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Abstract

For k ≤ n, let E(2n, k) be the sum of all multiple zeta values
with even arguments whose weight is 2n and whose depth is k. Of
course E(2n, 1) is the value ζ(2n) of the Riemann zeta function at
2n, and it is well known that E(2n, 2) = 3

4ζ(2n). Recently Z. Shen
and T. Cai gave formulas for E(2n, 3) and E(2n, 4) in terms of ζ(2n)
and ζ(2)ζ(2n − 2). We give two formulas for E(2n, k), both valid
for arbitrary k ≤ n, one of which generalizes the Shen-Cai results;
by comparing the two we obtain a Bernoulli-number identity. We also
give explicit generating functions for the numbers E(2n, k) and for the
analogous numbers E?(2n, k) defined using multiple zeta-star values
of even arguments.

1Supported by a grant from the German Academic Exchange Service (DAAD) during
the preparation of this paper. The author also thanks DESY for providing facilities and
financial support for travel, and the referee for urging him to include multiple zeta-star
values (which led to Corollary 1).



1 Introduction and Statement of Results

For positive integers i1, . . . , ik with i1 > 1, we define the multiple zeta value
ζ(i1, . . . , ik) by

ζ(i1, . . . , ik) =
∑

n1>···>nk≥1

1

ni11 · · ·n
ik
k

. (1)

The multiple zeta value (1) is said to have weight i1 + · · ·+ ik and depth k.
Many remarkable identities have been proved about these numbers, but in
this note we will concentrate on the case where the ij are even integers. Let
E(2n, k) be the sum of all the multiple zeta values of even-integer arguments
having weight 2n and depth k, i.e.,

E(2n, k) =
∑

i1, . . . , ik even
i1+···+ik=2n

ζ(i1, . . . , ik).

Of course

E(2n, 1) = ζ(2n) =
(−1)n−1B2n(2π)2n

2(2n)!
, (2)

where B2n is the 2nth Bernoulli number, by the classical formula of Euler.
Euler also studied double zeta values (i.e., multiple zeta values of depth 2)
and in his paper [3] gave two identities which read

2n−1∑
i=2

(−1)iζ(i, 2n− i) =
1

2
ζ(2n)

2n−1∑
i=2

ζ(i, 2n− i) = ζ(2n)

in modern notation. From these it follows that

E(2n, 2) =
3

4
ζ(2n),

though Gangl, Kaneko and Zagier [4] seem to be the first to have pointed it
out in print. Recently Shen and Cai [11] proved the formulas

E(2n, 3) =
5

8
ζ(2n)− 1

4
ζ(2)ζ(2n− 2), n ≥ 3 (3)

E(2n, 4) =
35

64
ζ(2n)− 5

16
ζ(2)ζ(2n− 2), n ≥ 4. (4)
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Identity (3) was also proved by Machide [10] using a different method.
This begs the question whether there is a general formula of this type for

E(2n, k). The pattern

3

4
,

3

4
· 5

6
=

5

8
,

3

4
· 5

6
· 7

8
=

35

64

of the leading coefficients makes one curious. In fact, the general result is as
follows.

Theorem 1. For k ≤ n,

E(2n, k) =
1

22(k−1)

(
2k − 1

k

)
ζ(2n)

−
b k−1

2
c∑

j=1

1

22k−3(2j + 1)B2j

(
2k − 2j − 1

k

)
ζ(2j)ζ(2n− 2j).

The next two cases after (4) are

E(2n, 5) =
63

128
ζ(2n)− 21

64
ζ(2)ζ(2n− 2) +

3

64
ζ(4)ζ(2n− 4)

E(2n, 6) =
231

512
ζ(2n)− 21

64
ζ(2)ζ(2n− 2) +

21

256
ζ(4)ζ(2n− 4).

We prove Theorem 1 in §3 below, using the generating function

F (t, s) = 1 +
∑
n≥k≥1

E(2n, k)tnsk.

In §2 we establish the following explicit formula.

Theorem 2.

F (t, s) =
sin(π

√
1− s

√
t)√

1− s sin(π
√
t)
.

Our proof uses symmetric functions. We define a homomorphism Z :
Sym → R, where Sym is the algebra of symmetric functions, and a family
Nn,k ∈ Sym such that Z sends Nn,k to E(2n, k). We then obtain a formula
for the generating functions

F(t, s) = 1 +
∑
n≥k≥1

Nn,kt
nsk ∈ Sym[[t, s]]
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and apply Z to get Theorem 2.
Along with the multiple zeta values there are the multiple zeta-star values

ζ?(i1, . . . , ik) =
∑

n1≥···≥nk≥1

1

ni11 · · ·n
ik
k

,

where the strict inequalities in equation (1) are replaced by ≥. These coincide
with multiple zeta values for depth 1, and for greater depths they are simply
sums of multiple zeta values, e.g.,

ζ?(6, 2, 4) = ζ(6, 2, 4) + ζ(8, 4) + ζ(6, 6) + ζ(12).

