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Abstract

We introduce a general and simple structural design called “Multiplicative Integra-
tion” (MI) to improve recurrent neural networks (RNNs). MI changes the way in
which information from difference sources flows and is integrated in the compu-
tational building block of an RNN, while introducing almost no extra parameters.
The new structure can be easily embedded into many popular RNN models, includ-
ing LSTMs and GRUs. We empirically analyze its learning behaviour and conduct
evaluations on several tasks using different RNN models. Our experimental results
demonstrate that Multiplicative Integration can provide a substantial performance
boost over many of the existing RNN models.

1 Introduction

Recently there has been a resurgence of new structural designs for recurrent neural networks (RNNs)
[1, 2, 3]. Most of these designs are derived from popular structures including vanilla RNNs, Long
Short Term Memory networks (LSTMs) [4] and Gated Recurrent Units (GRUs) [5]. Despite of their
varying characteristics, most of them share a common computational building block, described by the
following equation:

φ(Wx+Uz + b), (1)

where x ∈ R
n and z ∈ R

m are state vectors coming from different information sources, W ∈ R
d×n

and U ∈ R
d×m are state-to-state transition matrices, and b is a bias vector. This computational

building block serves as a combinator for integrating information flow from the x and z by a sum
operation “+”, followed by a nonlinearity φ. We refer to it as the additive building block. Additive
building blocks are widely implemented in various state computations in RNNs (e.g. hidden state
computations for vanilla-RNNs, gate/cell computations of LSTMs and GRUs.

In this work, we propose an alternative design for constructing the computational building block by
changing the procedure of information integration. Specifically, instead of utilizing sum operation
“+", we propose to use the Hadamard product “⊙” to fuse Wx and Uz:

φ(Wx⊙Uz + b) (2)

The result of this modification changes the RNN from first order to second order [6], while introducing
no extra parameters. We call this kind of information integration design a form of Multiplicative
Integration. The effect of multiplication naturally results in a gating type structure, in which Wx
and Uz are the gates of each other. More specifically, one can think of the state-to-state computation
Uz (where for example z represents the previous state) as dynamically rescaled by Wx (where
for example x represents the input). Such rescaling does not exist in the additive building block, in
which Uz is independent of x. This relatively simple modification brings about advantages over the
additive building block as it alters RNN’s gradient properties, which we discuss in detail in the next
section, as well as verify through extensive experiments.

∗Equal contribution.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



In the following sections, we first introduce a general formulation of Multiplicative Integration. We
then compare it to the additive building block on several sequence learning tasks, including character
level language modelling, speech recognition, large scale sentence representation learning using a
Skip-Thought model, and teaching a machine to read and comprehend for a question answering
task. The experimental results (together with several existing state-of-the-art models) show that
various RNN structures (including vanilla RNNs, LSTMs, and GRUs) equipped with Multiplicative
Integration provide better generalization and easier optimization. Its main advantages include: (1) it
enjoys better gradient properties due to the gating effect. Most of the hidden units are non-saturated;
(2) the general formulation of Multiplicative Integration naturally includes the regular additive
building block as a special case, and introduces almost no extra parameters compared to the additive
building block; and (3) it is a drop-in replacement for the additive building block in most of the
popular RNN models, including LSTMs and GRUs. It can also be combined with other RNN training
techniques such as Recurrent Batch Normalization [7]. We further discuss its relationship to existing
models, including Hidden Markov Models (HMMs) [8], second order RNNs [6] and Multiplicative
RNNs [9].

2 Structure Description and Analysis

2.1 General Formulation of Multiplicative Integration

The key idea behind Multiplicative Integration is to integrate different information flows Wx and Uz,
by the Hadamard product “⊙”. A more general formulation of Multiplicative Integration includes
two more bias vectors β1 and β2 added to Wx and Uz:

φ((Wx+ β1)⊙ (Uz + β2) + b) (3)

where β1,β2 ∈ R
d are bias vectors. Notice that such formulation contains the first order terms as

in a additive building block, i.e., β1 ⊙Uht−1 + β2 ⊙Wxt. In order to make the Multiplicative
Integration more flexible, we introduce another bias vector α ∈ R

d to gate2 the term Wx ⊙Uz,
obtaining the following formulation:

φ(α⊙Wx⊙Uz + β1 ⊙Uz + β2 ⊙Wx+ b), (4)

Note that the number of parameters of the Multiplicative Integration is about the same as that of the
additive building block, since the number of new parameters (α, β1 and β2) are negligible compared
to total number of parameters. Also, Multiplicative Integration can be easily extended to LSTMs
and GRUs3, that adopt vanilla building blocks for computing gates and output states, where one can
directly replace them with the Multiplicative Integration. More generally, in any kind of structure
where k information flows (k ≥ 2) are involved (e.g. residual networks [10]), one can implement
pairwise Multiplicative Integration for integrating all k information sources.

