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Abstract 

In this paper we present the foundation of a unified, object-oriented, three-dimensional 

(3D) biomodeling environment, which allows us to integrate multiple submodels at scales 

from subcellular to tissues and organs. Our current implementation combines a modified 

discrete model from statistical mechanics, the Cellular Potts Model (CPM), with a 

continuum reaction-diffusion (RD) model and a state automaton with well-defined 

conditions for cell differentiation transitions to model genetic regulation. This 

environment allows us to rapidly and compactly create computational models of a class 

of complex developmental phenomena. To illustrate model development, we simulate a 

simplified version of the formation of the skeletal pattern in a growing embryonic 

vertebrate limb.  

Keywords:  

Computational biology, systems biology, morphogenesis, organogenesis, cell dynamics, 

Cellular Potts Model, reaction-diffusion, vertebrate limb, multiscale models, pattern 

formation, Monte Carlo simulations, hybrid continuous-discrete models. 
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1 Introduction 

 
New information about the many specific biological mechanisms acting at various 

scales in multicellular organisms is inspiring increasing collaboration between 

experimentalists and modelers to build predictive simulations of complex biological 

phenomena. Such simulations must describe the interactions among the various natural 

biological scales (molecular, subcellular, cellular and supracellular). While individual 

organisms and organs have very different structures and behaviors, many of the 

underlying interactions and components are common. Thus we can greatly reduce the 

burden of simulation by building a software framework that includes the fundamental 

mechanisms and objects, and allows us to specify them and their interactions in a 

compact way.  

The paper adopts this approach to provide a three-dimensional (3D) environment 

for modeling morphogenesis, the pattern of structural development of an organism or its 

organs, during vertebrate embryo development. A version of the code is available as the 

CompuCell3D project on the web1. Morphogenesis involves differentiation, growth, 

death and migration of cells, as well as changes in the shapes of cells and tissues and the 

secretion and absorption of extracellular materials.  

Figure 1 shows the hierarchy of scales our computational environment includes. 

Information usually flows from finer to coarser scales, but can flow between any pair of 

submodels. For example, cells secrete peptide signaling factors under certain conditions, 

and such factors may act as morphogens which modify the type of the secreting cell or its 

neighbors. In this case, a supercellular diffusant affects a subcellular differentiation state. 

Section 2 justifies our modeling approach. Section 3 provides biological details on 

                                                
1 http://www.nd.edu/~lcls/compucell 
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phenomena occurring at multiple scales and their interactions. We then provide details on 

each of the blocks in Figure 1: Section 4.1 describes the cell-scale submodel, the Cellular 

Potts Model (CPM), which is the core module of the computational environment. 

Sections 4.2 and 4.3 describe molecular-scale submodels, Section 4.4 a 

phenomenological, subcellular submodel of the Gene Regulatory Network and Sections 

4.5 and 4.6 the complete organ-scale model. Our implementation of a computational 

environment for morphogenesis allows us to construct computer models within the 

environment, enabling us to study the parameter-rich complexity of the complete 

biological models that result from webs of interactions between the components of the 

hybrid model. The software implementation of models requires specification of: (i) the 

interfaces between interacting submodels, and (ii) a simulation protocol that specifies the 

spatial and temporal order in which the component submodels execute. 

What justifies a multiscale modeling approach? Why is the cell the natural level 

of detail to begin with? Macroscopic models, such as Physiome2, which treat tissues as 

continuous substances with bulk mechanical properties, reproduce many biological 

phenomena but fail when biological structure develops and functions at the cell scale. 

Often direct, cell-level implementations reproduce phenomena which we see in 

experiments but which the continuum model misses. However, continuum models to 

describe acellular materials like bone, extracellular matrix (ECM), fluids and diffusing 

chemicals are much less computationally costly than cell development models. Molecular 

and subcellular models like V-cell3 or BioSym4 provide detail on aspects of subcellular 

processes but often cannot describe even one complete cell, let alone many cells acting in 

                                                
2 http://www.physiome.org 
3 http://www.ibiblio.org/virtualcell/index.htm 
4 http://www.accelrys.com/about/msi.html 
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concert. In addition, even a hypothetical ‘perfect’ cell replica (which is probably 

computationally infeasible) would not provide an understanding of how cells and 

organisms function. Instead, reaction kinetics can efficiently and realistically model cell 

differentiation and metabolism. A cell-level model like the CPM can simulate 105 - 106 

cells on a single processor, making whole-organism simulations practical on parallel 

computers. When appropriate, cell-level models can supply parameters to and interface 

with continuum models, accept parameters from microscopic models or use 

phenomenological models of subcellular properties. In this respect, biological modeling 

is easier than materials modeling, which lacks the natural mesoscopic level of the cell to 

interpolate between molecule and continuum. 

