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Abstract. Partial differential operators in finance of-
ten originate in bounded linear stochastic processes. As
a consequence, diffusion over these boundaries is zero
and the corresponding coefficients vanish. The choice of
parameters and stretched grids lead to additional anisot-
ropies in the discrete equations or inequalities.

In this study various block smoothers are tested in
numerical experiments for equations of Black-Scholes-
type (European options) in several dimensions. For lin-
ear complementarity problems, as they arise from op-
timal stopping time problems (American options), the
choice of grid transfer is also crucial to preserve com-
plementarity conditions on all grid levels. We adapt the
transfer operators at the free boundary in a suitable way
and compare with other strategies including cascadic ap-
proaches and full approximation schemes.

Key words Multigrid, plane smoothers, linear com-
plementarity problems, option pricing

1 Introduction

1.1 The Black-Scholes model and related equations

1.1.1 Options

In the simplest setting an option gives the holder the
right — but not the obligation — to buy (call) or sell
(put) an underlying risky asset S for a fixed price (the
strike price) K at some fixed time (expiration) T in the
future (European contract) or any time up to the expira-
tion date (American contract). The classical example for
an underlying asset is a single stock, where interest rate
options and exchange rate options are further standard
contracts.

We consider as underlying asset a contingent claim g
dependent on a multivariate process S (e. g. d stocks).
At expiration the price u of a, say, put option is clearly

u(S, T ) = u0(S) := max (K − g(S), 0) . (1)

1.1.2 European options

If S is modelled as geometric Brownian motion dSi =
µiSidt + σidWi with drifts µi, constant volatilities σi

and Wiener processes Wi like in the original studies by
Black, Merton and Scholes [1], the option price follows
the PDE

∂u

∂t
+ LBSu = 0, (2)

LBSu :=
1

2

n
∑

i,j=1

σiσjρijSiSj
∂2u

∂Si∂Sj
+ r

n
∑

i=1

Si
∂u

∂Si
− ru,

which can be solved backwards in time from the termi-
nal condition (1). Here ρij are the asset corelations and
r the risk-free interest rate, which are both assumed to
be constant. Despite well-known deficiencies the Black-
Scholes model is still most widely used among practition-
ers. Moreover, it can serve as a basis for homogenisation
approaches [7].

As a multi-dimensional example we will consider in
the following a basket of stocks, g(S) =

∑

µiSi, with
positive weights µi. After time reversion the Black-Scholes-
PDE forms the initial value problem

∂u

∂t
− LBSu = 0 ∀(S, t) ∈ Rn

+ × (0, T ), (3)

u(S, 0) = u0(S) =
(

K −

d
∑

i=1

µiSi

)

+
∀S ∈ Rd

+.

For Si = 0 natural boundary conditions hold (note that
all coefficients vanish as Si → 0), for |S| → ∞ asymp-
totical values can be set as Dirichlet conditions.

Note also that the equation is invariant under rescal-
ing of the asset variables, so without loss of generality
the domain can be taken as [0, 1]d. The only reference
value is then the strike price K.

1.1.3 American options

In the case of American contracts the option price is
subject to an inequality constraint and can be shown [17]
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to be the solution of the linear complementarity problem

∂u

∂t
− LBSu ≤ 0, (4)

u ≥ g, (5)
(

∂u

∂t
− LBSu

)

· (u− g) = 0 (6)

with g = u0 and initial and boundary values as in the
European case.

1.2 Transformations

In the following we study various formulations of (3) in
different coordinates. Due to the special structure of the
Black-Scholes model, it can be transformed into a more
convenient form. The widely used ‘log price’ yi := lnSi

(1 ≤ i ≤ d) leads to a problem with constant coefficients

∂u

∂t
=

1

2

d
∑

i,j=1

σiσjρij
∂2u

∂yi∂yj
+

d
∑

i=1

(r −
1

2
σ2

i )
∂u

∂yi
− ru

∀(y, t) ∈ Rn × (0, T ), (7)

u(y, 0) = u0(e
y) =

(

K −
d
∑

i=1

µie
y
i

)

+
∀y ∈ Rd.