2.2 Gradient Properties

The Multiplicative Integration has different gradient properties compared to the additive building
block. For clarity of presentation, we first look at vanilla-RNN and RNN with Multiplicative
Integration embedded, referred to as MI-RNN. That is, ht = φ(Wxt + Uht−1 + b) versus

ht = φ(Wxt ⊙Uht−1 + b). In a vanilla-RNN, the gradient ∂ht

∂ht−n

can be computed as follows:

∂ht

∂ht−n

=
t∏

k=t−n+1

UTdiag(φ′
k), (5)

where φ′
k = φ′(Wxk +Uhk−1 +b). The equation above shows that the gradient flow through time

heavily depends on the hidden-to-hidden matrix U, but W and xk appear to play a limited role: they

only come in the derivative of φ′ mixed with Uhk−1. On the other hand, the gradient ∂ht

∂ht−n

of a

MI-RNN is4:

∂ht

∂ht−n

=

t∏

k=t−n+1

UTdiag(Wxk)diag(φ
′
k), (6)

2If α = 0, the Multiplicative Integration will degenerate to the vanilla additive building block.
3See exact formulations in the Appendix.
4Here we adopt the simplest formulation of Multiplicative Integration for illustration. In the more general

case (Eq. 4), diag(Wxk) in Eq. 6 will become diag(α⊙Wxk + β1).
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where φ′
k = φ′(Wxk ⊙Uhk−1 + b). By looking at the gradient, we see that the matrix W and

the current input xk is directly involved in the gradient computation by gating the matrix U, hence
more capable of altering the updates of the learning system. As we show in our experiments, with
Wxk directly gating the gradient, the vanishing/exploding problem is alleviated: Wxk dynamically
reconciles U, making the gradient propagation easier compared to the regular RNNs. For LSTMs
and GRUs with Multiplicative Integration, the gradient propagation properties are more complicated.
But in principle, the benefits of the gating effect also persists in these models.

3 Experiments

In all of our experiments, we use the general form of Multiplicative Integration (Eq. 4) for any hidden
state/gate computations, unless otherwise specified.

3.1 Exploratory Experiments

To further understand the functionality of Multiplicative Integration, we take a simple RNN for
illustration, and perform several exploratory experiments on the character level language modeling
task using Penn-Treebank dataset [11], following the data partition in [12]. The length of the
training sequence is 50. All models have a single hidden layer of size 2048, and we use Adam
optimization algorithm [13] with learning rate 1e−4. Weights are initialized to samples drawn from
uniform[−0.02, 0.02]. Performance is evaluated by the bits-per-character (BPC) metric, which is
log2 of perplexity.

3.1.1 Gradient Properties

To analyze the gradient flow of the model, we divide the gradient in Eq. 6 into two parts: 1. the
gated matrix products: UTdiag(Wxk), and 2. the derivative of the nonlinearity φ′, We separately
analyze the properties of each term compared to the additive building block. We first focus on the
gating effect brought by diag(Wxk). In order to separate out the effect of nonlinearity, we chose φ
to be the identity map, hence both vanilla-RNN and MI-RNN reduce to linear models, referred to as
lin-RNN and lin-MI-RNN.

