover, following Equations (11) and (14), Model (18) follows Model (19). �

Corollary 1. Assuming ξcij = Z
(

pcij , qcij , rcij

)
and ξtij = Z

(
ptij , qtij , rtij

)
as the independent

zigzag uncertain variables such that pcij < qcij < rcij , ptij < qtij < rtij and pcij , qcij , rcij , ptij , qtij , rtij ∈
<. Then Model (18) is equivalent to

Min E[Z1] = ∑n
i=1 ∑n

j=1,j 6=i ϑcij xij

Min E[Z2] = ∑n
i=1 ∑n

j=1,j 6=i ϑtij xij

subject to
constraints o f (15),

(20)

where ϑcij =
pcij+2qcij+rcij

4 and ϑtij =
ptij+2qtij+rtij

4 .

Theorem 4. Suppose, the regular uncertainty distributions of the uncertain variables ξcij and ξtij

are respectively Φξcij
and Φξtij

. Then the deterministic transformation of the CCM reported in
Equation (17) is presented as

Min Z1 = ∑n
i=1 ∑n

j=1,j 6=i Φ−1
ξcij

(α1)xij

Min Z2 = ∑n
i=1 ∑n

j=1,j 6=i Φ−1
ξtij

(α2)xij

subject to
constraints o f (15).

(21)

Proof. Since ξcij and ξtij are the independent uncertain variables in the Model (14) therefore,

the constraintsM
{

n
∑

i=1

n
∑

j=1,j 6=i
ξcij xij ≤ Z1

}
≥ α1 andM

{
n
∑

i=1

n
∑

j=1,j 6=i
ξtij xij ≤ Z2

}
≥ α2 at

the respective chance levels α1 and α2 can be correspondingly expressed asM
{

Z1 ≤ Z1
}
≥

α1 and M
{

Z2 ≤ Z2
}
≥ α2. Subsequently, following Theorem 1, M

{
Z1 ≤ Z1

}
≥ α1

andM
{

Z2 ≤ Z2
}
≥ α2 are respectively reconstructed as

n
∑

i=1

n
∑

j=1,j 6=i
Φ−1

ξcij
(α1)xij ≤ Z1 and

n
∑

i=1

n
∑

j=1,j 6=i
Φ−1

ξtij
(α2)xij ≤ Z2. Consequently, Model (21) becomes the crisp equivalent of the

Model (17). �

Corollary 2. Suppose ξcij = Z
(

pcij , qcij , rcij

)
and ξtij = Z

(
ptij , qtij , rtij

)
are the independent

zigzag uncertain variables such that pcij < qcij < rcij , ptij < qtij < rtij and pcij , qcij , rcij , ptij , qtij , rtij

∈ <. Then Model (21) can be equivalently formulated in Model (22).
Min Z1 = ∑n

i=1 ∑n
j=1,j 6=i κcij xij

Min Z2 = ∑n
i=1 ∑n

j=1,j 6=i κtij xij

subject to
constraints o f (15).

(22)
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Here, cij and tij are expressed as below.

cij =

{
(1− 2α1)pcij + 2α1qcij ; i f α1 < 0.5
(2− 2α1)qcij + (2α1 − 1)rcij ; i f α1 ≥ 0.5

and

tij =

{
(1− 2α2)ptij + 2α2qtij ; i f α2 < 0.5
(2− 2α2)qtij + (2α2 − 1)rtij ; i f α2 ≥ 0.5.

5. Solution Methodologies

The methodologies employed to solve the deterministic equivalent models of UMM-
STP are presented in this section. These solution procedures are broadly categorized as:
(i) classical technique and (ii) multi-objective evolutionary algorithms (MOEAs). As far as
our proposed problem is concerned, we have used epsilon (ε)-constraint method as the
classical solution technique of multi-objective optimization problem (MOOP). Moreover,
among the MOEAs, we have considered non-dominated sorting genetic algorithm II (NS-
GAII) and duplicate elimination non-dominated sorting evolutionary algorithm (DENSEA)
to solve the proposed model.

5.1. Epsilon-Constraint Method

Epsilon (ε)- constraint [37] method is an approach to solve a MOOP. In this method,
a MOOP under consideration is converted to its equivalent compromise single objective
optimization problem (CSOOP). Here, one objective function is arbitrarily chosen and
essentially optimized subject to the set of constraints. This constraint set includes rest of
the objective functions, each of which is constrained to a user specified value. ε- constraint
is regarded as one of the important solution methodologies of MOOP due to its ability to
explore solutions in the non-convex region of the objective space of the problem. The crisp
transformations of Model (18) and Model (21) of UMSPP are converted to their equivalent
CSOOP and respectively presented in Models (23) and (24).

Min E[Z]Comp = E[Z1]
subject to

E[Z2] ≤ εE[Z2]

constraints o f (15),

(23)

where εE[Z2]
is not necessarily a value close to zero and represents an upper bound of

E[Z2], obtained when E[Z2] in Model (18) is solved individually as a maximization single
objective problem. 

Min ZComp
= Z1

subject to
Z2 ≤ εZ2

constraints o f (15),

(24)

where εZ2
represents an upper bound of Z2, obtained when Z2 in Model (21) is solved

individually as a maximization single objective problem.