As an example of such model descriptions, we use the general biological concept 

that interactions of cells via gene products (i.e., molecules synthesized by gene 

transcription and translation, and their derivatives) generate biologically significant 

patterning instabilities that we can describe mathematically and implement 

computationally [1 – 8]. Gene products may reside inside a cell, on the cell surface, or 

cells may secrete them. Secreted gene products may remain at their secretion location or 

diffuse or advect, possibly over long distances. In this paper we neglect the advection of 

gene products and consider only their diffusion (see Section 3 for a justification); we do 

include motion of cells and their surrounding medium.  

As an example of implementing a specific, though simplified, developmental 

simulation within our computational environment, we construct a model of the dramatic 

patterning of developing cartilage (i.e., spatiotemporal chondrogenesis) which occurs in 
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the pre-differentiated mass of mesenchymal cells during the embryonic growth of the 

early-stage avian limb bud (see Figure 2, day 4).  

The developing vertebrate limb progressively generates a sequence of increasing 

numbers of cartilage elements from the body-wall outwards (proximo-distally) (see 

Figure 2). In a forelimb, this sequence is (i) humerus, (ii) radius and ulna, (iii) carpals and 

metacarpals, and (iv) digits. The hindlimb displays a similar pattern: (i) femur, (ii) tibia 

and fibula, (iii) tarsals and metatarsals, and (iv) digits. Independent of limb type, element 

(i) is the stylopod, element set (ii) the zeugopod, and element sets (iii) and (iv) the 

autopod. 

The developing limb presents a number of distinct problems in growth and 

patterning. How does the genetic program interact with generic, dynamic physical and 

chemical mechanisms to form an organ? What is the relative contribution of local and 

long-range signaling? What are specific factors that result in abnormal growth? To 

succeed, our model must reproduce both normal and abnormal development, and should 

suggest mechanisms for observed pathologies.  

To answer these questions, we need to develop a predictive model. Distinguishing 

between experimental biological, mathematical and computational models clarifies model 

building. Limbs display a great variety of structures and functions of varying degrees of 

organizational complexity. For example, the adaptations of limbs can range from the 

flipper of a dolphin, to the wings of a bird, the hoofed feet of horses, and the dexterous 

forelimbs of humans. We need to organize our biological study in a manner that 

exemplifies the underlying unity of structure, function and organizational principles, 

while allowing elaborations to explain specific differences. Continuing with our limb 
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example, the chicken is a widely studied experimental model (both in-vivo and in-vitro) 

of vertebrate limb development. Computational biology’s (in-silico) first step is to 

develop a biological model describing the observed experimental behaviors. Diagrams of 

biochemical pathways or cell migration are examples of such biological models. We then 

construct a mathematical model to quantitatively express the phenomena the biological 

model describes. The mathematical model consists either of sets of differential equations 

or algorithms, or a combination of the two. We need idealizations to simplify the 

observed phenomena at this step, but the mathematical model must be rich enough to 

capture the range of phenomena we wish to predict.  

Even idealizations of the simplest organisms are generally too complex to permit 

us to solve the mathematical models analytically; hence we translate the mathematical 

model into a computer model or simulation. The commonality of biological processes 

allows us to build a modeling framework which allows simple, compact and efficient 

implementation of mathematical models as computational models. We use the modeling 

framework to build a composite model of the complex web of interactions of the 

mathematical model, using submodels representing different scales. To be extensible and 

reusable (i.e., able to accommodate model elaborations and changes without requiring 

rewriting of old code) the computational environment must be modular (i.e., constructed 

from well-defined, independent components), with well-defined interfaces through which 

the various submodels interact, allowing us to construct new objects and submodels, 

which is essential because of the current rapid growth in our knowledge of cellular and 

subcellular mechanisms. Neuron5 and Physiome6 are examples of such frameworks. 

