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Abstract

We consider multiple simple recourse (MSR) models, both continuous and integer versions,
which generalize the corresponding simple recourse (SR) models by allowing for a refined
penalty cost structure for individual shortages and surpluses.

It will be shown that (convex approximations of) such MSR models can be represented as
explicitly specified continuous SR models, and thus can be solved efficiently by existing algo-
rithms.
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1. Introduction

Consider the linear programming problem

min
x

cx

s.t. Ax = b

T x = ω

x ∈ R
n
+.

(1)

Such models are successfully applied to analyze a wide variety of practical problems.
However, the implicit assumption that all parameters of the model are known (deter-
ministic) is often not satisfied in practice. For example, the constraints T x = ω in
model (1) could represent the goal to satisfy future demand ω for certain goods at min-
imal costs cx; however, the exact amount of this demand is not known at the time that
the decisions x need to be made. In stochastic programming models, uncertainty about
the value of parameters is modeled by assuming that they can be represented by random
variables, with known distribution.

Obviously, (1) is not well defined if the right-hand side vector ω ∈ R
m is random, as we

will assume. To arrive at a meaningful model, it needs to be extended. A well-known
way to do this, is by formulating a (two-stage) recourse model, see e.g. [1, 5, 13]. The
underlying idea is that the decision x is made before knowing the realization of ω,
and then, once the realization is known, deviations ω − T x have to be corrected at
certain (minimal) costs. The costs of these corrections or recourse actions, given by the
recourse cost function v as v(ω−T x), are computed for each possible realization of the
random parameters ω; weighted with their respective probabilities, they constitute the
expected recourse costs Q(x) := Eω [v(ω − T x)] corresponding to a given decision
x. The criterion to choose x thus becomes minimal total expected costs, consisting of
direct costs cx and expected recourse costs Q(x). The conceptual model is

min
x∈X cx + Q(x),

with X := {x ∈ R
n
+ : Ax = b}, which is specified except for the recourse cost function

v. This function is commonly defined as the value function of a second linear program,
called the second-stage problem: for s ∈ R

m,

v(s) := min
y

qy

s.t. Wy = s

y ∈ Y,

where W is called the recourse matrix, q specifies the recourse unit cost parameters,
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Figure 1.1: Simple recourse penalty costs (m = 1).

and Y describes the feasible set of recourse actions.

This specification of the recourse model allows for a lot of flexibility: many choices
for the recourse structure (q,W, Y ) are possible. A well-known special case is simple
recourse, defined by the recourse structure W = (Im, −Im), with Im the m×m identity
matrix, q = (q+, q−), and Y = R

2m
+ , so that v is given by

v(s) = min
y

q+y+ + q−y−

s.t. y+ − y− = s , s ∈ R
m.

y+, y− ∈ R
m
+

Using the separability of the function v, and under the usual assumption that the cost
parameters satisfy q+ + q− ≥ 0 (component wise), it holds v(s) = ∑m

i=1 vi(si), where
each function vi is given in closed form:

vi(si) = q+
i (si)

+ + q−
i (si)

−,

with (u)+ := max{u, 0}, (u)− := max{−u, 0}, u ∈ R.

The interpretation of this recourse structure is that linear penalty costs are assigned to
both shortages and surpluses with respect to each constraint Tix = ωi , i = 1, . . . , m,
individually. See Figure 1.1.

Separability of the function v is the key to very efficient algorithms [1, 5, 13], allowing
to solve simple recourse models of high dimensions. Indeed, for problems with hun-
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Figure 1.2: Multiple simple recourse penalty costs (m = 1).

dreds of random variables, as for example is the case in some engineering applications,
a simple recourse formulation is the only feasible choice from a computational point of
view.

On the other hand, in many applications linear penalty costs are not realistic or de-
sirable. In [6] Klein Haneveld proposed the multiple simple recourse model, which
is a generalization of the simple recourse model allowing for piecewise linear convex
penalty cost functions, see Figure 1.2. Although attractive from a modeling point of
view (see Section 2), this model has not been used much in practice because no (effi-
cient) algorithms were available.

Below we will show that every multiple simple recourse model can be transformed
to an equivalent simple recourse model. Consequently, such models can be solved by
existing algorithms for simple recourse models.