Conversely, multiple zeta values are sums of multiple zeta-star values with
signs alternating by depth, e.g.,

ζ(6, 2, 4) = ζ?(6, 2, 4)− ζ?(8, 4)− ζ?(6, 6) + ζ?(12).

For k ≤ n we can define E?(2n, k) as the sum of all multiple zeta-star values
with even arguments having weight 2n and depth k. The generating function

F ?(t, s) = 1 +
∑
n≥k≥1

E?(2n, k)tnsk

turns out to have a remarkably simple relation to F (t, s), as we show in §2.

Corollary 1. The generating functions F (t, s) and F ?(t, s) are related by
F ?(t, s) = F (t,−s)−1.

From the form of F(t, s) we show that it satisfies a partial differential
equation (Proposition 1 below), which is equivalent to a recurrence for the
Nn,k. From the latter we obtain a formula for the Nn,k in terms of complete
and elementary symmetric functions, to which Z can be applied to give the
following alternative formula for E(2n, k).

Theorem 3. For k ≤ n,

E(2n, k) =
(−1)n−k−1π2n

(2n+ 1)!

n−k∑
i=0

(
n− i
k

)(
2n+ 1

2i

)
2(22i−1 − 1)B2i.
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Note that the sum given by Theorem 3 has n−k+1 terms, while that given
by Theorem 1 has bk−1

2
c+ 1 terms. Yet another explicit formula for E(2n, k)

can be obtained by setting d = 1 in Theorem 7.1 of Komori, Matsumoto and
Tsumura [8]. That formula expresses E(2n, k) as a sum over partitions of k,
and it is not immediately clear how it relates to our two formulas.

Comparison of Theorems 1 and 3 establishes the following Bernoulli-
number identity.

Theorem 4. For k ≤ n,

b k−1
2
c∑

i=0

(
2k − 2i− 1

k

)(
2n+ 1

2i+ 1

)
B2n−2i =

(−1)k22k−2n
n−k∑
i=0

(
n− i
k

)(
2n+ 1

2i

)
(22i−1 − 1)B2i.

It is interesting to contrast this result with the Gessel-Viennot identity (see
[2, Theorem 4.2]) valid on the complementary range:

b k−1
2
c∑

i=0

(
2k − 2i− 1

k

)(
2n+ 1

2i+ 1

)
B2n−2i =

2n+ 1

2

(
2k − 2n

k

)
, k > n. (5)

Note that the right-hand side of equation (5) is zero unless k ≥ 2n.

2 Symmetric Functions

We think of Sym as the subring of Q[[x1, x2, . . . ]] consisting of those formal
power series of bounded degree that are invariant under permutations of the
xi. A useful reference is the first chapter of Macdonald [9]. We denote the
elementary, complete, and power-sum symmetric functions of degree i by ei,
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hi, and pi respectively. They have associated generating functions

E(t) =
∞∑
j=0

ejt
j =

∞∏
i=1

(1 + txi)

H(t) =
∞∑
j=0

hjt
j =

∞∏
i=1

1

1− txi
= E(−t)−1

P (t) =
∞∑
j=1

pjt
j−1 =

∞∑
i=1

xi
1− txi

=
H ′(t)

H(t)
.

As explained in [6] and in greater detail in [7], there is a homomorphism ζ :
Sym0 → R, where Sym0 is the subalgebra of Sym generated by p2, p3, p4, . . . ,
such that ζ(pi) is the value ζ(i) of the Riemann zeta function at i, for i ≥ 2
(in [6, 7] this homomorphism is extended to all of Sym, but we do not need
the extension here). Let D : Sym → Sym be the degree-doubling map that
sends xi to x2i . Then D(Sym) ⊂ Sym0, so the composition Z = ζD is defined
on all of Sym. (Alternatively, we can simply think of Z as sending xi to 1/i2:
see [9, Ch. I, §2, ex. 21].) Note that Z(pi) = ζ(2i) ∈ R. Further, Z sends the
monomial symmetric function mi1,...,ik to the symmetrized sum of multiple
zeta values

1

| Iso(i1, . . . , ik)|
∑
σ∈Sk

ζ(2iσ(1), 2iσ(2), . . . , 2iσ(k)),

where Sk is the symmetric group on k letters and Iso(i1, . . . , ik) is the sub-
group of Sk that fixes (i1, . . . , ik) under the obvious action.