                                                
5 http://www.neuron.yale.edu/neuron 
6 http://www.physiome.org 
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Multiscale, experimentally-motivated simulations have successfully used the 

CPM to reproduce morphological phenomena in the cellular slime mold Dictyostelium 

discoideum [9, 10], vertebrate neurulation [11] and convergent extension [12]. 

Chaturvedi et al. [13] and later Izaguirre et al. [14] described a simplified, 2D 

environment, CompuCell, which integrated discrete and continuum models of biological 

mechanisms. A highly-simplified, sample simulation in this environment reproduced the 

proximo-distal increase in the number of skeletal elements in the developing avian limb. 

This paper emphasizes the modeling issues involved in extending the software 

framework to 3D, and implements a more experimentally accurate sample simulation 

realizing a more biologically-motivated model of limb development [3]. Using this 

model, we simulate two pathological cases of limb development in addition to normal 

development.  

2 Modeling Organogenesis 

 
Organogenesis, an example of morphogenesis, is the development of organs in living 

organisms. Our software framework for organogenesis includes three major submodels: 

the discrete stochastic CPM for cell dynamics, continuum Reaction-Diffusion (RD) 

partial differential equations (PDEs) for morphogen production and diffusion, and a 

Type-change model for genetic regulation.  

Traditionally, models dealing with organogenesis, e.g., the 2D continuum model of 

chicken limb development in Hentschel et al. [3], treat both cells and morphogens as 

continuous fields. Continuum models work well for diffusing chemicals, whose 

distribution varies over distances much larger than a cell diameter. Modeling the motion 

of individual morphogen molecules would require a tremendous amount of computer 
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time. By treating their concentrations as continua, we take advantage of computationally 

efficient optimal standard numeric schemes for RD PDEs for secreted morphogens. 

Models at the cell-scale require representation of individual cells, which undergo changes 

in shape and assocation with other cells and ECM in forming different kinds of tissues 

(epithelia, cartilage, etc.) [3]. Cells also move considerable distances during 

organogenesis, so treating them as a continuum field would require numerical solutions 

of advection PDEs, which are computationally costly and numerically unstable.  

Organogenesis depends on 3D cell rearrangement. Although 2D simulations provide 

helpful qualitative insights using limited computer resources [13, 14], understanding 

symmetries and symmetry breaking during organogenesis requires 3D modeling and 

simulation; 3D mathematical and physical models differ qualitatively from those in 2D.  

For example, in the CPM part of our chick-limb model, a third dimension allows 

cells to move around barriers, relaxing 2D constraints on producing specific cell 

condensation-dependent tissue structures (e.g., the nodular and bar-like precartilage 

primordia involved in skeletogenesis). In the RD part of the chick-limb model the 

diffusing morphogens serve as both inductive signals (i.e., altering cell type) and 

haptotactic signals (i.e., inducing preferential cell movement up a gradient of an 

insoluble ECM molecule; see below). A requirement specific to the 3D RD submodel is 

that the morphogen patterns must display simultaneous spot-like and stripe-like behavior 

(Section 4.2.2). In this paper we use a biologically-motivated RD model which Hentschel 

et al. [3] proposed and solved in 2D, where simultaneous spot-stripe behavior was not 

required. These RD equations in 3D require additional stabilizing cubic terms, making 

them structurally more complex than the 2D equations (for details, see Section 4.2).  
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3 Biological Background: Multiple Scales in Limb Organogenesis 

