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1. Introduction, Definitions and Notations

The classical Euler numbers and polynomials have been studied by many mathematicians,
which are defined as follows, respectively,
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et + 1
=

∞
∑

n=0

En
tn

n!
, |t| < π, (1.1)

2etx

et + 1
=

∞
∑

n=0

En(x)
tn

n!
, |t| < π, (1.2)

cf.[1–51]. Observe that En(0) = En.



2 Abstract and Applied Analysis

These numbers and polynomials are interpolates by the Euler zeta function and
Hurwitz-type-zeta functions, respectively,

ζE(s) =
∞
∑

n=1

(−1)n

ns
, s ∈ C, (1.3)

ζE(s, x) =
∞
∑

n=0

(−1)n

(n + x)s
, s ∈ C. (1.4)

Let [x] = [x : q] = 1 − qx/1 − q. Observe that lim
q→ 1

[x] = x, cf. [3, 47].

Various kinds of the q-analogue of the Euler numbers and polynomials, recently, have
been studied by many mathematicians. In this paper, we use Kim’s [13, 21] and Simsek’s [43]
methods. By using p-adic q-Volkenborn integral [12], Kim [13, 26] constructed many kinds
of generating functions of the q-Euler numbers and polynomials and their interpolation
functions. He also gave many applications of these numbers and functions. Simsek [40, 43]
studied on the generating functions of the Euler numbers and Bernoulli numbers. By using
these generating functions, Simsek constructed q-Dedekind-type sums and q-Hardy-type
sums as well.

Recently, Cangul et al. gave higher-order q-Genocchi numbers and their interpolation
functions. Applying p-adic q-fermionic integral on p-adic integers, they also gave Witt’s
formula of these numbers.

In [21], by using multivariate fermionic p-adic integral on Zp, Kim constructed gen-
erating function of the Nörlund-type q-Euler polynomials of higher order. Main motivation
of this paper is to construct interpolation function of the Nörlund-type q-Euler polynomials.
Therefore, we firstly give generating function of the Nörlund-type q-Euler polynomials.

Kim [21] defined Nörlund type q-extension Euler polynomials of higher order. He
gave many applications and interesting identities. We give some of them in what follows.

Let q ∈ C with |q| < 1:

Fq(t, x) = 2
∞
∑

m=0

(−1)me[m+x]t =
∞
∑

n=0

En,q(x)
tn

n!
. (1.5)

Observe that Fq(t) = Fq(t, 0). Hence, we have En,q(0) = En,q. If q → 1 into (1.5), then
we easily obtain (1.2).

Higher-order q-Euler polynomials of the Nörlund type are defined by Kim [21]. He
gave generating functions related to Euler numbers of higher-order. In this paper, we use
generating functions in [21]. Especially, we can use the following generating function, which
are proved by Kim [21, Theorem 2.3, page 5].

Theorem 1.1 ([21, Theorem 2.3, page 5]). For r ∈ N, and n ≥ 0, one has

F
(r)
q (t, x) = 2r

∞
∑

m=0

(−1)m
(

m + r − 1

m

)

e[m+x]t =
∞
∑

n=0

E
(r)
n,q(x)

tn

n!
. (1.6)

It is noted that if r = 1, then (1.6) reduces to (1.5).
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Remark 1.2. In (1.6); we easily see that

lim
q→ 1

F
(r)
q (t, x) = 2r

∞
∑

m=0

(−1)m
(

m + r − 1

m

)

e(m+x)t

= 2rext
∞
∑

m=0

(−1)m
(

m + r − 1

m

)

emt

=
2rext

(1 + et)r

= F(r)(t, x).