Now transformation of the diffusion operator to diagonal
form, Λ = QΣQT , further simplifies the system via ro-

tation and translation z := Qy− tb (bi :=
∑d

j=1 qij(r −
1
2σ

2
j )):

∂u

∂t
=

1

2

d
∑

i=1

λi
∂2u

∂zi
2
− ru ∀(z, t) ∈ Rd × (0, T ), (8)

u(z, 0) = u0(e
QTz) ∀z ∈ Rd.

This formulation is an ideal starting point for principal
component analysis and dimension reduction techniques
that are inevitable for high-dimensional problems [14].

In the case of basket options the following trans-
formation, where the basket itself serves as a variable
(x1 =

∑

i µiSi) and the other coordinates (x2, . . . , xd)
parametrise its level sets (see also Fig. 1), proved very
useful:

S1 = x1x2, (9)

Si = x1xi+1

i
∏

k=2

(1− xk), 2 < i < d, (10)

Sd = x1

d
∏

k=2

(1− xk). (11)

This leads to a parabolic equation of the type

∂u

∂t
+

d
∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

d
∑

i=1

bi(x)
∂u

∂xi
+ ru = 0 (12)

with polynomial coefficients. For details see [14]. De-
pending on the dimensionality and the required accuracy
all these formulations can be useful.
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Fig. 1. d = 2: x1 = s1 + S2, x2 = S1/(S1 + S2)

For other contracts or more general models for the
asset price movement, e. g. with stochastic volatilities or
interest rates, equations of similar structure arise, par-
ticularly diffusion (and often convection) over boundary
faces vanish. This is a necessary (and sufficient) condi-
tion for the underlying stochastic processes to be bounded
in the respective dimensions and guarantees uniqueness
of the solution of the parabolic problem without bound-
ary conditions [18]. In a typical setting

aij(x) = 0 for xi, xj ∈ {0, 1} ∀i, j ∈ I, (13)

bi(x) = 0 for xi ∈ {0, 1} or at least (14)

bi(x)ni(x) ≥ 0 for xi ∈ {0, 1} ∀i ∈ I, (15)

where ni(x) is the outward normal and I ⊂ {1, . . . , d}.
An efficient robust solver for this class of equations and
variational inequalities is desired.

1.3 Challenges and previous work

The objective of this paper are robust solvers of opti-
mal complexity for anisotropic discrete problems result-
ing from the discretisation of strongly anisotropic con-
tinuous equations or variational inequalities of type (3)
to (12), eventually on massively anisotropic grids as they
are required e. g. for sparse grid extrapolation [14].

1.3.1 Anisotropic equations

Evidently, the anisotropies come here from three factors:

1. stretched grids (global),
2. the parameters (global), i. e. different volatilities for

different components as in equation (2) or the decay
of the spectrum as in (8),

3. vanishing coefficients along the boundary (local), as
observed in equations (3) and (12) combined with
(13), (14).

It is clear that 1. and 2. are roughly equivalent on a dis-
crete level. This type of problem has been thoroughly
studied in the literature, see e. g. [11] for an exten-
sive survey of numerical results for different types of
point, line and plane smoothers for the anisotropic three-
dimensional Poisson equation or [12] for the application
of plane smoothers for anisotropic Navier-Stokes equa-
tions.

In this paper we will focus on the last aspect.
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1.3.2 Linear complementarity problems

If the solution is subject to complementarity conditions,
this requires additional consideration. The crucial point
is the construction of suitable transfer operators that
preserve complementarity in the coarsening process.

Brandt and Cryer [3] study variants of Brandts full
approximation scheme, where projected SOR-sweeps [5]
are used as smoother. They choose essentially injection,
which gives satisfactory results for porous flow through
a dam, but due to the reduced order leads to strongly
deteriorated convergence rates in problems with varying
coefficients.

Hoppe, Kornhuber [8], and Wittum [10] modify the
transfer operators at the free boundary such that pro-
longation and restriction are performed on active and
inactive sets seperately. In other words, the coarse grid
correction is switched off for the free boundary while still
preserving the order of the transfer operators.

