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1 Introduction

Multi-processor scheduling, bin packing, and the knapsack problem are very well studied problems
in combinatorial optimization. Their study has had a large impact on the design and analysis
of approximation algorithms. All of these problems involve packing items of different sizes into
bins of finite capacities. In this work we study multi-dimensional generalizations of these problems
where the items to be packed are d-dimensional vectors and bins are d-dimensional objects as well.
We obtain a variety of approximability and inapproximability results, in the process, significantly
improving upon earlier known results for these problems. Some of our results include a polynomial
time approximation scheme (PTAS) for the vector scheduling problem when the dimension is fixed,
and an approximation algorithm for the vector bin-packing problem that improves a two-decade old
bound. Though our primary motivation is vector scheduling and vector bin packing, an underlying
problem that arises is the problem of maximizing the numbers of vectors that can be packed into a
bin of fixed size. This is a special case of the multi-dimensional knapsack problem that is equivalent
to packing integer programs (PIPs) [27, 29]. PIPs are an important class of integer programs that
capture several NP-hard combinatorial optimization problems including the maximum independent
set problem, the disjoint paths problem, and hypergraph matchings. The only general technique
known for approximating PIPs is to use randomized rounding on the natural LP relaxation [27, 29].
We show here that the approximation guarantee for PIPs, as obtained via randomized rounding, is
essentially the best possible unless NP=ZPP.

In addition to their theoretical importance, these problems have several applications such as
load balancing, cutting stock, and resource allocation, to name a few. One of our motivations
for studying these problems comes from recent interest [12, 13, 14] in multi-dimensional resource
scheduling problems in parallel query optimization. A favored architecture for parallel databases
is the so called shared-nothing environment [5] where the parallel system consists of a set of in-
dependent processing units each of which has a set of time-sharable resources such as CPU, one
or more disks, network controllers etc. A task executing on one of these units has requirements
from each of these resources and is best described as a multi-dimensional load vector. However
in most work on scheduling, both in theory and practice, it is assumed that the load of a task is
described by a single aggregate work measure. This simplification is done typically to reduce the
complexity of the scheduling problem. However, for large task systems that are typically encoun-
tered in database applications, ignoring the multi-dimensionality could lead to bad performance.
The work in [11, 12, 13, 14] demonstrates the practical effectiveness of the multi-dimensional ap-
proach. One of the basic resource scheduling problem that is considered in the above papers is
the problem of scheduling d-dimensional vectors (tasks) on d-dimensional bins (machines) to min-
imize the maximum load on any dimension (the load on the most loaded resource). Surprisingly,

despite the large body of work on approximation algorithms for multi-processor scheduling and its



several variants [15, 23], the authors in [11] had to settle for a naive (d 4+ 1)-approximation for the
d-dimensional vector scheduling problem. Our work here provides a PTAS when d is fixed and an
O(In? d)-approximation when d is arbitrary. A similar situation existed for the vector bin packing
problem where the best known approximation ratio prior to our work was (d+¢€). In this paper, we
improve this to obtain a (1 + €-d + O(Ine~1))-approximation for any fixed € > 0. In what follows,

we formally define the problems that we study and provide a detailed description of our results.

1.1 Problem Definitions

We start by defining the vector scheduling problem. For a vector z, the quantity ||z||. denotes the

standard £, norm.

Definition 1.1 (Vector Scheduling (VS)) We are given a set J of n rational d-dimensional
vectors py,...,pn from [0,00)¢ and a number m. A wvalid solution is a partition of J into m sets
Aq, ..., Ay The objective is to minimize maxi<i<m | Ailloo where A; = > jea; Pj is the sum of the

vectors in A;.

Definition 1.2 (Vector Bin Packing (VBP)) Given a set of n rational vectors py,...,p, from
[0,1])¢, find a partition of the set into sets Ay,..., Ay such that |A;]eo < 1 for 1 < j < m. The

objective is to minimize m, the size of the partition.

The following definition of PIPs is from [29]. In the literature this problem is also referred to
as the d-dimensional 0-1 knapsack problem [7].

Definition 1.3 (Packing Integer Program (PIP)) Given A € [0,1]9%", b € [1,00)%, and c €

Tr subject to © €

[0,1]" with max;c; = 1, a packing integer program (PIP) seeks to mazimize ¢
{0,1}" and Az < b. Furthermore if A € {0,1}4*" b is assumed to be integral. Finally B is defined

to be min; b;.

The restrictions on A, b, and ¢ in the above definition are without loss of generality: an arbitrary
packing problem can be reduced to the above form (see [29]). We are interested in PIPs where
bi = Bfor1 <i<d When A € {0,1}*" this problem is known as the simple B-matching
in hypergraphs [24]: given a hypergraph with non-negative edge weights, find a maximum weight
collection of edges such that no vertex occurs in more than B of them. When B = 1 this is the usual
hypergraph matching problem. We note that the maximum independent set problem in graphs is

a special case of the hypergraph matching problem.



1.2 Related Work and Our Results

All the problems we consider are NP-Complete for d = 1 (multi-processor scheduling, bin packing,
and the knapsack problem). The dimension of the vectors, d, plays an important role in determin-
ing the complexity. We concentrate on two cases, when d is fixed constant, and when d is part of
the input and can be arbitrary. Below is an outline of the various positive and negative results that

we obtain for these problems.

Vector Scheduling: For the vector scheduling problem the best approximation algorithm [13]
prior to our work had a ratio of (d+1). When d is a fixed constant (a case of practical interest) we
obtain a polynomial time approximation scheme (PTAS), generalizing the result of Hochbaum and
Shmoys [19] for multiprocessor scheduling. In addition we obtain a simpler O(In d)-approximation
algorithm that is better than (d+1) for all d > 2. When d is large we give an O(In? d)-approximation
that uses known approximation algorithms for PIPs as a subroutine. We also give a very simple
O(Indm/ Inlndm)-approximation. Finally, we show that it is hard to approximate the VS problem

to within any constant factor when d is arbitrary.

