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On Multiple Distributions
By Tadashige IsSHIHARA

In the theory of quantumn wave fields, there appears a distribution
called “invariant A-function” which gives the commutation relation
between fields quantities. This A—function is not a function but a
distribution and is considered to be defined by the wave equation
(O—«)+A =0 with initial conditions A(x, 0) =0, 9A/9¢x, 0) = —8§,(x)
(c.f. J. Schwinger ([9]), W. Pauli ([10])). Concerning this sorts of
equations, we consider generally here about an equation of evolution
in the sense of distribution.

L. Schwartz treats this problem ([3]). He considers distributions
U.(t) e '(x) on the spacial variables (x,, ..., x,) where the time variable
[ is a parameter. For the simplicity we call hereafter this sort of
distribution a parametric distribution and call a distribution on
the space (x,, ..., %,, t) a proper distribution. He discusses mainly
parametric distribution and parametric equation of evolution. Concern-
ing the proper one L. Schwartz refers (§ 16) that a parmeteric distri-
bution can be considered to be a proper distribution and also refers
to a proper distributional equation. But the relation between parametric
and proper distribution and the relation between parametric and proper
distributional equation is not treated in detail. In this paper we start
from proper distribution conversely and researches in what case it can
be considered as parametric one and researches in what case a proper
equation can correspond to a parametric equation.

To give a clarification of these relations we introduce the notation
of multiple distributions defined in § 3, and research (§3, §4) several
properties of multiple distributions.

A parametric distribution (€ D’(x)) is a multiple distribution of a
distribution (€ ®'(x, #)) and the special distribution (€ ®'(¢)). In §5 we
consider this special case and study relations between proper distribu-
tion and parametric continuous or parametric continuously differentiable
distribution. As an example of applications we discuss in §6 relations
between two sorts of equations.

The invariant A—function mentioned at the top will be clarified
in the sense of the one in the proper distributional equation, and since
its corresponding parametric equation can be solved, we obtaine the
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proper distributional solution with consideration of §6. (Direct calcula-
tion as a proper one is also possible).

Concerning the topological terminologies used in the paper refer
to N. Bourbaki ([4], [5]), C. Chevalley ({8]).

§ 1. Topologies defined by bounded sets.

In this section we modify a few the B. H. Arnold’s results ([1]).
Let S={0, x, 9, ---} be a vector space over the real number field with
zero vector 4, and let B be any collection of subsets of S satisfying

(Bl) For any x€ S, {x} €95,

(B2) The union of any two sets of B is a set of B,

(B3) Any subset of a set of B is a set of B,

(B4) Any scaler multiple of a set of B is a set of B,

(B5) The convex hull of a set of B is a set of B.

We call the elements of B bounded sets of the vector space S.

The following algebraic properties of B hold in our cases too.

Lemma 1. The lincar sum of any tow bounded sets is bounded.
DEFINITION 1. For any XS the symmetric starlike hull X* of X
is
X*={UxX||n|< 1},
Lemma 2.

(1) For Be®B, we have B¥¢ B .
(2y If IM<Z|p|, then N X* C pX* for XS.

THE TOPOLOGY IN S.

DEFINITION 2. A subset G of S is open if and only if whenever
g € G there exists a convex set IV such that for any Be®B there exists
a X >0 which satisfies g +ABC N G. (N depends on g, but is
independent from B).

Lemma 3. Definition 2 makes S a topological space.

Proof. It is evident that the empty set, the whole space and any
union of open sets are open. If G and H are open, and g e G- H,
there exist sets IV, and N, such that for any B¢ ® there exist x>0
and » >0 which satisfy g+uB* N, G and g+ vB*C N, H.
Setting A=min{v, s}, we have A\BAB*uB* A vB*N,A N, G~ H,
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so that G~ H is open and S is seen to be a topological space.

Lemma 4. There is a fundamental system of convex balanced neigh-
borhood of .

Proof. If G is an open neighborhood of 8, there exists a convex
set N such that GTON DAB. For any point x €\ / cuc,@alN = N,, there
exist 0 < a,< a,< 1 such that «,x/a,€a N. Since «,N is convex
and can swallow any Be®B for some positive multiple z, we have
x+(1—oay/a ) pB= (a,/a,)(a¢x/a)+(1—a,/a)pB>a,N. So N, is also
an open convex set, Since (—N,) is also an open convex set we have
a convex balanced open neighborhood of 6, N,; N,= N, ~(—N,) CG.

Lemma 5. This topology is compatible with the vector operation of S.

Proof. First the mapping (x, y) —x+y is continuous jointly.

For any open set G,,, which contains x +y, there exists a convex set
N,., such that G,,, DN,.,>x+3y. Now N, ,—(x+y) is a convex set
which can swallow any Be€®B for some positive multiple, so it is
a neighborhood of # as can be seen in the proof of Lemma 4. By
Definition 2, for any open set G and for any x#3> S the subset x+G is
open. So x+{N,, ,—(x+»)}/2 is a convex neighborhood of x and
y+{N,,,—(x+3)}/2 is a convex neighborhood of y and we see

C{x+{N,y— (x40} /2] + [ 9+ {Noy—(2x+3)} /2] =N, .