Braess et al. [2] avoid this problem altogether in a cas-
cadic technique, where obviously no restriction is needed.
However, in this ‘one way’ approach low-frequency errors
can not be reduced efficiently once a finer level has been
reached, which is a problem if the solution needs to be
known very exactly (beyond discretisation error).

1.3.3 Applications in option pricing

Kǒcvara et al. [15] propose for American option pric-
ing equations a combined (one level) iteration with a
sequence of projected SSOR steps followed by CG steps
restricted to the inactive set. This gives considerably im-
proved convergence compared to a simple projected it-
eration and works well for sufficiently well-conditioned
systems.

Clarke and Parrott [4] successfully apply a multigrid
iteration with a hybrid-smoother that combines global
projected point Gauss-Seidel with line smoothing on the
inactive set for a one-factor model with stochastic volatil-
ity.

Oosterlee [13] studies the same problem and improves
the results of Brandt and Cryer for the setting of varying
coefficients by iterant recombination.

1.4 Outline

In section 2 we will study numerically the robustness of
various block smoothers for problems of different dimen-
sionality (d = 2, 3, 4). In d dimensions naturally blocks
of dimensionality 0 to d can be chosen (2.2.1 to 2.2.3).
For the (approximate) inversion of the blocks CG-type
solvers and recursively applied multigrid methods are
compared.

Section 3 confers this approach to obstacle problems.
Additional attention is devoted to the grid transfer (3.3),
where we introduce one-sided transfer operators at the
free boundary. Full multigrid (3.4) provides a good initial
approximation for the active set, where smoothing is also
performed plane-wise (3.5). Finally we compare with a
cascadic strategy (3.6).

2 Multigrid for anisotropic problems

In this section we are concerned with the efficiency of
iterative solution methods for linear equations

Ahuh = bh

arising from space — e. g. finite difference — and (im-
plicit) time discretisations — e. g. the θ-scheme — of
equations of the type introduced in the previous section.
We will denote this problem by LP(Ah,bh). Particularly,
we study multigrid methods with levels l = 1, . . . , L,
transfer operators I l−1

l (restriction) and I l
l−1 (prolon-

gation). The coarse grid matrices are obtained by the

Galerkin ansatz Al−1 = I l−1
l AlI l

l−1.
For future reference and comparison with the com-

plementarity problems we list here the standard V-cycle
for linear problems.

Algorithm 1 V-Cycle

procedure V(l, Al, bl, ul)
begin

if l = 1 then

u1 ← LP(A1, b1);
else begin

ul ← S(Al, bl, ul); (pre-smoothing)

rl = bl −Aul;

rl−1 = I l−1
l rl;

dl−1 ← V(l − 1, Al−1, rl−1, dl−1);

dl = I l
l−1d

l−1;

ul = ul + dl;

ul ← S(Al, bl, ul); (post-smoothing)
end

return V-Cycle

There are several approaches to deal with inhomo-
geneities and anisotropies in a (here: geometric) mul-
tilevel context. We can point out three main classes,
assigned to the different components of the multigrid
method: block-smoothing (blocks with weak coupling are
inverted collectively), semi-coarsening (coarsening of the
grid in the direction of the anisotropy only) and matrix-
dependent grid transfer. The latter is not required here
as the discrete relative jumps of the coefficients on the
grid that appear at the boundary are of moderate size.

In the following subsections we will investigate vari-
ous block smoothers in greater detail.

2.1 Hyperplane smoothers

The degeneracy of the partial differential equation at the
boundary, as described in 1.2 (see (13), (14)), strongly
suggests the use of block-smoothers where planes orthog-
onal/parallel to the boundaries are inverted simultane-
ously. As can be expected, accurate solutions of these
equations are not necessary and normally a reduction
of the residual by a factor about 0.1 will suffice to pro-
vide smoothing properties. This can be achieved by some
CG-type steps or a few (typically one) MG-cycles.
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More precisely, if the index set of the scalar unknowns
on a tensor product grid is

I = {1 ≤ i ≤ n},

where i is a multiindex and n = (n1, . . . , nd) is the length
of the grid in the different directions (yielding a total of
N = n1 · · ·nd unknowns) we define (d−m)-dimensional
blocks