Following the discussion on continuous multiple simple recourse models, we present
corresponding results for the integer version, which is obtained by setting Y ⊂ Z

2m
+

instead of Y ⊂ R
2m
+ . Properties and algorithms for simple integer recourse models are

discussed in [12, 15, 8, 10, 9].
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2. Examples of piecewise linear penalty cost functions

Before going into technical details, we motivate our interest in multiple simple recourse
models by sketching some applications which call for piecewise linear penalty cost
functions.

0

v(s)

s

Figure 2.1: Piecewise linear approximation of a smooth penalty function.

In an early computational paper, Dupačová et al. [3] discuss stochastic programming
models and solution techniques for a water management problem. For the recourse ver-
sion of their model, they consider various types of penalty functions for floods, lack of
irrigation, and decrease of recreation. They advocate the use of piecewise linear penalty
functions as approximations of more general convex functions. However, in the actual
computations (one-sided) simple recourse penalty functions are used, presumably to
keep the computation time within reasonable bounds. Figure 2.1 shows an example of
a piecewise linear approximation of a smooth (one-sided) penalty function.

In [11] we proposed models for optimizing electricity distribution in the Netherlands.
One of the problems considered is the daily planning of the power supply to be obtained
from so-called small generators (e.g. green houses and hospitals), in addition to the
usual supply from power plants. Each contract between the distributor and such a small
generator specifies, among a number of other constraints, lower and upper bounds for
the total supply in a given year. On day t of that year, it is known how much supply has
been obtained from a small generator so far, so that today’s supply xt and the uncertain
supply in the rest of the year ωt should satisfy lt ≤ xt +ωt ≤ ut , where lt and ut denote
the adapted lower and upper bounds, respectively. Unit penalty costs for violations of
these bounds are known. In addition, to reserve some flexibility for future decisions,
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Figure 2.2: Penalty function of electricity distribution model.

the management of the electricity distributor prefers to ‘stay away from the bounds’.
This preference is modeled by assigning small unit costs to deviations of xt + ωt from
(lt + ut )/2. Figure 2.2 shows an example of the resulting piecewise linear penalty cost
function.

0l u

v(s)

s

Figure 2.3: Penalty function of ALM model.

In [2] we described a (preliminary version of) a recourse model for the Asset Liability
Management problem for pension funds. One of the novel aspects of this model is
that we explicitly consider the stability of contribution rates. This is implemented by
assigning penalty costs to changes in this rate from one period to the next, if they exceed
a certain amount. Both the unit penalty cost and the threshold value may be different
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for decreases and increases. An example of the corresponding penalty cost function is
shown in Figure 2.3.

3. Multiple simple recourse

To set the stage for our results on multiple simple recourse models, we first review
some well-known properties of the simple recourse expected value function and related
functions.

3.1 Simple recourse functions

As stated in the introduction, the simple recourse model is

min cx + Q(x) : x ∈ X

with

Q(x) := Eω [v(ω − T x)] , x ∈ R
n,

v(s) :=
m∑
i=1

(
q+
i (si)

+ + q−
i (si)

−)
, s ∈ R

m,

assuming that q+ + q− ≥ 0.

Because of the separability of the function v, the expected value function Q is separable
in the tender variables z := T x:

Q(x) =
m∑
i=1

Qi(zi)

with

Qi(zi) := q+
i Eωi

[
(ωi − zi)

+] + q−
i Eωi

[
(ωi − zi)

−]
, zi ∈ R, (2)

which is finite if and only if Eωi
[|ωi|] is finite, which we assume from now on.

Since each of these functions Qi : R �→ R has the same structure, we analyze the
function Q by studying the generic function

Q(x) := Eω [v(ω − x)] , x ∈ R,

where ω is a one-dimensional random variable, with cumulative distribution function
(cdf) denoted by F and mean value µ.

7



For x ∈ R, we define the expected surplus function

G(x) := Eω

[
(ω − x)+

]

and the expected shortage function

H(x) := Eω

[
(ω − x)−

]
,

so that Q(x) = q+G(x)+q−H(x). Hence, properties of the function Q follow trivially
from properties of the functions G and H , which are easily derived using the following
well-known formulae. For x ∈ R,

G(x) =
∫ ∞

x

(
1 − F(t)

)
dt and H(x) =

∫ x

−∞
F(t)dt. (3)

In particular, in the next section we will use the following properties.

Lemma 3.1 (i) The simple recourse functions G, H , and Q are finite, convex,
and Lipschitz continuous on R.