Cell condensation is a critical stage in chondrogenesis (Figure 2 shows the stages of 

chondrogenesis in the chicken limb). Why and how do the initially dispersed 

mesenchymal cells cluster at specific locations within the paddle-shaped tissue mesoblast 

that emerges from the body wall, and how do they form the precartilage template for the 

limb skeleton? While genes specify the proteins (both intracellular and secreted into 

extracellular space) necessary for morphogenesis, the genes do not, by themselves, 

specify the distribution of these proteins or their physical effects. Generic physical 

mechanisms complement and enable the genetic mechanisms. Generic mechanisms (in 

the context of tissue mechanics) are physical mechanisms common to both living and 

nonliving viscoelastic or excitable materials, which translate gene expression into 

mechanical behavior [16] as well as dynamic chemical processes that regulate the state of 

chemical reactors, including cells [17]. The regulation of gene expression is one 

important aspect of development, but a full description of development requires 

incorporation of the thermodynamics and mechanics of condensed matter, as well as the 

pattern-forming instabilities of excitable media at the scales of tissues, organs and 

organisms. 

Figure 3 schematically represents the major axes and the progress of 

chondrogenic patterning of a developing vertebrate forelimb. The humerus has already 

differentiated (black); the radius and ulna are forming (medium gray). The wrist bones 

and digits are still to form.  

Limb formation in chicken and other vertebrates starts with a mesoblast 

consisting of two main populations of pre-differentiated mesenchymal cells, precartilage 
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and pre-muscle cells (reviewed in [18]). To start with, precartilage cells pack loosely in 

the mesoblast. Subsequently they divide and change position under various influences, 

finally condensing into patterns that prefigure the bones. As the limb bud elongates, 

subpopulations of precartilage cells successively condense and differentiate into 

chondrocytes, beginning in the proximal (nearer to body) region and eventually extending 

to the distal (far from body) region of the growing limb bud. The distal-most region (the 

Apical Zone) progressively shortens in the proximo-distal direction but remains in the 

pre-differentiated mesenchymal state until skeletal development ends. A sheet of tightly 

attached cells called ectoderm sheathes the mesoblast. The narrow protrusion of the 

ectoderm that runs in an antero-posterior direction along the distal tip of the limb bud is 

the Apical Ectodermal Ridge (AER). An apically-localized source of fibroblast growth 

factors (FGFs) (see below), provided under normal circumstances by the AER,, is 

necessary for proximo-distal development of the skeleton. The initial precartilage 

mesenchymal cell type differentiates into other cell types under the influence of various 

signals. At sites of condensation, cells differentiate into cartilage; at other sites they 

differentiate into connective tissue (tendon, muscle-associated supporting tissue and, in 

certain species, interdigital webs) or undergo apoptosis (programmed cell death). The 

muscle cells of the limb differentiate from a separate population of limb mesenchymal 

cells (see [18]). 

Key mechanisms in chondrogenic patterning include cell motility, and adhesion 

between different types of cells [19] and between cells and the ECM. ECM components 

are non-diffusing secreted proteins and other polymeric molecules which act as scaffolds 
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or attachment substrata (e.g., fibronectin). The ECM also provides a medium through 

which morphogens diffuse.  

Secreted components have various dynamics and effects. Experiments on the 

initiation and arrangement of individual skeletal elements in chicken and mouse suggest 

that the secreted morphogens TGF-β, FGF-2 and FGF-8 are key molecules (see 

Hentschel et al. 2004 [3] for a review). Experiments [28, 29, 40, 41] and simulations [5, 

8] of disk-shaped, high-density (micromass) cultures of limb precartilage mesenchyme 

show the importance of fibronectin in chondrogenic pattern formation. Haptotaxis (cell 

movement up or down gradients either of bound chemicals or mechanical properties in 

the substrate) of cells in response to fibronectin produces various chondrogenic patterns. 

Fibronectin is a large molecule, which does not diffuse like TGF-β, although it can spread 

from its point of production by other mechanisms [42]. In our model we consider two 

main secreted components—TGF-β, which diffuses through the mesoblast (inclusive of 

cells and ECM), and fibronectin, which accumulates at sites of secretion. The ground 

substance of the mesoblast is a dilute aqueous gel containing the glycosaminoglycan 

(tissue polysaccharide) hyaluronan. We assume that this gel supports the cells and 

provides a medium for diffusion of TGF-β and a hypothesized inibitor of chondrogenesis 

(see below) and for accumulation of fibronectin. This gel and the cells it supports both 

move as the limb grows. We assume that this motion is very slow compared to the 

morphogens’ diffusion speed. This assumption allows us to neglect advection of 

morphogens by the ECM.  