Ij1,...,jm

k1,...,km
= {1 ≤ i ≤ n : ik1

= j1, . . . , ikm
= jm},

i. e. the coordinates in the m directions k1, . . . , km are
kept fixed at j1, . . . , jm. The number of blocks is then
M = (n1 · . . . · nm)/(nk1

· . . . · nkm
). For simplicity we

denote for fixed k1, . . . , km, j1, . . . , jm the M blocks by
I1, . . . , IM , so that I = I1∪̇ . . . ∪̇IM . This partitioning
corresponds to blocks of vectors ui, bi and matrices Aij ,
1 ≤ i, j ≤M , and induces a block Gauß-Seidel algorithm
of the form

uk+1
i = A−1

ii

(

bi −
∑

j<i

Aiju
k+1
j −

∑

j>i

Aiju
k
j

)

. (16)

For two and three dimensions the case m = 1 is known
as line smoothing, the case m = 2 as plane smoothing.
Generally speaking, we will study the extreme casesm =
d (direct solver), m = d − 1 (hyper-plane smoother),
m = 1 (line smoother) and m = 0 (point smoother).

If not indicated differently, all non-trivial block-sys-
tems in the following numerical tests are solved by Bi-
CGSTAB [16] as are the coarse grid problems.

2.2 Numerical tests

For the numerical tests we study model problem (3) with
a few uncorrelated assets (d = 2, 3, 4), σi = 0.4, r =
0.05, T = 1, K = 0.25. For a discretisation with central
differences we perform one implicit Euler step covering
the time interval.

Starting from an initial guess u(0), the multigrid it-
eration generates a sequence u(k), (k ≥ 0). For those
iterates the average convergence rate is

ρ̄k =

(

‖b−Au(k)‖

‖b−Au(0)‖

)

1
k

. (17)

Of most practical interest, however, is the number of
work units W (ε) that is necessary for an error reduc-
tion by a factor of ε. As standard work unit we take one
V(1,1)-cycle with a point Gauß-Seidel smoother on the
respective grid. If the number of operations shall be in-
cluded in the rate, we look at a weighted average rate of
the type

ρ̂ = ρ̄
1

W , (18)

where W is the CPU-time of a cycle in standard units.
Note that for the ‘direct’ Bi-CG solver only selected

iterations are plottet.
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Fig. 2. 2D Black-Scholes, 263169 points: Error reduction ε
vs. work units W for point Gauß-Seidel smoother, alternating
line Gauß-Seidel smoother and direct (Bi-CGSTAB) solver

Table 1. 2D Black-Scholes: Average convergence rate ρ̄, so-
lution time T plus the relative work units W and relative con-
vergence rate ρ̂ for grid levels l = 7, . . . , 10 (16641 to 1050625
points) for point Gauß-Seidel smoother and alternating line
Gauß-Seidel smoother

l 7 8 9 10

point ρ̄ 0.9681 0.9825 0.9858 0.9866
T 14.6 106 525 3220

line ρ̄ 0.0200 0.0254 0.0289 0.0308
W 6.70 6.60 7.30 5.20
ρ̂ 0.557 0.587 0.616 0.512
T 0.92 3.6 15.9 65.1

Table 2. 3D Black-Scholes, plane smoother: average rate ρ̄,
cycle time t̄ and overall solution time T (sec) for ε2 = 10−k/3

k 1 2 3 4 5 10

ρ̄ 0.085 0.019 0.0070 0.0066 0.0066 0.0075
t̄ 9.6 11.7 13.1 14.6 16.5 27.5
T 115 82 79 87 99 165

2.2.1 2-dim basket

It is clear that lines can be inverted in linear complexity
by a direct tridiagonal solver. From Table 1 and Fig. 2
we deduce that for the point smoother multigrid efficieny
is lost, whereas for the alternating line smoother there is
an asymptotical (grid independent) convergence rate.

