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Introduction

In [5], M. Hall determined 4-ply transitive permutation groups whose
stabilizer of 4 points is of odd order. (See also Nagao [11].) On the other
hand, in Bannai [1] and Miyamoto [9], ¢-ply transitive finite permutation groups
in which the stabilizer of ¢ points is of order prime to an odd prime p have been
determined for #=p*+p and 3p respectively. The purpose of this seies of
notes is to strengthen those results. In this first note, we will improve Lemma
2.1 in Miyamoto [9]. Namely, we will prove the following result.

Theorem 1. Let p be an odd prime. Then there exists no permutation
group G on a set Q={1, 2, ---, n} which satisfies the following three conditions :
(1) Gis (p+2)-ply transitive, and n=2 (mod p),

(ii) a Sylow p subgroup P, of G, , . ,., is semiregular on Q—{1,2, ---, p+2},
and
i) |P,|>p"

Corollary to Theorem 1. Let p be an odd prime. Let G be a (2p+2)-ply
transitive permutation group on a set Q={1, 2, ---, n}. If the order of G, ,,.»
is not divisible by p, then G must be S,(2p+2<n<3p+1)or A,(2p+4<n<3p+1).

This corollary is immediately proved by combining Theorem 1 with a
result of Miyamoto [9]. To be more precise, if the order of G, ;... ,., is not
divisible by p? then the Zp-ply transitive group G, , on Q—{1, 2} must contain
A2~ by the result of Miyamoto [9, §1], and so G must be one of the groups
listed in the conclusion of the corollary. If the order of G, , ... ,., is divisible
by p% then the (p-+2)-ply transitive group G,,. ; on Q—{1, 2, ---, 7} (if n=
i+2 (mod p) with 0<{i< p—1) satisfies the three conditions of Theorem 1, and
we have a contraidction.

In our proof of Theorem 1, the following result is very important. This
result is a kind of generalization of a result of Jordan [8, Chap. IV], and will
be of independent interest.

*)  Supported in part by the Sakkokai Foundation.
Present address: The Ohio State University.
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Theorem A. Let p be an odd prime. Then A,., (hence S,.,) s not
involved in GL(p, p).

Theorem A will be proved in §1 by exploiting the theory of modular rep-
resentations of the symmetric groups due to Nakayama [12] together with some
other results (theory of projective representations of the symmetric groups due
to Schur [13], theory of p groups and so on).

In Appedix, we will discuss some partial generalization of Theorem 1.

Notation. Our notation will be standard. S* and A* denote the sym-
metric and alternating groups on a set A. If |A|, the cardinality of A, is m,
we denote them by S,, and 4,, instead of S and A*. If X is a permutation
group on a set ), and if A is a subset of Q which is fixed as a whole by X,
we denote by X2 the restriction of X to A. For a subset A={1, 2, -+, i} of
Q, we denote by X, , ... ; the pointwise stabilizer of A in X. GL(m, K) denotes
the general linear group of dimension 7 over a field K. PGL(m, K) denotes
the projective linear group of dimension m over K, PGL(m, K)= GL(m, K)/
Z(GL(m, K)), where Z(GL(m, K)) denotes the center of GL{(m, K). When K is
of cardinality p, we denote GL(m, K) by GL(m, p). For a group X, Aut(X)
denotes the automorphism group of X.

1. A4,,, is not involved in GL(p, p)

The purpose of this section is to prove Theorem 4 that 4,,, is not involved

in GL(p, p).

We first remark the following lemma.
Lemma 1. Theorem A is true for p=3 and 5.

Proof. A; is not involved in GL(3, 3), because the order of GL(3, 3) is
not divisible by 5. Similarly, 4, is not involved in GL(5, 5), because the order
of GL(5, 5) is not divisible by 7.

From now on, we always assume that p>>7. In case of p>>7, we can prove
Theorem A in a little stronger from as in Lemma 4 mentioned later.

Lemma 2. Let p>7. Then S,,, is not a subgroup of GL(p, K), where
K is an algebraically closed field of characteristic p.

Proof. We have only to prove that .S,,, has no faithful p-modular (abso-
lutely) irreducible representation of degree <(p over K. Lemma 2 will be
proved through the following steps (1) and (2).