Vector Bin Packing: The previous best known approximation algorithms for this problem gave
a ratio of (d + ¢) for any fixed € > 0 [4] and (d + 7/10) [9]; the latter result holds even in an online
setting. All the ratios mentioned are asymptotic, that is there is an additive term depending on d
and on e. Karp et al. [22] do a probabilistic analysis and show bounds on the average wastage in the
bins. We design an approximation algorithm that for any fixed e > 0, achieves a (1+e€-d+O(lne 1))-
approximation in polynomial time, thus improving upon the previous guarantees. One useful
corollary of this result is that when d is a fixed constant we can approximate the problem to within
a ratio of O(Ind). When d is arbitrary a simple reduction from the graph coloring problem gives
a d3~¢ hardness for any fixed € > 0 even when vectors are drawn from the set [0,1]¢. Moreover,
even when d = 2 the problem is APX-hard [31];an interesting departure from classical bin packing

problem (d = 1) which exhibits an asymptotic FPTAS.

Packing Integer Programs: For fixed d there is a PTAS for PIPs [7]. For large d the ran-
domized rounding technique of Raghavan and Thompson [27] yields integral solutions of value
t; = Q(OPT/dYB) if A € [0,1]%*", and t, = Q(OPT/d/(B+D) if A € {0,1}?*™. Srinivasan [29]
improved these results to obtain solutions of value Q(tf/ (B_l)) and Q(thH)/ B) respectively (see
discussion at the end of Section 4.1 concerning when these values are better). Thus the parameter
B plays an important role in the approximation ratio achieved, with better ratios obtained as B

gets larger (recall that entries in A are upper bounded by 1). It is natural to question if the de-



pendence of the approximation ratio on B could be any better. We show that PIPs are hard to
approximate to within a factor of Q(dB;H_e) for every fixed B, thus establishing that randomized
rounding essentially gives the best possible approximation guarantees. Hardness was known only
for the case B = 1 via a reduction from the maximum independent set problem. We show how
this can amplified to work for larger values of B and then use Hastad’s result [18] on the inapprox-
imability of the maximum independent set problem. An interesting aspect of our reduction is that
the hardness result holds even when the optimal is restricted to choosing a solution that satisfies
Az < 1% while the approximation algorithm is only required to satisfy the relaxed constraint of
Az < B,

Table 1 summarizes our results. For conciseness, in the table below when we indicate that a
problem is c-hard we mean that, unless NP = ZPP, no polynomial time algorithm can approximate

it to within a factor of c.

Problem d=1 Constant d > 2 Arbitrary d
PTAS [19] (d + 1) (folklore) (d+ 1) (folklore)
Vector PTAS (this paper) O(In? d) (this paper)
Scheduling NP-hard NP-hard NP-hard
c-hard V ¢ > 1 (this paper)
APTAS! [4, 21] (d+e) [4] (d+e) [4]
Vector O(Ind) (this paper) | 1+ ed + O(In 1) (this paper)
Bin Packing NP-hard APX-hard [31] APX-hard [31]
d>“hard (this paper)
Packing FPTAS [20] PTAS [7] O(d™) [26, 27, 29]
Integer Programs NP-hard NP-hard d>~“hard for B = 1
A “hard V B > 1
(this paper)

Table 1: Approximation bounds and inapproximability results for each problem.

1.3 Organization

The rest of the paper is organized as follows. Sections 2 and 3 present our approximation algorithms

for the vector scheduling problem and the vector bin packing problem respectively. In Section 4 we

' APTAS denotes an asymptotic PTAS. A problem has an APTAS if for any fixed € > 0, there exists a positive
integer N, such that there is a polynomial time (1 + €)-approximation algorithm for all instances of the problem with

optimum value at least V..



present our inapproximability results for the three problems.

2 Algorithms for Vector Scheduling

For any set of vectors (jobs) A, we define A to be the vector sum 2 jeapj- The quantity A? denotes
component 4 of the vector A. Throughout this section, we assume without loss of generality that

the vectors have been scaled such that the optimal schedule value is 1.

2.1 A PTAS for fixed d

Hochbaum and Shmoys [19] gave a PTAS for the multi-processor scheduling problem (VS problem
with d = 1) using dual approximation schemes. We now show that a non-trivial generalization of
their ideas yields a PTAS for arbitrary but fixed d.

The basic idea used in [19] is a primal-dual approach whereby the scheduling problem is viewed
as a bin packing problem. If an optimal solution can pack all jobs with load not exceeding some
height h, assume h = 1 from here on, then the scheduling problem is to pack all the jobs into m
bins (machines) of height 1. The authors then give an algorithm to solve this bin packing problem
with bin height relaxed to (1 + €) where € > 0 is a fixed constant. In order to do so, they classify a
job as large or small depending on whether its size is greater than e or not. Only a fixed number
(at most 1/€) of large jobs can be packed into any bin. The sizes of the large jobs are then rounded
up to be one of O(In1/e) distinct values. Dynamic programming is used to pack the rounded up
large jobs into the m bins such that no bin exceeds a height of (1 + €). The small jobs are then
greedily packed on top of the large jobs.

We take a similar approach to the problem. Our dual problem is vector bin packing. The
primary difficulty in generalizing the above ideas to the case of jobs or vectors of d > 2 dimensions
is the lack of a total order on the “size” of the jobs. It is still possible to classify a vectors as large
or small depending on its £, norm. However, the scheme of [19] whereby the small jobs are greedily
packed on top of the large jobs does not apply. We need to take into account the interaction between
the packing of large and small vectors. In addition, the packing of small vectors is non-trivial. In
fact we use a linear programming relaxation and a careful rounding to pack the small jobs. We
describe our ideas in detail below. Following the above discussion we will think of machines as
d-dimensional bins and the schedule length as bin capacity (height). Given an € > 0 and a guess for
the optimal value (that we assume is normalized to 1), we describe an e-relaxed decision procedure
A that either returns a schedule of height (1 + €) or proves that the guess is incorrect. We can use

A, to do a binary search for the optimal value. Let 0 be €/d.