5.2. Multi-Objective Evolutionary Algorithm

A MOOP comprises of multiple conflicting objectives, and therefore it is hard and
cumbersome to find an optimum solution based on one objective, especially when the
rest of the objectives are also important. The confliction nature of the objective functions
implies two important characteristics of a MOOP: convergence and diversity. In this regard,
an MOEA attempts to achieve both the convergence and diversity among the generated
solutions while solving a MOOP. Considering the stochastic nature of the MOEAs, at
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times, exploring Pareto optimal solutions of a MOOP may not be guaranteed by a MOEA.
Nevertheless, the MOEAs have essential operators to continually achieve the convergence
and diversity of the non-dominated solutions in a similar way as compared to the way
most of the natural and artificial evolving systems operate while improving their solutions.
The striking difference between the MOEAs and the classical multi-objective solution
techniques is that, in a single simulation run, the population based approach of MOEAs
can yield several compromise solutions of MOOPs in contrast to classical techniques which
can only produce a sole compromise solution.

In the subsequent subsections, we present two MOEAs, NSGAII and DENSEA, which
are employed to yield multiple compromised solutions of the proposed problem.

5.2.1. Non-Dominated Sorting Genetic Algorithm II

Proposed by Deb et al. [38], NSGAII is one of the most popular MOEAs, which incor-
porates elitism by preserving superior candidate solutions in the subsequent population.
The algorithm instigates with N randomly generated solutions in a population P0. In a
particular generation t, the individuals in a parent population Pt use the genetic operators
(selection, crossover and mutation operators) to yield equal number of offsprings. These
offsprings constitute the offspring population Ct. Consequently, the parent population is
combined with the offspring population to produce a population St of size 2N. Among
these 2N solutions of St, the best N solutions are selected by crowded tournament selection
operator for the subsequent generation of NSGAII. If p and q are the two solutions then
the crowded tournament selection operator selects p over q, if prank < qrank, where prank
and qrank are the ranks of p and q respectively. Furthermore, if in case prank and qrank
are the same then the crowding distances pdistance and qdistance of p and q are computed
respectively and if pdistance is greater than qdistance then p is preferred over q. The ranking
and the crowding distance of the solutions are discussed as below.

Ranking of solutions: Considering population St, a rank (prank) is allocated to each
of its solution p. Accordingly, based on the rank of the solutions, these solutions are
categorized into different non-dominated fronts N1, N2, . . . , Nl . The solutions which exist
in a front Nk, k ∈ {1, 2, . . . , l} are non-dominated to each other and assigned with the
same rank k. Here, it is to be mentioned that for any solution p in St, the rank of p
and its corresponding front number is the same. Any solution with a lower value of k
becomes superior and is always preferred. In order to create a population Pt+1 for (t + 1)th

generation, firstly all the non-dominated solutions representing the front N1 are considered.
If the number of such non-dominated solutions of N1 is equal to the original population
size N then the remaining solutions with higher ranks present in St are ignored. Otherwise,
the solutions of the next higher order fronts are considered for the formation of Pt. This
process continues until all the solutions of a particular front Nk cannot be entirely contained
in Pt+1.

Crowding distance for solutions: The crowding distance measure as originated by
Deb et al. [38] is employed while estimating solution density in the neighboring region of
a particular solution. Each non-dominated solution p of the front Nk are assigned with a
crowding distance value (pdistance) if the solutions of Nk are not entirely included in Pt+1.
The crowding distance of a particular solution measures the neighboring search space of
that solution, where there is no occurrence of any other solution. A solution from a less
crowded area in the search space has a greater crowding distance compared to the one
residing in a more crowded area. In this way, the solutions having larger crowding distance
are always preferred and are eventually chosen from Nk to fill the leftover slots of Pt+1.

Once, the formation of Pt+1 is done, then Pt+1 becomes the parent population by
replacing Pt in the next generation. This process of creating a new population for each
generation goes on until the termination condition (i.e., maximum function evaluations or
generations) is satisfied.
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5.2.2. Duplicate Elimination Non-Dominated Sorting Evolutionary Algorithm

Greiner et al. [39] proposed the Duplicate Elimination Non-dominated Sorting Evo-
lutionary Algorithm (DENSEA) as a variant of MOEA. The objective of DENSEA is to
accentuate on formation and preservation of diversity among the individuals of a pop-
ulation to avoid the generation of limited non-dominated solutions. The generation of
inadequate number of non-dominated solutions in a population of MOEA is usually re-
sponsible for slowing down the evolution process in a MOEA and achieve an early state
of homogeneity in the population leading to a possible premature convergence of the
algorithm. In order to incorporate some elitism, DENSEA implements the non-domination
sorting [38] technique. However, the main characteristic of DENSEA is emphasized by
the maintenance of population diversity by eliminating and replacing the duplicate indi-
viduals of the population in the subsequent generation. We discuss the workflow of the
algorithm below.

The execution DENSEA is initiated by the random generation of initial population
P0 of size N and evaluating the fitness of the chromosomes of P0. Subsequently, the
chromosomes of the population are ordered by employing non-domination sorting [38]
technique. At every subsequent generation t, an offspring population Ot is created by
using the genetic operators (selection, crossover and mutation) on the parent population Pt.
Accordingly, the fitness evaluation of Ot is determined and similar to the parent population,
the offspring population is also sorted by using the non-domination sorting.

In particular, the deletion operator of DENSEA removes the duplicate solutions gener-
ated due to the formation of fewer non-dominated solutions in the functional space. Here,
the population is divided into two halves P1t and P2t each having the size N

2 . Accordingly,
for each elimination of a duplicate solution in one half of the population (say P1t) follows
the inclusion of a solution maintaining the same order in P2t. This process of replacing a du-
plicate solution is continued until half of the population size

(
N
2

)
is achieved. For instance,

for a population of size N, if the fifth individual is identified as a duplicate solution then it

is replaced with the
(

N
2 + 5

)th
individual from the second half of the population. In this

way, the population diversity is maintained by replacing the duplicates with individuals
from diverse regions of the functional space. This process is implemented both in Pt and Ot
to generate the corresponding filtered parent and offspring populations Pf and O f each
having population size N

2 . Subsequently, the individuals of the new population Pt+1 in the
next generation are selected by the combination of Pf and C f . Accordingly, the individuals
belonging to Pt+1 promote elitism among themselves and at the same time, the population
diversity among these individuals is also maintained by the renovation of 50% of the
duplicate solution in each generation without the loss of any genetic information in Pt+1.
This process in the DENSEA continues until the termination condition is attained.