We assume that TGF-β triggers the precartilage mesenchymal cells’ 

differentiation into cells capable of producing fibronectin [20]. Cells respond to 
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fibronectin by undergoing haptotaxis, i.e., cells adhere to, and therefore move more 

slowly in the presence of, fibronectin. Due to the diffusive nature of cell movement, the 

net result is motion up gradients of fibronectin. In addition, TGF-β upregulates 

production of the cell-surface molecule N-cadherin which regulates cell-cell adhesivity 

[21, 22].  

TGF-β can diffuse through the mesoblast. It is positively autoregulatory [23, 24]. 

Together with a hypothesized inhibitor of its action or its downstream effectors [27], it 

can potentially form patterns via reaction-diffusion [24, 25, 26, 27]. Since TGF-β also 

induces cells to produce fibronectin and upregulates cell-cell adhesivity, it recruits 

neighboring cells into chondrogenic condensations [27, 29].  

We can think of the developing limb as containing three zones—the Apical Zone 

where only cell division takes place, the Active Zone where cells rearrange locally into 

precartilage condensations and the Frozen Zone in which condensations have 

differentiated into cartilage and no additional patterning takes place. Cell division 

continues in both Active and Frozen Zones [30]. Biologically, distance from the AER, 

perhaps, signaled by the concentrations of a subset of the FGFs, may define the zones [3]; 

however, for simplicity, we assume the zones a priori.  

4 Physical and Mathematical Submodels and their Integration  

We describe below specific physical and mathematical representations of key biological 

mechanisms operating at the various scales of our model. Table 1 summarizes the 

mechanisms and the corresponding submodels. For each mechanism a specific parameter 

controls the behavior of the corresponding submodel. Table 2 lists important mechanisms 

and their control parameters. 
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4.1 Modeling Cellular and Tissue Scales: the CPM Framework 

Cell-scale processes are the basis for the complexity of highly evolved multicellular 

organisms, as well as colonies of unicellular ones. In multicellular organisms, ECM plays 

an important role (Section 3). We can model ECM components either at the scale of cells 

or smaller scales. In this paper we choose to model the ECM gel at the cell scale, and 

fibronectin at a finer scale.  

Physics of cell sorting: Condensation requires sorting of similar types of cells into cell 

clusters. Steinberg disaggregated cells, re-mixed them randomly and found that they 

sorted into coherent clusters [31]. He proposed the Differential Adhesion Hypothesis 

(DAH), which states that cells adhere to each other with different strengths depending on 

their types. Cell sorting results from random motions of the cells that allow them to 

minimize their configuration energy; this phenomenon is analogous to the surface-

tension-driven phase separation of two immiscible liquids. If cells of the same type 

adhere more strongly, they gradually cluster together, with less adhesive cells 

surrounding the more adhesive ones. Differential adhesion results from differences 

(controlled at the subcellular level) in the expression of adhesion molecules on cell 

membranes, which may vary both in quantity and identity.  

Based on the physics of the DAH, we model adhesive phenomena as variations in 

cell-specific adhesivity at the cell level, rather than at the level of individual molecules 

and their interactions. Simple thermodynamics then accounts for the macroscopic 

behavior of cell mixtures at the scale of cell aggregation into tissues.  

The Extended CPM Framework: The CPM, as originally proposed, provided a physical 

formalism for studying the implications of the DAH [1]. It is a generalization of the Ising 
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model, and shares the Ising model’s core idea of modeling dynamics based on energy 

minimization under imposed fluctuations. As long as we can describe a process in terms 

of a real or effective potential energy, we can include it in the CPM framework by adding 

it to the other terms in the energy. We extend the original CPM framework to (i) model 

haptotaxis by adding an extra chemical potential term to the original CPM energy, (ii) 

include time variation in the adhesivity of cells, (iii) accommodate cell growth, and, (iv) 

provide a phenomenological mechanism for cell division (mitosis).  