For each model we monitor the log-L2-norm of the gradient log ||∂C/∂ht||2 (averaged over the
training set) after every training epoch, where ht is the hidden state at time step t, and C is the
negative log-likelihood of the single character prediction at the final time step (t = 50). Figure. 1
shows the evolution of the gradient norms for small t, i.e., 0, 5, 10, as they better reflect the gradient
propagation behaviour. Observe that the norms of lin-MI-RNN (orange) increase rapidly and soon
exceed the corresponding norms of lin-RNN by a large margin. The norms of lin-RNN stay close to
zero (≈ 10−4) and their changes over time are almost negligible. This observation implies that with
the help of diag(Wxk) term, the gradient vanishing of lin-MI-RNN can be alleviated compared to
lin-RNN. The final test BPC (bits-per-character) of lin-MI-RNN is 1.48, which is comparable to a
vanilla-RNN with stabilizing regularizer [14], while lin-RNN performs rather poorly, achieving a test
BPC of over 2.

Next we look into the nonlinearity φ. We chose φ = tanh for both vanilla-RNN and MI-RNN.
Figure 1 (c) and (d) shows a comparison of histograms of hidden activations over all time steps on
the validation set after training. Interestingly, in (c) for vanilla-RNN, most activations are saturated
with values around ±1, whereas in (d) for MI-RNN, most activations are non-saturated with values
around 0. This has a direct consequence in gradient propagation: non-saturated activations imply
that diag(φ′

k) ≈ 1 for φ = tanh, which can help gradients propagate, whereas saturated activations
imply that diag(φ′

k) ≈ 0, resulting in gradients vanishing.

3.1.2 Scaling Problem

When adding two numbers at different order of magnitude, the smaller one might be negligible for the
sum. However, when multiplying two numbers, the value of the product depends on both regardless
of the scales. This principle also applies when comparing Multiplicative Integration to the additive
building blocks. In this experiment, we test whether Multiplicative Integration is more robust to the
scales of weight values. Following the same models as in Section 3.1.1, we first calculated the norms
of Wxk and Uhk−1 for both vanilla-RNN and MI-RNN for different k after training. We found that
in both structures, Wxk is a lot smaller than Uhk−1 in magnitude. This might be due to the fact that
xk is a one-hot vector, making the number of updates for (columns of) W be smaller than U. As a
result, in vanilla-RNN, the pre-activation term Wxk +Uhk−1 is largely controlled by the value of
Uhk−1, while Wxk becomes rather small. In MI-RNN, on the other hand, the pre-activation term
Wxk ⊙Uhk−1 still depends on the values of both Wxk and Uhk−1, due to multiplication.
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Figure 1: (a) Curves of log-L2-norm of gradients for lin-RNN (blue) and lin-MI-RNN (orange). Time gradually
changes from {1, 5, 10}. (b) Validation BPC curves for vanilla-RNN, MI-RNN-simple using Eq. 2, and MI-
RNN-general using Eq. 4. (c) Histogram of vanilla-RNN’s hidden activations over the validation set, most
activations are saturated. (d) Histogram of MI-RNN’s hidden activations over the validation set, most activations
are not saturated.

We next tried different initialization of W and U to test their sensitivities to the scaling. For each
model, we fix the initialization of U to uniform[−0.02, 0.02] and initialize W to uniform[−rW, rW]
where rW varies in {0.02, 0.1, 0.3, 0.6}. Table 1, top left panel, shows results. As we increase
the scale of W, performance of the vanilla-RNN improves, suggesting that the model is able to
better utilize the input information. On the other hand, MI-RNN is much more robust to different
initializations, where the scaling has almost no effect on the final performance.

3.1.3 On different choices of the formulation

In our third experiment, we evaluated the performance of different computational building blocks,
which are Eq. 1 (vanilla-RNN), Eq. 2 (MI-RNN-simple) and Eq. 4 (MI-RNN-general)5. From the
validation curves in Figure 1 (b), we see that both MI-RNN, simple and MI-RNN-general yield much
better performance compared to vanilla-RNN, and MI-RNN-general has a faster convergence speed
compared to MI-RNN-simple. We also compared our results to the previously published models
in Table 1, bottom left panel, where MI-RNN-general achieves a test BPC of 1.39, which is to our
knowledge the best result for RNNs on this task without complex gating/cell mechanisms.

3.2 Character Level Language Modeling

In addition to the Penn-Treebank dataset, we also perform character level language modeling on two
larger datasets: text86 and Hutter Challenge Wikipedia7. Both of them contain 100M characters from
Wikipedia while text8 has an alphabet size of 27 and Hutter Challenge Wikipedia has an alphabet
size of 205. For both datasets, we follow the training protocols in [12] and [1] respectively. We use
Adam for optimization with the starting learning rate grid-searched in {0.002, 0.001, 0.0005}. If the
validation BPC (bits-per-character) does not decrease for 2 epochs, we half the learning rate.