Now let Nn,k be the sum of all the monomial symmetric functions corre-
sponding to partitions of n having length k. Of course Nn,k = 0 unless k ≤ n,
and Nk,k = ek. Then Z sends Nn,k to E(2n, k). Also, if we define (as in the
introduction)

F(t, s) = 1 +
∑
n≥k≥1

Nn,kt
nsk,

then Z sends F(t, s) to the generating function F (t, s). We have the following
simple description of F(t, s).

Lemma 1. F(t, s) = E((s− 1)t)H(t).
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Proof. Evidently F(t, s) has the formal factorization

∞∏
i=1

(1 + stxi + st2x2i + · · · ) =
∞∏
i=1

1 + (s− 1)txi
1− txi

= E((s− 1)t)H(t).

Proof of Theorem 2. Using the well-known formula for ζ(2, 2, . . . , 2) [5, Cor.
2.3],

Z(en) = ζ(2, 2, . . . , 2︸ ︷︷ ︸
n

) =
π2n

(2n+ 1)!
. (6)

Hence

Z(E(t)) =
sinh(π

√
t)

π
√
t

,

and the image of H(t) = E(−t)−1 is

Z(H(t)) =
π
√
−t

sinh(π
√
−t)

=
π
√
t

sin(π
√
t)
.

Thus from Lemma 1 F (t, s) = Z(F(t, s)) is

Z(E((s− 1)t)H(t)) =
sinh(π

√
(s− 1)t)

π
√

(s− 1)t

π
√
t

sin(π
√
t)

=
sin(π

√
(1− s)t)

√
1− s sin(π

√
t)
.

Taking limits as s→ 1 in Theorem 2, we obtain

F (t, 1) =
π
√
t

sin π
√
t

and so, taking the coefficient of tn, the following result.

Corollary 2. For all n ≥ 1,

n∑
k=1

E(2n, k) =
2(22n−1 − 1)(−1)n−1B2nπ

2n

(2n)!
= 2(1− 21−2n)ζ(2n).
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Remark. This result was obtained previously by Aoki, Kombu and Ohno
[1], who stated it in the language of multiple zeta-star values; since

ζ?(2, . . . , 2︸ ︷︷ ︸
n

) = E(2n, n) + E(2n, n− 1) + · · ·+ E(2n, 1), (7)

Corollary 2 can be recognized as [1, equation (4.6)]. In fact, using Euler’s
infinite product for sine, one sees that

F (z2, 1) =
∞∏
m=1

(
1− z2

m2

)−1
= 1 +

∑
n≥1

ζ?(2, . . . , 2︸ ︷︷ ︸
n

)z2n.

Recall that we defined E?(2n, k) as the sum of all multiple zeta-star values
with even arguments having depth k and weight 2n. The left-hand side of
equation (7) is E?(2n, n), and that equation generalizes as follows.

Lemma 2. For n ≥ k ≥ 1,

E?(2n, k) =
k∑
j=1

(
n− j
k − j

)
E(2n, j).

Proof. Let I = (i1, . . . , ik) be a composition (i.e., ordered partition) of n. We
can think of I as specified by placing k − 1 dividers within a row of n dots,
which makes it clear that there are

(
n−1
k−1

)
compositions of n with k parts. If

we associate to I the multiple zeta and multiple star zeta values

ζ(2I) = ζ(2i1, . . . , 2ik), ζ?(2I) = ζ?(2i1, . . . , 2ik),

of even values, then ζ?(2I) =
∑

I�J ζ(2J), where � is the partial order
on compositions given by refinement, i.e., I � J if J can be obtained by
combining adjacent parts of I; in terms of the dividers-in-row-of-dots picture,
J is obtained by removing some dividers from I.

