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Abstract

This paper is concerned with the class of distributions, continuous or discrete, whose
shape is monotone of finite integer order t . A characterization is presented as a mixture
of a minimum of t independent uniform distributions. Then, a comparison of t-monotone
distributions is made using the s-convex stochastic orders. A link is also pointed out with
an alternative approach to monotonicity based on a stationary-excess operator. Finally,
the monotonicity property is exploited to reinforce the classical Markov and Lyapunov
inequalities. The results are illustrated by several applications to insurance.
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1. Introduction

A frequent difficulty met in stochastic modeling is that only incomplete statistical knowledge
is available or trustworthy on certain model components. This is especially true in insurance
and finance where risks and losses are generally difficult to estimate. For instance, the partial
information at disposal for a claim distribution could be its range, the first few moments, and
some shape constraints.

The present work is concerned with a class of distributions whose shape is known to
be monotone of finite integer order t . We will consider both absolutely continuous
distributions with a t-monotone density function on R+, and discrete distributions with a
t-monotone probability mass function (PMF) on N0 = {0, 1, . . . }. Let us recall the definition of
t-monotonicity.

A functionf on R+ is completely monotone iff is infinitely differentiable and (−1)kf (k)≥0
for all k ≥ 1. By Bernstein’s theorem, such a function can be represented as a scale mixture of
exponentials (see, e.g. Feller (1971)). Functions f on R+ that satisfy a property of this kind up
to a finite degree t have been introduced and studied in Williamson (1956), Lévy (1962), and
Gneiting (1999). More precisely, we have the following definition.

Definition 1.1. A function f (y), y > 0, is 1-monotone if it is nonnegative and nonincreasing.
It is t-monotone, t ≥ 2, if

(−1)kf (k)(y) is nonnegative, nonincreasing, and convex for k = 0, . . . , t − 2.

Received 24 February 2012; revision received 29 November 2012.
∗ Postal address: Département de Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP 210, B-1050
Bruxelles, Belgium. Email address: clefevre@ulb.ac.be
∗∗ Postal address: Université de Lyon, Université Claude Bernard Lyon 1, I.S.F.A., 50 Avenue Tony Garnier, F-69007
Lyon, France. Email address: stephane.loisel@univ-lyon1.fr

827

https://doi.org/10.1239/jap/1378401239 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1378401239


828 C. LEFÈVRE AND S. LOISEL

In other words, (−1)kf (k)(y) ≥ 0 for k = 0, . . . , t−3 and (−1)t−2f (t−2)(y) is nonnegative,
nonincreasing, and convex. A t-monotone function on N0 is defined similarly using the forward
difference operator � (i.e. �f (j) = f (j + 1)− f (j)).

Definition 1.2. A function f (j), j ≥ 0, is t-monotone, t ≥ 1, if

(−1)k�kf (j) ≥ 0 for k = 1, . . . , t.

Multiple monotonicity of continuous distributions has been considered for different purposes
in probability and statistics. So, t-monotonicity corresponds to the concept of beta(1, t)-
unimodality with a mode at 0 (see the book by Bertin et al. (1997)). It is a special type of scaling
relation discussed in, e.g. Pakes (1997) and Pakes and Navarro (2007). A link withArchimedean
copulas and L1 Dirichlet distributions is pointed out in, e.g. Constantinescu et al. (2011). The
estimation of a t-monotone density is studied in, e.g. Balabdaoui and Wellner (2007). To our
knowledge, multiple monotonicity of discrete distributions has not been investigated so far.

Our interest in t-monotonicity arises in part from insurance where such a property can
realistically be imposed on certain risk distributions. The importance of the case t = 1,
i.e. nonincreasing distributions, is well recognized in this area (see, e.g. Gerber (1972), Kaas
and Goovaerts (1987), and Denuit et al. (2000)). Introducing an order t allows us to cover a
hierarchical class of risk distributions with reinforced shape constraints. Of course, there are
many other application fields where a monotonicity property could be relevant.

The paper is organized as follows. In Section 2 we present a representation of t-monotone
distributions as a mixture of a minimum of t independent uniform distributions. In Section 3
we use the s-convex stochastic orders to compare t-monotone distributions and derive extremal
distributions. In Section 4 we connect the present approach to t-monotonicity with an alternative
approach that uses the t-fold iterate of a stationary-excess operator. In Section 5 we show
how the classical Markov and Lyapunov inequalities can be strengthened under the additional
assumption of t-monotonicity. In Section 6 we apply some of the bounds obtained to different
risk measures in insurance.

2. t-monotone distributions

The purpose of this section is to provide a representation for random variables, continuous or
discrete, that have a t-monotone density or PMF. In the continuous case, such a characterization
was obtained in, e.g. Lévy (1962). In the discrete case, the result seems to be new.

2.1. Continuous case

For t ≥ 1, let Mt (z) denote the random variable

Mt (z) ≡ min{Ul(z), 1 ≤ l ≤ t}, (2.1)

where z is a positive real number and the Ul(z) are t independent random variables uniform on
the interval [0, z]. Clearly, a distributional representation for Mt (z) is

Mt (z)
d= (1 − U1/t )z, (2.2)

where U is a uniform [0, 1] random variable. So, the density of Mt (z) is

dP[Mt (z) < x]
dx

= t

z

(
1 − x

z

)t−1

+
, x > 0. (2.3)

We easily obtain the iterated right-tail distribution functions (DFs) of Mt (z) (see (A.6) in
Appendix A).
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Property 2.1. For i ≥ 0,

F̄i+1[Mt (z), x] = t !
(i + t)!z

i

(
1 − x

z

)t+i
+
, x > 0. (2.4)

Let us now consider a randomized random variable Mt (Z) obtained by substituting for z in
(2.1) some exogenous random variable Z valued in R+. By (2.2),

Mt (Z)
d= (1 − U1/t )Z, (2.5)

where Z and U are independent variables. The random variable Mt (Z) can be viewed as a
randomly scaled version of Z studied in, e.g. Pakes (1997) and Pakes and Navarro (2007).
Note that the scaling factor used here, 1 − U1/t , has a beta(1, t) distribution. In the theory of
unimodality, Mt (Z) is said to have a beta(1, t)-unimodal distribution (see, e.g. Bertin et al.
(1997, p. 72)). We then have

E([Mt(Z)]i ) = E(Zi)(
i+t
t

) . (2.6)

The introduction of the variableZ leads to a characterization of a t-monotone density. By (2.3),
the density of Mt (Z) is

qt (x) =
∫ ∞

0

t

z

(
1 − x

z

)t−1

+
dFZ(z), x > 0, (2.7)

where FZ is the DF of Z. From Theorem 5 (with Equations (8.4) and (8.7)) of Lévy (1962),
we then have the following (known) proposition.