(1) The degree of any not 1 dimensional ordinary irreducible representa-
tion of Sy(k>5)is >k—1. Therefore, the degree of any irreducible p-modular
representation of S, over K which is contained in a p-block of defect 0 is more
than p.
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The first assertion is immediately proved by using the Schur’s recursive
formula (a special case of Murnaghan-Nakayama’s recursive formula) (see [13,
§44]). 'The last assertion is obvious from an elementary properties of a p-block
of defect 0.

(2) The degree of any not 1 dimensional p-modular irreducible representa-
tion of S,., over K which is contained in a p-block of defect 1 is more than p.

By Nakayama [12], we obtain that there exist just two p-blocks of defect
1 for S,,,. Moreover, one block (say B,) with p-core of type [2] consists of p
ordinary irreducible representations T,, with 0<r<p—1, where T,, is the
representation associated with the Young diagram of type [p-+2] (for r=0),
[p—r, 3, 1771] (for 1<r<p—3), [2, 2, 1277] (for r=p—2) and [2, 17] (for r=
p—1). While, the other block (say B,) with p-core of type [1°] consists of p
ordinary irreducible representations T, , with 0<r<{p—1, where T, is the
representation associated with the Young diagram which is obtained by transpos-
ing that of T, ,,.,. Also by a result of Nakayama [12], T;, and T, ,,,
(=0,1, r=0, 1, .-+, p—1) have just one p-modular irreducible representation
(over K) in common, say, let us denote it by ¢, , (0<r<p—2), and T}, and
T;, with s>r+1 have no p-modular irreducible representation in common.
That is to say, the Brauer graphs associated with the p-blocks B, (i=0, 1) are
trees without branches and their nodes are arranged on natural order on r.
(For the definition of Brauer graphs, see, e.g., [3, 868].) Therefore, we can
calculate the degree | ¢; ,| of ¢, , inductively for =0, 1, 2, -+ (and for r=p—2,
p—3, p—4, --+), because the degree |T;,|of T;, is given explicitly by the
following formula:
| T; » |=(p+2)!/(the product of all hook lengths of the Young diagram of T, ,).

In the case of p=7, we can immediately calculate all the values of |¢; ,|
(=0, 1, »=0, 1, ---,5), and we obtain that they are all >8>7 except |¢,,| and
|¢, s| which are equal to 1. Thus, in the following we may assume that p>11.

Now, we obtain that |7,,=1, |T,,| = PTRPENC=I 5 42 7, 1=

(P+2)(P+ligp 2)(p— 3)>P 1Ty sl = (P+1)2(P_1) and |T, .| =p+1.
Therefore, we obtain ¢ ,| =1, | by ,-3] > P, | Py o) =p+1>p. Moreover, when
1<r<p—4, we obtain that | T, ,|/| T, ,.,| = r(r+3)(p—r—2) . Now, we
r+2)(p—r)(p—3—7)
. 1 r(r+3)(p—r—2)
obtain that — < <p for any r=1,2,--, p—2, and
p o 2)p-n(p—3—n T g ?
rr£3)(p—r—2) _, p— p
(r+2)(p—r)(p—3—r)< when 7< 5 ,and >1 whenr> . Therefore,
we obtain that [T, | <|T,.] <« <| Ty prvel,and | Ty cpinspal >"' > T, pzl >
| Ty,,-11.~ Hence, we obtain that | ¢, ,| > p (for r=1, 2, .-, p—4), because of the
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fact that the Brauer graph of the block B, is a tree without branches
and of natural order on 7. Therefore, we obtain that [¢,,| >p for any r==0
(1<r<p—2). Since |T,,|=|T, ,-1-,| and |, ,|=]|¢; ,-,—,| for any r, we
also obtain that |¢,,| >p for any r&p—2 (0<r<p—3) and |¢, ,,|=1.
Thus, we have proved the assertion of (2).

Since any p-block of S, is either of defect 0 or 1, we have completed the
proof of Lemma 2 by (1) and (2).

We also have

Lemma 2'. Let p=7. Then A p+2 15 MOL a subgroup of GL(p, K), where
K is an algebraically closed field of characteristic p.