We implemented Multiplicative Integration on both vanilla-RNN and LSTM, referred to as MI-
RNN and MI-LSTM. The results for the text8 dataset are shown in Table 1, bottom middle panel.
All five models, including some of the previously published models, have the same number of

5We perform hyper-parameter search for the initialization of {α,β1,β2,b} in MI-RNN-general.
6http://mattmahoney.net/dc/textdata
7http://prize.hutter1.net/
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rW = 0.02 0.1 0.3 0.6 std

RNN 1.69 1.65 1.57 1.54 0.06
MI-RNN 1.39 1.40 1.40 1.41 0.008

WSJ Corpus CER WER

DRNN+CTCbeamsearch [15] 10.0 14.1
Encoder-Decoder [16] 6.4 9.3
LSTM+CTCbeamsearch [17] 9.2 8.7
Eesen [18] - 7.3
LSTM+CTC+WFST (ours) 6.5 8.7
MI-LSTM+CTC+WFST (ours) 6.0 8.2

Penn-Treebank BPC

RNN [12] 1.42
HF-MRNN [12] 1.41
RNN+stabalization [14] 1.48
MI-RNN (ours) 1.39
linear MI-RNN (ours) 1.48

text8 BPC

RNN+smoothReLu [19] 1.55
HF-MRNN [12] 1.54
MI-RNN (ours) 1.52

LSTM (ours) 1.51
MI-LSTM(ours) 1.44

HutterWikipedia BPC

stacked-LSTM [20] 1.67
GF-LSTM [1] 1.58
grid-LSTM [2] 1.47
MI-LSTM (ours) 1.44

Table 1: Top: test BPCs and the standard deviation of models with different scales of weight initializations. Top
right: test CERs and WERs on WSJ corpus. Bottom left: test BPCs on character level Penn-Treebank dataset.
Bottom middle: test BPCs on character level text8 dataset. Bottom right: test BPCs on character level Hutter
Prize Wikipedia dataset.

parameters (≈4M). For RNNs without complex gating/cell mechanisms (the first three results), our
MI-RNN (with {α,β1,β2,b} initialized as {2, 0.5, 0.5, 0}) performs the best, our MI-LSTM (with
{α,β1,β2,b} initialized as {1, 0.5, 0.5, 0}) outperforms all other models by a large margin8.

On Hutter Challenge Wikipedia dataset, we compare our MI-LSTM (single layer with 2048 unit,
≈17M, with {α,β1,β2,b} initialized as {1, 1, 1, 0}) to the previous stacked LSTM (7 layers,
≈27M) [20], GF-LSTM (5 layers, ≈20M) [1], and grid-LSTM (6 layers, ≈17M) [2]. Table 1, bottom
right panel, shows results. Despite the simple structure compared to the sophisticated connection
designs in GF-LSTM and grid-LSTM, our MI-LSTM outperforms all other models and achieves the
new state-of-the-art on this task.

3.3 Speech Recognition

We next evaluate our models on Wall Street Journal (WSJ) corpus (available as LDC corpus
LDC93S6B and LDC94S13B), where we use the full 81 hour set “si284” for training, set “dev93” for
validation and set “eval92” for test. We follow the same data preparation process and model setting
as in [18], and we use 59 characters as the targets for the acoustic modelling. Decoding is done with
the CTC [21] based weighted finite-state transducers (WFSTs) [22] as proposed by [18].

Our model (referred to as MI-LSTM+CTC+WFST) consists of 4 bidirectional MI-LSTM lay-
ers, each with 320 units for each direction. CTC is performed on top to resolve the alignment
issue in speech transcription. For comparison, we also train a baseline model (referred to as
LSTM+CTC+WFST) with the same size but using vanilla LSTM. Adam with learning rate 0.0001
is used for optimization and Gaussian weight noise with zero mean and 0.05 standard deviation
is injected for regularization. We evaluate our models on the character error rate (CER) without
language model and the word error rate (WER) with extended trigram language model.