Preprocessing Step: Our first idea is to reduce to zero all coordinates of the vectors that are too
small relative to the largest coordinate. This allows us to bound the ratio of the largest coordinate

to the smallest non-zero coordinate.

Lemma 2.1 Let I be an instance of the VS problem. Let I' be a modified instance where we replace
each pj in I with a vector q; as follows. For each 1 < i < d, qj— = pz- if pé- > dlpjllec and q§ =0
otherwise. Then replacing the vector g; by the vector p; in any valid solution to I' results in a valid

solution to I of height at most a factor of (1+ ¢€) that of I'.

Proof. Let A be a set of vectors in I and B the corresponding set of vectors in I'. Then it follows

from the transformation described above that

A < B'+6) ] llgjlleo

JjEB
< B'+6) lgjlh
JjEB
< B'+4|Blh
< B'+4d||B|lo
< B'+¢||Blw.

Therefore || Ao < (14 €)||B|loo- It follows that replacing vectors in I’ by those in I’ increases the

height of the machines by only a (1 + €) factor. O

Large versus Small Vectors: Assume from here on that we have transformed our instance as
described in the above lemma. The second step in the algorithm is to partition the vectors into
two sets L and S corresponding to large and small. L consists of all vectors whose £,, norm is
greater than §, and S is the rest of the vectors. The algorithm A, will have two stages; the first
stage packs all the large jobs, and the second stage packs the small jobs. Unlike the case of d =1,
the interaction between the two stages has to be taken into account for d > 2. We show that
the interaction can be captured in a compact way as follows. Let (a1,as,...,aq) be a d-tuple of
integers such that 0 < a; < [1/€]. We will call each such distinct tuple a capacity configuration.
There are at most ¢t = (1 + [1/€])¢ such configurations. Assume that the ¢ capacity configurations
(tuples) are ordered in some way and let af be the value of coordinate 7 in tuple k. A capacity
configuration approximately describes how a bin is filled. However we have m bins. A t¢-tuple
(mq,...,m¢) where 0 < m; < m and >, m; = m is called a bin configuration that describes the
number of bins of each capacity configuration. The number of possible bin configurations is clearly
O(m?). Since there are only a polynomial number of such configurations for fixed d and € we can

“guess” the configuration used by a feasible packing. A packing of vectors in a bin is said to respect



a capacity configuration (aq,...,a,) if the height of the packing in each dimension i is less than
ea;. Given a capacity configuration we can define the corresponding empty capacity configuration
as the tuple obtained by subtracting each entry from ([1/€] + 1). For a bin configuration M we
denote by M the corresponding bin configuration as the one obtained by taking the empty capacity

configurations for each of the bins in M.

Overview of the Algorithm: The algorithm performs the following steps for each bin configu-
ration M:
(a) decide if vectors in L can be packed respecting M.
(b) decide if vectors in S can be packed respecting M.

If both steps above succeed for some M, we have a packing of height at most (1+ ¢€). Otherwise
we will prove that the assumption that the optimal packing has a height of 1 is false.

Packing the large vectors: The first stage consists of packing the vectors in L. Observe that
the smallest non-zero coordinate of the vectors in L is at least 2. We partition the interval [§2, 1]
into ¢ = [21n67!] intervals of the form (zg, (1 + €)xo), (z1, (1 + €)z1], . .., (z4—1,1] where zy = &2
and z;11 = (1 + €)z;. We discretize every non-zero coordinate of the vectors in L by rounding the
coordinate down to the left end point of the interval in which it falls. Let L’ be the resulting set of

vectors.

Lemma 2.2 Let I' be an instance obtained from the original instance I by rounding vectors in
L as described above. Then replacing each vector in L' by the corresponding vector in L in any

solution for I' results in a solution for I of height at most (1 + €) times that of I'.

Proof. Each coordinate of a vector in L' is at least (1 4+ €)~! times the coordinate of the corre-

sponding vector in L. The lemma follows trivially. O

Vectors in L' can be classified into one of s = (1 + [% In6~17)¢ distinct classes. Any packing of
the vectors into one bin can be described as a tuple (k1, ko, ..., ks) where k; indicates the number
of vectors of the ith class. Note that at most d/¢ vectors from L' can be packed in any bin.
Therefore Y k; < d/é. Thus there are at most (d/d)° configurations. A configuration is feasible
for a capacity configuration if the vectors described by the configuration can be packed without
violating the height constraints described by the capacity configuration. Let Cj denote the set of
all configurations of the jobs in L’ that are feasible for the kth capacity configuration. From our
discussion |Ck| < (d/6)°.



Lemma 2.3 Let M = (my,ma,...,m;) be a bin configuration. There exists an algorithm with

running time O((d/8)*mn®) to decide if there is a packing of the jobs in L' that respects M.

Proof. We use a simple dynamic programming based algorithm. Observe that the number of
vector classes in L' is at most s. Thus any subset of vectors from L’ can be specified by a tuple of
size s and there are O(n®) distinct tuples. The algorithm orders bins in some arbitrary way and
to each bin assigns a capacity configuration from M. For 1 < ¢ < m, the algorithm computes all
possible subsets of vectors from L’ (tuples) that can be packed validly in the first ¢ bins. For each
i this information can be maintained in O(n®) space. Given the tuples for bin %, the tuples for bin
(1 + 1) can be computed in O(d/§)® time per tuple since that is an upper bound on the number of
feasible configurations for any capacity configuration. Thus for each bin 4, in O(d/§)*n®) time, we
can compute the tuples that can packed into the first 4 bins given the information for bin (7 — 1).

