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On Multiple Solutions for Nonhomogeneous
System of Elliptic Equations

J. CHABROWSKI

ABSTRACT. We establish the existence of at least two solutions of system
(1) under some restrictions on A,, 8, f and g. Solutions, depending on the
case, are obtained by applying the mountain pass theorem, local, global and
constrained minimization.

1. INTRODUCTION

The purpose of this paper is to investigate the existence of solutions
0 o
(u,v) €W VP(Q)x W 19(Q) of the system of equations

~Apu = Mu|*lulp]H 4 f
(1)
—Agw = Aul*H o] 1o 4 g,
where Q C Ry is a bounded domain, A € R, with A # 0, is a parameter,
(f,9) € L7 (Q) x L7(Q), with L+ =1land } 4+ =1 A,is the
p-Laplacian defined by
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—A,u = Di(|VulP~2D;u).

We assume that 1 < p,g < N, —1 < & and —1 < . We distinguish the
following cases: (i) &t +EE =1, (ii) el B4 -, (iii) el L AL <t
and “—']*D'—l + 9-31 > 1, (iv) gg-_l + ﬁ_jl < 1. Here p* and ¢"* denote critical

Sobolev exponents: p* = 'I'V-E_Fp afidq* = N—'hi;.

The case of the system (1), where f =0 and g = 0 on ¢, has been
studied by several authors and we refer to papers [7], [9] and [10] where
additional bibliographical references can be found.

In case (iii), inspired by paper [11], we obtain one solution by ap-
plying the mountain pass theorem and a second solution by a local min-
imization. In cases (ii) and (iv) a solution will be obtained by a global
minimization. However, a second solution will be obtained if f # 0 and
g=0on Q.

Case (i) seems to be more difficult. It is known (see {7]) in this
case, that the homogeneous system of equations (1) is not solvable on
star-like domains. By constrast, if (f,g) # (0,0), then system (1) has
always a solution provided the norms of f and g are not too large.

In this case we develop a method that can be used to find norm-
estimates of f and g guaranteeing the solvability of system (1). This
method can also be used to show the existence of a solution of one
nonhomogeneous equation involving a critical Sobolev exponent and we
shall return to this question in a final section (Section 6) of this paper.
The result presented in Section 6, recovers in the case p = 2 a recent
result of paper [6] (see Theorem 1 there).

In this paper we use standard terminology and notations. Let

X =W LP(Q)x W L.9(Q) be equipped with norm [|(x,v)|| = ||Vl +
||Vv||,- We define a functional J: X — R by

J(u,v) =2 : ! / |Vu|Pdz + w/ Vv|%dz — ,\] Juj @+ |v]PHdz
Q g Q Q

-(a+1)qud::—(ﬁ+l)/qgvda:.
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Any critical point (u,v) € X of the functional J is a solution of (1).

In this work we always denote in a given Banach space ¥ weak
convergence by “—” and strong convergence by “—”,

To prove that a minimizing sequence of the functional J is con-
vergent we need the Palais-Smale condition . We say that J satisfies
the Palais-Smale condition if every sequence {(u,,,vm)} C X such that
J(Um,vr) is bounded and J' (4, vm) = 0in X* as m — oo is relatively
compact in X.

In each case we find conditions under which J satisfies the Palais-
Smale condition.

If f#0and g=0on @, then it is easy to find a solution if (1),
namely, if up €W 1P(Q) satisfies

-Apu = fin Q, (2)

then (up,0) € X is a solution of system (1). This observation will be
frequently used in this paper.

2. CASE &t! 4 841

A solution to problem (1) will be obtained by a minimization of J
subject to an artificial constraint. We present here a result for the case
p = g. Moreover we assume that o > 0 and § > 0. We put

M = {(u,v) € X — (0,0); (J'(u, v),(u,v)} = 0}.
Since @ + 5 + 2 = p* we see that

_atl P wj P
Iy (1, v) _—/Q|Vu] dz + Q|V'v] dz

(et oD f o GG =1) [ gude.
P* Q r* Q

We define a constant k = k(N,p,q,a,3,1),A > 0, by
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P (5" — p)(p = 1)T S

k= P T E 3
rR e (e =) \pT(e*—p) (p*)p’(pz—p) (p“' — p)1+p (r"—p)
where

z=p* p* p=p* p*
p=loetly?7pr (B+1) 2 7p7 4

P~ oy el

p*Sr 75T
r=p3[(a+ ¥ +(8+1)7]

and S denotes the best Sobolev constant, that is,

5= inf{ /Q |Vu|pda:;./c; |ulp"dz =1, u ew 1"'(Q)}. (3)

It will be convenient to discuss the solvability of system (1) under more
general assumption: (f,g) € W1 (Q) x W17 (Q).