Table 1, top right panel, shows that MI-LSTM+CTC+WFST achieves quite good results on both CER
and WER compared to recent works, and it has a clear improvement over the baseline model. Note
that we did not conduct a careful hyper-parameter search on this task, hence one could potentially
obtain better results with better decoding schemes and regularization techniques.

3.4 Learning Skip-Thought Vectors

Next, we evaluate our Multiplicative Integration on the Skip-Thought model of [23]. Skip-Thought is
an encoder-decoder model that attempts to learn generic, distributed sentence representations. The
model produces sentence representation that are robust and perform well in practice, as it achieves
excellent results across many different NLP tasks. The model was trained on the BookCorpus dataset
that consists of 11,038 books with 74,004,228 sentences. Not surprisingly, a single pass through

8[7] reports better results but they use much larger models (≈16M) which is not directly comparable.
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Semantic-Relatedness r ρ MSE

uni-skip [23] 0.8477 0.7780 0.2872
bi-skip [23] 0.8405 0.7696 0.2995
combine-skip [23] 0.8584 0.7916 0.2687

uni-skip (ours) 0.8436 0.7735 0.2946
MI-uni-skip (ours) 0.8588 0.7952 0.2679

Paraphrase detection Acc F1

uni-skip [23] 73.0 81.9
bi-skip [23] 71.2 81.2
combine-skip [23] 73.0 82.0

uni-skip (ours) 74.0 81.9
MI-uni-skip (ours) 74.0 82.1

Classification MR CR SUBJ MPQA

uni-skip [23] 75.5 79.3 92.1 86.9
bi-skip [23] 73.9 77.9 92.5 83.3
combine-skip [23] 76.5 80.1 93.6 87.1

uni-skip (ours) 75.9 80.1 93.0 87.0
MI-uni-skip (ours) 77.9 82.3 93.3 88.1

Attentive Reader Val. Err.

LSTM [7] 0.5033
BN-LSTM [7] 0.4951
BN-everywhere [7] 0.5000
LSTM (ours) 0.5053
MI-LSTM (ours) 0.4721
MI-LSTM+BN (ours) 0.4685
MI-LSTM+BN-everywhere (ours) 0.4644

Table 2: Top left: skip-thought+MI on Semantic-Relatedness task. Top Right: skip-thought+MI on Paraphrase
Detection task. Bottom left: skip-thought+MI on four different classification tasks. Bottom right: Multiplicative
Integration (with batch normalization) on Teaching Machines to Read and Comprehend task.

the training data can take up to a week on a high-end GPU (as reported in [23]). Such training
speed largely limits one to perform careful hyper-parameter search. However, with Multiplicative
Integration, not only the training time is shortened by a factor of two, but the final performance is
also significantly improved.

We exactly follow the authors’ Theano implementation of the skip-thought model9: Encoder and
decoder are single-layer GRUs with hidden-layer size of 2400; all recurrent matrices adopt orthogonal
initialization while non-recurrent weights are initialized from uniform distribution. Adam is used
for optimization. We implemented Multiplicative Integration only for the encoder GRU (embedding
MI into decoder did not provide any substantial gains). We refer our model as MI-uni-skip, with
{α,β1,β2,b} initialized as {1, 1, 1, 0}. We also train a baseline model with the same size, referred
to as uni-skip(ours), which essentially reproduces the original model of [23].

During the course of training, we evaluated the skip-thought vectors on the semantic relatedness
task, using SICK dataset, every 2500 updates for both MI-uni-skip and the baseline model (each
iteration processes a mini-batch of size 64). The results are shown in Figure 2a. Note that MI-uni-skip
significantly outperforms the baseline, not only in terms of speed of convergence, but also in terms
of final performance. At around 125k updates, MI-uni-skip already exceeds the best performance
achieved by the baseline, which takes about twice the number of updates.