Next the continuity of the mapping (A, x)—\x is seen as follows.
A mapping x—>)x is continuous in the neighforhood of x=46
for any fixed A,. If A,=0, this assertion is evident. If A, ==0,
ANy /Ae) C N, C N G for any neighborhood G of 8 where N, is a
convex balanced neighborhood of 6. But N/), is a neighborhood of ¢
so the mapping x —2A,x is continuous.

The mapping A—Ax, is continuous in the neighborhood of A =10
for any fixed x,. For {x,}, {#x,}* € B and for any neighborhood G of 6,
there exists /w>0 such that w{x}* CN,CNCG. Then for any
A< £ we have axe N, CG.

The mapping (A, x) —Xx is continuous in the nelgeborhood of
x=46, =0, since for any neighborhood G of § we have AN, N, NG
for [A| <1

Therefore we see the continuity of the mapping (A, x)—-Ax and
Lemma 5 is proved.
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TOPOLOGICAL BOUNDEDNESS,
We define a new concept of boundness in the usual way by

DEFINITION 3. A set T S is topologically bounded if and only if
for each neighborhood U of 6 there exist a A with 7 aU.

We denote by T the collection of all subsets of S which are
topologically bounded. '

Lemma 6. T OB, and the collection T satisfies the axioms B1)—BS5).

Proof. ¥ OB is the direct consequence of Definitions 2 and
3. So T evidently satisfies Bl), B3), B4). B2) follows from the
existence of a fundamental balanced neighborhood system of 4. Bb)
follows from the existence of a fundamental convex neighborhood
system of 6.

Lemma 7. The topologies defined in S by the collection I(rg) and
by the collection B (fr%) are identical.

Proof. =g is stronger than ro since B ¥, and Tg 1s stronger
than =y by virtue of the definition of T.

TOPOLOGIES DEFINED BY BOUNDED SETS.
Theorem 1. Definition 2 makes S a bornographic ([7]) locally convex

topological vector space.

Proof. The proof of Lemma 9 assures the bornography of this
space.

Remark. If a locally convex topological vector space V is given
and if we take the totality B of bounded sets (in the natural tolplogy
of V), B satisfies Bl)-—B5) and the topology 7 is stronger than the
natural topology of V. But if V is a bornographic space the topology
o is identical with the old topology of V.

§2. Bounded sets in the product space.

NOTATIONS.

For any 0 <<{#x#<{ o we consider the vector space of all real
valued z-times differentiable functions having compact carriers. We
denote the space ®* ([2]) defined on the #n-dimensional Euclidean
space R*(x) by ®"(x), similarly the one on R™(¢) by ®%#) and the one
on R™™x, 1) by ®%x, t) where m >0 and » >0, and denote the
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totality of bounded sets in their natural topology by B,(f) etc. Further
we denote their strong dual spaces by D™'(x), D(¢) etc, denote the

’
convergence in the topology of ©™ by the symbol (_”_),, and denote
the bounded sets in ®“ by B .

ARNOLD’s FAMILY IN D7(#).

Now we take a sequence of functions {¢;(¢)]|P;(t) € DY), (_”); } where

Q is a definite distribution of @*(¢) for x < v, and often call it a {», @)-
sequence. We consider also occasionally a (v, Q)-sequence each of them
having a carrier contained in a fixed compact set K of R and call it a
(v, K, Q)-sequence.

We take the totality of the above (v, @)-sequences and denote it
by %7(#), and consider the minimum collection of subsets of D%(#)
which satisfies axioms from Bl) to B5) including both 9B/(¢) and B,(¢).
For the sake of simplicity we call such a collection an Arnold’s family.
In this case such an Arnold family B°(#) really exists and is uniquely
determined and is given by a collection of sets of the following form

B(1) = {B°() = (BOVENB/O) B T57 5 e

where the symbol ({(4)) means the convex hull of a set A. In fact,
Arnold’s family must at least include this collection, and this collec-
tion satisfies B1)—B5), so this is indeed our Arnold’s family. We
denote this family by B°(#) and each set of it by B°(#). We denote
by () a fundamental neighborhood system of ¢ which is induced by
B°(t) obeying the method §1, its element by N(¢), and denote the

space D"(¢) having this topology by Dy(?).
ARNOLD’s FAMILY IN THE SPACE 3*(x)QD"(¢#).

We consider the tensor product space ([6]) DUx)QRD*(?) i.e.
Dx) @ DH(t) = {2 pu(X)ds(?) |, € D*(x), P € D(2)},

where >, means finite sum. We consider in this space the Arnold’s
family B°(x, ) which includes a family of subsets

{B(x)QB°(t)|BeB(x), B°ecB°(1)}
where
B(x) @ B°(t) = {px)p(t) |p € Bx), ¢eB°(t)}.

Then B°(x, ¢) is also uniquely determined and is given by the
collection of subsets ((B(x) @ B°(¢))) with their arbitrary subsets, where
Be®B (x) and B° € B°(t), since the operation contained in the axioms
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B1)—Bb) are closed either in B,(x) or in B°(#), and the Arnold’s family
must contain at least this family. We denote by R(x, #)={N(x, f)} a
fundamental neighborhood system of # which is induced by this family.