2.2.2 3-dim basket

First we check the impact of the accuracy of the plane
solutions on the overall convergence speed. Table 2 shows
the avarage convergence rate ρ̄, the average CPU-time t̄
for a multigrid cycle, and total time T for an error reduc-
tion of ε = 10−12 at a 653 grid. The block-systems are
hereby solved by Bi-CGSTAB with varying accuracy ε2.
We see that an error reduction below 0.1 is not reason-
able. For the following simulations we therefore choose
ε2 = 0.1.
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Fig. 3. 3D Black-Scholes: Error reduction ε vs. work units W
for point Gauß-Seidel smoother, alternating line Gauß-Seidel
smoother, alternating plane Gauß-Seidel smoother and direct
(Bi-CGSTAB) solver

Table 3. 3D Black-Scholes: Average convergence rate ρ̄,
work units per cycle W and relative rate ρ̂ for grid levels
l = 4, . . . , 7 (4913 to 2146691 points) for point Gauß-Seidel
smoother, alternating line Gauß-Seidel smoother and alter-
nating plane Gauß-Seidel smoother

l 4 5 6 7

point ρ̄ 0.74 0.93 0.98
line ρ̄ 0.2276 0.6710 0.9031

W 11.6 11.1 12.3
ρ̂ 0.88 0.96 0.99

plane ρ̄ 0.0006 0.026 0.0070 0.0158
W 6.5 5.4 11.3
ρ̂ 0.31 0.51 0.65

Next we compare the different block smoothers avail-
able in three dimensions. The alternating line smoother
no longer shows multigrid efficiency and in spite of im-
proved convergence rates compared to the point smoother
is less efficient due to the higher cost involved (see Fig. 3,
Table 3). Only the alternating plane smoother is robust
and shows satisfactory rates.

However, since the number of CG-iterations required
for the approximate solution of the plane systems in-
creases proportional to the number of points in each di-
rection (i. e. the square root of the condition number of
the block systems), the solver still shows no linear com-
plexity.

In fact, if we have n points in each of d directions, we
have to solve d ·n block systems per alternating smooth-
ing step. The number of points in each hyperplane is
nd−1, the grid size n−1 yields a condition number pro-
portional to n2. Consequently, for an error reduction by
a fixed factor ε2, O(n) Bi-CGSTAB iterations are re-
quired with a cost of O(nd−1) each. In total O(nd+1)
work units will be necessary for an iteration, that is for
an error reduction of ε

W (N, ε) ∼ | log ε| ·N (d+1)/d, (19)

when the total number of unknowns is N . The super-
linear behaviour gets less pronounced for higher dimen-
sional problems.
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Fig. 4. 3D Black-Scholes: τ = − log2 T

log10 ε
with CPU-time T

vs. grid level l (4913 to 2146691 points) for error reduction
ε → 0. Plane Gauß-Seidel smoothing with Bi-CGSTAB and
line multigrid as block solvers

Table 4. 4D Black-Scholes: Average convergence rate ρ̄ for
grid levels l = 3, 4, 5 (6561, 83521 and 1185921 points) and
soltution time T (secs) for BiCGSTAB solver and multigrid
with alternating hyperplane Gauß-Seidel smoother

l 3 4 5

Bi-CGSTAB T 0.36 18.5 809
MG T 1.06 33.5 1292

ρ̄ 3 · 10−7 6.7 · 10−5 7 · 10−4

To maintain multigrid efficiency for the iteration we
substitute the CG-type block solver with an inner multi-
grid cycle with line Gauß-Seidel smoothing.

From the data plotted in Fig. 4 we can deduce an
asymptotical order of about 4/3 for the complexity of
the algorithm with plane smoothing (in accordance with
the above considerations and (19)) and about 1 for the
recursive multigrid method, both measured for an error
reduction of 10−12. For practical problems, though, the
latter method is still too expensive due to the additional
cost for the construction of a hierarchy of systems for
the planes.

2.2.3 Higher dimensions

Already in four dimensions we see that for practically
computable problems a plain conjugate gradient method
is superior to the multigrid technique with blockwise
smoothing on 3-dimensional hyperplanes (Table 4). The
(uniform) grid size is not small enough to show the ad-
vantageous asymptotical properties of the multilevel ap-
proach.