6. Numerical Experiments

While exploring the characteristic of the proposed UMMSTP, an appropriate numerical
example is presented in this section. In many real-world situations, due to the existence
of some intricate social and economic situations in decision-making problems such as
MMSTP, the problem parameters may not always be determined exactly or are unavailable.
Therefore, to incorporate such types of indeterminate parameters in a decision making
problem we have to depend on domain experts for estimating and evaluating the belief
degrees of the indeterminacy existing in those parameters. As a matter of fact, it becomes
quite legitimate to consider the uncertainty theory [22,24] paradigm while modelling the
individual beliefs. Accordingly, in this study, the parameters of G are represented under
the framework of uncertainty theory.

In the proposed study, we consider a petroleum products distribution network in
the form of a weighted connected undirected graph (WCUG) G as shown in Figure 2
with ten vertices and nineteen edges. In G, a vertex is considered as a city and an edge
is considered as a roadway, which connects a pair of cities. Roadways transportation of
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petroleum products by tankers or tank trucks generally includes several factors such as
cost of fuel, labor cost, overhaul and maintenance costs, road tax, traffic congestion time
and vehicle maintenance costs which alter from time to time. Moreover, in a country such
as India, where the price of petroleum largely depends on the international price of crude
oil, the price of the petroleum products fluctuates in short durations. For example, the
fluctuation pf the petrol or diesel price may change during the midst of their transportation
from one city to other. As a matter of the fact, the transportation cost and the transportation
time of such a distribution network become very crucial factors, since the objective is
to minimize the transportation cost which includes certain factors as mentioned above
which fluctuate from time to time. Further, any delay in transportation of the products
due to traffic congestion, mechanical faults of the transportation vehicle, road blockage
due to political agendas, etc., can increase the possibility of the increase in the price of
the petroleum products. Therefore, in order to model the uncertain fluctuating factors
which involves in the transportation cost and the transportation time, as well as to explore
the symmetry (balance) between the transportation cost and the transportation time, in
the study, we minimize simultaneously the cost and time parameters by considering the
parameters as uncertain variables, i.e., uncertain transportation cost ξcij and uncertain
transportation time ξtij . These parameters are denoted as zigzag uncertain variables and
reported in Table 1.

Figure 2. A WCUG G.

Table 1. Uncertain parameters corresponding to each edge of G.

Edge ξcij ξtij Edge ξcij ξtij

e12 Z(67.8, 68.2, 70.1) Z(54.7, 57.8, 58.2) e57 Z(71.9, 73.1, 74.6) Z(53.9, 55.3, 57.2)

e13 Z(69.2, 70.7, 71.2) Z(57.9, 59.7, 61.2) e58 Z(68.7, 69.2, 70.1) Z(56.8, 57.9, 58.8)

e23 Z(70.4, 71.2, 72.5) Z(61.1, 63.2, 64.6) e68 Z(73.3, 74.5, 75.2) Z(59.3, 60.4, 61.9)

e24 Z(69.8, 71.5, 72.3) Z(58.4, 59.5, 60.9) e610 Z(69.2, 71.2, 72.6) Z(56.1, 57.4, 58.7)

e25 Z(68.8, 69.5, 70.9) Z(58.4, 60.9, 61.7) e78 Z(70.2, 71.8, 72.5) Z(60.2, 61.3, 64.7)

e27 Z(69.3, 71.8, 72.2) Z(54.3, 55.8, 57.2) e79 Z(69.2, 71.6, 72.5) Z(62.8, 63.2, 64.1)

e34 Z(72.2, 73.6, 74.2) Z(56.9, 58.6, 59.7) e89 Z(70.1, 72.3, 73.2) Z(61.9, 62.6, 63.5)

e45 Z(71.1, 72.9, 73.7) Z(52.7, 54.7, 56.6) e810 Z(69.2, 70.2, 71.7) Z(54.2, 56.4, 57.9)

e46 Z(68.1, 69.9, 70.8) Z(59.2, 61.4, 62.4) e910 Z(72.3, 73.6, 74.2) Z(53.1, 54.9, 55.6)

e56 Z(69.8, 72.5, 74.3) Z(57.8, 58.2, 59.1) −− −− −−

In order to determine the MMST of G, we consider the corresponding deterministic
Models, (20) and (22) of the EVM (cf. Model (16)) and CCM (cf. Model (17)) of the proposed
UMMSTP (cf. Model (15)). Since the Models (20) and (22) are the MOOPs, therefore, we
have employed the classical multi-objective solution technique, ε-constraint method on
their corresponding compromise Models (23) and (24). Lingo 11.0 (optimization problem
solver) is used to determine the compromise solutions of these models. While solving
Model (24), we have set the chance (confidence) level of the problem parameters to 0.8.
Subsequently, the compromise solutions of the Models (23) and (24) are shown in Table 2.
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Here, it is observed that two different minimum spanning trees are generated by solving
Models (23) and (24).

Table 2. Minimum spanning trees of G created by solving the compromise crisp equivalents of EVM
and CCM.