NEw TOPOLOGY IN THE SPACE D%(x, ?).

Similarly in the space ®"(x, {) we find the Arnold’s family which
contains B°(x, £) and B (x, 1), i.e.

{(B(x, t)\J B°(x, 1)) | BEB(x, t), B°eB°(x, 1)} .
A fundamental neighborhood system of @ is given by
{((Vx, H\U N (x, £)))| VeB(x, £), Ne(x, 1)},

where B(x, ) means a fundamental neighbornood system of ¢ in the
natural topology of @"(x, £). We denote the space ®*(x, ) having
this topology by Dy x, ) or simply by D,.

THE SPACE Dg,, ‘SD'QA.

Thus the space Dy(x, #) is introduced by a single distribution @,
but a similar process is possible for a fixed family of distributions
{@r]veA}. That is to say B°(#) is expressed by

B°(t) = (B(¢)v\Ji-1 Ui \j7=1 /‘tk(f)uxk(t))) ’

where quk(_”_))/ka, and of course » is larger than the orders of the
distributions @, . The forms of Arnold’s family in the other spaces,
say, D%(x) Q D(¢) and D™(x, ?), are quite similar. We denote the space
D=(¢) or D*(x, t) having this topology by Dg,(f) or Dg,(x, £). The
orders p of the distributions @, and the orders of the convergences
y = »(\) can be various, but we have interest only in the case when
both x and » are constants, and we consider only this case.

From the same family of distributions we can also construct
another B°(#) as follows.

We take a family of sequences {{¢,;|7}|r€ A} which satisfies the
condition that for any neighborhood of 4, V, of ©(¢) there exists 7, such
that (1) for any j>j,, for any M€ A, ¢ ;—Q €V, (2) UJ<JO,AEA¢AJ € B (f).
We call it a (v, @)—famaily and write its element by Bi(#). Now we
consider B°(#) = ((B(#)v\Ji.1p.B (%)) or its arbitrary subset. The other
forms of Armold’s family are quite the same. We denote the space
D(¢) or D*(x, £) having this topology by @Q(t) or by @Q(x, 1. We often
consider properties common to each of the spaces Dyx, t), Dg.(%, £),
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Doulx, t). In such a case we denote them collectively by ®,, similarly
denote the space Dyt), Do,(t) and Dg,(t) by D,(#).

PROPERTIES OF THE SPACE D,.

Lemma 8. For any mneighborhood of 0, N(x, t), in D%x) Q DY)
contained in the space D, and for any bounded set B(x), there exists a
neighborhood N(t) of 6 in D,(t) suchk that N(x, t) > Blx) @ N(¢).

Similarly for any bounded set B°(t) there exists a meighborhood of
Vix), 0 in D™(x) such that N(x, t) > V(x) @ B°(#).

Proof. For any covex neighborhood N{(x, ¢), of 0, and for any bound-
ed set B,(x), we consider the N, such that N,.,,={g(t)|f(x)g(t)€ N(x, t)
for all f(x)¢€ B(x)}. Now any bounded set B*(x)QB°(f) in D"(x) QI"(¢)
is swallowed by N(x, ¢) for some positive multiple A, so for any bounded
set B°(f) in ©*(t), N, must swallow B°(f) for the same positive multiple
A. While N,,, is a convex set for a convex set N(x, f), it must contain
some neighborhood N{#) of 6 in ©*t). So the former part of Lemma
holds, and the latter holds also quite similarly.

Corollary. T e Djx, t) is separately continuous for D*(x) and D,(t).
The following property is evident.

(1) 'T'D7z>'TDQ>TDQA>TbQ>TDO,),,

(ii) Tp > Tpm for =, <<=, and », >v,,
Qv Qv
where 7,, > 7y, means that the topology of the space indexed with »,
is finer than the topology of the one indexd with »,, and @51(.;1)’ means

the space with the topology induced by (v,, @)-sequences.

§3. Properties of the space 'D,. (I)

We consider the strong dual space @, of ®, and the closure of
the space ® in the topology of %, and denote this closure by 'D,.
Then ’'®, is a topological vector space and ®©* D, Dp D
with topologies T\®~,>7‘,®P>T@(ﬂ), , T@V>T/S)Q>T/@QA>T/@Q and

Tigp™ > 7igym  for = < 7,, and v, &> p,.

2
QCd Q(v2)

If Tc'D,(x, t), we have a filter ¥ on D'(x, ) such that 5 T.
Now in the inequality '

I 9> — Sy wbud | + IS,y wbe > — T, pdi>|
+|<T) q)¢i>—<f: ¢)¢z>!+I<]Ey q)(zb£>—<f: ¢Q>I,

4
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where (A, B> means scaler product of A and B, for any & >0 we
can take an element F' of the filtre § such that for any two elements
f and f of F, the 3rd and the 4th terms are smaller than &/4 uniformly
for peB,(x), $p;€B°(f), and we can choose j, such that for any
j>j, the 2nd and the b5th terms are smaller than &/4 since

{{flx,t), p(x)>,|peB,} €B,(f). So we see hm%DQT<f, @€ > exists.
Further 1f two filters § and § converge to T in the topology of )
this limit must conincide. In fact we can take a set I ¢ @ and a set
Fe%® and j, such that the same evaluation of this inequality for
feF and f€F can be done. This uniquely determined weak limit in
D’(x) is at the same time a strong limit since this convergence is
uniform for ¢ € B (x).