(ii) The right derivative of the function G equals G′+(x) = F(x) − 1, x ∈ R.
The asymptotes of G are given by µ − x as x → −∞, and 0 as x → ∞.

(iii) The right derivative of the function H equals H′+(x) = F(x), x ∈ R.
The asymptotes of H are given by 0 as x → −∞, and x − µ as x → ∞.

(iv) The right derivative of the function Q equals Q′+(x) = q+ (
F(x) − 1

)+q−F(x),
x ∈ R.
The asymptotes of Q are given by −q+(x − µ) as x → −∞, and q−(x − µ)

as x → ∞.

3.2 Multiple simple recourse functions

The recourse structure of the multiple simple recourse (MSR) model is chosen such
that its value function v assigns piecewise linear penalty costs to individual shortages
and surpluses. Like in the simple recourse case, the value function is separable. To
avoid unnecessary notational burden, we restrict the detailed presentation to the one-
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dimensional case. For s ∈ R,

v(s) := min
y≥0

K∑
k=1

(
q+
k y

+
k + q−

k y
−
k

)

s.t.
K∑
k=1

y+
k −

K∑
k=1

y−
k = s

y+
k ≤ uk − uk−1,

y−
k ≤ lk − lk−1,

k = 1, . . . , K − 1

with u0 = l0 = 0 and

0 ≤ q+
1 ≤ . . . ≤ q+

K−1 ≤ q+
K

0 ≤ u1 ≤ . . . ≤ uK−1

0 ≤ q−
1 ≤ . . . ≤ q−

K−1 ≤ q−
K

0 ≤ l1 ≤ . . . ≤ lK−1

(4)

That is, corresponding to each linear part of this penalty cost function, an (upper
bounded) variable is defined. Due to the conditions on the cost coefficients, the re-
sulting function is convex. See Figure 3.1 for an example of such a function v.

REMARK. For completeness, we state that the recourse matrix of the m-dimensional
MSR second-stage problem is given by


e1 −e1

e2 −e2
. . .

. . .

em −em


 ,

where ei is a Ki-vector of ones, i = 1, . . . , m.

It is obvious that the MSR structure is complete, i.e., the value function v satisfies
v(s) < ∞ for all s ∈ R

m. MSR problems can therefore be solved using algorithms for
general complete recourse problems. This would be ill-advised, however, since such
algorithms do not take advantage of the special structure of MSR problems.

REMARK. Without loss of generality we define v in terms of the same number of
variables/intervals for both shortage and surplus. (Use e.g. q−k+1 = q−

k for k ≥ K− to
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Figure 3.1: Example of a multiple simple recourse value function (m = 1, K = 3).

obtain an MSR value function with K− < K intervals corresponding to shortages.)

REMARK. Taking K = 1, we obtain the simple recourse value function as a special
case of multiple simple recourse.

For a fixed s ∈ R, it is easy to determine v(s) by constructing an optimal solution of
the defining second-stage problem. For example, if s > 0 then y−k = 0 for all k, and
the variables y+

k are chosen such that
∑

k y
+
k = s, with y+

k+1 > 0 only if y+
k is equal to

its upper bound. For s ≤ 0, an optimal solution can be constructed analogously.

Using straightforward computation, we find the following closed form for v. For s ∈ R,

v(s) =
K−1∑
k=0

[ (
q+
k+1 − q+

k

)
(s − uk)

+ + (
q−
k+1 − q−

k

)
(s + lk)

−
]
, (5)

where we conveniently define q+
0 = q−

0 = 0.
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By definition, the expected value function Q(x), x ∈ R, equals the expectation with
respect to ω of v(ω − x). Thus, using (5) we find that

Q(x) =
K−1∑
k=0

[ (
q+
k+1 − q+

k

)
G(x + uk) + (

q−
k+1 − q−

k

)
H(x − lk)

]
, x ∈ R, (6)

with G and H defined by (3), is a closed form for the (one-dimensional) multiple simple
recourse expected value function.

For later reference, we now present several properties of the function Q.

Lemma 3.2 Consider the multiple simple recourse expected value function Q, given
in closed form by (6).

(i) The function Q is finite, convex, and Lipschitz continuous on R.
(ii) The right derivative of Q exists everywhere. For x ∈ R, it is given by

Q′
+(x) =

K−1∑
k=0

[ (
q+
k+1 − q+

k

)
F(x + uk) + (

q−
k+1 − q−

k

)
F(x − lk)

]
− q+

K.