EVM CCM

E[Z1] E[Z2]
Minimum Spanning

Tree of G
¯
Z1

¯
Z2

Minimum Spanning
Tree of G

631.5500 528.9000
{

e12, e13, e25, e27, e46,
e58, e610, e79, e810

}
638.1200 538.4800

{
e12, e13, e24, e25, e27,

e46, e58, e79, e810

}

For determining the multiple non-dominated solutions of the EVM and CCM of
G, the corresponding deterministic multi-objective Models (20) and (22) are solved with
the two MOEAs, NSGAII and DENSEA. Both the MOEAs are executed for 250 maxi-
mum generations. Here, each of these NSGAII and DENSEA uses the genetic operators
binary tournament selection, single point crossover and bit- f lip mutation. Moreover, the
crossover and the mutation probabilities for each of these MOEAs are respectively con-
sidered as 0.9 and 0.05. In addition, jMetal4.5 [44] framework is used to generate the
non-dominated solutions of the Models (20) and (22) for G. These non-dominated (non-
inferior) solutions are reported in Tables 3 and 4. Here, for both the EVM and CCM, it is
observed that a particular solution among the set of non-inferior (non-dominated) solutions,
created by both the MOEAs is identical to the solution produced by ε-constraint method
(cf. Table 2). This solution is highlighted in bold. From Tables 3 and 4, it is also observed
that DENSEA generates more non-dominated solution compared to NSGAII for both the
EVM and CCM of G. Furthermore, the graphical representation of these non-dominated
solutions generated for the EVM and CCM are depicted in Figures 3 and 4, respectively.

Table 3. Non-dominated solutions generated by solving the Model (20) of G with the MOEAs.

NSGAII DENSEA

E[Z1] E[Z2] E[Z1] E[Z2]

640.225 508.725 631.550 528.900
631.650 528.600 631.650 528.600
633.200 522.425 632.300 528.225
636.725 513.775 633.150 526.175
635.350 517.475 633.200 522.425
638.850 512.425 633.750 520.200
638.325 512.875 634.575 518.725
633.750 520.200 635.35 517.475
634.575 518.725 636.175 517.425
631.550 528.900 636.725 513.775
−− −− 637.550 513.725
−− −− 638.325 512.875
−− −− 638.850 512.425
−− −− 640.225 508.725

Table 4. Non-dominated solutions generated by solving the Model (22) of G with the MOEAs.

NSGAII DENSEA
¯
Z1

¯
Z2

¯
Z1

¯
Z2

638.120 538.48 637.96 538.780
646.600 516.800 638.120 538.480
639.360 530.580 638.020 536.620
646.560 519.620 638.180 536.320
642.940 521.740 638.880 535.720
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Table 4. Cont.

NSGAII DENSEA
¯
Z1

¯
Z2

¯
Z1

¯
Z2

642.880 523.900 639.360 530.580
638.180 536.320 639.940 530.060
641.340 525.560 640.000 527.900
640.000 527.900 640.960 526.760
644.580 520.700 641.340 525.560
645.000 520.620 642.320 525.300
640.960 526.760 642.880 523.900
639.940 530.060 642.940 521.740
−− −− 643.920 521.480
−− −− 644.580 520.700
−− −− 645.900 520.400
−− −− 646.560 519.620
−− −− 646.600 516.800
−− −− 649.560 515.460

We study the sensitivity analysis of the compromise deterministic CCM model in (24)
for G by varying the confidence levels. Subsequently, the related results are presented
in Table 5. For convenience, here, the value of the confidence levels, i.e., α1 and α2 are
considered the same. From Table 5, we observe that as the value of α1 and α2 gradually
increase, the value of Z1 and Z2 also increase progressively. Moreover, the inverse uncer-
tainty distribution of Z1 and Z2 with respect to α1 and α2 of the Model (24) is graphically
displayed in Figure 5.

Figure 3. Cont.
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Figure 3. The non-dominated solutions of the Model (20) corresponding to the EVM of G generated
by the MOEAs: (a) NSGAII and (b) DENSEA.

Figure 4. Cont.
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Figure 4. The non-dominated solutions of the Model (22) corresponding to the CCM of G generated
by the MOEAs: (a) NSGAII and (b) DENSEA.

Table 5. Solutions of the crisp equivalent compromise Model (24) of the CCM for G at various
confidence levels of α1 and α2.

Confidence Levels Model (24) Confidence Levels Model (24)

α1 α2 Z1 Z2 α1 α2 Z1 Z2

0.005 0.005 619.6280 514.5610 0.60 0.60 634.2600 532.4400
0.10 0.10 622.0600 517.6200 0.70 0.70 636.2200 534.3800
0.20 0.20 624.6200 520.8400 0.80 0.80 638.1200 538.4800
0.30 0.30 627.1800 524.0600 0.90 0.90 639.9600 540.4400
0.40 0.40 629.7400 527.2800 0.995 0.995 641.7080 542.3020
0.50 0.50 632.3000 530.5000 −− −− −− −−

Figure 5. Inverse uncertainty distributions of Z1 and Z2 with respect to α1 and α2 for the CCM of G.
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7. Results and Discussions

For the sake of discussion, we have purposefully generated five random instances
of UMMSTP: (i) UncertainMMST#10, (ii) UncertainMMST#20, (iii) UncertainMMST#30,
(iv) UncertainMMST#40 and (v) UncertainMMST#50, which contains 10, 20, 30, 40 and
50 vertices, respectively. Each of the instances is a WCUG and considered as complete

graphs with
(

n
2

)
edges, where n is the number of edges. Here, for each instance, the

edge weight of an edge eij connecting vertices vi and vj is represented by (i) uncertain
travel cost ξcij and (ii) uncertain travel time ξtij , which are considered as zigzag uncertain
variables. In addition, ξcij and ξtij are randomly generated and respectively expressed as

zigzag uncertain variables Z
(

pcij , qcij , rcij

)
and Z

(
ptij , qtij , rtij

)
. Specifically, for each edge

eij of an instance, the pcij , qcij and rcij are randomly generated from the interval [65.5, 85.5]
such that pcij < qcij < rcij . Whereas, ptij , qtij and rtij are selected randomly from the interval
[50.5, 75.5] so that ptij < qtij < rtij .