Proof. The assertion corresponding to step (1) in Lemma 2 is easily ob-
tained similarly by using the Schur’s recursive formula for the characters of the
symmetric groups. Namely, we have

(1) 'The degree of any (p-modular) irreducible representation of 4 ,,, over
K which is contained in a p-block of defect 0 is more than p.

Since T, (1=0, 1, r=0, 1, ---, p—1) are all irreducible representations of
A ,.,, we immediately obtain the following assertion.

(2') 'The degree of not 1 dimensional ( p-modular) irreducible representa-
tion of A,,, over K which is contained in a p-block of defect 1 is more than p.

Thus, we have proved Lemma 2’.

Lemma 3. Let p be an odd prime>=7. Then S,., is not a subgroup of
PGL(p, K), where K is an algebraically closed field of characteristic p.

Proof. We have only to prove that S ,,, has no not 1 dimensional projec-
tive irreducible representation of degree <{p over K. Since we have already
proved in Lemma 2 that S,, is not a subgroup of GL(p, K), we have only to
prove that S, has no projective representation of degree < p over K which is
not a linear representation. As is easily seen from a result of Schur (and a
slight extension of it) (cf. Yamazaki [15, §3.3, Corollary 1]), there is a finite
group (which is a central extension of .S,,, and is called a representation group
of S,., over K) such that any projective representation of S,,, is induced by
a linear representation of the representation group. Movreover, by Yamazaki
[15, §3, e.g., Proposition 3.3, 2) and Proposition 3.5}, we may take as a repre-
sentation group of S, over K the following group 7 ,, defined by the generators

{]) X; (l: L, 2, ’P+1)}

with the defining relations

]2:1’
X2=](a: 1’ 2a’P+1),
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(Xp Xpr)'=J(B=1,2,-,p) and
'X'YXB =JX8X'Y (ry = 1) 2) "'91)_1, 8:()/_}_2) "',p+1) .

(Note that Z(T,.,)=<J> (which is contained in the commutator subgroup of
T,..) is a cyclic group of order 2, and T,.,/Z(T ,.;)=S,+. T, is the group
denoted &, ,, in Schur [13]. Also note that H*(S ,.,, K*)=H*(S,.,, C*)=Z,.)

The ordinary irreducible representations of 7', were completely determined
by Schur [13]. As in [13], let us call an ordinary irreducible representation of
T, is of the first kind (resp. of the second kind) if the kernel of the representa-
tion contains Z(7T,..) (resp. does not contain Z(7T',.,)). The proof of Lemma 3
will be done through the following steps (1), (2) and (3).

(1) The degree of any ordinary irreducible representation of 7', of the
second kind is more than 2[?+2/21 Moreover 2[¢#+D/21> p,

The degree of any ordinary irreducible representations of T, of the second

kind is given as follows (Schur [13]):

f”l,\'z,"',"m — 2[(P+2—m)/2]gvl,v2,m,Vm y
with
(p+2)! [ Ze—2e

)
vlvlev, ! e<py,+ vy

ngﬂz,"-,Vm -

where v,+v,+-+v,=p+2 and »,>v,>-->v»,>0. Moreover, by Schur
[13, §44], it is proved that

fvl — >2[<p+2—1>/2] — 2l+1/2]
2Vl HVm

for any f,,,..,. Thus we obtain the first assertion. The last assertion is
clear, because p=7.

(2) The degree of any ordinary irreducible representation of T',,, of the
second kind which is not divisible by p is divisible by 2[¢*~"/2 Moreover,
2Lp-15/2] >p.

Since f,, v,,...,v, is not divisible by p, we obtain that m<3, by noticing the
formula of f, ., . Sincef, ,, ., =2tr="0rlg, .. and gy ., ., is an
integer (Schur [13, §40], we obtain the first assertion. The last assertion is
clear, because p==7.

(3) The degree of any not 1 dimensional (p-modular) irreducible represen-
tation of T,., over K is more than p.