Theorem 1. (i) Suppose that A < 0 and (f,g) € W-LP(Q) x
W-LP(Q), with (f,g) # (0,0). Then system (1) has at least one solu-
tion in X.

(%) Suppose that A > 0 and that (f,g) € W17 (Q) x WP (Q),
with (f,g) # (0,0) and

Ul -ves N9l .0 < - (4)

Then system (1) has at least one solution in X.

Proof. Without loss of generality we may assume that f # 0.
It is easy to check, using the Young inequality, that J),, is bounded

from below. Let ug EV?/' L2(Q) be a solution of equation (2). Since
Jo |Vuo[Pdz = [, fuodz > 0, we see that (u0,0) € M and

a4+ 1

pl

J(’MU,O) = -

and hence
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my= inf J(u,v)<0.
J (u,v)eM ( )

Let

I(u,v) = {J'(u,v),(u,v)) for (u,v) € X.

First we show that

I'(u,v) # 0 for (u,v) € M.
Assuming that I'(u, v) = 0 for some (u,v) € M and setting

A~ﬂl/;v Pdz +ﬁ“/|v Pdz,

B=/ |u|ot o)t de
Q

and

C=(a+1)./qfudm+(ﬁ+l)/;2_qu:c,

we see that quantities 4, B and C satisfy the following system of equa-
tions

A-XB-C =J(u,v)=m
pA—Ap*B-C =0 (5)

pPPA-Ap*)¥B-C =0.
A unique solution of this system is given by

*

p p
m———————,AB = -m ,
(p*~pp—1) (p* —1)(p" —p)
PP
C=-m——FF—.
(-(p-1)
Since A > 0 we see that m < 0. Hence if A < 0, then B < 0 which

is impossible. Therefore it remains to consider the case A > 0. Letting
k1 = max(]|fllw-1.5» |1g]lw-1.. ) We get by a straightforward estimation

A=-
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C < (et Dllfllw-10|Vullp + (8 + Dllgllw-r0 V0]l

1

<(a+ 1)k ( /Q [Vulpd:c)% +(8+ 1)k1( /Q |Vu|”d:z:) ’

4
< kl(a-}- I)P pF (O!+ IJ |Vu|Pd:r '
P Jq

1

+h(B+ 1)'-*';»%(" . ]Q |Vv|*°dx)’

< ki[((a+ 1) + (8 +1)7)pd

( 1
P—Jg

< TklA%.

)%

Using the formulae for A and C' we derive from the last inequality that

(=m)5" (p*)7" p(p* —~ p)?
r(p* ~ 1)(p-1)¥

Similarly we derive from the Sobolev inequality that

AB<Aa+1/ VulPdz +)\ﬂ+1f IVolPde

< k. (6)
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a+ 1l ,_s 5 B+1 __e 9
<A 5% (/ IVulpdm) + A—FS"’? (f |Vu|?dm)
Q Q

pl!l

p=p" g% 2
_ /\(Ot+ 1) P:P prF (a+ 1/ ]Vul”d:c) ?
p* S P Jg

p=p® p* 2
+)~(ﬂ+1)£: pp(ﬁ+1/IVU|pdm) < ARAS.
p*SF P Ja
Taking into account formulae for B and C, we derive from this inequality
1
the lower estimate for (—m)#"
PTE (p" — ) (p = DT
(AR)FT=7 (p* — 1) 7T = (p*) TG =9

< (—m)?]".