Considering all the above mentioned five instances of UMMSTP, the crisp equiva-
lent Models (20) and (22) for the EVM the CCM are consequently solved by NSGAII and
DENSEA. Moreover, to analyze the performance of the MOEAs on the five instances,
we consider four different performance metrics: (i) hypervolume (HV) [45], (ii) spread
(SPREAD) [46], (iii) inverted generational distance (IGD) [47] and, (iv) epsilon
(EPSILON) [48]. For HV, a higher value is always desirable. However, for SPREAD,
IGD and EPSILON, smaller values are likely to be achieved. Among these performance
metrics, HV and IGD confirm together the convergence and diversity of the non-dominated
solutions produced by an MOEA, SPREAD promises the diversity of the non-dominated
solutions, while EPSILON assures the convergence of an MOEA.

The jMetal4.5 framework is used for the execution of NSGAII and DENSEA on the
Models (20) and (22) of EVM and CCM respectively, for each of the instances. Moreover, the
stochastic characteristics of the MOEAs has encouraged us to execute each algorithm with
500 generations, independently for100 times. Here, for both the algorithms, the genetic
operators and their corresponding settings are the same as mentioned above in Section 6.

The set of Pareto solutions in a Pareto front (PF) of real-world problems are generally
unattainable. Hence, the PF of a particular instance is approximated by producing a
reference front, which is created by considering the non-inferior solutions that coexist in the
first front produced after every execution of both NSGAII and DENSEA on that instance.
Once the reference front is generated, the value of the performance metrics is calculated
based on the solutions constituting the reference front.

Statistically we analysis the performance metrics by determining mean, standard
deviation (sd), median and interquartile range (IQR). For all the UMMSTP instances, the
mean and sd for all the performance metrics generated by the MOEAs are presented in
Tables 6 and 7, respectively, whereas, the median and IQR of the performance metrics are
shown in Tables 8 and 9, respectively. Here, the better values are displayed in bold in all
these tables.

Considering the mean in Tables 6 and 7 and median in Tables 8 and 9, we observe that
with respect to all the UMMSTP instances, DENSEA performs superiorly to NSGAII for all
the performance metrics.

For all the instances, the graphical elucidation of the results of HV, SPREAD, IGD
and EPSILON, in terms of letter-value plots [49] and violin plots [50] are depicted in
Figures A1–A4 as provided in the Appendix A. All these plots graphically display the
medians of the performance metrics (cf. Tables 8 and 9). These figures explicate clearly that
DENSEA performs better than NSGAII as far as the performance metrics are concerned.
In particular, the letter-value plots in Figures A1 and A2, display the medians as the red
horizontal lines along with many quartiles. From both these figures, it can be inferred
that for all the instances of UMMSTP, the medians of the performance metrics are better
for DENSEA compared to NSGAII. Moreover, in these figures, with respect to each of the
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instances, for all the performance metrics, the quartiles generated in case of DENSEA have
lesser width compared to those for the case of NSGAII.

Table 6. mean and sd corresponding to HV, SPREAD, IGD and EPSILON for the UMMSTP instances
considering Model (20).

MOEA Uncertain
Instance

HV SPREAD IGD EPSILON

mean sd mean sd mean sd mean sd

NSGAII

Uncertain
MMST#10 6.18 × 10−1 1.4 × 10−2 1.32 × 10+00 1.4 × 10−2 3.4 × 10−4 1.9 × 10−4 6.90 × 10−1 4.6 × 10−1

Uncertain
MMST#20 7.43 × 10−1 2.3 × 10−2 9.94 × 10−1 5.9 × 10−2 5.2 × 10−4 2.2 × 10−4 1.67 × 10+00 6.7 × 10−1

Uncertain
MMST#30 6.86 × 10−1 2.1 × 10−2 7.49 × 10−1 5.5 × 10−2 2.7 × 10−4 1.4 × 10−4 2.19 × 10+00 7.1 × 10−1

Uncertain
MMST#40 6.48 × 10−1 1.2 × 10−2 6.88 × 10−1 4.8 × 10−2 2.3 × 10−4 9.0 × 10−5 5.11 × 10+00 1.5 × 10+00

Uncertain
MMST#50 5.90 × 10−1 2.9 × 10−2 8.45 × 10−1 7.3 × 10−2 3.7 × 10−3 7.9 × 10−4 8.51 × 10+00 1.8 × 10+00

DENSEA

Uncertain
MMST#10 6.27 × 10−1 1.1 × 10−3 6.46 × 10−1 5.1 × 10−2 5.2 × 10−5 8.6 × 10−5 1.14 × 10−1 1.6 × 10−1

Uncertain
MMST#20 7.72 × 10−1 3.4 × 10−3 6.17 × 10−1 5.3 × 10−2 1.5 × 10−4 7.7 × 10−5 5.20 × 10−1 2.5 × 10−1

Uncertain
MMST#30 7.04 × 10−1 9.8 × 10−3 6.03 × 10−1 4.2 × 10−2 1.5 × 10−4 6.4 × 10−5 1.61 × 10+00 7.3 × 10−1

Uncertain
MMST#40 6.59 × 10−1 7.8 × 10−3 6.12 × 10−1 3.7 × 10−2 1.6 × 10−4 3.9 × 10−5 3.45 × 10+00 1.3 × 10+00

Uncertain
MMST#50 6.40 × 10−1 1.5 × 10−2 7.12 × 10−1 3.9× 10−2 2.0 × 10−3 7.1 × 10−4 5.36 × 10+00 2.0 × 10+00

Table 7. mean and sd corresponding to HV, SPREAD, IGD and EPSILON for the UMMSTP instances
considering Model (22).