Proposition 2.1. The density of an R+-valued random variable X is t-monotone if and only if
X

d= (1−U1/t )Z for some R+-valued variableZ. IfX has a t-monotone density q(x), x > 0,
then the density of Z is given by

dFZ(z)

dz
= (−1)t

zt

t ! [q(z)]
(t), z > 0.

For t = 1, this result corresponds to a classical Khintchine theorem for unimodal distributions
with a mode at 0. As t → ∞, we see that t (1 − U1/t )

d−→ − ln(U)
d= Exp(1), an exponential

variable with mean 1. Thus, the limiting form of Proposition 2.1 and (2.5) show that a completely
monotone density admits the representation (Bernstein’s theorem)

q∞(x) =
∫ ∞

0

1

z
e−x/z dFZ(z), x > 0.

2.2. Discrete case

For t ≥ 1, in this case Mt (z) denotes the random variable

Mt (z) ≡ min{Ul(z+ l), 1 ≤ l ≤ t}, (2.8)

where z is a nonnegative integer and the Ul(z+ l) are t independent discrete random variables
uniform on the sets {0, . . . , z+ l − 1}, respectively.

Obviously, Mt (z) ≤ U1(z + 1) ≤ z. Let us determine the iterated right-tail DFs of Mt (z).
For the sequel, we define

(
k
j

) = 0 if k < 0 and j ≥ 0.
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Property 2.2. For i ≥ 0,

F̄i+1[Mt (z), j ] =
(
z−j+t+i
t+i

)
(
z+t
t

) , 0 ≤ j ≤ z. (2.9)

In particular,

P[Mt (z) = j ] =
(
z−j+t−1
t−1

)
(
z+t
t

) , 0 ≤ j ≤ z, (2.10)

and

E

(
Mt (z)

i

)
=

(
z
i

)
(
i+t
t

) . (2.11)

Proof. We proceed by recurrence. From (2.8),

F̄1[Mt (z), j ] = P[Mt (z) ≥ j ]
= P[U1(z+ 1) ≥ j ] · · · P[Ut(z+ t) ≥ j ]
= z+ 1 − j

z+ 1
· · · z+ t − j

z+ t

=
(
z−j+t
t

)
(
z+t
t

) , 0 ≤ j ≤ z,

i.e. (2.9) for i = 0. So, the PMF of Mt (z), given by

P[Mt (z) = j ] = P[Mt (z) ≥ j ] − P[Mt (z) ≥ j + 1] = −�F̄1[Mt (z), j ],
becomes (2.10) by (A.3) below. For i ≥ 1, (A.10) below and induction yield

F̄i+1[Mt (z), j ] = 1(
z+t
t

) ∞∑
k=j

(
z− k + t + i − 1

t + i − 1

)

= 1(
z+t
t

) z+t+i−j−1∑
k=t+i−1

(
k

t + i − 1

)
, 0 ≤ j ≤ z,

which reduces to (2.9) using (A.1) below. By (A.11) below, the binomial moments are given
by

E

(
Mt (z)

i

)
= F̄i+1[Mt (z), i] =

(
z+t
t+i

)
(
z+t
t

) ,
and (2.11) follows.

An interesting observation made by the referee is that Mt (z) admits a distributional
representation analogous to (2.2).

Proposition 2.2. It holds that

Mt (z)
d= MBin(z, 1 − U1/t ), (2.12)

where U is a uniform [0, 1] random variable and MBin(·, ·) denotes a mixed binomial random
variable.
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Proof. The PMF of MBin(z, 1 − U1/t ) is given by

mj ≡
(
z

j

)
E((1 − U1/t )jU(z−j)/t )

=
(
z

j

) ∫ 1

0
vz−j+t−1(1 − vj ) dv

=
(
z

j

)
B(z− j + t, j + 1), 0 ≤ j ≤ z,

after making the substitution u = vt and writingB(·, ·) for the usual beta function. This reduces
to PMF (2.10) as announced.

Let us now replace z in (2.8) with some exogenous random variable Z valued in N0. By
(2.10), the PMF of Mt (Z) is given by

pt (j) ≡ P[Mt (Z) = j ] = E

((
Z−j+t−1

t−1

)
(
Z+t
t

) )
, j ≥ 0, (2.13)

which is the discrete analogue of (2.7). By (2.11),

E

(
Mt (Z)

i

)
= E

(
Z
i

)
(
i+t
t

) , i ≥ 0. (2.14)

Continuing with (2.12) leads us to a nice representation ofMt (Z) through a binomial thinning
operator, ‘�’, due to Steutel and van Harn (1979). Recall that, with a ∈ (0, 1) and N0-valuedZ,

a � Z =
Z∑
i=1

Ii,

where the Ii are independent Bernoulli random variables with parameter a and independent
of Z. Thus, we see that

Mt (Z)
d= (1 − U1/t )� Z, (2.15)

where U and Z are independent. This was also pointed out to us by the referee.
The introduction of a variable Z allows us to characterize the t-monotonicity of a PMF.

Proposition 2.3. The PMF of an N0-valued random variable X is t-monotone if and only if
X

d= (1 − U1/t )� Z for some N0-valued Z. If X has a t-monotone PMF pX(j), j ≥ 0, then
the PMF of Z is given by

P[Z = z] = (−1)t
(
z+ t

t

)
�tpX(z), z ≥ 0. (2.16)

Proof. From (A.3) below, PMF (2.13) of Mt (Z) is such that, for 1 ≤ k ≤ t ,

�kpt (j) = E

(
1(
Z+t
t

)�k(Z − j + t − 1

t − 1

))

= (−1)kE

((
Z−j+t−1−k

t−1−k
)

(
Z+t
t

) )
, j ≥ 0,

so that (2.13) is t-monotone as desired.
Reciprocally, letX be a random variable whose PMF pX(j), j ≥ 0, is t-monotone. Denote

by p(z) the right-hand side of (2.16) constructed using this PMF. The sequence p(z), z ≥ 0,
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constitutes a PMF. Indeed, by the t-monotonicity of X, we have p(z) ≥ 0 for all z ≥ 0.
Moreover, from identity (A.5) below, we obtain

∑
z≥0 p(z) = 1. Now, let Z be a random

variable which has precisely this PMF. By (2.13), the corresponding random variable Mt (Z)

has the PMF

pt (j) = (−1)t
∞∑
z=j

(
z− j + t − 1

t − 1

)
�tpX(z), j ≥ 0.