However, for strongly anisotropic meshes, as they are
encountered e. g. with the sparse grid combination tech-
nique [14], where often a large share of the points is dis-
tributed in lower-(1-,2-,3-)dimensional planes, multigrid
applied recursively in plane smoothing is the method of
choice.
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Table 5. 3D transformed equation: Average convergence rate
ρ̄, number of iterations it and CPU-time T (sec) for an error
reduction of 10−6 on grid levels l = 4, . . . , 7 (4913 to 2146691
points) for the plane smoother

l 4 5 6 7

ρ̄ 3.8 · 10−4 5.3 · 10−2 2.9 · 10−2 6.1 · 10−2

it 2 3 4 5
T 0.25 3.3 45 591

2.2.4 Transformed equations

To look further into the robustness of the plane smoother
we check the convergence for the transformed equation
(12). Here only x1 = 1 is a Dirichlet boundary, on all
other faces the equation degenerates, i. e. reduces to
a lower-dimensional problem on these faces, which de-
couple from the rest of the region, and is arbitrarily
anisotropic in their vicinity. The asset volatilities were
chosen as σ1 = 0.01, σ2 = 0.1, σ3 = 0.5, which cover the
range of typical values e. g. for stocks. Table 5 shows the
convergence results.

3 Multigrid for anisotropic obstacle problems

On a discrete level we seek a solution of problems of the
form

Ahuh ≤ bh, (20)

uh ≥ ch, (21)

(Ahuh − bh) ? (uh − ch) = 0, (22)

where ? symbolises componentwise multiplication. We
denote the problem (20) to (22) as LCP(Ah, bh, ch).

We define for u ≥ c a projected residual r+ by

r+
j :=

{

rj uj ≥ cj ,
min(rj , 0) uj = cj ,

and measure the error as the norm thereof.
By projection it is always guaranteed that the iter-

ates lie in the admissible set {u ≥ c}.

3.1 The projected multigrid cycle

We assign to (20)-(22) a coarse grid problem

AHdH ≤ bH := Īh
H(Ahuh − bh), (23)

dH ≥ cH := Îh
H(ch − uh), (24)

(AHdH − bH) ? (dH − cH) = 0, (25)

where Īh
H , Îh

H are restriction operators and the solution
is updated by uh ← uh + ĪH

h dH with some prolongation
ĪH
h .

Problem (23) to (25) defines a multilevel iteration of
a structure similar to the linear case (see Algorithm 1),
which is outlined in the following template algorithm (to
this end we drop the subscripts h,H and instead indicate
by superscript l the multigrid level).

Algorithm 2 Projected V-Cycle

procedure PV(l, Al, bl, cl, ul)
begin

if l = 1 then

u1 ← LCP(A1, b1, c1);
else begin

ul ← S(Al, bl, cl, ul);

rl = bl −Aul;

rl−1 = Ī l−1
l rl;

cl−1 = Î l−1
l

(

cl − ul
)

;

dl−1 ← PV(l − 1, Al−1, rl−1, cl−1, dl−1);

dl = Ī l
l−1d

l−1;

ul = ul + dl;

ul ← S(Al, bl, cl, ul);
end

return Projected V-Cycle

3.2 Coarse grid solver

Projected Krylov-space techniques have been proposed
by Braess et al. [2] as well as Dostal and Schöberl [6]
for symmetric problems. A generalisation to the non-
symmetric case seems not straightforward.

Therefore we employ a Bi-CG accelaration of pro-
jected Gauß-Seidel, similar to SSORP-PCG as proposed
in [15] (for symmetric systems). In each iteration we per-
form m SOR-steps followed by s Bi-CGSTAB steps re-
stricted to the inactive set. Typically we choose m = 1
and s such that the residual is reduced by a factor ε, e. g.
ε = 0.3.

3.3 Grid transfer

For the restriction operator a minimum requirement is
that for the exact discrete solution (uh) of LCP(Ah, bh,
ch)

Īh
H(Ahuh − bh) ≥ 0,

Îh
H(ch − uh) ≤ 0,

Īh
H(Ahuh − bh) ? Î

h
H(ch − uh) = 0, (26)

i. e. dH = 0 solves the coarse grid system (23) to (25),
which guarantees that uh is a fixed point of the iteration.
Particularly (26) is crucial and not satisfied in general,
e. g. for full weighting. The use of injection, which clearly
fulfils (26), implies deteriorated convergence.