MOEA Uncertain
Instance

HV SPREAD IGD EPSILON

mean sd mean sd mean sd mean sd

NSGAII

Uncertain
MMST#10 6.0 × 10−1 1.4 × 10−2 1.32 × 10+00 1.4 × 10−2 3.57 × 10−4 2.2 × 10−4 1.07 × 10+00 5.3 × 10−1

Uncertain
MMST#20 6.5 × 10−1 1.7 × 10−2 1.00 ×10+00 3.7 × 10−2 2.31 × 10−4 1.4 × 10−4 2.23 × 10+00 1.0 × 10+00

Uncertain
MMST#30 6.7 × 10−1 2.7× 10−2 8.21 × 10−1 7.7 × 10−2 2.92 × 10−4 1.7 × 10−4 2.37 × 10+00 8.4 × 10−1

Uncertain
MMST#40 6.48 × 10−1 1.2 × 10−2 6.66 × 10−1 5.8 × 10−2 2.58 × 10−4 8.7 × 10−5 6.18 × 10+00 1.6 × 10+00

Uncertain
MMST#50 5.95 × 10−1 3.3 × 10−2 7.83 × 10−1 8.7 × 10−2 2.78 × 10−3 7.5 × 10−4 9.18 × 10+00 2.8 × 10+00

DENSEA

Uncertain
MMST#10 6.14 × 10−1 8.6 × 10−4 6.18 × 10−1 4.0 × 10−2 3.69 × 10−5 3.5 × 10−5 1.71 × 10−1 1.4 × 10−1

Uncertain
MMST#20 6.74 × 10−1 4.2 × 10−3 6.64 × 10−1 4.2 × 10−2 1.00 × 10−4 5.2 × 10−5 1.16 × 10+00 4.9 × 10−1

Uncertain
MMST#30 6.92 × 10−1 1.1 × 10−2 5.57 × 10−1 5.4 × 10−2 1.59 × 10−4 8.1 × 10−5 1.45 × 10+00 6.4 × 10−1

Uncertain
MMST#40 6.57 × 10−1 6.1 × 10−3 5.95 × 10−1 4.0 × 10−2 1.82 × 10−4 4.1 × 10−5 4.06 × 10+00 1.4 × 10+00

Uncertain
MMST#50 6.57 × 10−1 1.5 × 10−2 7.38 × 10−1 3.6 × 10−2 1.34 × 10−3 4.2 × 10−4 4.96 × 10+00 1.8 × 10+00

This fact essentially suggests that the performance metrics generated by DENSEA
are more consistent and does not fluctuate much as in the case of NSGAII. The violin
plots in Figures A3 and A4 depict the distribution of the data and inscribe the box plots
within themselves. These figures also display the medians as white circles within the
corresponding box plots. For all the five instances, the plots in Figures A3 and A4 provide
a similar implication that the distribution of the generated values corresponding to each
performance metric is more compact for DENSEA with respect to NSGAII. This in turn
suggests that for all the instances, the existence of the outliers in the data corresponding
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to all the performance metrics are less for DENSEA as compare to NSGAII. Moreover,
from Figures A3 and A4, it is also inferred that for every instances, the medians of the
performance metrics are better for DENSEA as compare to those generated by NSGAII.

In addition, considering all the five UMMSTP instances, the Wilcoxon rank sum test is
conducted for all performance metrics. Accordingly, the null Hypothesis 1 (H1) for the test
is set as follows.

Table 8. median and IQR corresponding to HV, SPREAD, IGD and EPSILON for the UMMSTP
instances considering Model (20).

MOEA Uncertain
Instance

HV SPREAD IGD EPSILON

median IQR median IQR median IQR median IQR

NSGAII

Uncertain
MMST#10 6.23 × 10−1 7.3 × 10−3 1.33 × 10+00 1.8 × 10−2 4.19 × 10−4 2.7 × 10−4 6.50 × 10−1 2.5 × 10−1

Uncertain
MMST#20 7.48 × 10−1 2.5 × 10−2 9.94 × 10−1 8.3 × 10−2 5.04 × 10−4 2.7 × 10−4 1.52 × 10+00 8.4 × 10−1

Uncertain
MMST#30 6.91 × 10−1 2.4 × 10−2 7.47 × 10−1 6.5 × 10−2 2.38 × 10−4 1.5 × 10−4 2.18 × 10+00 8.5 × 10−1

Uncertain
MMST#40 6.50 × 10−1 1.2 × 10−2 6.89 × 10−1 5.9 × 10−2 2.11 × 10−4 8.3 × 10−5 4.96 × 10+00 1.9 × 10+00

Uncertain
MMST#50 5.95 × 10−1 3.6 × 10−2 8.41 × 10−1 1.0 × 10−1 3.79 × 10−3 1.1 × 10−3 8.20 × 10+00 2.3 × 10+00

DENSEA

Uncertain
MMST#10 6.28 × 10−1 9.0 × 10−5 6.56 × 10−1 5.8 × 10−2 3.19 × 10−5 4.1 × 10−5 5.00 × 10−2 8.7 × 10−2

Uncertain
MMST#20 7.73 × 10−1 3.0 × 10−3 6.20 × 10−1 7.3 × 10−2 1.32 × 10−4 8.6 × 10−5 4.50 × 10−1 2.3 × 10−1

Uncertain
MMST#30 7.05 × 10−1 1.3 × 10−2 6.03 × 10−1 6.5 × 10−2 1.49 × 10−4 8.6 × 10−5 1.57 × 10+00 1.1 × 10+00

Uncertain
MMST#40 6.59 × 10−1 1.1 × 10−2 6.12 × 10−1 5.2 × 10−2 1.55 × 10−4 5.4 × 10−5 3.35 × 10+00 1.5 × 10+00

Uncertain
MMST#50 6.43 × 10−1 2.3 × 10−2 7.18 × 10−1 6.4 × 10−2 1.97 × 10−3 9.4 × 10−4 4.99 × 10+00 2.7 × 10+00

Table 9. median and IQR corresponding to HV, SPREAD, IGD and EPSILON for the UMMSTP
instances considering Model (22).