From identity (A.4) below, we know that the right-hand side reduces to pX(j). This means
that, as announced, Mt (Z) and X have the same distribution.

3. s-convex orderings

In this section we compare t-monotone distributions and derive extremal distributions by
using the s-convex stochastic orders, denoted by ‘≤s−cx’, where s is an integer greater than or
equal to 1. These orders are briefly presented in Appendix A; let us recall that their definition
is similar, but not identical, in the continuous and discrete cases. For t = 1, such a comparison
problem has been discussed in Denuit et al. (1998), (1999b).

3.1. Continuous case

The proposition below states that an s-convex ordering on Z implies an s-convex ordering
on Mt (Z). This is true for any t .

Proposition 3.1. If Z1 ≤s−cx Z2 then Mt (Z1) ≤s−cx Mt (Z2).

Proof. Let u be an arbitrary value of U and consider the variable (1 − u1/t )Z. The
(continuous) s-convex ordering is preserved by multiplication by a positive constant and by
mixture (see Denuit et al. (1998)). Thus, applying these properties yields the announced
assertion.

3.1.1. Convex extrema. Proposition 3.1 provides a simple way to construct s-convex extrema
for t-monotone densities using standard s-convex extrema, i.e. when there is no monotonicity
restriction on the densities. With the same goal, Lefèvre and Loisel (2010) proposed a different
approach based on the use of the t-fold iterate of a stationary-excess operator. The present
method has the advantage of being more easily applicable.

Specifically, let Bs([0, b];µ1, . . . , µs−1) denote the class of all the random variables Z
whose distributions have support in [0, b] and which have the first s− 1 moments E(Zi) = µi,

1 ≤ i ≤ s−1. LetZ(s)min andZ(s)max be the extrema in this class with respect to the order ‘≤s−cx’.
A method to determine these extrema is described in, e.g. Shaked and Shanthikumar (2007,
pp. 145–146).

Now, consider the class Bs([0, b]; ν1, . . . , νs−1; t-monotone) of all the random variablesX
with support in [0, b], first s − 1 moments E(Xi) = νi, 1 ≤ i ≤ s − 1, and which have a
t-monotone density. By Proposition 2.1, there exists some random variable Z on [0, b] such
that X

d= Mt (Z). Remember that the moments µi of Z are obtained from νi through (2.6). As
Z
(s)
min ≤s−cx Z ≤s−cx Z

(s)
max, Proposition 3.1 yields Mt (Z

(s)
min) ≤s−cx X ≤s−cx Mt (Z

(s)
max).

For instance, let s = 2. It is well known that, inside B2([0, b];µ1),

Z
(2)
min = µ1 almost surely,

Z(2)max =
{

0 with probability 1 − µ1/b,

b with probability µ1/b.
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Let t = 1, and consider B2([0, b]; ν1; 1-monotone). In this case, (2.6) implies that µ1 = 2ν1.
As M1(Z) = UZ, we obtain

M1(Z
(2)
min) = 2ν1U, (3.1)

M1(Z
(2)
max) =

{
0 with probability 1 − 2ν1/b,

bU with probability 2ν1/b.
(3.2)

Let t = 2, and consider B2([0, b]; ν1; 2-monotone). From (2.6), we have µ1 = 3ν1. Using
(2.5), we then obtain

M2(Z
(2)
min) = 3ν1(1 − U1/2), (3.3)

M2(Z
(2)
max) =

{
0 with probability 1 − 3ν1/b,

b(1 − U1/2) with probability 3ν1/b.
(3.4)

Note that the density of (1 − U1/2) is 2(1 − x), 0 ≤ x ≤ 1.
The 1-convex minimum (3.1) has a density that is uniform on [0, 2ν1] and takes the value

0 otherwise. Obviously, this density is nonincreasing, but it is not convex. This allows us
to correct an erroneous assertion in Section 5 of Lefèvre and Loisel (2010): (3.1) is not, as
claimed there, the 2-convex minimum in the class of the random variables whose density is
nonincreasing convex. In fact, the true 2-convex minimum in that class is given by (3.3). The
upper bound (3.2) has a nonincreasing convex density on [0, b], with a probability mass at 0
(i.e. an infinite value of the density at 0 and a finite limit at 0+). Thus, (3.2) is also the 2-convex
maximum among the variables whose density is required to be 2-monotone on [0, b] only; this
is precisely what is stated in Lefèvre and Loisel (2010). The 2-convex maximum given by (3.4)
is not that obtained in Lefèvre and Loisel (2010) because the 2-monotonicity required there is
on [0, b] only.

3.2. Discrete case

As in the continuous case, an s-convex ordering on Z is transferred to Mt (Z). This is a
direct consequence of representation (2.15).

Proposition 3.2. The assertion of Proposition 3.1 holds in the discrete case also.

Proof. For any value u of U , consider the variable (1 − u1/t )� Z
d= MBin(Z, 1 − u1/t ).

If Z1 ≤s−cx Z2 then MBin(Z1, 1 −u1/t ) ≤s−cx MBin(Z2, 1 −u1/t ) (see Denuit et al. (1999c,
Property 5.7)). As the (discrete) s-convex ordering is preserved by mixing (see Denuit and
Lefèvre (1997)), the announced result follows.

Remark. Let f be a function on N0, and define the associated function g by

g(z) ≡ E(f (Mt (z))) =
z∑
j=0

(
z−j+t−1
t−1

)
(
z+t
t

) f (j), z ≥ 0. (3.5)

We can show that

(
t + s

s

)
�sg(z) =

z∑
j=0

(
j+s
s

)(
z−j+t−1
t−1

)
(
z+s+t
s+t

) �sf (j), s ≥ 0. (3.6)
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Thus, if the function f is s-convex (in the sense of (A.12) below) then the function g is also
s-convex. By the definition of the s-convex order given in Definition A.2 below, this gives
another proof of Proposition 3.2. For t = 1, identity (3.6) has been derived in Denuit et
al. (1999) to prove the result in that case. The argument followed above is simpler and more
enlightening than the use of (3.6). Note that, by a known combinatorial identity, the coefficients
of �sf (j) sum to 1. Thus, they constitute a PMF and the right-hand side corresponds to an
expectation as in (3.5).

3.2.1. Convex extrema. The framework is similar. Let Bs({0, . . . , n};µ1, . . . , µs−1) be the
class of all the random variables Z which are valued in a set {0, . . . , n} and have the first s − 1
binomial moments E

(
Z
i

) = µi, 1 ≤ i ≤ s − 1. Denote by Z(s)min and Z(s)max the extrema in that
class with respect to ‘≤s−cx’. A method for deriving these extrema is presented in Denuit and
Lefèvre (1997).