Following [8,10] we introduce one-sided restriction
operators at the free boundary as

Īh
Huh(xh) =

{

Ih
H ūAh if xh ∈ A,
Ih
H ūIh if xh ∈ I,

(27)

with full weighting Ih
H and

ū
A/I
h (xh) =

{

uh(xh) if xh ∈ A/I,
0 else.
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Fig. 5. 2D obstacle problem: Error reduction ε vs. work units
W for V(1,1) cycles: injection and bilinear interpolation, pro-
jected full-weighting and bilinear interpolation, projected full
weighting and projected bilinear interpolation

Here A and I are the discrete active and inactive sets,
respectively (for simplicity of notation the subscript h is
supressed). The corresponding prolongation reads

Īh
HuH(xh) =

{

0 if ch(xh) = 0,
Ih
HuH(xh) else.

(28)

(27) and (28) seperate active and inactive sets and pre-
serve complementarity on all grid levels. Note that the
coarse grid correction keeps the position of the free bound-
ary fixed with this choice of transfer operators.

The obstacle is restricted via injection Î l−1
l . The fol-

lowing numerical data were obtained with a smoother
motivated by the one introduced in [4] (see subsection
3.5).

We clearly see from Fig. 5 the lost approximation
order of injection. With one-sided (projected) transfer
operators as introduced above the rates are roughly the
same as in the unrestricted case once the active set has
been found. However, in the initial phase convergence is
retarded as the free boundary is only corrected on the
finest grid. If bilinear prolongation is not restricted to the
active set, this can be partly avoided. In Fig. 5 the jumps
of the residual indicate the shifts of the free boundary.

A good initial approximation of the active set can be
obtained from coarser levels by full multigrid cycles.

3.4 Full multigrid

Evidently a fast finding of the active set is vital for the
overall convergence. For that purpose we start with an
approximation at the coarsest mesh and construct a se-
quence of approximations on the finer levels.

Algorithm 3 Projected Full Multigrid

procedure PFM(AL, bL, cL, uL)
begin

u1 ← LCP(A1, b1, c1);
for l = 2, . . . , L begin

ul = I l
l−1u

l−1;
for k = 1, . . . , nl begin
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Fig. 6. 2D obstacle problem: Error reduction ε vs. work units
W for V(1,1) cycles succeeding three F(1,1) steps: injection
and bilinear interpolation, projected full-weighting and bi-
linear interpolation, projected full weighting and projected
bilinear interpolation

ul ← PV(l, Al, bl, cl, ul);
end

end
return Projected Full Multigrid

Since the topology of the active set is simple (see Fig. 7),
a few full multigrid steps are sufficient. After that the
problem reduces to a linear system on the inactive set.
Globally bilinear and projected prolongation yield al-
most the same results (see Fig. 6).

3.5 Robust smoothers

The projected Gauß-Seidel algorithm

u
k+ 1

2

i =
1

aii



bi −
∑

j<i

aiju
k+1
j −

∑

j>i

aiju
k
j



 (29)

uk+1
i = max

(

u
k+ 1

2

i , ci

)

(30)

has been frequently applied as smoother for obstacle
problems (e. g. [3]), but for the problem at hand conver-
gence is poor. There are two evident ways to generalize
the idea of plane smoothers to obstacle problems.

First one could think of a blockwise solution of ob-
stacle problems,

uk+1
i = A−1

ii

(

bi −
∑

j<i

Aiju
k+1
j −

∑

j>i

Aiju
k
j , ci

)

. (31)

Here A−1
ii (bi, ci) denotes the solution of the obvious lin-

ear complementarity problem involved on the planes. We
will use the combined iteration from section 3.2 for the
planewise solution.

Another choice was proposed in [4]. Here a projected
pointwise Gauss-Seidel step is applied followed by line
smoothing on the inactive sets.