MOEA Uncertain
Instance

HV SPREAD IGD EPSILON

median IQR median IQR median IQR median IQR

NSGAII

Uncertain
MMST#10 6.08 × 10−1 6.3 × 10−3 1.32 × 10+00 1.7 × 10−2 3.06 × 10−4 3.8 × 10−4 1.04 × 10+00 7.5 × 10−1

Uncertain
MMST#20 6.62 × 10−1 1.9 × 10−2 1.00 × 10+00 5.3 × 10−2 2.07 × 10−4 1.5 × 10−4 2.39 × 10+00 1.5 × 10+00

Uncertain
MMST#30 6.83 × 10−1 2.3 × 10−2 8.13 × 10−1 8.6 × 10−2 2.55 × 10−4 1.8 × 10−4 2.29 × 10+00 1.2e ×

10+00

Uncertain
MMST#40 6.49 × 10−1 1.4 × 10−2 6.65 × 10−1 7.5 × 10−2 2.44 × 10−4 9.4 × 10−5 6.21 × 10+00 2.2 × 10+00

Uncertain
MMST#50 6.01 × 10−1 5.0 × 10−2 7.80 × 10−1 1.2 × 10−1 2.76 × 10−3 9.9 × 10−4 8.95 × 10+00 4.2 × 10+00

DENSEA

Uncertain
MMST#10 6.14 × 10−1 5.4× 10−4 6.27 × 10−1 5.8× 10−2 2.41 × 10−5 4.9× 10−5 1.60 × 10−1 1.0× 10−1

Uncertain
MMST#20 6.75 × 10−1 4.4× 10−3 6.71 × 10−1 5.9× 10−2 7.98 × 10−5 8.6× 10−5 1.06 × 10+00 6.1× 10−1

Uncertain
MMST#30 6.95 × 10−1 9.0× 10−3 5.53 × 10−1 5.6× 10−2 1.37 × 10−4 7.3× 10−5 1.40 × 10+00 7.3× 10−1

Uncertain
MMST#40 6.58 × 10−1 8.1× 10−3 5.95 × 10−1 5.3× 10−2 1.74 × 10−4 5.4× 10−5 3.93 × 10+00 1.5× 10+00

Uncertain
MMST#50 6.59 × 10−1 1.8× 10−2 7.35 × 10−1 4.6× 10−2 1.31 × 10−3 5.2× 10−4 4.49 × 10+00 2.5× 10+00

Hypothesis 1 (H1). The performance metrics generated by NSGAII and DENSEA are significantly
equal.
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In Tables 10 and 11, we provide the results of the test, which is executed by considering
the significance level to 1%. In these tables, the column DENSEA?NSGAII infer each of the
following two conditions.

Table 10. Wilcoxon rank sum test of HV, SPREAD, IGD and EPSILON for the UMMSTP instances
considering Model (20).

Uncertain
Instance

HV SPREAD IGD EPSILON

DENSEA?HSGAII DENSEA?HSGAII DENSEA?HSGAII DENSEA?HSGAII

Uncertain
MMST#10 ≺2.3956×10−30 ≺1.2405×10−34 ≺1.3579×10−29 ≺2.5282×10−28

Uncertain
MMST#20 ≺5.6397×10−31 ≺2.5620×10−34 ≺3.1703×10−30 ≺7.0463×10−30

Uncertain
MMST#30 ≺2.1034×10−14 ≺2.8233×10−32 ≺8.2378×10−15 ≺2.1057×10−27

Uncertain
MMST#40 ≺2.1050×10−11 ≺1.3281×10−21 ≺3.8558×10−13 ≺2.0566×10−13

Uncertain
MMST#50 ≺4.3185×10−30 ≺6.1249×10−28 ≺3.5908×10−27 ≺5.9250×10−20

Table 11. Wilcoxon rank sum test of HV, SPREAD, IGD and EPSILON for the UMMSTP instances
considering Model (22).

Uncertain
Instance

HV SPREAD IGD EPSILON

DENSEA?HSGAII DENSEA?HSGAII DENSEA?HSGAII DENSEA?HSGAII

Uncertain
MMST#10 ≺1.6510×10−25 ≺2.0173×10−34 ≺2.0824×10−27 ≺2.6926×10−28

Uncertain
MMST#20 ≺7.1968×10−18 ≺2.5621×10−34 ≺4.0284×10−16 ≺5.6276×10−15

Uncertain
MMST#30 ≺1.7225×10−12 ≺4.8090×10−34 ≺7.0592×10−15 ≺2.4548×10−15

Uncertain
MMST#40 ≺7.2285×10−10 ≺6.6706e ×10−17 ≺3.5046×10−14 ≺1.7694×10−17

Uncertain
MMST#50 ≺8.8897×10−31 ≺7.5103×10−25 ≺1.1173×10−29 ≺5.4751×10−23

(i) DENSEA ≺pv NSGAII: DENSEA is significantly better than NSGAII at 1% significance
level and H1 is not accepted at the p-value (pv).