Discrete extrema have received less attention in the literature. It is worth mentioning,
however, that optimal bounds of this type have been investigated in branching theory
for approximating the extinction probability and other functionals (see, e.g. Pakes (2003,
pp. 705–706) for references to these bounds); see also, e.g. Lefèvre and Utev (1996) in epidemic
theory.

Now, let Bs({0, . . . , n}; ν1, . . . , νs−1; t-monotone) be the set of all the random variables X
valued in {0, . . . , n}, with first s − 1 binomial moments E

(
X
i

) = νi, 1 ≤ i ≤ s − 1, and which
have a t-monotone PMF. By Proposition 2.3, X

d= Mt (Z) for some random variable Z valued
in {0, . . . , n}. The moments of Z and X are connected by (2.14). Applying Proposition 3.2
then yields Mt (Z

(s)
min) ≤s−cx X ≤s−cx Mt (Z

(s)
max).

For illustration, let s = 2. Inside B2({0, . . . , n};µ1),

Z
(2)
min =

{
ξ with probability ξ + 1 − µ1,

ξ + 1 with probability µ1 − ξ,

Z(2)max =
{

0 with probability 1 − µ1/n,

n with probability µ1/n,

where ξ is the integer in [0, n− 1] such that ξ < µ1 ≤ ξ + 1 (see Denuit and Lefèvre (1997)).
Let t = 1, and consider B2({0, . . . , n}; ν1; 1-monotone). Following (2.14), we haveµ1 = 2ν1;
let ξ1 be the corresponding value of ξ . By (2.8), M1(Z) = U1(Z + 1), so that

M1(Z
(2)
min) =

{
0, . . . , ξ1 with equal probabilities 2(ξ1 + 1 − ν1)/(ξ1 + 1)(ξ1 + 2),

ξ1 + 1 with probability (2ν1 − ξ1)/(ξ1 + 2),
(3.7)

M1(Z
(2)
max) =

{
0 with probability 1 − 2ν1/(n+ 1),

1, . . . , n with equal probabilities 2ν1/n(n+ 1).
(3.8)

Let t = 2, and consider B2({0, . . . , n}; ν1; 2-monotone). From (2.14), we have µ1 = 3ν1;
let ξ2 be the corresponding value of ξ . Using (2.8), we obtain

M2(Z
(2)
min) = j ∈ {0, . . . , ξ2 + 1} with probability (ξ2 − j + 1)π1 + (ξ2 − j + 2)π2, (3.9)

where π1 = 2(ξ2 + 1 − 3ν1)/(ξ2 + 2)(ξ2 + 1) and π2 = 2(3ν1 − ξ2)/(ξ2 + 3)(ξ2 + 2), while

M2(Z
(2)
max) =

{
0 with probability 1 − 3ν1/(n+ 2),

j ∈ {1, . . . , n} with probability 6ν1(n− j + 1)/n(n+ 1)(n+ 2).
(3.10)
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The 1-convex maximum (3.8) has a PMF that is nonincreasing convex on {0, . . . , n}, but it
is not convex on N0. Thus, (3.8) is the 2-convex maximum among the random variables whose
PMF is required to be 2-monotone on {0, . . . , n} only; this is what is asserted in Section 5
of Lefèvre and Loisel (2010). Of course, (3.8) is not the 2-convex maximum here because
the 2-monotonicity is on N0. The true 2-convex maximum is given by (3.10). The 2-convex
minimum (3.9) has a PMF that is nonincreasing convex on {0, . . . , n}. Thus, it is also optimal
among the variables whose PMF is required to be 2-monotone on {0, . . . , n} only; this result
has been obtained in Lefèvre and Loisel (2010). Note that, by comparison, the PMF of the
1-convex minimum (3.7) is nonincreasing but nonconvex.

Other values of t may be considered without real difficulties. One can also deal with s ≥ 3,
provided the s-convex extrema for Z are available. This is possible, for instance, with s = 3.
Then (2.14) leads to µ1 = 2ν1 and µ2 = 3ν2 when t = 1, and µ1 = 3ν1 and µ2 = 6ν2 when
t = 2.

4. t-stationary-excess distributions

A different method to generate t-monotone distributions consists in using the t-fold iterate
of a stationary-excess operator (see Lefèvre and Loisel (2010)). Our purpose in this section is to
point out a link between that method and the present approach to t-monotonicity. This topic is
partly related to the characterization of distributions through length-biasing, stationary-excess,
and random scaling operations (see, e.g. Pakes (1996), (1997) and Pakes and Navarro (2007)).

4.1. Continuous case

4.1.1. The length-bias transform. Let Y be an R+-valued random variable with finite mean and
density qY . The length-bias transform L of Y is an R+-valued random variable L(Y ) with
density

qL(Y )(z) = zqY (z)

E(Y )
, z > 0.

For instance, if Y is gamma (α, n) then L(Y ) is gamma (α, n + 1); if Y is Pareto (α, γ )
(respectively Lognormal (µ, σ 2)), L(Y ) is Pareto (α, γ − 1) (respectively Lognormal (µ +
σ 2, σ 2)). Length-biased distributions arise in many situations where the probability of selection
is proportional to a size dimension (see, e.g. Patil and Rao (1978)). Note that the operator L
yields a one-to-one correspondence.

Let us apply t times the operator L to Y , under the assumption that E(Y t ) < ∞. We easily
see that the resulting random variable Lt (Y ) has the density

qLt (Y )(z) = ztqY (z)

E(Y t )
, z > 0. (4.1)

Moreover, we get

E([Lt (Y )]i ) = E(Y i+t )
E(Y t )

, i ≥ 0. (4.2)

In an actuarial context, the right-hand side for i = 1 corresponds to the size-biased pricing
functional of an insurance risk or loss Y (see, e.g. Furman and Zitikis (2009)).

4.1.2. The stationary-excess transform. Let us first examine what becomes of the random
variable Mt (Z)

d= (1 − U1/t )Z in the case where Z
d= Lt (Y ) with density (4.1).
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Property 4.1. The density of Mt (Lt (Y )) is

qt (x) = tE(Y − x)t−1+
E(Y t )

, x > 0. (4.3)

Proof. Substituting (4.1) into (2.7) gives

qt (x) = t

E(Y t )

∫ t

0

1

z

(
1 − x

z

)t−1

+
ztqY (z) dz, x > 0,

and (4.3) follows.