Let ¢ be an irreducible representation of T,,, over K of degree >1. If
¢ is contained in a p-block of defect 0 of T',.,, then by step (1) and the step
(1) in Lemma 2, we obtain that the degree of ¢ is more than p. Now, let us
assume that ¢ is contained in a p-block of defect 1. Since any block of defect
1 contains at most p ordinary irreducible representations in general (and in this
case) (cf. [3, §68]), B, and B, (p-blocks of S ,,,) themselves also become p-blocks
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of T,,, of defect 1 (all representation of S,,, are naturally regarded as repre-
sentations of T,.,). Therefore, any ordinary irreducible representation of T', .,
which is contained in a p-block of defect 1 and not contained in B, and B, (as
blocks of T,.;) must be of the second kind. Therefore, the degree of any
ordinary irreducible representation of T',,, contained in a p-block of defect 1
and not contained in B, and B, must be divisible by 2I*~*/*1 by step (Z). Since
p is to the first power in the order of T,.,,, the Brauer graph of any p-block of
defect 1 of T',., must be a tree (cf. [3, §68]), and so the degree of any irreducible
representation of T,., over K is divisible by 2[*~"/1> p Thus, we obtain
the assertion of (3).

Thus, we have completed the proof of Lemma 3.

We also have

Lemma 3. Letp>7. Then A,.,1s not a subgroup of P GL(p, K), where
K is an algebraically closed field of characteristic p.

Proof. The commutator subgroup T,,,” of T,,, with index 2 becomes a
representation group of 4 ,,, over K.

(1) The degree of any ordinary irredubicle representation of T,,,” of the
second kind is more than 2[¢2+D/21=1 > p,

Proof is clear.

(2) The degree of any ordinary irreducible representation of T, of the
second kind which is not divisible by p is divisible by 2I¢?="/2-* and divisible
by 8 if p=7. Moreover, 2L*~V/2171 > p when p>11.

Proof of the first assertion is clear. 'The second assertion for p=7 is proved
directly and easily.

(3') The degree of not 1 dimensional (p-modular) irreducible representa-
tion of T',.,” over K is more than p.

The proof is quite the same as that of step (3) in Lemma 3.

Thus, we have proved Lemma 3’

Lemma 4. A4,,,is not invloved in a finite subgroup of GL(p, K), where K
ts an algebraically closed field of characteristic p.

Proof. Let us assume that / is the smallest integer <p such that 4, is
involved in a finite subgroup X of GL(/, K). Moreover, let us take X being
of the least order among them, then X contains a normal subgroup Y such that
X/Y=A,., Now, we will derive a contradiction. By the assumption, we may
" assume that X is an irreducible subgroup of GL(/, K), and moreover that X
is a primitive subgroup of GL(/, K), because 4 p+2 18 obviously not involved in
S;. (Cf. Dixon [2, §4], see also [2] for some fundamental properties of (finite)
linear groups). By Lemma 2 and Lemma 3, we may assume that ¥ is not con-
tained in Z(GL(l, K)). Thus, there exists a Sylow g subgroup Q (for some prime
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g) of Y such that Q is not contained in Z(GL(/, K)). By the theorem of Sylow
(Frattini argument), and since 4,., is not involved in Y by the minimality of
the order of X, we obtain that X normalizes the Sylow ¢ subgroup Q which is
not contained in Z(GL(/, K)). 'The proof of Lemma 4 will be completed through
the following steps (1) to (6).

(1) pta

Otherwise, X becomes not irreducible as a subgroup of GL(/, K), and this
contradicts the minimality of /. (Cf. Dixon [2, §§2.2 and 2.8, or §4.2]).

(2) O does not contain any characteristic abelian subgroup of rank >2.

Otherwise, X becomes imprimitive or not irreducible as a subgroup of
GL(!, K), and this contradicts the minimality of /. (Cf. Dixon [2, §4.2].)

(3) O is a central product of groups Q, and Q,, where Q, is either 1 or
extraspecial ¢ group, say of order ¢**, and Q, is either cyclic or ¢g=2 and iso-
morphic to one of dihedral, generalized quaternion and semidihedral groups of
order >2%

Since Q contains no characteristic abelian subgroup of rank >2, we obtain
the assertion by a result of P. Hall (cf. Gorenstein [4, Theorem 5.4.9]).