(1.7)

From the above, we obtain generating function of the Nörlund Euler numbers of higher order.
That is

F(r)(t, x) =
2rext

(1 + et)r
=

∞
∑

n=0

E
(r)
n (x)

tn

n!
. (1.8)

Thus, we have

lim
q→ 1

E
(r)
n,q(x) = E

(r)
n (x). (1.9)

cf.[21].
Hence, we have

F(r)(t, x) =

(

2

et + 1

)(

2

et + 1

)

· · ·

(

2

et + 1

)

etx

= 2retx
∞
∑
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etn1(−1)n1

∞
∑

n2=0

etn2(−1)n2 · · ·
∞
∑

nr=0

etnr (−1)nr

= 2retx
∞
∑

n1,n2,...,nr=0

(−1)n1+n2+···+nret(n1+n2+···+nr)

=
∞
∑

n=0

E
(r)
n (x)

tn

n!
.

(1.10)

We now summarize the results of this paper.
In Section 2, we study on modified generating functions of higher-order Nörlund-type

q-Euler polynomials and numbers. We obtain some relations related to these numbers and
polynomials.

In Section 3, we give interpolation functions of the higher order Nörlund-type q-Euler
polynomials.

In Section 4, we obtain some relations related to he higher order Nörlund-type q-Euler
polynomials.

In Section 5, we give remarks and observations on an Approximation theory related to
Bernoulli and Euler polynomials.
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2. Modified Generating Functions of Higher-Order Nörlund-Type
q-Euler Polynomials and Numbers

In this section we define generating function of modified higher order Nörlund type q-Euler

polynomials and numbers, which are denoted by E
(r)
n,q(x), and E

(r)
n,q respectively. We give

relations between these numbers and polynomials.
We modify (1.6) as follows:

F
(r)
q (t, x) = F

(r)
q

(

q−xt, x
)

, (2.1)

where F
(r)
q (t, x) is defined in (1.6). From the above we find that

F
(r)
q (t, x) =

∞
∑

n=0

q−nxE
(r)
n,q(x)

tn

n!
. (2.2)

After some elementary calculations, we obtain

F
(r)
q (t, x) = exp

(

[x]q−xt
)

f
(r)
q (t), (2.3)

where

f
(r)
q (t) =

(

2r
∞
∑

m=0

(−1)m
(

m + r − 1

m

)

e[m]t

)

=
∞
∑

n=0

E
(r)
n,q

tn

n!
. (2.4)

From the above we have

F
(r)
q (t, x) =

∞
∑

n=0

ε
(r)
n,q(x)

tn

n!
, (2.5)

where

ε
(r)
n,q(x) = q−nxE

(r)
n,q(x). (2.6)

By using Cauchy product in (2.3), we arrive at the following theorem.

Theorem 2.1. For r ∈ N, and n ≥ 0, one has

ε
(r)
n,q(x) =

n
∑

j=0

(

n

j

)

qjx[x]n−kE
(r)
j,q . (2.7)

By using (2.7), we easily obtain the following result.
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Corollary 2.2. For r ∈ N, and n ≥ 0, one has

ε
(r)
n,q(x) =

∞
∑

m=0

n
∑

j=0

n−j
∑

l=0

(

n

j, l, n − j − l

)(

n − j +m − 1

m

)

(−1)lqm+x(l+j)E
(r)
j,q . (2.8)

We now give some identity related to Nörlund type Euler polynomials and numbers
of higher-order.

Substituting x = 0 into (1.10), we find that

E
(r)
n = 2r

∞
∑

n1,n2,...,nr=0

∑

j1,...,jr=0
j1+···+jr=n

(

n

j1, . . . , jr

)

(−1)n1+n2+···+nr

r
∏

k=0

n
jk
k
. (2.9)

By (1.10) and (2.9), we arrive at the following theorem.

Theorem 2.3. For r ∈ N, and n ≥ 0, one has

E
(r)
n =

n
∑

j=0

(

n

j

)

(−x)n−jE
(r)
j (x). (2.10)

By using (1.10) and [35, Theorem 3.6, page 7] , we easily arrive at the following result.

Corollary 2.4. For r, v ∈ N, and n ≥ 0, one has

(

E(r)(x) + E(v)
(

y
)

)n
=

n
∑

j=0

(

n

j

)

xn−jE
(r+v)
j

(

y
)

, (2.11)

where (E(r)(x))
n
is replaced by E

(r)
n (x).