Table 6 shows, which is also the generally observed
tendency, that the hybrid smoother shows slightly bet-
ter rates and has the additional bonus that only linear
problems have to be solved in the smoothing steps.
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Table 6. 2D obstacle problem: CPU-time T (sec) and aver-
age convergence rate ρ̄ for an error reduction of 10−12 on grid
levels l = 5, 6, 7, 8, 9 (1089 to 263169 points) for projected line
smoother and hybrid smoother

l 5 6 7 8 9

line T 0.31 1.3 4.9 23 138
ρ̄ 0.047 0.03 0.043 0.059 0.099

hybrid T 0.26 0.92 3.8 16 85
ρ̄ 0.018 0.028 0.041 0.043 0.051

Table 7. 3D transformed obstacle problem: Average conver-
gence rate ρ̄, number of iterations it and CPU-time T for an
error reduction of 10−6 on grid levels l = 4, . . . , 7 (4913 to
2146691 points) for the hybrid smoother

l 4 5 6 7

ρ̄ 1.8 · 10−4 4.6 · 10−3 2.4 · 10−2 8.9 · 10−2

it 2 3 4 6
T 0.28 3.5 42 867

PSfrag replacements
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Fig. 7. Free boundary in the space spanned by three assets
with σ1 = 0.01, σ2 = 0.1, σ3 = 0.5. The exercise region for
the basket put with strike K lies beneath this surface.

Now we go back to the transformed system and com-
pare convergence with the linear case. The first three
steps were always F (1, 1)-cycles, the rest V (1, 1). One-
sided restriction and prolongation operators were used.
Table 7 shows comparable results to the linear case (Ta-
ble 5). The free boundary is shown in Fig. 7.

3.6 Cascadic multigrid

In [2] Braess advocates a cascadic multigrid algorithm
for variational inequalities. The idea is attractive since
no restriction to coarser grid levels is required. Starting
from the coarsest grid, the solution is prolonged to finer
grid levels, where they are corrected by sufficiently many
smoothing steps.

Table 8. Initial error ‖r+,l
0 ‖, iterations nl and final error

‖r+,l‖ on all levels l with Nl degrees of freedom

l Nl ‖r+,l
0 ‖ ‖r+,l‖ nl

3 81 1.94 101 2.67 10−4 3
4 289 7.98 100 1.33 10−3 3
5 1089 3.31 100 1.18 10−3 3
6 4225 1.30 100 1.04 10−3 3
7 16641 4.94 10−1 6.52 10−3 2
8 66049 1.93 10−1 2.03 10−3 2
9 263169 9.15 10−2 5.94 10−4 2
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Fig. 8. 2D obstacle problem: CPU-time T required for d
valid digits with full and cascadic multigrid (5132 points)

Algorithm 4 Projected Cascadic Multigrid

procedure PCM(AL, bL, cL, uL)
begin

u1 ← LCP(A1, b1, c1);
for l = 2, . . . , L begin

ul = I l
l−1u

l−1;
while ‖rl‖ > εl‖r

l
0‖ begin

ul ← S(Al, bl, cl, ul);
end

end
return Projected Cascadic Multigrid

Here rl
0 is the starting residual at level l. Since coarse

grids are not revisited it is essential that error compo-
nents corresponding to large wavelengths are sufficiently
damped originally. In [2] the following stopping criterion
is derived for the level l:

εl = ε00.4
L−l. (32)

The number of smoothing steps per iteration is then
almost constant (Table 8 for ε0 = 0.1). Therefore cas-
cadic multigrid shows linear complexity down to an error
comparable to the discretisation error (see Fig. 8). For
extrapolation methods like the sparse grid combination
technique this is not sufficient though.

4 Conclusions

We have focussed on two major aspects that we en-
counter when applying multigrid methods to option pric-



On Multigrid for Anisotropic Equations and Variational Inequalities 9

ing problems: anisotropies and free boundaries. The nu-
merical results point out clearly that plane smoothers
are expensive, but robust with respect to anisotropies
and degeneracy of the equation towards the boundary.
In fact, they are efficient also for the solution of higher-
dimensional problems on sparse grids [14]. For American-
style contracts, adapted smoothers and careful grid trans-
fer around the obstacle provide comparable results also
in the presence of constraints on the solution.
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