Now E?(2n, k) is the sum of all ζ?(2I) with I having k parts. Write each
of these as a sum of multiple zeta values. Then the coefficient of ζ(2J), where
J has j ≤ k parts, is the number of distinct compositions I with k parts such
that J � I; this corresponds to the number of ways to insert k− j additional
dividers into J . Since there are n− 1− (j − 1) = n− j places to put them,
this number is

(
n−j
k−j

)
.
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Proof of Corollary 1. Using Lemma 2 and Theorem 2,

F ?(t, s) = 1 +
∑
n≥k≥1

E?(2n, k)tnsk = 1 +
∑
n≥k≥1

k∑
j=1

(
n− j
k − j

)
E(2n, j)tnsk

= 1 +
∑
n≥j≥1

E(2n, j)

n−j∑
i=0

(
n− j
i

)
tnsj+i = 1 +

∑
n≥j≥1

E(2n, j)tnsj(1 + s)n−j

= F

(
t(1 + s),

s

1 + s

)
=

sin
(
π
√

1− s
1+s

√
t(1 + s)

)
√

1− s
1+s

sin(π
√
t(1 + s))

=

√
1 + s sin(π

√
t)

sin(π
√

(1 + s)t)

=
1

F (t,−s)
.

Another consequence of Lemma 1 is the following partial differential equa-
tion.

Proposition 1.

t
∂F

∂t
(t, s) + (1− s)∂F

∂s
(t, s) = tP (t)F(t, s).

Proof. From Lemma 1 we have

∂F

∂t
(t, s) = (s− 1)E ′((s− 1)t)H(t) + E((s− 1)t)H ′(t)

∂F

∂s
(t, s) = tE ′((s− 1)t)H(t)

from which the conclusion follows.

Now examine the coefficient of tnsk in Proposition 1 to get the following.

Proposition 2. For n ≥ k + 1,

p1Nn−1,k + p2Nn−2,k + · · ·+ pn−kNk,k = (n− k)Nn,k + (k + 1)Nn,k+1.

It is also possible to prove this result directly via a counting argument like
that used to prove the lemma of [7, p. 16].

The preceding result allows us to write Nn,k explicitly in terms of complete
and elementary symmetric functions as follows.
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Lemma 3. For r ≥ 0,

Nk+r,k =
r∑
i=0

(−1)i
(
k + i

i

)
hr−iek+i.

Proof. We use induction on r, the result being evident for r = 0. Proposition
2 gives

r+1∑
i=1

piNk+r+1−i,k = (r + 1)Nk+r+1,k + (k + 1)Nk+r+1,k+1,

which after application of the induction hypothesis becomes

r+1∑
i=1

r+1−j∑
j=0

(−1)jpi

(
k + j

j

)
hr+1−i−jNk+j,k+j =

(r + 1)Nk+r+1,k + (k + 1)
r∑
j=0

(
k + 1 + j

j

)
hr−jNk+1+j,k+1+j.

The latter equation can be rewritten

r∑
j=0

(−1)j
(
k + j

j

)
Nk+j,k+j

r+1−j∑
i=1

pihr+1−i−j =

(r + 1)Nk+r+1,k − (k + 1)
r+1∑
j=1

(−1)j
(
k + j

j − 1

)
hr+1−jNk+j,k+j.

Now the inner sum on the left-hand side is (r+1−j)hr+1−j by the recurrence
relating the complete and power-sum symmetric functions, so we have

(r + 1)Nk+r+1,k − (r + 1)Nk,khr+1 =
r+1∑
j=1

(−1)jhr+1−jNk+j,k+j

(
(r + 1− j)

(
k + j

j

)
+ (k + 1)

(
k + j

j − 1

))
,

and the conclusion follows after the observation that (k + 1)
(
k+j
j−1

)
= j
(
k+j
j

)
.
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Proof of Theorem 3. Rewrite Lemma 3 in the form

Nn,k =
n−k∑
i=0

(
n− i
k

)
(−1)n−k−ihien−i

and apply the homomorphism Z, using equation (6) and

Z(hi) =
2(22i−1 − 1)(−1)i−1B2iπ

2i

(2i)!
.

3 Proof of Theorems 1 and 4

From the introduction we recall the statement of Theorem 1:

E(2n, k) =
1

22(k−1)

(
2k − 1

k

)
ζ(2n)

−
b k−1

2
c∑

j=1

1

22k−3(2j + 1)B2j

(
2k − 2j − 1

k

)
ζ(2j)ζ(2n− 2j).

We note that Euler’s formula (2) can be used to write the result in the
alternative form

E(2n, k) =

b k−1
2
c∑

j=0

(−1)jπ2jζ(2n− 2j)

22k−2j−2(2j + 1)!

(
2k − 2j − 1

k

)
(8)

which avoids mention of Bernoulli numbers.
We now expand out the generating function F (t, s). We have

F (t, s) =
1√

1− s sin π
√
t

sin(π
√
t
√

1− s)

=
π
√
t

sin π
√
t

∞∑
j=0

(−1)jπ2jtj(1− s)j

(2j + 1)!
=
∞∑
k=0

skGk(t),

where

Gk(t) = (−1)k
π
√
t

sinπ
√
t

∑
j≥k

(−1)jπ2jtj

(2j + 1)!