The number of bins is m so we get the required time bound. a

Packing the small vectors: We now describe the second stage, that of packing the vectors in
S. For the second stage we write an integer programming formulation and round the resulting LP
relaxation to find an approximate feasible solution. Without loss of generality assume that the
vectors in S are numbered 1 to |S|. The IP formulation has 0-1 variables z;; for 1 < ¢ < |S| and
1 < j < m. Variable z;; is 1 if p; is assigned to machine j. Every vector has to be assigned to some

machine. This results in the following equation.
Y wij=1 1<i<|S] (1)
J
Given a bin configuration M we can define for each machine j and dimension k£ a height bound b;?
that an assignment should satisfy. Thus we obtain
Sopfemp <t 1<j<m,1<k<d (2)
i
In addition we have the integrality constraints, namely, z;; € {0,1}. We obtain a linear program
by replacing these constraints by the following.
Tij >0 3)

Proposition 1 Any basic feasible solution to the LP defined by Equations 1, 2, and 8 has at most

d - m vectors that are assigned fractionally to more than one machine.

Proof. The number of variables in our LP is n - m. The number of non-trivial constraints (those
that are other than z;; > 0) is (n+d-m). From standard polyhedral theory [28] any basic (vertex)

solution to our LP has n - m tight constraints. Therefore by a simple counting argument at most



(n 4+ d - m) variables can be strictly positive. Since each vector is assigned to at least one machine,

the number of vectors that are fractionally assigned to more than one machine is at most d-m. O

We can solve the above linear program in polynomial time and obtain a basic feasible solution.
Let S’ be the set of vectors that are not assigned integrally to any machine. By the above lemma
|S’| < d-m. We partition the set S’ into m sets of at most d vectors each in an arbitrary manner
and assign the ith set to the ith machine. Since [|p;|lc < § = €/d for every j € S’, the above step
does not violate the height by more than ¢ in any dimension.

Putting together all the ingredients we obtain our main theorem below.

Theorem 1 Given any fized € > 0, there is a (1 + €) approximation algorithm for the VS problem

that runs in (nd/€)°®) time where s = 0((%)(1).

Proof. Given a correct guess for the optimal schedule height it is clear from the description that
we obtain a (1 + O(e))-approximation. Following the overview of the algorithm we find a packing
of vectors in L and S for each choice of bin configuration M. The running time is dominated
by the time to pack L. Since there are at most m! = O(no(e_d)) bin configurations the running
time follows from Lemma 2.3. We can guess the optimal value to within a (1 + €) precision using

O(Ind/e€) guesses using a simple (d + 1)-approximation described in Subsection 2.2. O

2.2 The General Case

We now consider the case when d is arbitrary and present two approximation algorithms for this
case. The first algorithm is deterministic and has an approximation ratio that is only a function of
d (O(In% d)) while the second algorithm is randomized and achieves an approximation ratio that is
a function of both d and m (O(Indm/Inlndm)). Given a set of positive vectors A we denote by
V(A) the volume of A which is the sum of all coordinates of all vectors in A, in other words the ¢;

norm of 3, 4 pj. We once again assume that the optimal schedule height is 1.

2.2.1 An O(In® d)-approximation

We start by analyzing a simple algorithm which will serve as a base case for our O(In? d)-approximation
algorithm. Recall that J is the set of vectors in the input instance. The infinity norm of each of

the job vectors is clearly a lower bound on the optimal value. Hence
max ||p; < 1. 4
i ||pJ||OO_ ( )

The second lower bound is obtained by using the average volume per dimension.

V(J)

m-d

<1. (5)

10



We can strengthen the above bound by splitting the sum dimension wise.

T
miax o (6)
=1 m

A naive algorithm for our problem is to ignore the multi-dimensional aspect of the jobs and treat
them as a one dimensional vectors of size equal to the sum of their components. The dimensionality
of the bins is also ignored. Then one can apply the standard list scheduling algorithm of Graham
[16] for multiprocessor scheduling to obtain the following theorem that uses the simple lower bounds

developed above.

Lemma 2.4 Applying list scheduling on the volumes of the vectors results in a schedule of height

at most + max |Pjlloo- This yields a (d + 1)-approzimation.
j€

m

Proof. The upper bound follows from standard analysis of list scheduling. The approximation

guarantee follows from the lower bounds in Equations 4 and 5. O

The O(In? d)-approximation Algorithm: Before we state the algorithm formally we need a

couple of definitions. The following problem is a special case of a general PIP.

Definition 2.1 Given a set J of n vectors in [0,1]%, the largest volume packing problem is the
problem of finding a subset S such that ||S||c < 1 and V(S) is mazimized. Let Vmax denote the

value of the optimal solution.

Definition 2.2 An («, 8)-approzimation to the largest volume packing problem is a subset S that
satisfies the conditions ||S||ec < @ and V(S) > BVmax-

We will typically use the above definition with & > 1 and 8 < 1.
Algorithm Volume Pack:

1. repeat for t stages

(a) for k=1 to m do

i. Find an (a, B)-approximation to the largest volume packing problem with the cur-

rent set of job vectors.

ii. Allocate jobs in packing to machine k£ and remove them.
2. Find a separate schedule for the remaining jobs using naive volume based list scheduling.
3. Combine the two schedules machine by machine in the obvious way.

We now prove several simple lemmas to analyze the performance of the above algorithm.

11



Lemma 2.5 Let J(i) be the set of jobs remaining at the beginning of the ith stage with J(1) = J.