This combined with (6) leads to the following estimate from below for
kll

p TR (pr — p)(p— 1)7T P

(Pt =p p(p*=p

Skl’

r(,\R) T TR (p*)n'(ps—p) (p"' — 1)1+;'F%9)

which contradicts assumption (4). Using the Ekeland variational prin-
ciple [2] we can choose a sequence {(%m,vm)} C M such that

J(tm,Vm) — my and J'|p{ttm,vm) — 0in X* (7)

as m — oo. We now show that J'(tm,vm) — 0in X™ as m — oco. Since

I'(u,v) # 0 on M, we have

J’(uma U ) = Jiru(um-;vm) - /\mI’(umavm) (8)
for some A,, € R. Since {(#m,vm)} C M we have

(Ji'M (um, ”m), (um’vm)) - ’\m(I'(um;”m),(um,vm))

= (J’(um,vm),(um,vm)) = Q.
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It follows from (7) that {(%m,vm)} is a bounded sequence in X. We
now show that there exists a constant § > 0 such that

KL (s 0 ), (i, U )} > (9)
for all m. In the contrary case we can assume that up to a subsequence
lim (I'(em, om )y (wm,vm)) = 0. (10)

Since sequences {f, [um|**!|vn|?*1dz} and {(a + 1) fo fumdz + (8 +
1) fQ gv, dz} are bounded, we can also assume that the following limits
exist

A= lim (‘“’1

Fre—+ 00

ﬁ“ [ Ival"dz)
73

B = lim /]um|“+1[vm|ﬂ+ldz

T —+ QO
and
C= lim ((a + 1)/ fumdz + (8 + 1)/ gvmdx).
meree Q Q
It follows from (7) and (10) and the fact that {(um,vm)} C M that

A, B and C satisfy of equations (5) with m = ms. A unique solution of
system (5) is given by

=—-m " .=—~m P
A= J(p‘—p)(p—l)"\B T =D —p)’

. PP
C= M e o)

If A < 0, then B < 0, which is impossible. Therefore it remains to
consider the case A > 0. Let us set
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Ap = atl / |V, |Pdz + fﬁ

/ |V |Pdz.
P—JQ P— Jg

Letting k; = max(||f|lw-1.»", 19}l -1.0") We get as in the previous part
of the proof that

1

Letting m — oo we get

C < rhy A5, (11)

Similarly, we show that

AB < ARA. (12)

However, the previous part of the proof shows that (11) and (12) lead
to a contradiction with (4). Consequently (9) holds and by (8) Ay — 0
as m — oo. This in conjunction with (7) implies that J'(um,vm) — 0
in X* as m — oo0. Since {(#m,vm)} is bounded in X we may assume
that (%m,vm) = (,v) in X and (tm,vm) = (%,) in LYQ) x LIQ)
for all p € ¢ < p* and a.e. on Q. Since J'(uy,vn) — 0in X* we see
that J!(2m,vm) — 0 and J!{tm,vm) — 0in W17 (Q). Consequently,

—Aptty = A'“mla_lumlvmlﬁ-}_l +f+fm

with fm — 0 in W-17(Q). Since gm = Msm]® "  m}vm [P+ belongs

to W-1%(Q) and is bounded in W~1? (Q} and in L!(Q) we can apply

Theorem 2.1 from [2] (see also Remark 2.7 there). By virtue of this
N

result Du,, — Du, up to subsequence, in (L’"(Q)) for every r < p.

N
Similarly, we show that up to a subsequence Dv,, -+ Dv in (L’(Q))

for every s < p. In particular, for every (p,%¥) € X we have
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(J'(tm,om), (0, %))

=(a + 1)](? |Vt |P~2 Dty Dipdz
+(B+1) fq |V |?~2 Duy, Dpdz
- Ma+ 1)/0 [t ]® Y o vm [P T dz
XE ) [l o i

~(a+1) [ fodz-(8+1) [ gvds
Q Q
and letting m — oo we get

(J'(U,U),(go,'l,b)) = 0.

This means that (u,v) is a solution of (1) and hence (u,v) € M. Since
J|, is weakly lower semicontinuous we get

my SJ(U,U) = z

+1 » ﬂ+1] »
~ /Q|Vui dz + Qle| dz

(et DetBil) [ (BDtBil) [
p,., qud = /di

< lim J(%m,vm) = my.
m=—0Q

Thus my = J(u,v) and
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lim
m—c

a+l » B+1 p
[—N Q!_V:E'?_I_dx+ v LIVuml dz

_a+l +1 »
= N#;{'V‘n‘!‘“ﬂrﬂr%/c‘JVﬂ dz

which implies that (4m,vm) — (u,v) in X.