DEFINITION 4. Multiple distribution of a distribution 7T €'Dy(x, t)
and a distribution Q(¢) € ®™’(¢) is a distribution T, € ®"”(x) such that
for @ e®%x), {Ty p>= llm%ggo T<f’ @@ >. Of course in the space
"D, Or Eq, the same definition is poisible for any X e€A.

A CHARACTERIZATION OF SPACE 'D,.

Theorem 2. If Te’'D,, then T is continuous with respect to any
(v, pQ)-sequence uniformly for ¢ € B,(x), where p is an arbitary constant,
and the limit determined by this sequence coincides with pT,.

Proof. The former part of the theorem is seen to be true from
the following inequality by the similar evalution as above:

|<T’ ¢¢i>_<T’ ¢¢k>]
ST, pbs > = {Fy pbs Dl + S5 pbs > — < fy pdu Dl
+ [, ¢¢k>'—<T, Pdi )|

Denoting the limit of this Cauchy filter by (7T, »Q>, we obtain the
latter part of the theorem similarly by the following inequality.

[<f, ppQ> — < T, pp@ |
<KL ppQ > — LSy pds 2| + 1Sy pdps > — T, pd; |
+l< T’ ¢¢J> - < T’ P(PQ>]<$-
Corollary. If Tc'D, and {{$py}|NEA} is a (v, pQ)~family, then T

is continuous with respect to the sequence {p\;|j=1, 2, ...} uniformly for
N EA and uniformly for ¢ e B, (x).

Proof. This is evident if we examine the proof of Theorem 2.

REMARK. The topology 7,, is dependent on two constants =, ».
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However when T, can be defined, it is uniquely determined by 7 and
@ and does not depend on =, ».

The following lemma is occasionally used.

Lemma 9. If {¢} € B, and {B(t)|k=1, 2, ...} i5s a (0, K, 0)-sequence
then {pxB,|k=1, 2, ...} is a (v, 0)-sequencnce whose convergence is uniform

Sfor $€By.

Proof. For any weB(,, we have {¢xB,u>={p, qb*u > where
v means the reflection. Now {gZ)*uM) € By, ue B} is a bounded set
in the space C° (i. e., the space of continuous functions having topology
of compact convergence), so {¢xB., u > —0 uniformly for uweB,
and for ¢ € B, .

Corollary. If {$}=DB,€B,, and (B, |k=1,2,...} is a (0, K, 0)-
sequence, then (¢ * Bk)(_”,) 0 uniformly for ¢ €B,.

Proof. For any wue€B,, {8 up=_B4%, <j;*u> —0 uniformly
for ueB.,, and ¢p€B.,,, by Lemma 9. Since ® is bornographic,
Tayey = Ty - Lhis proves our corrollary.

Theorem 3. (THE CONVERSE OF THEOREM 3)

If Te®™(x, t) and T, pp; > makes a Cauchy sequence uniformly
for @ B, (x) with respect to any (v, pQ)-Sequence {p,} for p=0, 1,
then T €’D,.

Proof. we take a sequence ak(x)ak(t)_(g)_l,S(x)S(t) in ®Dx, t) such
that {«,(x)} is a (0, K, 8(x))—-sequence and {a,(t)} is a (0, K, 8(¢))-
sequence where 8(x), 8(f) means Dirac’s § at the origin of R*(x) and
R,.(t) respectively. (Hereafter we call such a sequence «-sequence)-

For any @ € B,(x) and ¢, € B’(t) we have

| < T (au(x)al8)), @(x)py(t) > — < T, @ps |
SIKT, {px(8(x) — (%))} x ps(t) >|
+|<T, {pxaax)} X {$,(0)*(3(t) — qt))} D] .
In the 2nd term, (§—a&.(x)) is a (0, K, 0) sequence, so @*(8—da&;) (_7_{)0
by the above corollary. Since (T, ¢$> is bounded for ¢p¢ € B (x)QB°(f)

by assumption, T €9®; and Lemma 8 can be used. So for any & >0
we can take k,, such that for any 2>k,

[T, {p (8 — awl}t x () >1<&/2
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uniformly for ¢; € B’ (f) and ¢ €B, (f). In the 3rd term,
{pxa,(x)|peB,(x), k=1, 2 ..}e€B,(x)

and the term {¢;(f)*(8(f)—a () |k=1, 2, ...} is a (v, 0)-sequence whose

convergence is uniform for ¢;. So by the assumption it follows that

the 3rd term is < &/2 uniformly for ¢; € B/(¢) and ¢ € B,(f).

Corollary. If Te®™(x, t) and T, ¢py>li=1,2, ..} makes
a Cauchy sequence with respect to any {p\s} of a (v, pQ)—family {{p.;} [N € A}
for p=20, 1, uniformly for opeB,/x) and uniformly for A€, then

T €'D,.