Note that the density qt reduces to a ratio between two expectations. From (2.6) and (4.2),
the associated moments are

E([Mt (Lt (Y ))]i ) = E(Y i+t )(
i+t
t

)
E(Y t )

, i ≥ 0.

Now, let us consider the standard stationary-excess operator S (see, e.g. Cox (1962)). The
operator S transforms the variable Y into a random variable S(Y ) with density

qS(Y )(z) = P[Y > y]
E(Y )

, z > 0. (4.4)

Obviously, density (4.4) is the same as (4.3) with t = 1. Let us apply t times the operator S,
which yields a random variable St (Y ). As shown in Lefèvre and Loisel (2010, Equation (4.11)),
the density of St (Y ) is still given by (4.3), which gives the following result.

Proposition 4.1. It holds that

St (Y )
d= (1 − U1/t )Lt (Y ). (4.5)

Relation (4.5) represents the stationary-excess operator as a random contraction of the length-
bias operator. It occurs as Lemma 4.1 of Pakes (1996) (with a different proof).

Note that, by virtue of Proposition 2.1 and (4.5), a stationary-excess density of order t is a
t-monotone function. Moreover, from (4.5) and using Proposition 4.4 of Lefèvre and Loisel
(2010), we obtain the following convex comparison result:

if Y1 ≤(s+t)−cx Y2 then Mt (Lt (Y1)) ≤s−cx Mt (Lt (Y2)). (4.6)

4.2. Discrete case

4.2.1. A length-bias-type transform. Let Y be an N0-valued random variable with finite mean.
We define an operator L that transforms Y into a random variable L(Y ), also N0-valued, whose
PMF is defined by

P[L(Y ) = z] = (z+ 1)P[Y = z+ 1]
E(Y )

, z ≥ 0.

For instance, if Y is Poisson (λ) then L(Y ) is also Poisson (λ); if Y is binomial (n, p)
(respectively negative binomial (n, p)), L(Y ) is binomial (n − 1, p) (respectively negative
binomial (n+ 1, p)). The operator L yields a one-to-one correspondence when E(Y ) is fixed.
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This is not true otherwise: for example, if ν is a Bernoulli variable independent of Y then
L(Y )

d= L(νY ).
Let us note that L differs slightly from the length-bias operator usually considered for

discrete random variables (as in, e.g. Patil and Rao (1978)). This operator, L̃ say, transforms
Y into a variable L̃(Y ) with PMF given by

P[L̃(Y ) = z] = zP[Y = z]
E(Y )

, z ≥ 1.

Thus, L(Y )
d= L̃(Y )− 1, i.e. L(Y ) is a (−1)-translated length-biased version of Y .

Let us operate t times L to Y , provided that E(Y t ) < ∞. For t = 2, this gives a variable
L2(Y ) whose PMF is P[L2(Y ) = z] = (z + 1)P[L(Y ) = z + 1]/E(L(Y )), z ≥ 0, where
E(L(Y )) = 2E

(
Y
2

)
/E(Y ). After t iterations, we get for Lt (Y ) the following PMF:

P[Lt (Y ) = z] =
(
z+t
t

)
P[Y = z+ t]

E
(
Y
t

) , z ≥ 0. (4.7)

Its binomial moments are

E

(
Lt (Y )

i

)
=

(
i+t
t

)
E

(
Y
t+i

)
E

(
Y
t

) , i ≥ 0. (4.8)

These formulae can also be obtained using the probability generating function of Lt (Y ).

4.2.2. The stationary-excess transform. Let us consider the random variable Mt (z)
d= (1−

U1/t )� Z in the case where Z
d= Lt (Y ) with PMF (4.7).

Property 4.2. The PMF of Mt (Lt (Y )) is

pt (j) = E
(
Y−j−1
t−1

)
E

(
Y
t

) , j ≥ 0. (4.9)

Proof. From (2.13) and (4.7),

pt (j) =
∞∑
z=j

(
z−j+t−1
t−1

)
(
z+t
t

)
(
z+t
t

)
P[Y = z+ t]

E
(
Y
t

)
= 1

E
(
Y
t

) ∞∑
z=j+t

(
z− j − 1

t − 1

)
P[Y = z], j ≥ 0,

which gives (4.9).

As in (4.3), the PMF pt is a ratio between two expectations. From (2.14) and (4.8), its
binomial moments are

E

(
Mt (Lt (Y ))

i

)
= E

(
Y
i+t

)
E

(
Y
t

) , i ≥ 0.

Now, let us consider the discrete stationary-excess operator S introduced in Lefèvre and
Loisel (2010). The operator S transforms Y into an N-valued random variable S(Y )with PMF

P[S(Y ) = z] = P[Y ≥ z+ 1]
E(Y )

, z ≥ 0. (4.10)
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Observe that PMFs (4.10) and (4.9) with t = 1 are identical. Applying t times S to Y yields
a random variable St (Y ) whose PMF is still given by (4.9) (see Lefèvre and Loisel (2010,
Equation (4.2))). This yields the following result.

Proposition 4.2. It holds that

St (Y )
d= (1 − U1/t )� Lt (Y ). (4.11)

By Proposition 2.3 and (4.11), a stationary-excess PMF of order t is a t-monotone function.
We can show that the comparison result (4.6) also holds in the discrete case.

5. Refining simple standard inequalities

The goal here is to strengthen Markov and Lyapunov inequalities for distributions that are
known to be t-monotone. Our study is mainly focused on the continuous case, which is more
tractable. We thank S. Utev for fruitful discussions on this topic; see also Lefèvre and Utev
(2012) for further results. As indicated below, such inequality refinements exist in the literature
on unimodal distributions. For clarity, we write Xt ≡ Mt (Z) in this section.

5.1. Continuous case

First, note from (2.5) that (2.6) can be extended to any moment of order r > 0 by

E(Xrt ) = 	(r + 1)	(t + 1)

	(r + t + 1)
E(Zr). (5.1)

5.1.1. Markov-type inequality. LetX be an R+-valued random variable. The classical Markov
inequality states that, for any r ≥ 0,

P[X ≥ x] ≤ E(Xr)

xr
, x > 0. (5.2)

The bound may be refined when additional information on X is available. We derive below a
tighter bound for a random variable Xt whose density is t-monotone.

Proposition 5.1. For r ≥ 0,

P[Xt ≥ x] ≤ c(r, t)
E(Xrt )

xr
, x > 0, (5.3)

where c(r, t) is a reducing factor given by

c(r, t) = 	(r + t + 1)

	(r + 1)	(t + 1)

(
r

r + t

)r(
t

r + t

)t
. (5.4)

Proof. By (2.4),

xrP[Xt ≥ x] = xrE

(
1 − x

Z

)t
+

≡ E(θZ(x)), x > 0.