The method used in this proof breaks down when p # ¢ and we
were unable to find a correct argument in this case.

3. CASE !?T%iﬂ

In this case the homogeneous system (1) is in fact an eigenvalue
problem. It is known (see [7]) that the minimization problem

A1 = inf { atl [ [VulPdz + ﬂi/ |Vo|?dz;
P Q q Q

(u,v) € X,/ |u]otiv|ftldz = 1}
Q

has a solution (ug,%) and A; is the smallest eigenvalue with an eigen-
function (ug,v) of the eigenvalue problem

—Ayu = Mul* Luly|PH?
{ —Aq‘b‘ = A|‘u,|°‘+1 lvlﬁ—lv (13)
in Q.

We commence by investigating the Palais-Smale condition for J.

We shall show that the Palais-Smale condition holds for every X <
Ay. First, we observe that
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)\1/ |u|°’+1]v|'6+1d22 < g_j.__l/ |Vu|7’dm+ﬂ——% |V’D[pd$.
Q p Q q Q

Indeed, if (u,v) € X, with v # 0 and v # 0 we put

(2 v

1= 7 and ¥ =
(g lulo+|v|f+1dz)? (fo lulo+1|p]e+1dz)

1
]

and we see that

/ 18+ 5|P+ dz = 1.
Q

It follows from the definition of A; that

A <

(14)

-1
l(/ |ula+1|’f’|ﬁ+ld$) (a+1/ |Vu|pdz+&j |V'U|qd.1:),
2\Jq P Jq T Ja

which implies (14). Obviously, the estimate of this nature can be ob-
tained by applying the Holder inequality and the Sobolev inequality,
stated below, to the product |u|**!|v|?+!. However, inequality (14) in-
volves the optimal constant A; wich is the smallest eigenvalue of problem

(13).

In the sequel we shall refer to the following estimate: for every

U EV?/’ L#(Q) we have (see [3], p.45)’

-3
[lulls < cl@f* 7 [|Vull,

(15)

for 1 < s € p*, where ¢ > 0 is a constant depending on ¥ and p, and

|@| denotes the Lebesgue measure of (.
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Proposition 1. Suppose that A < XA;. Then the functional J
satisfies the Palais-Smale condition.

Proof. Let {(u;,vm)} C X be a sequence such that J(um, vy ) is
bounded and J'(t%m,vm) — 0 in X* as m — oco. First we show that the
sequence {(%m,¥m)} is bounded in X. This is obvious if A < 0, so we
only consider the case 0 < A < A;. It follows from the Holder inequality
and (15) that

|qumdz

Hence by the Young inequality we obtain

}j;fumdm

Similarly, we have

[t
Q

Consequently, using (14), (16) and (17) we obtain the following estimate

1
<INl Numllp < ellflle 1Q1F UV 2m|l,.

< Q¥+ < / Vum[Pdz.  (16)

,,:rQ|‘a'*'r + %/;leml"da:. (17)

J(’U-m-p'vm) Z(a+ L - 'E'—) / 'VUmlpdCC

+ (ﬂ— - I l |V, |Tds
q

J

TR LA - & QI¥

psp qsq

!
llgll3: -

Since A < A; we can choose ¢ > 0 so that
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A
a+l-e?P— —(a+1)>0
M

A
B+1—-¢e7- A—(ﬂ+1)>0.
1
This implies that the sequence {(t,,,vm)} is bounded in X. We may

assume that (tm,vm) — (2,0)in X, (#m,vm) — (u,v) in LP(Q)x LI(Q)
and a.e. on Q. It is obvious that

lim / [+ o |+ d = / Ju]o+ o] P+ da.
m—oo jo Q

To show that the sequence {(%m, v )} is relatively compact in X we use
the following algebraic inequality [5]

Ivum“‘vuflp S
C{{|VtmiP 2 Dittry — [Veu[P~2 Diu](Dium — Diug)}ix  (18)