3. Interpolation Function of Higher-Order
Nörlund-Type q-Euler Polynomials

Recently, higher-order Bernoulli polynomials and Euler polynomials have studied by many
mathematicians. Especially, in this paper, we study on higher-order Euler polynomials which
are constructed by Kim (see, e.g., [14, 17, 21, 24, 27, 28, 33]) and see also the references cited
in each of these earlier works.

In [20], by using the fermionic p-adic invariant integral on Zp, the set of p-adic
integers, Kim gave a new construction of q-Genocchi numbers, Euler numbers of higher
order. By using q-Genoucchi, Euler numbers of higher order, he investigated the interesting
relationship betweenw-q-Euler polynomials andw-q-Genocchi polynomials. He also defined
the multiple w-q-zeta functions which interpolate q-Genoucchi, Euler numbers of higher
order.

By using similar method of the papers given by Kim [20, 21], in this section, applying
derivative operator dk/dtk|t=0 and Mellin Transformation to the generating functions of the
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higher-order Nörlund-type q-Euler polynomials, we give interpolation function of these
polynomials.

By applying operator dk/dtk|t=0 to (1.6), we obtain the following theorem.

Theorem 3.1. Let r, k ∈ Z
+ and x ∈ R with 0 < x ≤ 1. Then one has

E
(r)

k,q(x) = 2r
∞
∑

m=0

(−1)m
(

m + r − 1

m

)

[m + x]k. (3.1)

Let us define interpolation function of higher-order Nörlund-type q-Euler numbers as
follows.

Definition 3.2. Let q, s ∈ C with |q| < 1, and 0 < x ≤ 1. Then we define

ζ
(r)
q (s, x) = 2r

∞
∑

n=0

(−1)n
(

n+r−1

n

)

[n + x]s
. (3.2)

Remark 3.3. It holds that

lim
q→ 1

ζ
(r)
q (s, x) = 2r

∞
∑

n=0

(−1)n
(

n+r−1

n

)

[n + x]s
. (3.3)

For detail about the above function (see [5–38, 44, 47]). By applying dk/dtk|t=0 derivative
operator to (1.10), we easily see that

ζ(r)(s, x) = 2r
∞
∑

n1,...,nr=0

(−1)n1+···+nr

(

∑r
j=1 nj + x

)s , (3.4)

where s ∈ C.

The functions in (3.3) and (3.4) interpolate same numbers at negative integers. That
is, these functions interpolate higher-order Nörlund-type Euler numbers at negative integers.
So, by (3.3), we modify (3.4) in sense of q-analogue.

In [3–51], many authors extensively have studied on similar type of (3.4).
In (3.3) and (3.4), setting r = 1, we have

ζ(1)(s, x) = 2
∞
∑

n=0

(−1)n

(n + x)s
= ζE(s, x) (3.5)

where ζE(s, x) denotes Hurwitz type Euler zeta function, which interpolates classical Euler
polynomials at negative integers.
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Theorem 3.4. Let n ∈ Z
+. Then one has

ζ
(r)
q (−n, x) = E

(r)
n,q(x). (3.6)

Proof. Substituting s = −k, k ∈ Z
+ into (3.2). Then we have

ζ
(r)
q (−k, x) = 2r

∞
∑

n=0

(−1)n
(

n + r − 1

n

)

[n + x]k. (3.7)

Setting (3.1) into the above, and after some elementary calculations, we easily arrive at the
desired result.

By applying the Mellin transformation to (2.5), we find that

1

Γ(s)

∫∞

0

ts−1F
(r)
q (−t, x)dt = 2r

∞
∑

m=0

(−1)m
(

m+r−1

m

)

qnxs

[m + x]s
. (3.8)

From the above we define the following function, which interpolate E
(r)
n,q(x) at negative

integers.