For Z fixed, the function θZ(x) has a maximum at x = xM ≡ [r/(r + t)]Z (∈ (0, Z)). Thus,

xrP[X ≥ x] ≤ E(θZ(xM)) =
(

r

r + t

)r(
t

r + t

)t
E(Zr), x > 0. (5.5)
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From (5.1),

E(Zr) = 	(r + t + 1)

	(r + 1)	(t + 1)
E(Xrt ), (5.6)

which, inserted into (5.5), gives (5.3) and (5.4).

From (5.4), we observe that c(r, t) = c(t, r). The next property asserts that, as expected,
the bound in (5.3) becomes tighter for larger values of t ; a proof is given in Appendix A.

Property 5.1. The factor c(r, t), r > 0, is decreasing with t , and

lim
t→∞ c(r, t) = rre−r

	(r + 1)
.

When t = 0, (5.3) and (5.4) reduce to (5.2). When t = 1 (nonincreasing densities), (5.3)
and (5.4) give, for r = 1,

P[X1 ≥ x] ≤ E(X1)

2x
, (5.7)

and, for r = 2,

P[X1 ≥ x] ≤ 4E(X2
1)

9x2 .

This refinement of Chebyshev’s inequality in fact is the (earlier) Gauss inequality for unimodal
distributions. A study of the case t = 1 is made in, e.g. the book of Dharmadhikari and Joag-
Dev (1988, Section 1.5). Note that our proof of Proposition 5.1 for t = 1 is neater than the
proof presented there. When t = 2 (nonincreasing convex densities), (5.3) and (5.4) yield, for
r = 1,

P[X2 ≥ x] ≤ 4E(X2)

9x
, (5.8)

and, for r = 2,

P[X2 ≥ x] ≤ 3E(X2
2)

8x2 .

5.1.2. Lyapunov-type inequality. Considering X ≥ 0 again, Jensen’s inequality implies that,
for any r ≥ 1,

[E(X)]r ≤ E(Xr). (5.9)

In particular, this yields the standard Lyapunov inequality: for 0 < r ≤ s,

[E(Xr)]1/r ≤ [E(Xs)]1/s . (5.10)

Let us show how to refine these two inequalities for a t-monotone random variable Xt .

Proposition 5.2. For r ≥ 1,

[E(Xt )]r ≤ 	(r + t + 1)

(t + 1)r	(r + 1)	(t + 1)
E(Xrt ), (5.11)

and, for 0 < r ≤ s,

[
E(Xrt )

	(r + t + 1)

	(r + 1)	(t + 1)

]1/r

≤
[
E(Xst )

	(s + t + 1)

	(s + 1)	(t + 1)

]1/s

. (5.12)
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Proof. From (5.1), we have, for r ≥ 0,

[E(Xt )]r = 1

(t + 1)r
[E(Z)]r , (5.13)

as well as the relation (5.6). By (5.9), [E(Z)]r ≤ E(Zr) for r ≥ 1. Inserting this inequality
into (5.13) and using (5.6) then yields (5.11). The proof of (5.12) is similar: it suffices to
combine (5.6) with inequality (5.10) applied to Z, i.e. [E(Zr)]1/r ≤ [E(Zs)]1/s .

For t = 0, (5.11) and (5.12) reduce to (5.9) and (5.10). For t = 1 and r = 2, (5.11) gives

[E(X1)]2 ≤ 3E(X2
1)

4
,

or, equivalently, [E(X2
1)] ≤ 3 var(X1), which is a known result (see, e.g. Dharmadhikari and

Joag-Dev (1988, p. 9)). If t = r = 2 for instance,

[E(X2)]2 ≤ 2E(X2
2)

3
.

An inequality similar to (5.11) can be found in, e.g. Pec̆arić et al. (1992, p. 222), see also
page 218 when t = 1. By comparison, our proof is especially simple.

5.2. Discrete case

This topic in the discrete case remains widely open. The difficulty comes from the less
tractable representation (2.15) for Mt (Z). We just examine here how Markov’s inequality in
its simplest form, i.e. when r = 1, can be refined for a PMF that is nonincreasing. First, we
note that if X is an N0-valued random variable, we see that

P[X ≥ j + 1] ≤ E(X)

j + 1
, j ≥ 0,

which is, of course, almost (5.2) for r = 1. The following inequality is similar to (5.7), but it
is derived by a different argument.

Proposition 5.3. For i ≥ 0,

P[X1 ≥ j + 1] ≤ E(X1)

2j + 1
, j ≥ 0. (5.14)

Proof. By definition,

E(X1) =
∞∑
i=1

F̄1(X1, i)

≥
2j+1∑
i=1

F̄1(X1, i)

=
j∑
i=1

[F̄1(X1, i)+ F̄1(X1, 2j + 2 − i)] + F̄1(X1, j + 1). (5.15)

As X1 has a nonincreasing PMF, the function F̄1(X1, i) is convex. Thus,

F̄1(X1, i)+ F̄1(X1, 2j + 2 − i) ≥ 2F̄1(X1, j + 1)

for 1 ≤ i ≤ j . Inserting this inequality into (5.15) then gives (5.14).
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6. Illustrations in insurance

We present four applications in insurance of the bounds obtained in Sections 3 and 5. Many
other examples in life insurance and risk theory could be considered (see, e.g. the books by
Goovaerts et al. (1990), Kaas et al. (1994), (2008), and Asmussen and Albrecher (2010)).

6.1. Solvency capital requirement

In the context of solvency II, let us examine the problem of estimating the SCR (solvency
capital requirement) for a given risk. A standard approximation formula is SCR = qσ , where
q > 0 is a quantile factor and σ is the standard deviation of the random loss. Using a standard
collective risk model, we have

σ 2 = var(W)E(N)+ [E(W)]2 var(N), (6.1)

where N is the number of claims and W is an arbitrary claim amount independent of N .
Now, following Lefèvre and Loisel (2010), we consider the business line C27, ‘drought

and earthquake’, inside some French data. For heavy-tailed risks, an admissible value for the
quantile factor is q = 6. Concerning the claims, we take E(W(C27)) = 1000, var(W(C27)) =
25002, and N is assumed to have a bounded support {0, . . . , n} with E(N) = 0.37.