Let Ji (i) be the set of jobs remaining after machine k has been packed in stage i. Then
V(Jk(0) S V(I (@) - (1 = B/m)*

Proof. We prove the lemma by induction on k. The claim is trivially true for ¥ = 0. Suppose
the claim is true up to machine k. We show that the claim is true for machine (k£ + 1). Since all
jobs in J can be scheduled on m machines with height 1 it follows that all jobs in Ji(i) can be
likewise scheduled. By a simple averaging argument we can infer that there exists a set of jobs
in Ji(i) with volume at least V(Ji(7))/m that can be packed in a machine with height at most 1.
Since we obtain a § -approximation to largest volume packing, we pack jobs with a volume of at
least 3 - V(Jg(i))/m. Therefore V(Jy 41 (i)) < V(Ji(é)) - (1 — B/m). By our induction hypothesis
V(Ji(3)) < V(J(i)) - (1 — B/m)*. The lemma, follows. |

Corollary 1 V(J(i)) < V(J) /el VA,

Proof. From Lemma 2.5 V(J(i)) < V(J(i —1)) - (1 — 8/m)™. Since (1 — B/m)™ < e # we get the

required bound. m|

Lemma 2.6 Algorithm Volume Pack yields a schedule of height at most (t - a + efiﬂ +1).

Proof. Consider the machine that achieves the maximum height in the schedule produced by
Volume Pack. Let J; and Jo be the set of jobs allocated to that machine in the packing stage and
the list scheduling stage respectively. From the packing property it is easy to see that the height
of machine due to jobs in J; is at most ta. Let J' be the set of jobs remaining after the ¢ stages of

packing. These are scheduled using list scheduling. From Corollary 1 we have that
V(J') <V(J)/eP.
From Lemma 2.4, the height increase of the machine due to jobs in Js is at most

V) (dm) +1 < % 41,

d
’ .
V(J')/m +mj§1x||p]||oo < B

etB
In the above inequality we are using the fact that the two lower bounds are less than 1, the optimal

value. Combining the two equations gives us the desired bound. O

The parameter ¢ in the algorithm can be chosen as a function of « and 8 to obtain the best
ratio. Note that the largest volume packing problem is a special case of a PIP where ¢; is simply the
volume of vector i. PIPs have a (O(Ind), 1/2)-approximation via randomized rounding [27, 29] that
can be derandomized by techniques from [26]. When d is fixed there is a (1,1 — €) approximation

d/e

[7] that runs in time polynomial in n*€. These observations imply the following.
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Theorem 2 There is an O(In? d)-approzimation algorithm for the VS problem.

Theorem 3 There is an O(Ind)-approzimation algorithm for the VS problem that runs in time

polynomial in n?.

2.2.2 An O(lndm/Inlndm)-Approximation

The approximation result of Theorem 2 is good when d is small compared to m. However when d
is large we can obtain a O(Indm/ InIndm)-approximation by a simple randomized algorithm that
assigns each vector independently to a machine chosen uniformly at random from the set of m
machines. Theorem 4 bounds the performance of this algorithm, referred to as Random. We need

a version of the standard Chernoff bound on sums of independent random variables.

Proposition 2 Let Xi,...,X,, be independent binary random variables and let X = > 1, t; X;.
Let T = max; t; and p = E[X]. Then, for any sufficiently large h, Pr [X > (14 chllrl‘:h)(u + T)] <
h=e/2,

Proof. Let Y; be a random variable such that Y; = '%XZ Note that Y; takes on values in [0, 1].
Let Y = ,Y;. It follows that Y = X/T and that E[Y] = p/T. Therefore, for any § > 0,
Pr(X > (1+40)(p+T)] =Pr[Y >(1+)(u/T+1)]. Applying the standard Chernoff-Hoeffding
bounds [25] on sums of independent random variables that assume values in [0,1] to Y, we get the

desired result. O

Theorem 4 Random gives an O(lndm/ Inlndm)-approzimation with high probability.

Proof. Consider the first machine. Let X; be the indicator random variable that is 1 if vector j is
assigned to the first machine. The X;’s are independent. By uniformity Pr[X; = 1] = 1/m. Let
P =73 ,p;X;. Note that P is a vector since each p; is a vector: let P' denote the ith coordinate
of P. By linearity of expectations E[P?] = > pé- /m < 1 (using Equation 5). Also observe that
max; p;'- < 1 (using Equation 4). Now we estimate the probability that P® deviates significantly
from its expected value. From Proposition 2, Pr [Pi > (E[P!] + max; pé-)(l +clndm/Inln dm)] <
(dm)~¢/2. Thus with high probability P* is O(Indm/Inlndm). In general, if A% is the event that
the ith dimension of machine k is greater than 2(1 + ¢)Indm/Inlndm, then from above we know
that Pr [A¢] < (dm)~¢/2. Thus Pr [(A = Ul um, A}c)] < dm(dm)~¢/2. By choosing c sufficiently
large we can ensure that Pr [A] is less than an inverse polynomial factor. But the complement of
A is the event that the schedule length is O(Indm/Inlndm). Thus with high probability we get

an O(lndm/ Inlndm)-approximation. O
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3 Algorithms for Vector Bin Packing

We now examine the problem of packing a given set of vectors into the smallest possible number

of bins. Our main result here is as follows:

Theorem 5 For any fized € > 0, we can obtain in polynomial time a (1 + €-d + O(In(1/e)))-

approzimate solution for vector bin packing.

This improves upon the long standing (d + €)-approximation algorithm of [4]. Our approach
is based on solving a linear programming relaxation for this problem. As in Section 2.1, we use a
variable z;; to indicate if vector p; is assigned to bin j. We guess the least number of bins m (easily

located via binary search) for which the following LP relaxation is feasible; clearly m < OPT.