Definition 3.5. Let q, s ∈ C with |q| < 1, and 0 < x ≤ 1. Then we define

Z
(r)
q (s, x) = 2r

∞
∑

m=0

∞
∑

j=0

(−1)m
(

r +m − 1

m

)(

s + j − 1

j

)

qx(ns+j)+mj . (3.9)

Theorem 3.6. Let n ∈ Z
+. Then one has

Z
(r)
q (−n, x) = ε

(r)
n,q(x). (3.10)

By Theorems 5, 6, a relation between the functions ζ
(r)
q (−n, x) and ζ

(r)
q (−n, x) is given

by the following corollary.

Corollary 3.7.

Z
(r)
q (−n, x) = q−nxζ

(r)
q (−n, x). (3.11)

Remark 3.8. Recently many authors have studied on the Riemann zeta function, Hurwitz
zeta function, Lerch zeta function, Dirichlet series for the polylogarithm function and
Dirichlet’s eta function and the other functions. The Lerch trancendentΦ(z, s, a) is the analytic
continuation of the series

Φ(z, s, a) =
1

as
+

z

(a + 1)s
+

z

(a + 2)s
+ · · · =

∞
∑

n=0

zn

(n + a)s
, (3.12)
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which converges for (a ∈ C \ Z
−
0 , s ∈ C when |z| < 1; R(s) > 1 when |z| = 1), where as usual

Z
−
0 = Z

− ∪ {0}, Z
− = {−1,−2,−3, . . .}. (3.13)

However, Φ denotes the familiar Hurwitz-Lerch Zeta function (cf. e. g., [8], [49, page
121 et seq.]). Some special cases of the function Φ(z, s, a) are given by the following relations
(e.g., and details see [8], [49, page 121 et seq.]):

(1)the Riemann zeta function

Φ(1, s, 1) = ζ(s) =
∞
∑

n=1

1

ns
, R(s) > 1, (3.14)

(2) the Hurwitz zeta function

Φ(1, s, a) = ζ(s, a) =
∞
∑

n=0

1

(n + a)s
, R(s) > 1, (3.15)

(3) the Dirichlet’s eta function

Φ(−1, s, 1) = ζ∗(s) =
∞
∑

n=1

(−1)n−1

ns
, (3.16)

(4) the Dirichlet beta function

Φ(−1, s, 1/2)

2s
= β(s) =

∞
∑

n=0

(−1)n

(2n + 1)s
, (3.17)

(5) the Legendre chi function

zΦ
(

z2, s, 1/2
)

2s
= χs(z) =

∞
∑

n=0

z2n+1

(2n + 1)s
, (|z| ≤ 1;R(s) > 1), (3.18)

(6) the polylogarithm

zΦ(z, n, 1) = Lim(z) =
∞
∑

n=0

zk

nm
, (3.19)

(7) the Lerch zeta function (sometimes called the Hurwitz-Lerch zeta function)

L(λ, α, s) = Φ
(

e2πiλ, s, α
)

, (3.20)

which is a special function and generalizes the Hurwitz zeta function and polylogarithm cf.
[6, 8, 20, 46, 49] and see also the references cited in each of these earlier works. Consequently,
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the functions Z
(r)
q (−n, x) and ζ

(r)
q (−n, x) are related to the Hurwitz-Lerch zeta function and

the other special functions, which are defined above:

2Φ(−1, s, x) = ζ(1)(s, x) = ζE(s, x). (3.21)

4. Some Relations Related to Higher-Order
Nörlund q-Euler Polynomials

In this section, by using generating function of higher-order Nörlund q-Euler polynomials,
which is defined by Kim [20, 21], we obtain the following identities.

Theorem 4.1. Let q ∈ C with |q| < 1. Let r be a positive integer. Then one has

E
(r)

k,q(x) = 2r
k
∑

j=0

j
∑

a=0

(−1)a
(

k

a, j − a, k − j

)

qja[x]k−j

(

1 − q
)j(

1 + qk−j
)r−1

. (4.1)

Proof. By using (3.1), we have

E
(r)

k,q(x) = 2r
∞
∑

m=0

(−1)m
(

m + r − 1

m

)

(

[m] + qm[x]
)k

= 2r
∞
∑

m=0

(−1)m
(

m + r − 1

m

)

k
∑

j=0

(

k

j

)