Moreover,
lim

x→−∞Q′
+(x) = −q+

K and lim
x→∞Q′

+(x) = q−
K .

(iii) The asymptotes for Q are given by

q+
K(µ − x) −

K−1∑
k=0

(
q+
k+1 − q+

k

)
uk, as x → −∞,

q−
K(x − µ) −

K−1∑
k=0

(
q−
k+1 − q−

k

)
lk, as x → ∞.

PROOF. Immediate from applying Lemma 3.1 to the individual terms of (6).

Example 1. Consider the MSR value function v, defined by the parameters K = 3,
u = [2, 5], q+ = [1, 2, 3], l = [1, 4], and q− = [1, 3, 4],

v(s) = min
y≥0

y+
1 + 2y+

2 + 3y+
3 + y−

1 + 3y−
2 + 4y−

3

s.t. y+
1 + y+

2 + y+
3 − y−

1 − y−
2 − y−

3 = s , s ∈ R,

y+
1 ≤ 2, y+

2 ≤ 5

y−
1 ≤ 1, y−

2 ≤ 4
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Figure 3.2: MSR (solid) and SR (dashed) expected value functions and value functions
v(µ − s) (dotted) of Example 1.

and the corresponding expected value function Q(x) = Eω [v(ω − x)], where ω is a
discrete random variable with Pr{ω = 7} = 2/9, Pr{ω = 9.5} = 3/9, and Pr{ω =
11.8} = 4/9, so that µ = 299/30. The functions v(s − µ) and Q(x) are shown in
Figure 3.2.

Figure 3.2 also shows the SR value function defined by the cost parameters q+ =
q+
K = 3 and q− = q−

K = 4, and the corresponding expected value function. The
MSR structure defined above can be seen as a refinement of this SR structure: smaller
deviations are penalized with lower unit costs, whereas large deviations are treated in
the same way in both models.

Besides obvious differences, there are some structural similarities between the two
expected value functions: both are piecewise linear and convex, and, moreover, their
asymptotes have the same slopes −q+

K and q−
K . �
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As suggested by Example 1, the mathematical properties of the multiple simple re-
course (MSR) expected value function are very similar to those of its simple recourse
(SR) counterpart. This strong relationship is exploited in the next section.

4. Relation between MSR and SR

The following result is proven in [7], and repeated here for easy reference.

Theorem 4.1 (Theorem 3.1 in [7]) Let ϕ be a finite, convex, Lipschitz continuous
function on R. Define

a1 = − lim
z→−∞ ϕ′

+(z), a2 = lim
z→∞ ϕ′

+(z).

Assume that a1 + a2 �= 0. Then

((s) = ϕ′+(s) + a1

a1 + a2

is a cdf.

If ϕ has an asymptote for z → ∞, say ϕ(z) ∼ a2z + c2 as z → ∞, then

ϕ(z) = a2z + c2 + (a1 + a2)

∫ ∞

z

(
1 − ((s)

)
ds.

If ϕ has an asymptote for z → −∞, say ϕ(z) ∼ −a1z + c1 as z → −∞, then

ϕ(z) = −a1z + c1 + (a1 + a2)

∫ z

−∞
((s) ds.

If both asymptotes exist, then

ϕ(z) = a1

∫ ∞

z

(
1 − ((s)

)
ds + a2

∫ z

−∞
((s) ds + a1c2 + a2c1

a1 + a2
.

Loosely speaking, Theorem 4.1 states that every function that is similar to an SR ex-
pected value function can be represented as such a function. Next, we apply this result
to the MSR expected value function.
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Corollary 4.1 Consider the multiple simple recourse expected value function Q,
given in closed form by (6). Then

Q(x) = q+
KEξ

[
(ξ − x)+

] + q−
KEξ

[
(ξ − x)−

] − C, x ∈ R,

where ξ is a random variable with cdf V ,

V (t) =

K−1∑
k=0

[ (
q+
k+1 − q+

k

)
F(t + uk) + (

q−
k+1 − q−

k

)
F(t − lk)

]

q+
K + q−

K

, t ∈ R,

with F the cdf of ω. The constant C is given by

C =
q+
K

K−1∑
k=1

(
q−
k+1 − q−

k

)
lk + q−

K

K−1∑
k=1

(
q+
k+1 − q+

k

)
uk

q+
K + q−

K

.