Zwijzl 1<i<n
J
Zpi-c-.’l,‘z’j31 1<j<m,1<k<d
i
.’B,‘jZO 1<i<n,1<j<m

Once again, we use the fact that a basic feasible solution would make fractional bin assignments
for at most d - m vectors. Thus at this point, all but a set S of at most d - m vectors have integral
assignments in m bins. To find a bin assignment for S, we repeatedly find a set S’ C S of up
to k = [1/€] vectors that can all be packed together and assign them to a new bin. This step is
performed greedily, i.e. we seek to find a largest possible such set in each iteration. We can perform
this step by trying out all possible sets of vectors of cardinality less than (k 4+ 1). We now claim
that this procedure must terminate in e-d-m+ O(Ine ') - OPT steps. To see this, consider the first
time that we pack less than k vectors in a bin. The number of bins used thus far is bounded by
(d-m)/k. Moreover, the total number of vectors that remain at this point is at most (k—1)OPT; let
S’" denote this remaining set of vectors. Since the optimal algorithm cannot pack more than (k — 1)
vectors of S’ in one bin, our greedy bin assignment procedure is identical to a greedy set cover
algorithm where each set has size at most (k — 1). Following the analysis of the greedy algorithm
in [17], the total number of bins used in packing vectors in S’ is bounded by Hj, ;- OPT (H; is the
ith harmonic number). Putting things together, we obtain that the number of bins used by our

algorithm, A, is bounded as follows:

A<m+(d-m)/k+Hy 1-opT < (1+e-d+O(lnet)) - opr.

This completes the proof of Theorem 5. Substituting e = 1/d, we obtain the following simple

corollary:

14



Corollary 2 For fized d, vector bin packing can be approzimated to within O(Ind) in polynomial

time.

4 Inapproximability Results

In this section we show hardness of approximation results for the three problems we consider, vector

scheduling, vector bin packing, and packing integer programs. We start with PIPs.

4.1 Packing Integer Programs (PIPs)

Randomized rounding techniques of Raghavan and Thompson [27] yield integral solutions of value
t; = Q(OPT/dYB) if A € [0,1]%", and ty = Q(OPT/dY/(B+1)) if A € {0,1}%*". Srinivasan [29]
improved these results to obtains solutions of value Q(tf;/ (B_l)) and Q(thH)/ B) respectively. We
show that PIPs are hard to approximate to within a factor of Q(dB;er) for every fixed integer B.
We start with the case A € {0,1}%*" and then indicate how our result extends to A € [0, 1]4%™.
Our reduction uses the result of Hastad [18] that shows that unless NP = ZPP the maximum
independent set problem is hard to approximate within a factor of n!~¢ for any fixed € > 0. Since
the upper bounds are in terms of d, from here on, we will express the inapproximability factor only
as a function of d.

Given a graph G = (V, E) with |V| = n and a positive integer B, we construct an instance of an
instance of a PIP, I, as follows. Let A be a d x n zero-one matrix with d = n{8+1 such that each

row corresponds to an element from V(B Let ri = (Vig, - - denote the tuple associated

S Vin )
with the ith row of A. We set a;; to 1 if and only if the following conditions hold, otherwise we set
it to 0: (a) the vertex v; occurs in r;, and (b) the vertices in r; induce a clique in G.

We set ¢ to {1}" and b to { B}¢. For any fixed integer B, the reduction can be done in polynomial

time. Note that a feasible solution to I can be described as a set of indices S C {1,...,n}.

Lemma 4.1 Let X CV be an independent set of G. Then S = {i | v; € X} is a feasible solution
to I of value |S| = |X|. Furthermore S can be packed with a height bound of 1.

Proof. Suppose that in some dimension the height induced by S is greater than 1. Let r be the
tuple associated with this dimension. Then there exist 4, j € S such that v;,v; € r and (v;,v;) € E.

This contradicts the assumption that X is an independent set. |

Lemma 4.2 Let S be any feasible solution to I and let Gg be the subgraph of G induced by the
set of vertices v; such that i € S. Then w(Gg) < B where w(Gg) is the clique number of Gg.

Proof. Suppose there is a clique of size (B + 1) in Gg; w.l.o.g. assume that vy, ... ,U(B+1) are the

vertices of that clique. Consider the tuple (v1,v2,. .., v B+1)) and let ¢ be the row of A corresponding
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to the above tuple. Then by our construction, a;; = 1 for 1 < j < (B + 1). There are (B + 1)
vectors in S with a 1 in the same dimension %, violating the ith row constraint. This contradicts

the feasibility of S. O
The following is a standard Ramsey type result.

Lemma 4.3 Let G be a graph on n vertices with w(G) < k. Then o(G) > n'/*,

Lemmas 4.2 and 4.3 give us the following corollary:

Corollary 3 Let S be any valid solution to Ig of value t = |S|. Then a(G) > t'/5.

Theorem 6 Unless NP = ZPP, for every fixed integer B and fized ¢¢ > 0, PIPs with bound

b= {B} and A € {0,1}%%" are hard to approzimate to within a factor of dBF1 0 PIPs with
1

A €[0,1]%*" and B rational are hard to approzimate to within a factor of dTBIFT1 .

Proof. We first look at the case of PIPs with A € {0,1}%%". Notice that our reduction produces

only such instances. Suppose there is a polynomial time approximation algorithm A for PIPs with

1
bound B that has an approximation ratio dB+1~°° for some fixed ¢y > 0. This can be reinterpreted

as a dFFT -approximation where ¢ = ¢y(B+1) is another constant. We will obtain an approximation
algorithm G for the maximum independent set problem with a ratio n' = for § = ¢/B. The hardness
of maximum independent [18] will then imply the desired result. Given a graph G, the algorithm
G constructs an instance I of a PIP as described above and gives it as input to .A. G returns
max(1,'/B) as the independent set size of G where ¢ is the value returned by A on Ig. Note
that by Corollary 3, a(G) > t%/B which proves the correctness of the algorithm. Now we prove
the approximation guarantee. We are interested only in the case when a(G) > n'~? for otherwise
a trivial independent set of size 1 gives the required approximation ratio. From Lemma 4.1 it
follows that the optimal value for I is at least a(G). Since A provides a dﬁ-approximation
t> a(G)/d(’;%el). In the construction of Ig d = n(B+1), Therefore t > a(G)/n'~€). Simple algebra
verifies that t'/% > a(G)/n'~% when a(G) > n'~?.