[m]jqm(k−j)[x]k−j

= 2r
∞
∑

m=0

(−1)m
(

m + r − 1

m

)

k
∑

j=0

(

k

j

)
(

1 − qm
)j

(

1 − q
)j

qm(k−j) · [x]k−j

= 2r
∞
∑

m=0

(−1)m
(

m + r − 1

m

)

k
∑

j=0

j
∑

a=0

(

k

j

)(

j

a

)

(−1)aqaj+m(k−j) · [x]k−j

(

1 − q
)j

= 2r
k
∑

j=0

j
∑

a=0

(

k

j

)(

j

a

)

(−1)aqja · [x]k−j

(

1 − q
)j

∞
∑

m=0

(−1)m
(

m + r − 1

m

)

qm(k−j)

= 2r
k
∑

j=0

j
∑

a=0

(

k

j

)(

j

a

)

(−1)aqja · [x]k−j

(

1 − q
)j(

1 + qk−j
)r−1

= 2r
k
∑

j=0

j
∑

a=0

(−1)a
(

k

a, j − a, k − j

)

qja[x]k−j

(

1 − q
)j(

1 + qk−j
)r−1

.

(4.2)

Thus,we complete the proof.
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Theorem 4.2. Let q ∈ C with |q| < 1. Let r be a positive integer. Then one has

E
(r)
n,q(x) =

n
∑

j=0

(−1)j
(

n

j

)

qjx
(

1 − qj
)−r

(

1 − q
)−n

. (4.3)

Proof. By using (1.6)

F
(r)
q (t, x) = 2r

∞
∑

m=0

(

m + r − 1

m

)

(−1)me[m+x]t

= 2r
∞
∑

m=0

∞
∑

n=0

(

m + r − 1

m

)

(−1)m
(

1 − qm+x

1 − q

)n tn

n!

= 2r
∞
∑

m=0

∞
∑

n=0

(

m+r−1

m

)

(−1)m

(

1 − q
)n
n!

⎛

⎝

n
∑

j=0

(

n

j

)

(−1)j · qjx+jm

⎞

⎠tn

= 2r
∞
∑

n=0

∞
∑

j=0

( n

j

)

(−1)j .qjx

(

1 − q
)n ·

tn

n!

∞
∑

m=0

(

m + r − 1

m

)

(−1)m · qjm

(4.4)

Thus we have;

∞
∑

n=0

E
(r)
n,q(x)

tn

n!
= 2r

∞
∑

n=0

⎛

⎝

n
∑

j=0

(

n

j

)

(−1)jqjx
(

1 − qj
)−r

(

t

1 − q

)n 1

n!

⎞

⎠. (4.5)

By comparing the coefficients tn/n! both sides in the above, we arrive at the desired result.

Theorem 4.3. Let r, y ∈ Z
+. Then one has

k
∑

j=0

(

k

j

)

E
(r)
j,q (x)E

(y)
k−j,q(x)

= 2r+y
∞
∑

n=0

n
∑

j=0

(−1)n
(

j + r − 1

j

)(

n − j + y − 1

n − j

)

([

x + y
]

+
[

n − j + x
])k

.

(4.6)

Proof. By using (1.6), we have

∞
∑

n=0

E
(r)
n,q(x)

tn

n!

∞
∑

n=0

E
(y)
n,q (x)

tn

n!

= 2r+y
∞
∑

n=0

(−1)n
(

n + r − 1

n

)

e[n+x]t
∞
∑

n=0

(−1)n
(

n + y − 1

n

)

e[n+x]t.

(4.7)
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By using Cauchy product into the above, we obtain

∞
∑

n=0

⎛

⎝

n
∑

j=0

E
(r)
j,q (x)E

(y)
n−j,q(x)

1

j!
(

n − j
)

!

⎞

⎠tn

= 2r+y
∞
∑

n=0

⎛

⎝

n
∑

j=0

(

j + r − 1

j

)(

n − j + y − 1

n − j

)

(−1)ne[j+x]te[n−j+x]t

⎞

⎠,

(4.8)

From the above, we have

∞
∑

m=0

⎛

⎝

m
∑

j=0

E
(r)
j,q (x)E

(y)
m−j,q(x)

1

j!
(

m − j
)

!