(IVum [P + |V |P) 1= 5)
with

s= 4P forl<p<2,
12 for2<p,

where C > 0 is a constant independent of m and /. We now observe
that

(e + 1)/ (IVm P2 Dstm — [Vur|P~2Diw)) (Ditt, — Diur)dz
Q

= {J (¥ Vm ) = I (w1, 1), (Um — u,0))
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+(a+1) fq (|tm ] Ytgn [0 |PH

~ | o) (- w)dz + (a + 1)/ f(uy —w)dz = Ay
Q
Since uy, — uin LP(Q) and (J'(%m,vm) — J'(w, v), (tm — u,0)) — 0

as m,l — oo, using the Holder inequality we check that A,,; — 0 as
m,l — oc. Similarly, we have

B =(J"(¥m,vm) = ' (w1, m), (0,0m — 1))

B+ fq (1t [om "~

— o} o) (v — w)dz + (B + 1) / 9(Vm — v1)dz = 0
Q

as m,l — oo. In then follows from (18) that

IVtm — Va2 < ClAmilE(IVumlB + [|Va|{)1

and

V0 = Vull§ < ClBml 3 (I Vomll} + [{Vuill§)'
and this completes the proof.

The existence result for system (1) is obtained by a global mini-
mization of the functional J.

Theorem 2. Suppose that A < \y. Then for each (f,g) € L (Q)x
LY(Q), with (f,g) £ (0,0), system (1) has at least one solution in X.

Proof. If 0 < A < Aq, then by virtue of (14) we have
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J(u,0) 2(1_ Ail) /Q ((QTTI)W’u[Pi (ﬁ-;il—)wvw)dz

—(a-{-l)]qfudm—(ﬁ+1)/ogvda:,

while for A < 0 we have

J(u,v) > /Q (%wﬂu (—@—‘;—llva)dz

—(a+ 1)/ fudz — (8 + 1)] guvdz.
Q Q
In both cases J is bounded from below on X. Without loss of generality

we may assume that f # 0. It is obvious that there exists (u;,v1) € X
such that

/ fuidx > 0 and / guidz > 0.
Q Q

Hence

-1 g-—1 1
J(tul,tvﬂ:tft—-—(g-*_—l)/ |V |Pdz + t——LHf |V |9dz
L P Q q Q
_Ata+ﬁ+1j |u1|a+1|v1|ﬁ+1dx
Q

—(a+ 1)/ fudz — (B + 1)/ gvldz] <0
Q Q
for ¢t > 0 sufficiently small and consequently

M= ianJ(u,v) )

{uw)e
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According to the Ekeland variational principle [3] there exists a sequence
{(¥m,vm)} C X such that J(um,v) = M and J'(2m,vm) — 0in
X* as m — oo. Since by Proposition 1, J satisfies the Palais-Smale
condition , {(%m,?m)} must be relatively compact in X. Therefore
(2m,vm) — {u,v) in X up to a subsequence and (u,v) is a solution of
(1) with J{u,v) < 0.

If f 2 0and ¢ = 0 on @, then by a remark made at the end
of Section 1, (uo,0) is a solution of system (1), where ug is a unique
solution of equation (2).

In Proposition 2 below we relate this observation to a global mini-
mization of J.

Proposition 2. Suppose that f € L”'(Q), with f 20 on @, and
g=0on@Q.

(1) If 0 < A < Ay, then there ezist two distinct solutions in X of
system (1).
(i) If A < 0, then J(up,0) = inf J(u,v).
(u,v}eX

Proof. (i) If uo GV?/ 1.2(Q) is a solution of equation (2), then
o
fq |Vup|Pdzx = fQ fuodz and hence for each v €W 19(Q) we have

J(uo,v) =

atl 1
-2 ; j |Vug|Pdz — A / ug[®+! |v]PH de + Fil / |Vv|%dz.
P Q Jg T Jg

If v % 0 and t > 0 is sufficiently small, then

o+l

P / |Vug|Pdz
Q

4 tPH [— )\/ |ug}ot! [0|PHdz
Q

J(ug,tv) = —
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+E_'£_1_tq—ﬁ—1/ |V'v|qdz] < J(ug,0).
Q

This imples that

inf 0
(u.lt%EX J(u,v) < J(u0,0)
and by Theorem 2 there exists a minimizer (&, %) € X such that J(4, )

= (u,ltgfsx J(u,v) and (&, %) # (uo,0).