(
j

k

)
. (9)
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Then Theorem 1 is equivalent to the statement that

Gk(t) =
∑
n≥k

tn
b k−1

2
c∑

j=0

(−1)jπ2jζ(2n− 2j)

22k−2j−2(2j + 1)!

(
2k − 2j − 1

k

)
for all k. We can write the latter sum as

b k−1
2
c∑

j=0

(−4π2t)j

22k−2(2j + 1)!

(
2k − 2j − 1

k

) ∑
n≥j+1

ζ(2n− 2j)tn−j−

b k−1
2
c∑

j=0

(−4π2t)j

22k−2(2j + 1)!

(
2k − 2j − 1

k

) k−1∑
n=j+1

ζ(2n− 2j)tn−j =

1

2
(1− π

√
t cotπ

√
t)

b k−1
2
c∑

j=0

(−4π2t)j

22k−2(2j + 1)!

(
2k − 2j − 1

k

)
−

b k−1
2
c∑

j=0

(−4π2t)j

22k−2(2j + 1)!

(
2k − 2j − 1

k

) k−1∑
n=j+1

ζ(2n− 2j)tn−j, (10)

where we have used the generating function

1

2
(1− π

√
t cot π

√
t) =

∞∑
i=1

ζ(2i)ti.

Note that the last sum in (10) is a polynomial that cancels exactly those
terms in

1

2
(1− π

√
t cot π

√
t)

b k−1
2
c∑

j=0

(−4π2t)j

22k−2(2j + 1)!

(
2k − 2j − 1

k

)
(11)

of degree less than k. Thus, to prove Theorem 1 it suffices to show that

Gk(t) = terms of degree ≥ k in expression (11).

From equation (9) it is evident that

Gk(t) =
π
√
t

sin π
√
t
· (−t)k

k!
· d

k

dtk

(
sin π
√
t

π
√
t

)
. (12)

We use this to obtain an explicit formula for Gk(t).
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Lemma 4. For k ≥ 0,

Gk(t) = Pk(π
2t)π
√
t cotπ

√
t+Qk(π

2t),

where Pk, Qk are polynomials defined by

Pk(x) =−
b k−1

2
c∑

j=0

(−4x)j

22k−1(2j + 1)!

(
2k − 2j − 1

k

)

Qk(x) =

b k
2
c∑

j=0

(−4x)j

22k(2j)!

(
2k − 2j

k

)
.

Proof. In view of equation (12), the conclusion is equivalent to

f (k)(t) = (−1)kk!t−kPk(π
2t) cosπ

√
t+ (−1)kk!t−kQk(π

2t)f(t),

where f(t) = sin π
√
t/π
√
t. Differentiating, one sees that the polynomials Pk

and Qk are determined by the recurrence

(k + 1)Pk+1(x) = kPk(x)− xP ′k(x)− 1

2
Qk(x)

(k + 1)Qk+1(x) =
2k + 1

2
Qk(x)− xQ′k(x) +

x

2
Pk(x)

together with the initial conditions P0(x) = 0, Q0(x) = 1. The recurrence
and initial conditions are satisfied by the explicit formulas above.

Proof of Theorem 1. Using Lemma 4, we have

Gk(t) = −
b k−1

2
c∑

j=0

(−4π2t)j

22k−1(2j + 1)!

(
2k − 2j − 1

k

)
π
√
t cotπ

√
t

+

b k
2
c∑

j=0

(−4π2t)j

22k(2j)!

(
2k − 2j

k

)
=

1

2
(1− π

√
t cot π

√
t)

b k−1
2
c∑

j=0

(−4π2t)j

22k−2(2j + 1)!

(
2k − 2j − 1

k

)
+ terms of degree < k,

and this completes the proof.
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Proof of Theorem 3. Using Theorem 1 in the form of equation (8), eliminate
ζ(2n − 2j) using Euler’s formula (2) and then compare with Theorem 3 to
get

b k−1
2
c∑

j=0

(−1)n−1π2nB2n−2j

22k−2n−1(2n− 2j)!(2j + 1)!

(
2k − 2j − 1

k

)
=

(−1)n−k−1π2n

(2n+ 1)!

n−k∑
i=0

(
n− i
k

)(
2n+ 1

2i

)
2(22i−1 − 1)B2i.

Now multiply both sides by (−1)n−122k−2n−1π−2n(2n + 1)! and rewrite the
factorials on the left-hand side as a binomial coefficient.
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