The proof is quite similar to the proof of Theorem 3.

§4. The Properties of the Space D, (II).
CONTINUITY OF MULTIPLE QPERATION,

Theorem 4. The mapping T—T, is a continuous linear mapping from
Dplx, 1) to D(x).
Proof. Linearlity is evident. Now for a neighborhood U of 6 in

the ®“(x) such that U= {T|SupgecB,mx|<T, »>|< &, we can
take a neighborhood N of 6 in '®, such that

N={T|Supgsc BB |{ T, pp >|< &}
for the same B,(x). Then we see for any T€N, Tg,cU, q.e.d.
MULTIPLE DISTRIBUTION BY DERIVATIVES OF Q.

We denote a differential operator in R™(¢), such as

SNico Bsioesy O /Ot---Otym,  where  |s|=s,+--+S5, and as..s,
is a constant, by D° and its conjugate operator by D°* i.e.,

= oo —) " as,...5,, O /Ot -- Ot

Theorem 5. If Te'DF)p) (m, v, p) then DT D) (z+a,
v—o, p—o), and Tp,Q, = (D*T)g,. Especially if D° is a product such
that D° = D"1D°2 then from T c'Dpep, it follows that D“l*Te/@DUz(P),
and Tprg, = (D‘“*T)Dtrzg)A .

REMARK. If Te® ) then D**T D= and a map of (=, v,
Q.(p#))—sequence by D° is a (z'—o, v +0, D°Q,(n+ o)) —sequence, where
oy

7' means ¢; € D" v means ', , Q,(x) means @, € D*Y, The nota-
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tions (=, v, #) and (z+0, v—o, p—o) in Theorem 5 are used in similar
meanings.

The theorem may be stated more generally. Consider a mapping
L, from ©%(¢#) into ©*(¢) which satisfies the following conditions. (i)
L, maps any (=/, v/, p’Q\)—sequence to a (=, v, p L,(Q,))—sequence or
maps any (z’, v/, p’@)—family to a (7, », p L,(Q,\))—family for p =01
and the some constants p, where v >pu, v >4’ (¢ : order of L, Q).
(i) L*(®)  D” where L* is a conjugate operator of D™’ (x, #) into
D=Y(x, ty defined by (L*T, ¢ ¢>=< T, pL(p)> for @ € D”(x), p € D™(¢)
for ' > =.

Concerning this mapping L., the following Lemma holds.

Lemma 10. If TE/@L,P(”’ v, 1), then L¥*T e€’'D, (=, v, i) and
Tor.r = (L*T)q, where p is determined by the equality L.(»' Q)— sequence
(or formily) = (v, pL(Q))— Sequence (or family).

Proof. Take a filter § on ® such that § 2%~ T.

Then the filter L*(%) converges to L*T in the sense of "D, (=, v/, ')
as follows: For any & >0 there exists some F¢§ such that for any
fe, for any ¢ € D we have the following inequality for any ¢, of
any (v, p’Q)—sequence (or ¢,; of (v, p’é)—family) for p’=0, 1,

[CLYf, pb > — (L¥T, @b >
= |{f, oL, (P)> — T, pL) >|< &

Next for a (v/, @,)—sequence we have

L*TQy, > =limy,.. {L¥T, @y > =lim,,.. (T, pL(ds,) >
= { ToL,9r, @ > by the condition (1), q.e. d.

Proof of Theorem 5.

We can take D° as L, in Lemma 10, since condition (ii) is evident
for v»=v—¢ and condition (i) is satisfied for v =v—o, p=p, 7’ =n+o.
The last part of the theorem follows from

D T)g,, ¢ > =lim,,. (DT, gy, >
=1lim,,. {DV'T, @DPh, > =< (D" T)pory, >, a.e.d

Theorem 6. If the topology of 'Dfep (v+a) is introduced by bounded

sets such that every (v+o, p’D°Q\)-Sequence (or (v+o, p’ﬁ"Q)—famz’ly)
for p=0,1, is a map D° of a (v, pQ,)-sequence (or (v, pQ)-family) and
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if D*Te’®D,, then we have T €' Dpop.

Proof. If the topology of D.p is given by bounded sets such
that for p’=0,1 each (v, p’L,@,)-sequence (or (v, p’L,Q)-family) is
a map of a (v, p@,)-sequence (or (v, p@)-family) by the above L, such
that L.(¢,(2) * ¢,(£)) = L,($,(£)) * d,(¢)), then we have for an a-sequence
and for a (v, @)-sequence (or family) {4},

1< T, ¢Lth5> — < Txay, (thP(zb>l
ZUCLXT, p{@*(8 —a(x))} x dy(E) >|
+ICLAT, plps dee(1) X {byx G—daltD}> (< 6, q.ed.

CONTINUITY OF MULTIPLE OPERATIONS A—T(Q,.

Theorem 7. If Te”‘@‘2 and A = {\} is a topological space and the
mapping A—>Q, 1S continuous as the mapping from A into D' (), then
the mapping A—Tq, is a continuous mapping from A to D(x).