⎞

⎠tm

=
∞
∑

m=0

⎛

⎝2r+y
∞
∑

n=0

n
∑

j=0

(

j + r − 1

j

)(

n − j + y − 1

n − j

)

([

j + x
]

+
[

n − j + x
])m

⎞

⎠tm

(4.9)

By comparing the coefficients of both sides of tn in the above we arrive at the desired result.

Remark 4.4. In (4.1) setting y = 1, we have

m
∑

j=0

(

m

j

)

E
(r)
j,q (x)Em−j,q(x) = 2r+1

∞
∑

n=0

(−1)n
n
∑

j=0

(

j + r − 1

j

)

([

j + x
]

+
[

n − j + x
])m

. (4.10)

The above relations give us (3.1) related to (4.1).

5. Further Remarks and Observations on Approximation

Apostol [1, page 481] gave Weierstrass theorem as follows.

Theorem 5.1. Let f be real valued and continuous on a closed interval [a, b]. Then, given any ε > 0,
there exists a polynomial p (which may be depend on ε) such that

∣

∣f(x) − p(x)
∣

∣ < ε, (5.1)

for every x ∈ [a, b].

According to Apostol [1]; the above theorem is described by saying that every
continuous function can be “uniformly approximated” by a polynomial.

We now give, more useful, and more interesting result concerning the approximation
by polynomials which is related tothe Bernstein polynomials (cf. [1, 2, 4, 34, 39]).
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Definition 5.2. ([2]) Let f be a function with domain I = [0, 1] and range R. The nth Bernstein
polynomial for f is defined to be

Bn(x) = Bn

(

f ;x
)

=
n
∑

k=0

f

(

k

n

)

(

n

k

)

xk(1 − x)n−k. (5.2)

These Bernstein polynomials are not only used with probability (the Binomial
Distribution) but also used in the approximation theory.

Let f be continuous on I with values in R. Then the sequence of Bernstein polynomials
for f, defined in (5.2) converges uniformly on I to f (cf.[2]).

In [4], Costabile and Dell’Accio collected classical and more recent results on
polynomial approximation of sufficiently regular real functions defined in bounded closed
intervals by means of boundary values only. Their problem is considered from the point
of view of the existence of explicit formulas, interpolation to boundary data, bounds for
the remainder and convergence of the polynomial series. Applications to some problems of
numerical analysis are pointed out, such as nonlinear equations, numerical differentiation
and integration formulas, specially associated differential boundary value problems. Some
polynomial expansions for smooth enough functions defined in rectangles or in triangles of
R

2 as well as in cuboids or in tetrahedrons in R
3 and their applications are also discussed.

They also used Bernoulli and Euler polynomials for the polynomial approximation cf. see for
detail [4].

Lopez and Temme [34] studied on uniform approximations of the Bernoulli and Euler
polynomials for large values of the order in terms of hyperbolic functions. They obtained
convergent expansions for

Bn

(

nz +
1

2

)

, En

(

nz +
1

2

)

(5.3)

in powers of 1/n, and coefficients are rational functions of z and hyperbolic functions of
argument 1/2z, here Bn(x) and En(x) denote Bernoulli and Euler polynomials, respectively.
Their expansions are uniformly valid for |z ± i/2π | > 1/2π and |z ± i/π | > 1/π, respectively.
For a real argument, the accuracy of these approximations is restricted to the monotonic
region cf. see for detail [34].

Recently, many authors studied on very different type of the approximation theory.
Consequently, by using the above motivations, we conclude this section by the following
questions:

Bernoulli functions and Euler functions are related to trigonometric polynomials cf.
[46]. Approximation by q-analogue of these functions may be possible.

(1) whether or not define better uniform approximations for the Nörlund q-Euler polynomials
higher order;

(2) is it possible to define uniform expansions of the Nörlund q-Euler polynomials higher order?
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