PROOF. The result follows from Theorem 4.1 and the properties of Q presented in
Lemma 3.2.

REMARK. Corollary 4.1 can also be stated in terms of random variables. To this
end, define the discrete random variable η, independent of ω, with

Pr{η = lk} = q−
k+1 − q−

k

q+
K + q−

K

, k = 1, . . . , K − 1,

Pr{η = 0} = q+
1 + q−

1

q+
K + q−

K

,

Pr{η = −uk} = q+
k+1 − q+

k

q+
K + q−

K

, k = 1, . . . , K − 1.

Then, in the setting of Corollary 4.1, ξ = ω + η with cdf V and

C = q+
KEη

[
(η)+

] + q−
KEη

[
(η)−

]
.

The interpretation of Corollary 4.1 is that every (one-dimensional) MSR expected value
function is equivalent to an SR expected value function, which is explicitly given in
terms of its parameters q+, q−, and the distribution of the random variable ξ , plus a
known constant.

14



Recall that the full-dimensional expected value function Q is defined as Q(x) =∑m
i=1 Qi(Tix),

x ∈ R
n, where each Qi is a one-dimensional expected value function as considered in

Corollary 4.1. Extending this result to the function Q in the obvious way, it follows
that MSR models can be solved by existing algorithms for SR models, which are very
efficient (see e.g. [1]). Indeed, only the following preprocessing steps are needed: for
i = 1, . . . , m,

(i) Compute the constant Ci;

(ii) Construct the distribution of ξi , by applying the specified transformation of the
distribution of ωi .

If all components of ω are discretely distributed, the resulting distribution of (the com-
ponents of) ξ is also discrete, and can be specified directly, without reference to the
distribution function. Because this special case is important for applications, this result
is stated separately.

Corollary 4.2 Assume the setting of Corollary 4.1.

Consider the case that ω is a discrete random variable with support -. Then the ran-
dom variable ξ is discretely distributed, with support

. =
K−1⋃
k=0

{ {
- − uk

} ∪ {
- + lk

}}

and probabilities

Pr{ξ = ξ̄ } =

K−1∑
k=0

[ (
q+
k+1 − q+

k

)
Pr{ω = ξ̄ + uk} + (

q−
k+1 − q−

k

)
Pr{ω = ξ̄ − lk}

]

q+
K + q−

K

.

Note that if - is finite, then the cardinality of . is bounded by |-|(2K − 1).

PROOF. The cdf F of ω is piecewise constant, with discontinuities in -. Hence, by
Corollary 4.1, the cdf V of ξ is piecewise constant with discontinuities in ., so that ξ
is a discrete random variable with support .. The corresponding probabilities are given
by V (ξ̄ ) − lims↑ξ̄ V (s), ξ̄ ∈ ..

Example 2. Consider the MSR value function v, defined by the parameters K = 2,

15



7 9 9.5 10 11.5 12.5
0

2

4

6

Figure 4.1: The functions Q and v(µ−s) of Example 2. Also shown are the SR expected
value function (with respect to ω; dashed) and the corresponding value function.

u1 = 2, q+ = [1, 2], l1 = 1, and q− = [1, 3],

v(s) = min
y≥0

y+
1 + 2y+

2 + y−
1 + 3y−

2

s.t. y+
1 + y+

2 − y−
1 − y−

2 = s , s ∈ R,

y+
1 ≤ 2

y−
1 ≤ 1

and the corresponding expected value function Q(x) = Eω [v(ω − x)], where ω is a
discrete random variable with realizations ω1 = 9 and ω2 = 11.5, with Pr{ω = ω1} =
1/3, Pr{ω = ω2} = 2/3, so that µ = 32/3. Figure 4.1 shows these functions Q and
v(µ − s), s ∈ R.

According to Corollaries 4.1 and 4.2

Q(x) = 2Eξ

[
(ξ − x)+

] + 3Eξ

[
(ξ − x)−

] − 2, x ∈ R,
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where ξ is the discrete random variable with support

. = {9, 11.5} ∪ {9 − u1, 11.5 − u1} ∪ {9 + l1, 11.5 + l1}
= {7, 9, 9.5, 10, 11.5, 12.5}.

To compute e.g. Pr{ξ = 10} we observe that 10 can be written as ω1 + l1 (no other
suitable combinations of ω and −u or l), so that

Pr{ξ = 10} = q−
2 − q−

1

q+
2 + q−

2

Pr{ω = ω1} = 2/15.