Next, we utilize the following important result of Jordan.

Lemma of Jordan ([8, Chap. (V, page 56, (3)]). Let q be a prime. If
r is a prime such that r+q and r<k—2, then A, is not involved in GL(r—2, q).

As a special case of Lemma of Jordan, we obtain the following assertion.

(4) A, is not involved in GL(p—2, q), where g is a prime different
from p.

(5) Let x be an element of GL(I, K) which is of order prime to p and not
lying in Z(GL(l, K)). Then A,,, is not involved in Cgy; x(¥).

This assertion is well known and immediately proved, e.g., by Dixon [2,
§4.2], because Cgy;, x>(x) becomes either not irreducible or imprimitive as a
subgroup of GL(], K).

(6) A4, 1is not involved in Aut(Q).

We obtain that all irreducible components of the natural representation of
Q in GL(l, K) are equivalent (cf. [2, §4.2]), and so it is a faithful representation
of Q. Now, any faithful ordinary absolutely irreducible representation of Q
(and hence any faithful absolutely irreducible representation of Q over a field
of characteristic p=¢ (cf. Dixon [2, §3.8]) is) either of degree ¢” (when Q, is
extraspecial of order ¢"*' and Q, is cyclic) or ¢"** (when Q, is extraspecial of
order ¢** and Q, is one of dihedral, generalized quaternion and semidihedral
and ¢=2), or <2 (when Q,=1) (cf. Gorenstein [4, Theorem 5.5.5 and Theorem
3.7.2]). If Q,=1, then we easily have that 4., is not involved in Aut(Q)), and
so in the following we assume that Q,&1. Thus, we obtain in every case that
g <l (<p)or ¢l (<p). Now, investigating the structures of the group
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Q in every posible case, we obtain that Q contains a series of characteristic
subgroups Q,, such that

Q = Q(o)>Q<1>>"' >Q(k) =1 )

and QO (=0,1, -+, k—1) are elementary abelian g subgroups of rank
<2r. Here, note that in every case Q/Z(Q) is a direct product of Q,/Z(Q) (an
elementary abelian group of order ¢*") and a group Q,/Z(Q) which is either
trivial or one of cyclic subgroups of order >¢* (since, if of order g then Q be-
comes an extraspecial g group of order ¢*"*% and this is a contradiction) or g=2
and dihedral group of order >2°. 'Therefore, in any way, since "< por g""'< p,
we obtain that p—2>2r whenever p>>7. Therefore, in order that 4,,, is in-
volved in Aut(Q), A,., must be involved in GL(2r, q), because Aut(())/(the
stabilizer group of the above chain oi characteristic subgroups) is a subgroup
of the direct product of GL(l;, ¢)’s with [;<2r, and the stabilizer group of the
chain is a g group (cf. Gorenstein [4, §5.3]). But, since p—2>2r, this contradict
the assertion of (4). Thus, we have obtained the assertion of (6).

Now, we will complete the proof of Lemma 4. Since 4,,, is not
involved in Cgr x(Q) by step (5), and since Aut(Q) is a subgroup of
Nera, /Cera, k(Q), we obtain that 4 ,,, is not involved in Ngr¢, x> (Q). But
this is a contradiction, and we have completed the proof of Lemma 4.

Thus, we have completed the proof of Theorem A.

ReMARK 1. Theorem A improves Lemma of Jordan (stated preceding step
(4) in Lemma 4) a little. That is, we can omit the assumption that r4-¢ in
Lemma of Jordan,

ReMARK 2. Since it will be not easy for us to follow the proof of Lemma
of Jordan along the original paper [8] of Jordan, because of its old fahsionedness
of its way of description and its terminologies (but not of its context), we give
a sketch of an alternative proof.

(a) Let g be a prime #p. Then A,,, is not a subgroup of GL(p—2, F),
where F is an algebraically closed field of characteristic g.

A,,, contains a Frobenius group H of order p(p—1) whose any Sylow
subgroups are cyclic. Since the Schur multipliers of any cyclic subgroups are
trivial, H*(H, K*) also becomes trivial (cf. Yamazaki [15, §3]). Therefore, we
obtain the assertion by Lemma 1.4 in Harris and Hering [6].