(ii) If A < 0, then for each (u,v) € X we have

J(up,0) = (a+1) inf (% /Q Vw|Pdz — /Q fwdz) < J(u,0)

weW L2(Q)

and the assertion (ii) readily follows.

a4l +1 a+l B+1
4. CASE 2t 1 841 <1 and &l 4 £ 5

Repeating the argument of Theorem 2 in [7] we can easily show that
the functional J satisfies the Palais-Smale condition.

Proposition 3. Let A € R and let (f,g) € LP'(Q) X L‘?J(Q). Then
the functional J satisfies the Palais-Smale condition.

If A > 0, then system (1) has a mountain pass solution.

Theorem 3. Let 0 < A < oo and let (f,g) € L?(Q) x L7(Q).

Then there exists a constant m = m(p, ¢, a,3,A) > 0 such that if || fl|p +
llgllyt < m, then system (1) has a solution (%,7) € X with J(@,7) > 0.

Proof. Applying (15) and the Young and Hélder inequalities we

get
1
c%[ |Vulidz + g+l |Vv|'dz
P Je T JQ

J(u,0) >
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_)\(lf |u|(a+l)rdm+l'./ |v|(ﬁ+1)"d:r)
rJq T Jg

= (e + DlIfllpllullp = (8 + Dllgllgllvllq

1
> & / IVulPds + ﬁ—‘;- f |Vo|%dz
{ax+1)r
- (—=lQ= | vullt 4
cmm

QI g )

= c@I¥ (e + DIIf1lx 1Vlly + (8 + 1)liglle | V]l,)-

where r{(a+1) > p,7'(8+ 1) > gand L + % = 1. Letting ||Vu||, = 5
and ||Vv||; = 82 we write

1 4
J(u,v) 2“;’ ¥+ 4 ';' 1sg _ ,\(as;(cﬁl) + bs} (ﬁ+1))

— d@IF (o + DI fllprs1 + (8 + Dllgllers2),

clatldir 8+

where a =
define a functlon

|Q|ztm1? and b = |Q|<ﬂ+nr 51". We next

1 1 1 - o
h(s1,82) = P [a;— sy + ﬂ: 83 — )\(asl(c'“) + bs, (‘GH))

for s; > 0 and s, > 0 and write the last estimate in the form
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J(u,0) 2 (81 + s2)[A(s1,82) = cl@|* (@ + 1)[If 1l + (B + Vllglly)]

Since r{e + 1) > p and r'(8+ 1) > g, for a given x > 0 sufficiently

small, there corresponds a constant p = p(p,¢,a,8,A,1Q|, k) > 0 such

that h{s),32) > p for s; + s2 = x with s; > 0 and s; > 0. Taking
£ y we see that

2c|Q|* max ((a+1},(ﬁ+1)
K
I(u,v) 2 B for [|Vally +1190]l* = & and | flly +lglly < m.

Let (u1,v) € X with u; # 0 and vy # 0, then

1
s i) (222 [ wupas 42X [ 0w jras)
P Jq 7 Jq

—At%l+%/ |u|°’+1|’v|ﬂ+ldz’
Q

—t%(a+ 1)/ fuldz—t%(ﬂ-i-l)] gnidz <0
Q Q

for t > 0 sufficiently large. Hence we can choose fp > 0 so that up =
1 1

tduy,vo = t§ vy satisfy: J(up,v0) < 0 and (ug,v0) ¢ B(0,%). Since J
satisfies the Palais-Smale condition, we deduce from the mountain pass

theorem [1] the existence of a critical point (#,7) € X of J such that
J(@,7) > & and this completes the proof.

A second solution of (1) will be obtained by a local minimization of
J.

Theorem 4. (i) Suppose that A < 0 and (f,g) € L7 (Q) x LY (Q)

with (f,g) # (0,0). Then system (1) has a solution (u*,v*) € X such
that J(u",v*) < 0.
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(ii) Suppose that 0 < A < oo and (f,g) € L7 (Q) x LY (Q) with
(f,9) £ (0,0) end ||fll; + llglly £ m, where m is a constant from
Theorem 8. Then system (1) has a solution (u*,v*) € X such that
J(u*,v*) < 0.