In the same way, we find that the respective probabilities for ξ ∈ . are given by
pξ = [1, 2, 2, 2, 4, 4]/15. �

The algorithm as described above is implemented as Mscr2Scr 1.0 (Multiple simple
continuous recourse to Simple continuous recourse, M.H. van der Vlerk and J. Mayer,
2001) in the model management system SLP-IOR [4]. The current version of Mscr2Scr
is restricted to MSR problems with discrete random variables.

5. Multiple simple integer recourse

We now turn to the integer version of the MSR model, which we will denote as multiple
simple integer recourse (MSIR).

5.1 Definition and closed forms

Like in the continuous recourse case, MSIR is a generalization of the simple integer
recourse (SIR) model, allowing for a refined penalty cost structure for (individual) sur-
pluses and shortages.

If the integrality restrictions in the SIR model are relaxed, then it is equal to a continu-
ous SR model. Similarly, the LP relaxation of the MSIR model is an MSR model. Thus,
not surprisingly, the MSIR value function is separable so that we can again restrict the
analysis to the one-dimensional version.
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For s ∈ R, the one-dimensional MSIR value function is defined as

v(s) := min
y≥0

K∑
k=1

(
q+
k y

+
k + q−

k y
−
k

)

s.t.
K∑
k=1

y+
k ≥ s,

K∑
k=1

y−
k ≥ −s

y+
k ≤ uk − uk−1,

y−
k ≤ lk − lk−1,

k = 1, . . . , K − 1

y ∈ Z
2K

with u0 = l0 = 0, the vectors u and l integer, and the elements of q+, u, q−, and l

satisfying the same monotonicity assumptions (4) as in the continuous recourse setting.

REMARK. For K = 1, we obtain the value function of the (one-dimensional) SIR
problem.

REMARK. Note that this second-stage problem is defined using two inequalities in-
stead of the single equality used in the continuous recourse case. This is necessary,
since the right-hand side parameter s can be any real number, whereas the left-hand
side is integral by definition.

Using the monotonicity of the cost coefficients, it is straightforward to determine v(s)

for any fixed s ∈ R. This leads to the following closed form for v:

v(s) =
K−1∑
k=0

[ (
q+
k+1 − q+

k

) �s − uk�+ + (
q−
k+1 − q−

k

) �s + lk�−
]
, s ∈ R,

where, as before, we define q+
0 = q−

0 = 0. For t ∈ R, �t�+ denotes the positive part of
the integer round up of t , and �t�− is the negative part of the integer round down of t .

By definition, the (one-dimensional) MSIR expected value function Q is obtained as
the expectation of v(ω − x), x ∈ R, giving

Q(x) =
K−1∑
k=0

[ (
q+
k+1 − q+

k

)G(x + uk) + (
q−
k+1 − q−

k

)H(x − lk)
]
, x ∈ R, (7)
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where

G(x) := Eω

[�ω − x�+] =
∞∑
j=0

(
1 − F(x + j)

)
,

H(x) := Eω

[�ω − x�−] =
∞∑
j=0

F(x − j),

with F cdf of ω.

The formulae above and structural properties of the SIR functions G, H, and Q (with
K = 1) are derived in [12] and [15]. In particular, it holds that these functions are non-
convex in general, so that Theorem 4.1 can not be applied to obtain a simple recourse
representation of the MSIR function Q.

Instead, we will show that reasonable convex approximations of the MSIR function Q

can be constructed, and that every such approximation is equivalent to a continuous SR
expected value function. Consequently, MSIR problems can be solved approximately
by solving a continuous SR problem.

5.2 Convex approximations of MSIR

Consider the LP relaxation of the MSIR second-stage problem. Obviously, the expected
value function of the resulting MSR problem is a convex lower bound for the MSIR
function Q. It is also not difficult to see that a convex upper bound is obtained by
adding q+

K + q−
K to this MSR function. Since any reasonable convex approximation of

Q should be in between these trivial approximations, it follows that such an approxima-
tion has asymptotes with the same slopes, as specified by Lemma 3.2. Since every such
approximation clearly satisfies the assumptions of Theorem 4.1, it follows that every
reasonable convex approximation of the MSIR function Q can be represented as a con-
tinuous SR expected value function (plus a constant). For the convex approximations
presented below, an explicit representation will be presented in the next section.