A reasonable assumption might be that the PMF of N is a nonincreasing convex function.
In that case, N(t=2,s=2)

min ≤2−cx N ≤2−cx N
(t=2,s=2)
max , where the lower and upper bounds have

PMFs given by (3.9) and (3.10), respectively. Let us recall that the extrema in Lefèvre and
Loisel (2010) are obtained for a PMF which is nonincreasing convex on {0, . . . , n} only; they
are denoted by N(2,2)

min (n) and N(2,2)
max (n). As indicated in Section 3.2, N(2,2)

min = N
(2,2)
min (n), but

N
(2,2)
max 	= N

(2,2)
max (n).

For the upper bound N(2,2)
max , we get, from (3.10),

var(N(2,2)
max ) = 6ν1

n(n+ 1)(n+ 2)

n∑
j=1

j2(n− j + 1)− ν2
1 = ν1(n+ 1)

2
− ν2

1 . (6.2)

In Table 1 we provide the variance (6.2) and the SCR estimated using (6.1) for the
business line C27 as a function of n. Of course, these bounds increase with n. They are
also sharper than the corresponding bounds calculated with N(2,2)

max (n). If n = 10 for instance,
var(N(2,2)

max (10)) = 2.453 and SCR(N(2,2)
max (10)) = 13098.2.

6.2. Total risk of pension fund

Let us consider the example, discussed in Kaas and Goovaerts (1987), of a pension fund that
covers the risk of an active married participant dying. The authors use a lifetable for Dutch
government employees to estimate the first two moments of the total risk X of the pension

Table 1: Upper bounds on var(N) and SCR for C27 when t = s = 2.

n(C27) var(N(2,2)max ) SCR(N(2,2)max )

5 0.9731 10 875.73
10 1.8981 12 311.85
20 3.7481 14 770.97
30 5.5981 16 875.47
40 7.4481 18 745.18
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fund; this gives E(X) = 27.63 and E(X2) = 1893. Then, bounds for the stop-loss premium
with a retention of 53.6982 are computed on the basis of these moments and with n = 1000 as
the largest possible value of X. The restriction to unimodal distributions with a mode at 0 is
also examined. The lower and upper bounds obtained are (0.41, 8.23) in the general case and
(1.26, 7.16) under the unimodality assumption.

Now, let us suppose that the mean of X is known but not the variance, and that the PMF of
X is not only nonincreasing but also convex. The absence of information on E(X2) is a big
drawback, of course. The 2-convex extrema for X, [X(t=2,s=2)

min , X
(t=2,s=2)
max ], have PMFs given

by (3.9) and (3.10). The bounds for the associated stop-loss premiums then follow easily and
are equal to (1.29, 23.42). Observe that the lower bound is slightly higher, and thus better, than
1.26, while the upper bound is very large.

6.3. Percentile risk aversion

Following, e.g. De Jong and Madan (2011), under certain assumptions, the capitalm required
for a risk X with DF FX is of the form

m = −
∫ ∞

−∞
x d�[FX(x)] = −E(Xψ(UX))

for some concave distortion function � on [0, 1], or some nonincreasing percentile aversion
function ψ = d�/ dx, where UX ≡ FX(X) is uniformly distributed on [0, 1]. The risk margin
is defined as m+ E(X). If E(ψ(UX)) = 1, it is then given by

m+ E(X) = −cov(X,ψ(UX)) = σψσXρ−X,

where σψ is the standard deviation of ψ(UX), σX is the standard deviation of X, and ρ−X is
negative of the correlation coefficient between X and ψ(UX). Note that σψ does not depend
on X, and ρ−X ≥ 0 as ψ is a nonincreasing function. The factor σψ is a conservatism factor
reflecting risk aversion, and ρX is the portion of σX taken into account in the risk margin.

De Jong and Madan (2011) considered a flexible class of risk aversion functions depending
on a stress parameter γ . A plot of the density ψ(u), 0 ≤ u ≤ 1, is displayed in Figure 1 of
their paper for different values of γ . As long as γ > 0, ψ(u) → ∞ as u → 0. The higher
the level of γ , the higher the conservatism factor σψ . The most cautious case in that figure is
γ = 0.75, giving σψ = 2.06. This case also seems to yield the smallest value of γ for which
ψ is convex.

One could wonder whether it is possible to get high values for σψ using other functions ψ
that are nonincreasing convex on a bounded support [0, b] with E(ψ(UX)) = 1. To answer
this question, we evaluate the maximal value of σψ for such a function ψ . Note that the DF
of ψ(UX) is 1 − ψ−1, which is a concave function, so the density of ψ(UX) is nonincreasing.
Thus, the highest level of σψ is given by the standard deviation of the density (3.2) with ν1 = 1;
it is equal to

√
2b/3 − 1. For instance, if b = 100, this bound gives 8.103.

Let us now add the constraint that the density of ψ(UX) is also convex. In that case, the
maximal value for σψ is given by the standard deviation of the density (3.4) with ν1 = 1; it is
equal to

√
b/2 − 1. For b = 100, this bound is equal to 7, which is reasonable in comparison

to the cautious value 2.06 considered in De Jong and Madan (2011).

6.4. Exponential premium principle

Goovaerts et al. (2003) showed that many risk measures and premium principles can be
derived by minimizing a Markov bound. A typical example is the classical exponential
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premium principle. For a continuous risk variableX, applying Markov’s inequality to exp(βX),
where β > 0, gives P[X ≥ x] ≤ E(exp(βX))/ exp(βx), x ≥ 0. This bound is nontrivial if it
is at most 1. It equals 1 when x ≡ π given by

π = 1

β
ln E(eβX), (6.3)

i.e. π is the exponential premium of parameter β. Under this choice, we similarly have

P[X ≥ π + y] ≤ E(eβX)

eβ(π+y) = e−βy, y ≥ 0. (6.4)

Suppose that the density of X is nonincreasing. Then exp(βX) has a nonincreasing density
and applying (5.7) allows us to refine inequality (6.4) to

P[X > π + y] ≤ 1
2 e−βy, y ≥ 0.

If the density of X is also convex, it follows similarly from (5.8) that the factor 1
2 is replaced

with 4
9 . Bound (6.4) and these improvements could be used to estimate, for instance, the

probability that a stop-loss reinsurance treaty is activated.
In general, the value of β is defined by the market. Nevertheless, within an enterprise risk

management process, insurance companies start to define so-called risk limits. One possibility,
among others, could consist in setting a lower limit on the premium to guarantee that the
probability of losing more than a fixed amount K (in excess of π ) is smaller than a level ε.
Using the Markov bound (6.3), the trigger level β ≡ β(K, ε) satisfies exp(−βK) = ε, so
that β = −(1/K) ln(ε). If the density of X is nonincreasing, this level decreases to β1 =
−(1/K) ln(2ε). If the density is also convex, we obtain β2 = −(1/K) ln(9ε/4). For example,
if K = 100 and ε = 0.05, then β = 0.0299, β1 = 0.0230 (a gain of 23%), and β2 = 0.0218
(a gain of 27%).