The next assertion will be of independent interest.

(b) Let G be a finite simple group which is not involved in 4,~=GL(4, 2)".
If the degree of any not 1 dimensional projective (including linear) irreducible

1) The assumption that G is not involved in Ag is unnecessary in practice, as we can
easily see by the case by case considerations of such simple groups.
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representation over any (algebraically closed) field of any characteristic is more
than ¢, then G is not involved in a finite subgroup of GL(¢, K), where K is any
(algebraically closed) field of any characteristic.

Proof. Let [(<t) be the smallest integer such that G is contained in a
finite subgroup X of GL(I, K) with some algebraically closed field K of charac-
teristic, say s. Among them, let us take X to be of the least order. Because
of the assumption, we obtain by quite the same argument as used in the proof of
Lemma 3, that X contains a nontrivial normal Sylow g (35) subgroup O which
is not contained in Z(GL(l, K)), and that X is not involved in Cg.; x(0Q).
Moreover, since G must be involved in Aut(Q), G must be involved in GL(2r, g),
where />q¢” (or ¢"*") holds. From the minimality of /, ¢"<<2r. This asserts
that g=2 and r=2 and /=4. Hence G must be involved in GL(4, 2).

Proof of Lemma of Jordan follows immediately from steps (a) and (b)
together with Lemma 3’ and Lemma 1.

2. Proof of Theorem 1

Let us assume that G satisfies the three conditions of Theorem 1. Now,
we will derive a contradiction.
There is an element a of G of order p such that

a=(1)(2) G, - p+2)(p+3) - (2p+2) s

i.e., a fixes p+2 points. Then there exists a Sylow p subgroup of G, ;... ,:»
which is normalized by the element a. We may denote it by P, without loss
of generality. Now, let us set P be the subgroup generated by @ and P,. 'Then
P is a Sylow p subgroup of G.

(1) Pis of maximal class (in the sense of Blackburn). Therefore, | Z(P)| =p.

Since we obtain that |Cp(a)| =p from the semiregularity of P, on
0—{1, 2, .-, p+2} (cf. Lemma of Nagao [11]), we have |Cp(a)| =p? and so
we have the first assertion (cf. [7, Kapital III, Satz 14.23]). The last assertion
is immediate from the assumption that |P,| > p*.

(2) NG(PO){I,Z,"HP-FZ}:S{I,Z,"',P-\‘-Z).

This assertion is an immediate consequence of Lemma of Witt (cf. [14,
Theorem 9.3]).

(3) CaPomrws Auard,

Otherwise, Cg(P,)"*?*¥=1 (because p4-2>5), and S,,, must be in-
volved in Aut(P,), because Ng(P,)/Cs(P,) is a subgroup of Aut(P,). Now, P,
has an automorphism o (induced from the element ) such that the following
condition (*) is satisfied:

(*) o is of order p and |Cp (o)|=p.
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If a p group X has an automorphism o satisfying the condition (x), then any
o-invariant subgroup of X and any factor group X/Y for a o-invariant normal
subgroup Y of X have the automorphism (naturally induced by o) satisfying
the condition (*) provided o acts nontrivially on them (cf. Huppert [7, Kapital
II1, §14], or the argument in Zassenhaus [16, pp. 18-19]), because the map T
of X to X defined by 7(x)=x"'x"is p to 1, and if (xY)’=xY then 7(x) is con-
tained in ¥. Moreover, by a lemma of Ito in Nagao [10], an elementary abelian
p group which has an automorphism with the property (%) is of rank <p. Thus,
if we take a chain of Frattini subgroups ®“(P,) of P,:

P> DD(P)>DP(P) > >P®(P) =1,

where P=®(P,) and ®™(P,) is the Frattini subgroup of P, and &% V(Pg)=
DD(DP(Py)) for £>2, then OD(P,)/D4T(P,) is an elementary abelian p group
of rank ;< p (=0, 1, :--, k—1). Therefore, we obtain that

Aut(P,)/(the stabilizer group of the above chain)

is a subgroup of the direct product of the groups GL(r;, p) with r;<p
(=0, 1, -++, k—1), and the stabilizer group of the chainisa p group. Therefore,
since S, is not involved in GL(p, p) by Theorem A, we obtain that S,,, is
not involved in Aut(P,). But, this is a contradiction.