To construct non-trivial convex approximations of the MSIR function Q, we follow the
ideas that were developed for the corresponding SIR function (i.e., for K = 1).

In [8] a strongly polynomial algorithm is presented for the construction of the convex
hull of the SIR expected value function for the case that ω is a discrete random variable.
The algorithm is based on structural properties of the function Q (lower semicontinu-
ous, piecewise constant) which are shared by the MSIR version, so that in principle the
same approach can be used to construct the convex hull of the latter function. It is also
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clear, however, that many technicalities need to be handled to obtain this result. This
matter will not be worked out here.

If ω is continuously distributed, the function Q (both SIR and MSIR version) is con-
tinuous, but non-convex in general. It is convex if and only if the probability density
function (pdf) of ω belongs to a certain class, which is completely specified in [10].
The main idea of [9] is to approximate the original pdf of ω by a specific (family of)
density functions from this class, thus constructing a convex approximation of the SIR
function Q. Below we apply this approach to the MSIR function Q.

As shown in [10], the SIR functions G, H, and Q are convex if ω has a pdf that is
piecewise constant on every interval (α + j, α + j + 1), j ∈ Z, for some α ∈ [0, 1). It
follows trivially that also the MSIR function Q is convex in this case. Such piecewise
constant densities, depending on the shift parameter α, will be used to approximate
arbitrary density functions. In this way, we obtain convex approximations of the MSIR
function Q.

Definition 5.1 Let F be the cdf of a continuous random variable. For any α ∈ [0, 1),
the α-approximation of the pdf f of F is defined as

fα(s) := F(�s�α + 1) − F(�s�α), s ∈ R,

where �s�α = �s − α� + α is the round down with respect to α + Z.

Denoting by ωα the continuous random variable with pdf fα, the α-approximation of
the function G is defined as

Gα(x) := Eωα

[�ωα − x�+]
, x ∈ R,

which is convex by construction. The convex function Hα is defined analogously.

It follows that the α-approximation of the MSIR function Q, defined as

Qα(x) :=
K−1∑
k=0

[ (
q+
k+1 − q+

k

)
Eωα

[�ωα − x�+]

+ (
q−
k+1 − q−

k

)
Eωα

[�ωα − x�−] ]
(8)

=
K−1∑
k=0

[ (
q+
k+1 − q+

k

)Gα(x + uk) + (
q−
k+1 − q−

k

)Hα(x − lk)
]
, x ∈ R,

is a convex function.
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Note that α-approximations can be defined without making any assumption about the
distribution of ω. Thus, convex approximations Qα of the MSIR function Q can also
be constructed in case ω is discretely distributed. However, in that case the following
uniform bound on the approximation error does not apply; in fact, it can be shown that
the error then equals q+

K + q−
K in the worst case.

Corollary 5.1 Assume that ω has a pdf f that is of bounded variation. Then, for all
α ∈ [0, 1),

‖Qα − Q‖∞ ≤ q+
K + q−

K

4
|3|f,

where |3|f denotes the total variation of f on R.

PROOF. In [9] it is shown that both ‖Gα − G‖∞ and ‖Hα − H‖∞ are bounded by
|3|f/4. The result follows by summation.

5.3 Representation of Qα as SR expected value function

In the previous section we defined α-approximations for multiple simple integer re-
course models. We conclude our discussion on MSIR models by providing a continuous
simple recourse representation of such approximations.

Corollary 5.2 For a fixed but arbitrary α ∈ [0, 1), consider the α-approximation
Qα of the MSIR expected value function Q, as defined in (8). Then

Qα(x) = q+
KEξα

[
(ξα − x)+

] + q−
KEξα

[
(ξα − x)−

] + D, x ∈ R,

where ξα is a random variable with cdf Vα,

Vα(t) =

K−1∑
k=0

[ (
q+
k+1 − q+

k

)
F(�t�α + uk) + (

q−
k+1 − q−

k

)
F(�t�α + 1 − lk)

]

q+
K + q−

K

, t ∈ R,

with F the cdf of ω. That is, ξα is discretely distributed, with support contained in α+Z

and probabilities

Pr{ξα = α + j} = 1

q+
K + q−

K

K−1∑
k=0

[ (
q+
k+1 − q+

k

)
Pr{ω ∈ -j

α + uk}

+ (
q−
k+1 − q−

k

)
Pr{ω ∈ -j+1

α − lk}
]
, j ∈ Z,
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where -j
α := (α + j − 1, α + j ].