We also evaluated both models after one week of training, with the best results being reported on six
out of eight tasks reported in [23]: semantic relatedness task on SICK dataset, paraphrase detection
task on Microsoft Research Paraphrase Corpus, and four classification benchmarks: movie review
sentiment (MR), customer product reviews (CR), subjectivity/objectivity classification (SUBJ), and
opinion polarity (MPQA). We also compared our results with the results reported on three models in
the original skip-thought paper: uni-skip, bi-skip, combine-skip. Uni-skip is the same model as our
baseline, bi-skip is a bidirectional model of the same size, and combine-skip takes the concatenation
of the vectors from uni-skip and bi-skip to form a 4800 dimension vector for task evaluation. Table
2 shows that MI-uni-skip dominates across all the tasks. Not only it achieves higher performance
than the baseline model, but in many cases, it also outperforms the combine-skip model, which has
twice the number of dimensions. Clearly, Multiplicative Integration provides a faster and better way
to train a large-scale Skip-Thought model.

3.5 Teaching Machines to Read and Comprehend

In our last experiment, we show that the use of Multiplicative Integration can be combined with
other techniques for training RNNs, and the advantages of using MI still persist. Recently, [7]
introduced Recurrent Batch-Normalization. They evaluated their proposed technique on a uni-

9https://github.com/ryankiros/skip-thoughts

6

https://github.com/ryankiros/skip-thoughts


0 50 100 150 200 250
number of iterations (2.5k)

0.26

0.28

0.30

0.32

0.34

0.36

M
S

E

(a)

uni-skip (ours)

MI-uni-skip (ours)

0 200 400 600 800
number of iterations (1k)

0.45

0.50

0.55

0.60

0.65

0.70

v
a
lid

a
ti

o
n

 e
rr

o
r

(b)

LSTM [7]

BN-LSTM [7]

MI-LSTM (ours)

MI-LSTM+BN (ours)

Figure 2: (a) MSE curves of uni-skip (ours) and MI-uni-skip (ours) on semantic relatedness task on SICK
dataset. MI-uni-skip significantly outperforms baseline uni-skip. (b) Validation error curves on attentive reader
models. There is a clear margin between models with and without MI.

directional Attentive Reader Model [24] for the question answering task using the CNN corpus10. To
test our approach, we evaluated the following four models: 1. A vanilla LSTM attentive reader model
with a single hidden layer size 240 (same as [7]) as our baseline, referred to as LSTM (ours), 2. A
multiplicative integration LSTM with a single hidden size 240, referred to as MI-LSTM, 3. MI-
LSTM with Batch-Norm, referred to as MI-LSTM+BN, 4. MI-LSTM with Batch-Norm everywhere
(as detailed in [7]), referred to as MI-LSTM+BN-everywhere. We compared our models to results
reported in [7] (referred to as LSTM, BN-LSTM and BN-LSTM everywhere) 11.

For all MI models, {α,β1,β2,b} were initialized to {1, 1, 1, 0}. We follow the experimental
protocol of [7]12 and use exactly the same settings as theirs, except we remove the gradient clipping
for MI-LSTMs. Figure. 2b shows validation curves of the baseline (LSTM), MI-LSTM, BN-LSTM,
and MI-LSTM+BN, and the final validation errors of all models are reported in Table 2, bottom right
panel. Clearly, using Multiplicative Integration results in improved model performance regardless
of whether Batch-Norm is used. However, the combination of MI and Batch-Norm provides the
best performance and the fastest speed of convergence. This shows the general applicability of
Multiplication Integration when combining it with other optimization techniques.

4 Relationship to Previous Models

4.1 Relationship to Hidden Markov Models

One can show that under certain constraints, MI-RNN is effectively implementing the forward
algorithm of the Hidden Markov Model(HMM). A direct mapping can be constructed as follows (see
[25] for a similar derivation). Let U ∈ R

m×m be the state transition probability matrix with Uij =
Pr[ht+1 = i|ht = j], W ∈ R

m×n be the observation probability matrix with Wij = Pr[xt =
i|ht = j]. When xt is a one-hot vector (e.g., in many of the language modelling tasks), multiplying

it by W is effectively choosing a column of the observation matrix. Namely, if the jth entry of xt

is one, then Wxt = Pr[xt|ht = j]. Let h0 be the initial state distribution with h0 = Pr[h0] and
{ht}t≥1 be the alpha values in the forward algorithm of HMM, i.e., ht = Pr[x1, ..., xt, ht]. Then
Uht = Pr[x1, ..., xt, ht+1]. Thus ht+1 = Wxt+1 ⊙Uht = Pr[xt+1|ht+1] ·Pr[x1, ..., xt, ht+1] =
Pr[x1, ..., xt+1, ht+1]. To exactly implement the forward algorithm using Multiplicative Integration,
the matrices W and U have to be probability matrices, and xt needs to be a one-hot vector. The
function φ needs to be linear, and we drop all the bias terms. Therefore, RNN with Multiplicative
Integration can be seen as a nonlinear extension of HMMs. The extra freedom in parameter values
and nonlinearity makes the model more flexible compared to HMMs.