Proof. (i) We may assume that there exists (¢,%) € X such that
Jo fedz > 0 and Jo 9¢dz > 0. Then J(tp, 1) < 0 for £ > 0 sufficiently
small. Since A < 0, we have for each (u,v) € X the estimate

J(n, v)>a+ [|V |Pdx +ﬁ+ /|V'v|qdz
P T

_(a+1)/qfudm—(ﬂ+1)]qgudz,

which implies that J is bounded from below on X. With the aid of
Proposition 3 and the Ekeland variational principle, we show, as in part
(i) of Theorem 2, that there exists (u*,v*) € X such that J(u*,v*) =
inf J(u v) < 0.
(v v)eX
(ii) Let (¢, %) € X be as in part (i). Since J(t,,ty) < 0for ¢ >0
sufficiently small, we must have

inf J(u,v) <0,
I¥ulle+1Volle<x
where &k > 0 is a constant from the proof of Theorem 3. Inspection
of the proof of Theorem 3 shows that for a given ¢ > 0 there exists
& > 0 such that J(u,v) > —¢ for every (u,v) € X satisfying x ~ § <
IIVull, + ||Volly € &. This observation implies that

1
J(u,v) > = U,V 19
()2 5 ou e T (19)

for all (u,v) € X satisfying &1 < {[Vull, + ||Vvll; < & fol‘ some K1 < K.

Let , U X be a minimizing sequence for inf J(u,v
et {{u vl € & 4t ot < (8

By virtue of (19) we may assume that {(u;,v;)} C B(0,x). Let a closed
ball B(0,x) in X be equipped with a metric dist ((u,v),(us,v1)) =
IV (z = wm)llp + V(v — v1)llg for (u,v), (u1,m1) € B(0,x). It is clear
that B(0,«) with this distance is a complete metric space. According
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to the Ekeland variational principle we may assume that every (uj,v;)
is a minimizer for

inf{J(u,v) + 6;(I1V(x; — w)llp + [V (v; = v)llo); (4, v} € B(0,5)}

for some §; > 0 with §; — 0 as j — oo. This implies that J'(u;,v;) - 0
in X* as j — oo. It then follows from Proposition 3 that there exists
(u*,v*) € X such that J(uv",v*)=  inf _ J(u,v).

(u,v)€B(0,x)

In case 0 < A < 00 we deduce from Theorems 3 and 4 the following
multiplicity result.

Corollary 1. Let0 < A < oo (f,g) € LP(Q)x L% (Q) with (f,g) #
(0,0). Then there exists a constant m > 0 such that for || f|ly +|lglly <
m, system (1) has at least two distinct solutions.

5. CASE ol 4 841

A solution of system (1) will be obtained by a global minimization
of Jon X.

Proposition 4. Let A € R. Then J satisfies the Palais-Smale
condition.

Proof. Let {(%m,?m)} C X be a sequence such that J(u.,vm) is
bounded and J'(#m,vm) — 0 in X*. We have

T (tm, 0 ) (" (tm, O, ("—;‘— P-gi))

_ (1_a+1._§_+.]_‘)/ |um|a+1|vm|ﬁ+1d$
P q Q

_etl fumdz — ﬁ—-l—;—}—] gumdz,
7 Jo
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wich implies that

—M — enl|(tm, vm)llx

atl_B+1N [y o+, (P 1dg
P 4 JJQ

fumdz: - gvmdm <M+ en||(tm,vm)l|x

for all m, where M > 0 and ¢,, — 0. This, combined with the fact that
J is bounded, implies that the sequence {(tm,vm)} is bounded in X.
Consequently we may assume that (um,vmt (u,2) in X, (m,0m) —
(u,v) in L*'(Q) x L¥(Q). Since &l 4 < 1, it is easy to show

that [, ]um|“+1|vm|ﬁ+ldm - o 1u|“+1|v|ﬁ+1da: and we can complete
the proof as in Proposition 1.

As in Theorem 1 we find a solution of system 1 by a global mini-
mization of J on X.

Theorem 5. Let A € R and let ((f,9) € L (Q) x L% (Q) with
(f,g) £ (0,0). Then system (1) has a solution in X.