The constant D is given by

D = q+
K q−

K

q+
K + q−

K

− C,

where C is the constant given in Corollary 4.1.

PROOF. The result follows from applying Theorem 4.1 to the function Qα . To this
end, we first derive the required information on properties of Qα by studying the con-
stituting functions Gα and Hα .

As shown in [9], the function Gα can be written as

Gα(x) = Eξ1
a

[(
ξ 1
α − x

)+]
, x ∈ R,

where ξ1
α is a random variable with cdf F(�t�α). Let µ1

α denote the mean value of ξ1
α .

Similarly,

Hα(x) = Eξ2
a

[(
ξ 2
α − x

)−]
, x ∈ R,

where ξ2
α is a random variable with cdf F(�t�α + 1), so that the mean value µ2

α of ξ 2
α

equals µ1
α − 1.

By Lemma 3.1 we have, for x ∈ R,

(Gα)
′
+ (x) = F(�x�α) − 1 and (Hα)

′
+ (x) = F(�x�α + 1),

so that

(Qα)
′
+ (x) =

K−1∑
k=0

[ (
q+
k+1 − q+

k

)
(F (�x�α + uk) − 1)

+ (
q−
k+1 − q−

k

)
F(�x�α + 1 − lk)

]
,

and

lim
x→−∞ (Qα)

′
+ (x) = −q+

K, lim
x→∞ (Qα)

′
+ (x) = q−

K.

Moreover, since Gα has asymptotes µ1
α − x as x → −∞ and 0 as x → ∞, and Hα has

asymptotes 0 as x → −∞ and x − µ2
α as x → ∞, it follows that the asymptotes for
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Figure 5.1: The functions Q (solid) and Qα (dashed) of Example 3.

Qα are given by

q+
K(µ

1
α − x) −

K−1∑
k=0

(
q+
k+1 − q+

k

)
uk, as x → −∞,

q−
K(x − µ2

α) −
K−1∑
k=0

(
q−
k+1 − q−

k

)
lk, as x → ∞.

Using this information, the result follows from Theorem 4.1 by straightforward com-
putation.
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Example 3. Consider the MSIR value function v, defined by the parameters K = 2,
u1 = 2, q+ = [1, 2], l1 = 3, and q− = [1, 3],

v(s) = min
y≥0

y+
1 + 2y+

2 + y−
1 + 3y−

2

s.t. y+
1 + y+

2 − y−
1 − y−

2 = s , s ∈ R,

y+
1 ≤ 2

y−
1 ≤ 3

y ∈ Z
4

the corresponding expected value function Q(x) = Eω [v(ω − x)], where ω is a normal
random variable with mean value µ and variance σ2, and the α-approximation Qα.

Figure 5.1 shows the functions Q and Qα for the case that µ = 0, σ2 = 0.05, and α =
0. The random variable ξα , as defined in Corollary 5.2, has support {−2,−1, . . . , 3}
with respective probabilities (1, 2, 2, 1, 2, 2)/10 (computation based on truncation of
the support of ω to [−4σ, 4σ ] ⊂ (−1, 1), so that Pr{ω ∈ -j

α} = 1/2 for j = 0, 1). The
constant D = −2.4. �

6. Summary and conclusion

Starting from the well-known (integer) simple recourse (SR) model, we developed effi-
cient solution methods for the corresponding multiple simple recourse (MSR) models.
Such MSR models are generalizations of SR models in that they allow for a refinement
of the penalty cost structure, which makes them attractive from an application point of
view.

We have shown that MSR models (or convex approximations in the integer case) can
be represented as explicitly specified continuous SR models, and thus can be solved
efficiently by existing algorithms for continuous SR models.

Apart from a trivial adaptation of the cost parameters, the continuous SR representation
of MSR models is obtained by a particular transformation of the underlying distribution
of the random right-hand side parameters. It is common practice in stochastic program-
ming to replace a given distribution by a suitable approximation. The main example
is of course the use of discrete approximations (e.g., empirical distributions) of con-
tinuous distributions in recourse models. However, the approach used in this paper is
conceptually different, because it transforms problems of a more general or difficult

24



type into a well-solved, easy problem type.

Recently we have successfully applied this approach to models with a more general
(non-separable) integer recourse structure [16]. In the near future, we will extend this
line of research to models with non-linear separable penalty cost functions (e.g. piece-
wise quadratic, see [14]).
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