(ii) DENSEA �pv NSGAII: NSGAII is significantly better than DENSEA at 1% significance
level and H1 is not accepted at the pv.

From Tables 10 and 11, we can conclude that for all the performance metrics, DENSEA
is significantly better than NSGAII and H1 is rejected.

8. Conclusions

The originality of the present study includes the investigation of a multi-objective
minimum spanning tree with uncertain parameters. Here, we propose a UMMSTP, which
optimized the uncertain parameters in terms of ξcij and ξtij in a minimum spanning tree.
Based on uncertainty theory, we have developed two uncertain programming models of
UMMSTP: the EVM and the CCM. In order to solve these models expediently, subsequently,
we determine the deterministic transformation of these models. These deterministic models
are solved with the ε- constraint method as well as with two MOEAs: NSGAII and DENSEA.
Accordingly, a suitable numerical example is presented to elucidate the application of the
models. Thereafter, the performance of the MOEAs on some of the larger instances of the
UMMSTP are compared and analyzed.

Being a multi-objective optimization problem, our proposed UMMSTP generates
multiple non-dominated (non-inferior) solutions in the approximate front. Subsequently,
selection of a single solution from a set of solution becomes a difficult task for a decision
maker. Further, the multi-objective nature of the proposed problem characterizes it as a
NP-hard problem. Accordingly, designing of any conventional algorithm to explore the
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exact solution of the problem becomes computationally very expensive. As a matter of the
fact, we have to compromise with the approximate solutions of the problem as generated
by the MOEAs. Hence, the above-mentioned factors essentially become the limitation of
our study.

We believe that our models extend the ability of an MMSTP to deal with uncertain
parameters. Notably, the proposed UMMSTP in our study can be extended to different
variants of multi-objective minimum spanning tree problem including multi-objective
degree-constrained MST, multi-objective capacitated MST under uncertain and uncertain
random environment. Furthermore, the possible extension of our study in a rather complex
environment will be our interest in future research, where there is a coexistence of both
uncertainty and randomness.

Author Contributions: Conceptualization, S.M., A.B., S.K. and P.Z.; methodology, S.M.; software,
S.M.; validation, S.M., B.K.M. and P.S.B.; formal analysis, S.M. and P.B.; investigation, S.M. and P.B.;
resources, S.M.; data curation, P.B. and B.K.M.; writing—original draft preparation, S.M.; writing—
review and editing, S.M. and P.Z.; visualization, A.B.; supervision, S.K. and P.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge all the anonymous referees for the
review comments, which have essentially helped us to improve the standard of our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The abbreviations considered in this article is summarized in Table A1.

Table A1. Abbreviations used in the study.

ε-constraint Epsilon-constraint
CCM Chance-constrained Model

CSOOP Compromise Single-objective Optimization Problem
DENSEA Duplicate Elimination Non-Dominated Sorting Evolutionary Algorithm
EPSILON Epsilon

EVM Expected Value Model
H1 Null Hypothesis
HV Hypervolume
IGD Inverted Generational Distance
IQR Interquartile Range

MOEA Multi-objective Evolutionary Algorithm
MOOP Multi-objective Optimization Problem

MST Mininum Spanning Tree
MSTP Mininum Spanning Tree Problem

MMSTP Multi-objective minimum spanning tree problem
NSGAII Non-dominated Sorting Genetic Algorithm II

PF Pareto Front
pv p-value
sd Standard Deviation

SPREAD Spread
UMMSTP Uncertain Multi-Objective Minimum Spanning Tree Problem

WCUG Weighted Connected Undirected Graph

Appendix B

This section presents the letter-value plots and the violin plots of HV, SPREAD, IGD
and EPSILON for the UMMSTP instances generated after 100 independent executions of
NSGAII and DENSEA.



Symmetry 2022, 14, 106 22 of 28Symmetry 2022, 13, x FOR PEER REVIEW 23 of 31 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure A1. Cont.



Symmetry 2022, 14, 106 23 of 28Symmetry 2022, 13, x FOR PEER REVIEW 24 of 31 
 

 

 
(d) 

Figure A1. Letter-value plots corresponding to four performance metrics: (a) 𝐻𝑉, (b) 𝑆𝑃𝑅𝐸𝐴𝐷, (c) 𝐼𝐺𝐷 and (d) 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 for the UMMSTP instances considering Model (20). 

 
(a) 

Figure A1. Letter-value plots corresponding to four performance metrics: (a) HV, (b) SPREAD, (c)
IGD and (d) EPSILON for the UMMSTP instances considering Model (20).Symmetry 2022, 13, x FOR PEER REVIEW 25 of 32 

 

 

 
(a) 

 
(b) 

Figure A2. Cont.



Symmetry 2022, 14, 106 24 of 28
Symmetry 2022, 13, x FOR PEER REVIEW 26 of 32 
 

 

 
(c) 

 
(d) 

Figure A2. Letter-value plots corresponding to four performance metrics: (a) 𝐻𝑉, (b) 𝑆𝑃𝑅𝐸𝐴𝐷, (c) 𝐼𝐺𝐷 and (d) 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 for the UMMSTP instances considering Model (22). Figure A2. Letter-value plots corresponding to four performance metrics: (a) HV, (b) SPREAD, (c)
IGD and (d) EPSILON for the UMMSTP instances considering Model (22).

Figure A3. Cont.



Symmetry 2022, 14, 106 25 of 28

Figure A3. Violin plots corresponding to four performance metrics: (a) HV, (b) SPREAD, (c) IGD and
(d) EPSILON for the UMMSTP instances considering Model (20).
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Figure A4. Violin plots corresponding to four performance metrics: (a) HV, (b) SPREAD, (c) IGD and
(d) EPSILON for the UMMSTP instances considering Model (22).
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