Proof. For any ¢ ¢ B, (x), we take a (v, @)-family {$rs12}. We have

[<Tqrn, »>—<Tov, |
<K Tan, > —<T, by | + KT, pay > — <S5 pas 2l
+ |<J, ¢’¢AJ>_<f) PO+ S5 P> — S, 9@y |
+ {corresponding terms of the 2nd, 3rd, 4th terms} .

We take a filter § on ®©¥(x, £) such that %%_, T. Now for any ¢ >0
there exists F e such that for any f € F the 3rd and its corresponding
terms are < &/7 uniformly for AeA and j=1, 2, --- and @€ B,(x).
Regarding such an f(x, ) we consider the 5th term. Since the map-
ping A—Q, is continuous, we can take V, such that for any
VeV, the bth term is <(&/7 uniformly for @€ B,(x), since
{{f(x, t), p(x)>,|p € B(x)} € B,(t). Regarding such a A\ and an f(x, ¢),
the 2nd and the 4th and their corresponding terms can be made smaller
than &/7 uniformly for ¢ € B,(x) by taking some j, q.e.d.

CONVOLUTION AND MULTIPLICATION OF A MULTIPLE DISTRIBUTION.

The following two lemmas may be used in the application.

Lemma 11. If Te’'DP, Se @ (x)nD(x) then (5(t) x S)x T €/D 4o
and {(Sx&()xT}qn=SKTqx.

Proof. Take an a-sequence. Then for any g¢d¢,, € B,,.(x) @ B'(f)
we have '
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C(8(2) x S)x T, 2o > =< (6xS)x Txa,, PPy s >
=T, (8(2) x S)x (pdrs) (8 — &) >
=T, {Sxpx(8(x) — ay(x))} X Px; > (#)
+<{T, {Sxpxay(x)} x {r;*(8(F) — ax(®))} >.
Now {S*rpWEB,M,(x)} € B (x), so Sx Px(8(x) —ag(x) 220, (=) 0,
{pragxS|pe B, (), k=1, 2, ---} €B,(x)
and  {p,*|8()—axt) k=1, 2, -~} is a (v 0)-sequence or

b, #(5(t) — &) k=1, 2, -~}[neA} is a (v, O)family. So
T (8(f) x S) € 'D*», and we have

AT xS)ken, @ > =1lim,;, . ExS)*T, ppy, >
=1lim,,. (T, S&P) xbny > =< Tar, SE o>
—_—<S(>§) Tor, @2
Here % means the convolution in the space ©+7(x).
Corollary. If Te’'Di(x, t) then DT €'DF™ and (DiT)g\= D% Tq)).
Proof. Take Df8(x) as S(x) in Lemma 11, then we obtain

ET = (8()yxDS(x)x T €'Dy .
and

(DiToa= D% 8(x) & Tor= Di(TQ,) .
Lemma 12. [If Te’'D.(x, 1), f(t) € D) for « >v, « >, g(x) € E(x),
then (f(t) g(0)T)€'D, and (f(t) g(x)T)or= g(x). Trqn -
Proof. Take an a-sequence. Then‘
(fgTHE—ay), pory > =< T, {g(x) (Px(8—dp(2)} X br, f >
+ T, glpxaw) X {pyy*x(E—a(E)}f>.
In the 2nd term {f(#) ¢a;(£) | das(2) € B°} € B°,
and (g-(px((6—a))) 24 (=) 0. In the 3rd term we see
{glpxdy) e Bx), k=12, ..} €Bx), and {f(px; *(8 — a&x(?)) |k}

is a (v, O)—sequence or {{f(d,, * (—a(t))|k}|\} is a (v, 0)-family.
So we obtain the former part of the lemma. Now

lim,,.<{fgT, pp, > =1im,,. T, gpfd,> and {fd,|p, runs through
a (v, @)-sequence}

is a (v, f@)-sequence, similarly {{f¢\;} A} is a (v, f@)—family, so it
follows that (fgT)or—=g-Trqx .
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§ 5. Spaces of parametric destributions.

Hereafter we confine ourselves to some special cases. We take
Dirac’s 8 and its p—~th derivative 8" as @, and ¢ itself as X and D, as
L,. We treat only the case where m is 1, though quite similar results
can be obtained in the case m == 1 too. We take an interval 8 ; a<{¢t<b,
as A. Further we write "Dy in place of ’@( o and 25)%(,” in place
of @5\) similarly @%(M, and 'Dt, for @m) and ED for ©%<°>’ @%
for "Dgy - We use also notations o*T/0f} in place of T50> and 7, for
Ts,. These designations are not so unreasonable, since, for example,
if T=f(t) S(x) where f(¢)e D) and S(x)ec D'(x) then T¢c’'Dyo> and
T,g)m:a"f/atg - S(x). Using these notations the theorems in §4 are
written in the following way.

Theorem 4'. The mappings T—T:, and T—~*T /Oty are continuous.

Theorem 5. If Te'D, then T/ore'DETY and o+T/0t;
= W M(AT /o) /ot for any 0< A< p.

Theorem 7. If T'Diw, then the mappings t,—*T/Ot: is conti-
nuous.