If one of functions f or g is identically zero we have a multiplicity
result:

Proposition 5. Suppose that f € L”'(Q) with f£0andg=0 on
Q.

(i) If 0 < A < oo, then there exist two distinct solutions in X of
system (1).

[»]
(1) If A < 0, then J(uo,0) = ( ir%l’;x J(u,v), where ug €W 17(Q)

is a solution of equation (2).
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6. NONHOMOGENEOUS p-LAPLACIAN INVOLVING A
CRITICAL SOBOLEV EXPONENT

. The aim of this section is to establish the existence of a solution in
W 12(Q) of the equation

—Ayu = |ul "2y 4 fin Q, (20)
where f € W'l""(Q) and f # 0. A solution will be obtained by a

o
constrained minimization of a variational functional F : W 1'?(Q) — R
given by

F(u) = %/QIV'ulpdm—El;/qlu[p'dz—/qfudm.

Let

M = {u €W "2(Q) - {0}; (F'(u),u) = 0},
then

R, (u) = }vl‘jg,w"”pd‘” - (l— ;%) /quda:.

It is easy to see that F is bounded on M and that
mp = inf{F(u);u € M} < 0.
We put

p (p*—p) ' (p” ~p)

_ 57 (p-1)7
(p* - )T Fen

K

Theorem 6. If || fllyw-1.» < & and f # 0, the there exists at least
one solution of equation (20).

Proof, It follows from the Ekeland variational principle that there ‘
exists a sequence {u,} C M such that

F(tm) — mp and F'|p(um) — 0 in W17(Q)
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as m — co. As in the proof of Theorem 1 we show that

F'(ugp) — 0in W17 (Q)

as m — oo. Towards this end we put

G(u) = (F'(w),u) for w €W 17(Q)
and we show that G'(u) # 0 for all ¥ € M and that

(G'(um), um)| > 6

231

(21)

for some é > 0 and for all m. Since the proofs of both claims are similar,
we only show (21). In the contrary case, lim {G'(um),%m) = 0 up to
m=—00

[+]
a subsequence. Since {u} is a bounded sequence in W 1'(Q) we may

assume that

™m—CO

lim f |V |Pde = A, lim / |4m|?"dz = B and
Q m=®JQ

lim fumdz =C.

m—0o0 Q

Constants A, B and ( satisfy the following system of equations
A-B-C =0
pA—-p*B-C =0,

whose solution is given by

{-I-A-L_B-—c =mp

22' 2 p_upt
A= mp—2E  po e B
For—2p—2 (>~ 1)(»* ~2p+2)

and

. 2p"(p" — p)
(p* = D)(p"—2p+2)
By the Sobolev inequlity we have

C=-m
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-\ 7
S(/ |2m |? d:z:) 5] |Vum|Pdz
Q Q

and letting m — oo we get

SB¥™ < A.

Using the formulae for A and B we derive from this inequality

ST (2p") 7 (0" = W+ 2)7 (p— 1T (p° - 1)TT D
(22)
< (~mp)7 .

On the other hand, since

]Q Ftimdz < |[flly-re [Vt

we get, letting m — oo, that

1
C <[ fllw-25 A®
This inequality implies that

(=me)¥ (2p")7 (0" = p)(P" = 1)(p" = 22+ 2)"% < ||fllwosrr- (23)

Combining (22) and (23) we obtain

P O i O
Fieme Tt t— = [JTTw~1s"s

(p“‘ - 1) p'(p*—p)
which is impossible. Therefore (21) holds. Since G'(um) # 0 on M, for
each u,, there exists Ay, € R such that
F'(um) = Flm(tm) = AnG' (4m). (24)

We now observe that



o
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0 = (F'(wm),um) = (F},, (tm), tm) ~ Am{G'(tm ), tm),

and this implies that Ap — 0. This, combined with (24), yields that
F'(4) = 0in WP (Q) as m — 00. The rest of the proof is similar
to that of Theorem 1 and therefore is omitted.

Finally, we note that if p = 2, then

N4+2

K.=SI:- 4 (N—Z) 4

N-2\N+2

and we recover a result from paper [5] (see Theorem 1 there).
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