Now we consider the case of PIPs with A € [0,1]9%". Let B be some real number. For a given
B we can create an instance of a PIP as before with B’ = | B]. The only difference is that we
set b = B%. Since all entries of A are integral, effectively the bound is B’. Therefore it is hard to
approximate to within a factor of d1—6/(B'+1) = g(1-9/(LBI+1) " Since (|B+1/d| +1) = B +1,
d0—/(1B]+1) = @(d(1—9)/B). O

Discussion: An interesting aspect of our reduction above is that the hardness results hold even
when the optimal algorithm is restricted to a height bound of 1 while allowing a height bound of

B for the approximation algorithm. Let an («, 3)-bicriteria approximation be one that satisfies the
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relaxed constraint matrix Az < ab and gets a solution of value at least OPT/3, here OPT satisfies

Az < b. Then we have the following corollary:

Corollary 4 Unless NP = ZPP, for every fixed integer B and fized € > 0, it is hard to obtain a

(B,dB;H_e) bicriteria approzimation for PIPs.

1
For a given B, we use d = nPT! and a hardness of dB¥1 € is essentially the hardness of n'

for independent set. This raises two related questions. First, should d be larger than n to obtain
the inapproximability results? Second, should the approximability (and inapproximability) results
be parameterized in terms of n instead of d? These questions are important to understand the
complexity of PIPs as d varies from O(1) to poly(n). We observe that the hardness result holds as
long as d is Q(n€) for some fixed € > 0. To see this, observe that in our reduction, we can always
add poly(n) dummy columns (vectors) that are either useless (their c¢; value is 0) or cannot be
packed (add a dummy dimension where only B of the dummy vectors can be packed). Thus we
can ensure that n > poly(d) without changing the essence of the reduction. We have a PTAS when
d = O(1) and a hardness result of d'/(F+1) when d = poly(n). An interesting question is to resolve
the complexity of the problem when d = polylog(n).

As remarked earlier, Srinivasan [29] improves the results obtained using randomized rounding
to obtain solutions of value Q(thH)/B) where t, = Q(y*/d"/(B+D)) for A € {0,1}%*™. In the above
y* is the optimal fractional solution to the PIP. It might appear that this contradicts our hardness
result but observe that for the instances we create in our reduction y*/d"/(P+1) < 1. For such

instances Srinivasan’s bounds do not yield an improvement over randomized rounding.

4.2 Vector Scheduling

We now extend the ideas used in the hardness result for PIPs to show the following hardness result

for the vector scheduling problem.

Theorem 7 Unless NP = ZPP, for every constant v > 1, there is no polynomial time algorithm

that approximates the schedule height in the vector scheduling problem to within a factor of .

Our result here uses the hardness of graph coloring; Feige and Kilian [6] building on the work
of Hastdd [18] show that graph coloring is n!~¢-hard unless NP=ZPP. Our reduction is motivated
by the fact that graph coloring corresponds to covering a graph by independent sets. We start with

the following simple lemma that is easily derived from Lemma 4.3.
Lemma 4.4 Let G be a graph on n vertices with w(G) < k. Then x(G) < O(n'~"*Inn).

Let B = [v]; we will show that it is hard to obtain a B-approximation using a reduction from

chromatic number. Given graph G we construct an instance I of the VS problem as follows. We
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construct n vectors of n®*! dimensions as in the proof of Theorem 6. We set m the number of

machines to be n.25 .
Lemma 4.5 If x(G) < m then the optimal schedule height for I is 1.

Proof. Let Vi,...,V, () be the color classes. Each color class is an independent set and by Lemma
4.1 the corresponding vectors can be packed on one machine with height at most 1. Since x(G) < m

the vectors corresponding to each color class can be packed in a separate machine. |

Lemma 4.6 If the schedule height for I is bounded by B then x(G) < Bnt=1/2Bnn for some fized

constant 3.

Proof. Let V1, V5, ..., V,, be the partition of vertices of G induced by the assignment of the vectors
to the machines. Let G; be the subgraph of G induced by the vertex set V;. From Lemma 4.2 we
have w(G;) < B. Using Lemma 4.4 we obtain that x(G;) < Bnt~YB1nn for 1 <4 < m. Therefore
it follows that x(G) < 3, x(G;) < m - fn' Y Blnn < gn' /2B inn. O

Proof of Theorem 7. Feige and Kilian [6] showed that unless ZPP = NP for every € > 0
there is no polynomial time algorithm to approximate the chromatic number to within a factor of
n'~¢. Suppose there is a B-approximation for the VS problem. Lemmas 4.5 and 4.6 establish that
if x(G) < n'/2B then we can infer by running the B-approximation algorithm for the VS problem
that x(G) < Bn'~Y/?BInn. This implies a An'~1/28 Inn-approximation to the chromatic number.

From the result of [6] it follows that this is not possible unless NP = ZPP. a

4.3 Vector Bin Packing

As mentioned before VBP is APX-hard even for d = 2. We show a simple d>~¢ hardness for VBP
when d is arbitrary. The reduction is similar to that in the previous subsection and uses hardness
of graph coloring. Given a graph G with n vertices and m edges we create an instance Ig of VBP
with n vectors, each of m dimensions. For a vector v; corresponding to a vertex ¢ of G, the jth
coordinate is 1 if ¢ is incident on the jth edge, otherwise it is 0. If the vectors are required to be
packed into bins of height 1 it is easily seen that the number of bins required corresponds exactly

to a coloring of G. Thus the hardness of chromatic number applies directly to VBP.