As a consequence, more competitive premium levels above the risk limit are possible. Sup-
pose, for instance, that X has a gamma distribution with parameters (θ, α), i.e. E(exp(βX)) =
[θ/(θ−β)]α . By (6.3), the lower risk limit on π is given by (α/β) ln[θ/(θ−β)]. Let us choose
α = 0.2 and θ = 0.1, so that the density of X is decreasing convex. With β, β1, and β2 above,
the risk limits are then equal to 2.376, 2.273, and 2.256, respectively.

Appendix A

In this section we collect some notions and technical results used in Sections 2, 3, and 5.

A.1. Combinatorial identities

The following relations are straightforward. We have
m∑
j=i

(
j

i

)
=

(
m+ 1

i + 1

)
, 0 ≤ i ≤ m, (A.1)

and if the operator � operates on j then, for i, k ≥ 0,

�k
(

j

i + k

)
=

(
j

i

)
, i + k ≤ j, (A.2)

�k
(
m− j

i + k

)
= (−1)k

(
m− j − k

i

)
, i + k ≤ m− j. (A.3)

The next relations are less standard for nonspecialists.

https://doi.org/10.1239/jap/1378401239 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1378401239


844 C. LEFÈVRE AND S. LOISEL

Lemma A.1. Let f : N → R be an arbitrary function. For t ≥ 1,

(−1)t
∞∑
j=k

(
j − k + t − 1

t − 1

)
�tf (j) = f (k), k ≥ 0, (A.4)

(−1)t
∞∑
j=0

(
j + t

t

)
�tf (j) =

∞∑
j=0

f (j). (A.5)

Proof. Let g(k), k ≥ 0, be the left-hand side of (A.4). Expanding �t , we obtain

g(k) = (−1)t
∞∑
j=k

(
j − k + t − 1

t − 1

) t∑
l=0

(
t

l

)
(−1)t−lf (j + l)

=
t∑
l=0

(
t

l

)
(−1)l

∞∑
j=k+l

f (j)

(
j − k − l + t − 1

t − 1

)

=
∞∑
j=k

f (j)

(
j − k + t − 1

t − 1

)
+

∞∑
j=k+1

f (j)

t∑
l=1

(
t

l

)
(−1)l

(
j − k − l + t − 1

t − 1

)

= f (k)+
∞∑

j=k+1

f (j)�t
(
j − k − 1

t − 1

)

= f (k),

after using (A.2), and (A.4) follows. Now, summing (A.4) over k yields

(−1)t
∞∑
k=0

∞∑
j=k

(
j − k + t − 1

t − 1

)
�tf (j) =

∞∑
j=0

f (j),

which becomes (A.5) after permuting the two sums and using (A.1).

A.2. s-convex stochastic orders

These orders have been mostly studied in Denuit et al. (1998), (1999a) for continuous
distributions, and in Lefèvre and Utev (1996) and Denuit and Lefèvre (1997) for discrete
distributions. Basic points of the theory are recalled below.

Continuous case. With R+-valued X, define the iterated right-tail DFs of X by F̄1(X, x) =
P[X > x] and

F̄i+1(X, x) =
∫ ∞

x

F̄i(X, y) dy, x ≥ 0, i ≥ 1. (A.6)

An equivalent expression is

F̄i+1(X, x) = E((X − x)i+)
i! , x ≥ 0, i ≥ 0.

Now, let s be some integer greater than or equal to 1. Denote by Fs the set of s-convex functions
on R+, i.e.

Fs = {f : f (s)(x) ≥ 0, x ≥ 0}. (A.7)

A more general concept of s-convex functions is used in interpolation theory (see, e.g. Karlin
and Studden (1966)). For the definition below, however, it is not restrictive to consider the class
of functions (A.7).
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Definition A.1. If X and Y are continuous random variables on R+, then X is smaller than Y
in the s-convex stochastic sense, written X �s Y , when

Ef (X) ≤ Ef (Y ) for all functions f ∈ Fs , (A.8)

provided the expectations exist.

Note that X �s Y implies that X and Y have necessarily the same first s − 1 moments. In
fact, we can prove that a condition equivalent to (A.8) is

E(Xi) = E(Y i), i = 0, 1, . . . , s − 1, and F̄s(X, j) ≤ F̄s(X, j), j ≥ s. (A.9)

Discrete case. With N0-valuedX, the iterated right-tail DFs ofX are defined by F̄0(X, j) =
P[X = j ], j ≥ 0, and

F̄i+1(X, j) =
∞∑
k=j

F̄i(X, k), j ≥ 0, i ≥ 0. (A.10)

They can be also expressed as

F̄i+1(X, j) = E

(
X − j + i

i

)
, j ≥ 0, i ≥ 0. (A.11)

For s a positive integer, let Fs denote the set of functions that are s-convex on N0, i.e.

Fs = {f : �sf (j) ≥ 0, j ≥ 0}. (A.12)

Definition A.2. If X and Y are random variables on N0, then X �s Y when condition (A.8) is
satisfied with respect to the class (A.12).

Here too, the conditions in (A.9) are equivalent to (A.8).

Proof of Property 5.1. Let us consider the function c(r, t) for t ∈ R+. To show that this
function is decreasing, we first obtain

d log c(r, t)

dt
= u(r)− u(0),

where
u(x) = ψ(x + t + 1)− log(x + t), x > 0,

with ψ(x) = d log	(x)/dx. Thus, it suffices to prove that u′(x) < 0, i.e. ψ ′(x + 1) < 1/x.
Using a known expansion forψ ′(x) (see, e.g. Abramowitz and Stegun (1972, Formula 6.4.10)),
we obtain

ψ ′(x + 1) =
∞∑
i=1

1

(x + i)2
<

∞∑
i=1

(
1

x + i − 1
− 1

x + i

)
= 1

x
,

as desired. For the limit as t → ∞, we write

c(r, t) = rr

	(r + 1)

(
1 − r

r + t

)t(
t

r + t

)r
	(r + t + 1)

tr	(t + 1)
.

By Formula 6.1.46 of Abramowitz and Stegun (1972), the last fraction on the right-hand side
tends to 1, so the announced limit follows.
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