Since Cg(P) > 248> 4102242 we obtain that | Z(P)|>p°. But, this
contradict the fact (1) that P is of maximal class.

Thus, we have completed the proof of Theorem 1.

Appendix

In this appendix, we will prove the following result.

Theorem 2. Let p be an odd prime >11. Let G be a permutation group
on a set Q={1, 2, .., n} which satisfies the following conditions :
(1) Gis (p+1)-ply transitive, and n=1 (mod p),
(ii) a Sylow p subgroup P, of G, , . ,. is semiregular on Q—{1, 2, ---, p+1},
and
(i) [Pyl >p"
Then we obtain that P, is an elementary abelian p group of order p* and that
a Sylow p subgroup P of G is isomorphic to Z, [ Z , (wreathed product).

The next Theorem B is proved by quite the same argument as in Theorem
A, and so we omit the proof.

Theorem B. Let p be an odd prime >11, Then S,., is not involved in
GL(p—1, p).
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Proof of Theorem 2. Let P be a Sylow subgroup of G which contains
P,. Then P is of maximal class. We obtain that | P,/®(P,)| < p?, because of
Lemma of Ito in Nagao [10]. Since S,., must be involved in Aut(P,) (cf. the
proof of Theorem 1) and since S, is not involved in GL(p—1, p) by Theorem
B, we obtain that | P,/®(P,)| =p?, because of a result of Burnside (cf. Gorenstein
4, Theorem 5.1.4.) (The use of the result of Burnside simplifies the argument
of the proof of Theorem 1 a little, i.e., in step (3) we have only to show that
S,+ is not involved in Aut(P,/®(P,)).) Now, P/®(P,) is a homomorphic
image of P and is isomorphic to Z, fZ,. Therefore, by a result of Blackburn
(cf. Huppert [7, Kapital III, Satz 14.20]) we obtain that ®(P,)=1, and so we
obtain the assertion of Theorem 2.

UNIVERSITY OF TOKYO

References

[1] E. Bannai: A note on multiply transitive permutation groups (to appear in J.
Algebra).
[2] J.D. Dixon: The Structure of Linear Groups, Van Nostrand Reinhold Math.
Studies 37, London, 1971.
[3] L. Dornhoff: Group Representation Theory, Part B, Dekker, New York, 1972.
[4] D. Gorenstein: Finite Groups, Harper and Row, New York, 1968.
[51 M. Hall, Jr.: On a theorem of Jordan, Pacific. J. Math. 4 (1954), 219-226.
[6] M.E. Harris and C. Hering: Oun the smallest degrees of projective representations
of the groups PSL(n, ¢), Canad. J. Math. 28 (1971), 90-102.
[71 B. Huppert: Endliche Gruppen I, Springer, Berlin-Heidelberg-New York,
1967.
[8] C. Jordan: Sur la limite de transitivité des groupes non alternés, Bull. Soc. Math.
France 1 (1875), 40-71.
[91 I. Miyamoto: Multiply transitive permutation groups and odd primes, Osaka J.
Math. 11 (1974), 9-13.
[10} H. Nagao: On multiply transitive groups, Nagoya Math. J. 27 (1966), 15-19.
{111 H. Nagao: On multiply transitive groups V, J. Algebra 9 (1968), 240-248.
[12] T. Nakayama: On some modular properties of irreducible representations of a
symmetric group 11, Japanese J. Math. 17 (1940), 411-423.
[131 1. Schur: Uber die Darstellung der symmetrischen und der alternierenden Gruppe
durch gebrochene lineare Substitutionen, Crelle J. 139 (1911), 155-250.
[14] H. Wielandt: Finite Permutation Groups, Academic Press, New York and
London, 1964.
[15] K. Yamazaki: On projective representations and ring extensions of finite groups,
J. Fac. Sci. Univ. Tokyo 10 (1963—4), 147-195.
[16] H. Zassenhaus: Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen,
Abh, Math, Sem, Univ, Hamburg, 11 (1934), 1740,