Theorem 8 Unless NP = ZPP, VBP is hard to approximate to within a dz—¢ factor for every
fized € > 0.
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5 Conclusions

We studied multi-dimensional generalizations of multiprocessor scheduling, bin packing and the
knapsack problem and obtained a variety of new algorithmic as well as inapproximability results
for them. While our work gives news insights into the approximability of these problems, several
questions remain open. In particular, large gaps remain between the upper and lower bounds
for both vector scheduling and vector bin packing when the number of dimensions is arbitrary.
For packing integer programs, our hardness result is essentially tight, but it applies only to fixed
values of B. The quality of approximation improves dramatically when B is allowed to grow
as a logarithmic function of d, in particular a constant factor approximation is achievable when
B = Q(logd/loglogd). It will be interesting to see if our techniques can be extended to obtain

hardness result when B is allowed to be a function of d.

Acknowledgments

We are grateful to Aravind Srinivasan for guiding us through the literature on packing integer
programs and his encouragement at the early stages of this research. We thank CIliff Stein for his
comments on this work in its form as a chapter in the dissertation of the first author. We also

thank the anonymous referees for many useful comments on an earlier version of the paper.

References

[1] N. Alon, Y. Azar, J. Csirik, L. Epstein, S. V. Sevastianov, A. P. A. Vestjens, and G. J. Woegin-
ger. On-line and off-line approximation algorithms for vector covering problems. Algorithmica,
21(1):104-18, 1998.

[2] S. F. Assman. Problems in Discrete Applied Mathematics. PhD thesis, Mathematics Dept,
MIT, 1983.

[3] C. Chekuri and S. Khanna. On multi-dimensional packing problems. In Proceedings of the
10th Annual ACM-SIAM Symposium on Discrete Algorithms, 185-194, 1999.

[4] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + € in linear
time. Combinatorica, 1:349-355, 1981.

[56] D.J. DeWitt and J. Gray. Parallel database systems: The future of high performance database
systems. Communications of the ACM, 35(6):85-98, June 1992.

[6] U. Feige and J. Kilian. Zero knowledge and the chromatic number. In Proceedings of the
Eleventh Annual IEEE Conference on Computational Complezity, pages 278-287, 1996.

19



[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional 0-1
knapsack problem: worst-case and probabilistic analyses. FEuropean Journal of Operational
Research, 15(1):100-9, 1984.

M. R. Garey and R. L. Graham. Bounds for multiprocessor scheduling with resource con-
straints. STAM Journal on Computing, 4(2):187-200, June 1975.

M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. Yao. Resource constrained scheduling
as generalized bin packing. Journal of Combinatorial Theory Ser. A, 21:257-298, 1976.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, 1979.

Minos N. Garofalakis and Yannis E. Ioannidis. Scheduling issues in multimedia query opti-
mization. ACM Computing Surveys, 27(4):590-92, December 1995.

Minos N. Garofalakis and Yannis E. Ioannidis. Multi-dimensional resource scheduling for
parallel queries. In Proceedings of the 1996 ACM SIGMOD International Conference on Man-
agement of Data, pages 365-76, June 1996.

Minos N. Garofalakis and Yannis E. Ioannidis. Parallel query scheduling and optimization
with time-and space-shared resources. In Proceedings of the 23rd VLDB Conference, pages
296-305, 1997.

Minos N. Garofalakis, Banu Ozden, and Avi Silberschatz. Resource scheduling in enhanced
pay-per-view continuous media databases. In Proceedings of the 23rd VLDB Conference, pages
516-525, 1997.

R. L. Graham. Bounds for certain multiprocessor anomalies. Bell System Tech. J., 45:1563-81,
1966.

R. L. Graham. Bounds on multiprocessor timing anomalies. SIAM Journal on Applied Math-
ematics, 17:416-429, 1969.

M. M. Halldérsson. Approximating k-set cover and complementary graph coloring. In Pro-
ceedings of Fifth IPCO Conference on Integer Programming and Combinatorial Optimization,
LNCS 1084, pages 118-131. Springer Verlag, 1996.

J. Hastad. Clique is hard to approximate to within n'~¢. In Proceedings of the 87th Symposium
on Foundations of Computer Science, pages 627-636, 1996.

D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling
problems: theoretical and practical results. Journal of the ACM, 34:144-162, 1987.

20



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems. Journal of the ACM, 22(4):463-8, 1975.

N. Karmarkar and R. Karp. An efficient approximation scheme for the one-dimensional bin-
packing problem. In Proceedings of the 23rd Symposium on Foundations of Computer Science,
pages 312-320, 1982.

R. M. Karp, M. Luby, and A. Marchetti-Spaccamela. A probabilistic analysis of multi-
dimensional bin packing problems. In Proceedings of the Annual ACM Symposium on the
Theory of Computing, pages 289-298, 1984.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Handbooks in OR & MS,
volume 4, chapter Sequencing and Scheduling: Algorithms and Complexity, pages 445-522.
Elsevier Science Publishers, 1993.

L. Lovasz. On the ratio of the optimal integral and fractional covers. Discrete Math., 13:383—
390, 1975.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press (1995).

P. Raghavan. Probabilistic construction of deterministic algorithms: approximating packing

integer programs. Journal of Computer and System Sciences, 37:130-143, 1988.

P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7:365-374, 1987.

Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience series in

discrete mathematics. Wiley, 1986.

Aravind Srinivasan. Improved approximations of packing and covering problems. In Proceed-
ings of the 27th ACM Symposium on the Theory of Computing, pages 268-276, 1995.

G. Woeginger. A polynomial time approximation scheme for maximizing the minimum com-

pletion time. Operations Research Letters, 20:149-154, 1997.

G. Woeginger. There is no asymptotic PTAS for two-dimensional vector packing. Information
Processing Letters, 64:293-97, 1997.

21



	On Multi-dimensional Packing Problems
	Recommended Citation

	On Multi-dimensional Packing Problems
	Abstract
	Keywords
	Disciplines
	Comments

	tmp.1110386874.pdf.aa8Rb