Theorem 8. If for any teB, there corresponds T, D™ (x) such
that mapping t—T, is continuous, we can define (n+1)-dimensional

distribution T on the interior of B by ¢ T, P (x, ) = S% KT, p(x, t)>, dt
wherve { >, means the scaler product between D*(x) and D(x). Then
Te'Dg) for any = >v>0, and T, =T,.

REMARK. It is evident that if », ~>u,, then T Do (v,) is finer than
T'Dg (v,) and /SDQ}\(VZ)</@QA(V1) So if we can prove Te’@QS(u—O),
it follows TE’ED;B(D >0).

Proof. Manifestly 7 is an additive operator, so we show its
continuity on D), #). Now a family {7,|f€ B} is a bounded set in
D(x), and a family of functions {p,(x)|p € B.(x, t), t € B} € B (x). So
there exists a number M such that for any @€ B.(x, 2), [<T,, p/x)>|<M,
ie. |[<T, p(x, t)>|< M(b—a), which means continuity. We prove
the second and third proposition generally about p~times continuously
differentiable distribution for <= using the a-sequence. For any
@ € B,(x) and for any element ¢,, of a (x4, §#)-family we evaluate
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KT, o> — < Trats, o>
S [<< T,, px(8 — &%) >, by >l
+l<<Tt) 7J*Cv‘k>:§brj*(8(t) - &k(t))>| .

In the 2nd term g (5—dy) %) 0 and fo(t) = < T, p* (B—a&u(x))> is a
p~times continuously differentiable function and Sup; . ¢|/(2))/ ok >0
for 0<{n<Cp. While we can take a (g, §)-family {¢,,|1€%,j=1,2, -}
each of whose carrier is contained in a compact set 8. So the 2nd
term is smaller than &/2 uniformly for 7 and #. In the 3rd term

SuPtag& K=1’2’...‘8A<Tt» @é*k>/aﬁ\l<MM O._<_>"£/“l"

On the other hand {¢,,+x(8—a.(t)|k=1,2,---} is a sequence which
converges in the topology of ®*” and . So the 3rd term is <&/2

uniformly for j and ¢,, and Te \/Lo’@%m (where v=p,=0, 1, -+ p;
p#, means g in §2). The last evaluation is done by taking a sequence
J iogl 8’0 ’ ¢J € @(t)

lim,,. < T, (—1yF@p¢ > =lim,,. < T, >, (=1 >
= 1imj—>oo < a“< Tt) P >/at”’, ¢j > == < T%:), @ > >

where Tg.:) means p—th parametric derivative of T.
From this proof we see also that the following theorem holds.

Theorem 9. If a parametric distribution T, is p-times continuously
differentiable with respect t on B, then T which is defined in Theorem 8
belongs to the space [\LO’S@%@, and its p-th parametric derivative T4
is equal to *T /oty or (FT/0t*)1, on B.

Theorem 10. If Te’fb% and T is constructed from T, on B by
Theorem 8, then T = T on B.

Proof. Since D*(x) @ D%¢) is dense in the topology of Dy in
o"(x, 1), we have only to prove (T, u(x)v(t)):(’f‘, u(x)o(t) >
for u(x)v(f).

Now

[T, o> — T, uoy| =T, uvd>— <L T, ust, >, v(t,) D]
<IKT, uv> — KT, ugy; >, o(t) >
+ | LT ude; >, v(8) > — LT, ud, >, v(t,) >
If we take ¢, ) 5, then {r,,|j=1,2, -, t€B} is a (v, 7, 5)-family. So

there exists j, such that for any j>j,, |<T, up,;>—< T, us, »|<&/2M
by Corollary of Theorem 2. If we take M such that Max|v(¢) |<<M/(b—a)
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-then the 3rd term is <7&/2. The 2nd term is smaller than

!<T) m)>—<f, ul)>|+|<f, ul)>——<<f, u¢tj>) ﬂ(f)>!
+|<<f> u¢tj>, U(t)>—<< T’ u¢tj>’ U(t)>l

If we take %?ﬁ T then the 1st term is <(&/6 and
[<fyud, > — T, udp,, > < &/6M uniformly for ¢, j. For such an f we
can take j such that the 2nd term |<f, u ) — <{f, udp,, >|<&/6M
uniformly for £. So we have | T, uv> — (T, uv>|< & q.e.d

Theorem 11. (THE CONVERSE OF THEOREM 10)

If Te'Dgn Ny Dpwrpmp i) then the mapping t—T, is p-times
continuously differentiable from B to D' (x), and its u-th parametric
derivative T equals o*T/ot}.

Proof. We take a sequence {¢,} such that ¢j(ﬁﬂ8<“‘”. Then
{rp,17, t} is a (p—1, =, 8* V)-family where + means a shift. So we
have |<T, ur_,¢p,> —< T, urr_ﬂ8§-‘;—1>>|<8 uniformly for A¢ where
{At|t,+At € B}, So for £€5=0, there exists a j,(£) such that for any
7 >7j,() and for any At with |A?|<|&],

KT, ur_ gy > — T, ur_ o870 5 1< E|E].