4.2 Relations to Second Order RNNs and Multiplicative RNNs

MI-RNN is related to the second order RNN [6] and the multiplicative RNN (MRNN) [9]. We first
describe the similarities with these two models:

The second order RNN involves a second order term st in a vanilla-RNN, where the ith element
st,i is computed by the bilinear form: st,i = xT

t T
(i)ht−1, where T (i) ∈ R

n×m(1 ≤ i ≤ m) is

10Note that [7] used a truncated version of the original dataset in order to save computation.
11Learning curves and the final result number are obtained by emails correspondence with authors of [7].
12https://github.com/cooijmanstim/recurrent-batch-normalization.git.
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the ith slice of a tensor T ∈ R
m×n×m. Multiplicative Integration also involve a second order term

st = α ⊙ Wxt ⊙ Uht−1, but in our case st,i = αi(wi · xt)(ui · ht−1) = xT
t (αwi ⊗ ui)ht−1,

where wi and ui are ith row in W and U, and αi is the ith element of α. Note that the outer product
αiwi ⊗ ui is a rank-1 matrix. The Multiplicative RNN is also a second order RNN, but which

approximates T by a tensor decomposition
∑

x
(i)
t T (i) = Pdiag(Vxt)Q. For MI-RNN, we can

also think of the second order term as a tensor decomposition: α⊙Wxt ⊙Uht−1 = U(xt)ht−1 =
[diag(α)diag(Wxt)U]ht−1.

There are however several differences that make MI a favourable model: (1) Simpler Parametrization:
MI uses a rank-1 approximation compared to the second order RNNs, and a diagonal approximation
compared to Multiplicative RNN. Moreover, MI-RNN shares parameters across the first and second
order terms, whereas the other two models do not. As a result, the number of parameters are largely
reduced, which makes our model more practical for large scale problems, while avoiding overfitting.
(2) Easier Optimization: In tensor decomposition methods, the products of three different (low-rank)
matrices generally makes it hard to optimize [9]. However, the optimization problem becomes
easier in MI, as discussed in section 2 and 3. (3) General structural design vs. vanilla-RNN design:
Multiplicative Integration can be easily embedded in many other RNN structures, e.g. LSTMs and
GRUs, whereas the second order RNN and MRNN present a very specific design for modifying
vanilla-RNNs.

Moreover, we also compared MI-RNN’s performance to the previous HF-MRNN’s results (Multi-
plicative RNN trained by Hessian-free method) in Table 1, bottom left and bottom middle panels, on
Penn-Treebank and text8 datasets. One can see that MI-RNN outperforms HF-MRNN on both tasks.

4.3 General Multiplicative Integration

Multiplicative Integration can be viewed as a general way of combining information flows from
two different sources. In particular, [26] proposed the ladder network that achieves promising
results on semi-supervised learning. In their model, they combine the lateral connections and the
backward connections via the “combinator” function by a Hadamard product. The performance would
severely degrade without this product as empirically shown by [27]. [28] explored neural embedding
approaches in knowledge bases by formulating relations as bilinear and/or linear mapping functions,
and compared a variety of embedding models on the link prediction task. Surprisingly, the best
results among all bilinear functions is the simple weighted Hadamard product. They further carefully
compare the multiplicative and additive interactions and show that the multiplicative interaction
dominates the additive one.

5 Conclusion

In this paper we proposed to use Multiplicative Integration (MI), a simple Hadamard product to
combine information flow in recurrent neural networks. MI can be easily integrated into many popular
RNN models, including LSTMs and GRUs, while introducing almost no extra parameters. Indeed,
the implementation of MI requires almost no extra work beyond implementing RNN models. We also
show that MI achieves state-of-the-art performance on four different tasks or 11 datasets of varying
sizes and scales. We believe that the Multiplicative Integration can become a default building block
for training various types of RNN models.
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