’ ’
In the next place we can say limg,,,, jo.(7_4b,; — ¢,)/AL (ﬁ+1), 8™ as
follows. For any ¢ € B,.,,, we evaluate

| _seps — b5} /AL @ > — {8, @ |
Py {p(E—AL) — @)} /ALY — (&9, {p(t—AfH)—p(t)} /AL D}
+ |8, {p(t—Af) — p(B)} /ALY — 8%, —g' .
In the 2nd term a set B;

B = {{p(t—At) — p(t)} /At =+, and —@'(t)|p € Bywn},

is a bounded set in Bg_,,. So if ¢, "1 5#-1 then there exists 7,
such that for any j >j,,
[<ds, Ya > — 8w, Ve >]< &/2  uniformly for By, AL
The 3rd term is equal to
| pW(E, —O0AL)—p®(E,) | | @ O(2, — 0’ At) | |0AE]
where 0<76,¢, <1.
Since @€ Bu.,,, we have £ >0 such that for any |A#|<<g, the 3rd

term is <(&/2 uniformly for @ € B, ,,. So there exists &, and j, such
that for any j>>j, and|A¢|<&, we have
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[{AT-sps— D5} /AL, @ > — (8, P <&,
and we obtain (1).
Now putting Max (j,, j,())=j, (&) for |£|<E,, we evaluate

KT, ud® > — (AT —T¢E P /AL, u |
SIKT, ud® ) — T, u{r_sdp;— b} /AL D]
+ [T, u{r_ gy —7_ 1 8% DY /ALY — T, u{dp,— 8% P} /AL .

For any & >0 there exists & such that for any j >j, (&) and
|At|<|&,| the second term is < &/2. Now for any Af with |A¢|<]|&,],
if we take a ¢, with j >j (Af), we can make the 3rd term smaller
than &/2.

REMARK. We have assumed r=p+1 in the space @%m in this
theorem. As the proof shows this condition can be weakened. That
is to say, Theorem is also true for Te";g)% N\'Df where '®z is the dual
space of the ©7 whose topology is induced by the bounded set defined
by the boundedness of the difference quotient of p-th differential
coefficient in place of by the bounded set defined by (p+1, §')—family.

However it will not be sufficient to assume » =p, since {r_,8—&} /h—(i’w/

but not LN & .

§ 6. Application to the distributional differential equation of evolu-
tion.

L. Schwartz ([3]) treated the parametric equation of evolution
of the following type.

(1) OU(x, /3t + 3, <, AODIU(x, ) = B, 1),

where A, () is a function of ®**» and B(x, f) is a continuous parametric
distribution. L*®(x) means a differential operator from the space D (x)
to D**(x) and B, A, U are all matrices.

We consider the corresponding proper distributional (in D"(x, t))
equation of this type and its proper distributional solution. (Initial
condition on ¢=f{, is given in the space ‘®}). '

Theorem 12. If as a mapping t — D (x) for ==>1 a parametric
continuously differentiable distribution U(x,t) satisfes parametric equation
(1) under the above mentioned condition, then U satisfies the correspond-
ing proper distributional equation, i.e.

oU(x, t)/ot + Z‘PléqA‘,(t)DgU(x, t) = B(x,1).
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Proof. By Theorems8and 9, Ue ”5)% [\’@%m, and U §(1)7(x):(8 U /oty

where subscript (1) of U means parametric derivative. By
Theorem 8, B(x, t)€'Dy and B, (X) = Bi(X). By the Corollary of
Lemma 11 and Lemma 12, 33A(x, HDeU(x, t)e’@%’+”>, and
YA, DU, (x) = (32 A (5)DeU(x, t)),, where D2 in the left hand side
of equality means differential operator from D% (x) to @ (x) and
D¢ in the right hand side means differential operator of the same
form from D’(x, ¢} to D= (x, §).

Now we can rewrite parametric equation (1) as a proper equation
of multiple distributions by §(#), i.e.,

©U(x, t)/0t + 37 A,Di0(x, 1), = (B(x,0)),
for any t¢€%®. So if we take ~ on both side we obtain a proper
equation in = Y(x, t), U/t +3} A, D:U=B, by Theorem 11.
Conversely the following theorem holds.
Theorem 13. If a proper equation (1) is given, and the proper solution

U(x,t) belongs to ’55%[\’@%,@:2) Jor =>2, then UyJx) satisfies the
corresponding parametric equation.

Proof. Manifestly ’@%,(y=2)<’®%,<”=1>. So 8U/8te’®% by
Theorem 7. It holds also that > A,(#)DiU(x, t)é@@“’ by Corollary

of Lemma 11 and Lemma 12. Therefore we can take the multiple
“distribution by §, of the distribution of both hand sides of the equation

(@U/ot),+( 2] A,HDEU(x, 1)), = (B(x, 1)), .

Since U e"b%,@:z)[\’@%, (oU/2t), equals parametric derivative by
Theorem 11, and the second term equals 3 A (#)DiU,(x) where D:
means an operator from D(x) to D" *¥(x) and the third term equals
B.(x). So this is itself a parametric equation whose solution is U,(x),
q.e.d.

(Received September 1, 1954)
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