Modeling Living Cells and ECM (discrete representation on a grid): The CPM uses a 

lattice to describe cells. We associate an integer index to each lattice site (voxel) to 

identify the space a cell occupies at any instant (Figure 4). The value of the index at a 

lattice site (i,j,k) is σ if the site lies in cell σ. Domains (i.e., collection of lattice sites with 

the same index) represent cells. Thus, we treat a cell as a set of discrete subcomponents 

that can rearrange to produce cell motion and shape changes. Figure 4 shows three cells 

and the ECM, which require four distinct indices.  

We model ECM (liquid medium and solid substrates) as generalized cells with 

distinct indices, unless a specific component of the ECM requires more detailed modeling 

(e.g., fibronectin, see below). Thus we can have advection of cells as well as ECM.  

We model some cell behaviors on the lattice employed by the CPM, but others, 

which have different dynamics, require modeling outside the CPM framework. Growth 

and division are examples of cell behaviors that we describe on the CPM grid, but require 

additional dynamics or conditions. Cell differentiation requires modeling the Gene 

Regulatory Network, which controls the CPM parameters; it requires a separate, 

microscopic submodel and integration into the hybrid environment.  
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To model cell dynamics, the CPM uses an effective energy, E. E consists of true 

energies (e.g., cell-cell adhesion) and terms that mimic energies (e.g., the response of a 

cell to a chemotactic gradient). Cells evolve under strong damping. The dynamics 

penalizes disconnected domains of lattice sites with same index. Upadhyaya [32], Ouchi 

[46], and Marée [9] have used the CPM to reproduce the behavior of cell aggregates of 

different kinds in 2D and 3D.  

Dynamics of cell rearrangement: In mixtures of liquid droplets, thermal 

fluctuations of the droplet surfaces cause diffusion (Brownian motion) leading to 

minimization of surface energy. We model membrane fluctuations as simple thermal 

fluctuations. The fluctuations drive the cells’ configuration to a global energy minimum, 

rather than to one of the multiple local minima of energy that can coexist. We 

phenomenologically assume that an effective temperature, T, drives cell membrane 

fluctuations. T defines the size of the typical fluctuation. We implement fluctuations 

using the Metropolis algorithm for Monte-Carlo Boltzmann dynamics (see [1] and [8]). If 

a proposed change in lattice configuration (i.e., a change in the indices associated with 

the voxels of the lattice) produces a change in effective energy, ∆E, we accept it with 

probability: 

0,)(;0,1)( / >∆=∆≤∆=∆ ∆− EeEPEEP kTE
, 

(1) 

where k is a constant converting T into units of energy. 

E includes terms to describe each mechanism we have decided to include, e.g.,  

E = EContact + EVolume + EChemical. 

 
(2) 

We describe each of these terms below.  
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Cell–cell adhesion: In Equation 2, Econtact phenomenologically describes the net 

adhesion/repulsion between two cell membranes. It is the product of the binding energy 

per unit area, Jτ,τ‘, and the area of interaction of the two cells. In our model, Jτ,τ‘ depends 

on the specific properties of the interacting cells.  

))),',','('),,,((1(
)',',')(,,(

)'(')( kjikjiJE
kjikji

Contact σσδστστ∑ −=  
 
(3) 

where the Kronecker delta, δ(σ,σ’)=0 if σ≠σ’ and δ(σ,σ’)=1 if σ=σ’, ensures that only 

links between surface sites in different cells contribute to the cell adhesion energy. The 

adhesive interactions operate over a prescribed range around each lattice site. Figure 4 

shows a fourth-nearest-neighbor interaction range. In 2D each lattice site has four nearest 

neighbors. In 3D the number of nearest neighbors is six.  

Cell size and shape fluctuations: A cell of type τ has a prescribed target volume v(σ,τ) 

and target surface area s(σ,τ) corresponding to the averages for cell-type τ. The actual 

volume and surface area fluctuate around these target values, e.g., due to changes in 

osmotic pressure, pseudopodal motion of cells, etc. Changes also result from growth and 

division of cells during morphogenesis. Evolume enforces these targets by exacting an 

energy penalty for deviations. Evolume depends on four model parameters: volume 

elasticity, λ, target volume, vtarget(σ,τ), membrane elasticity, λ’, and target surface area, 

starget(σ,τ): 

 

 
(4) 

Changing the ratio of v2/3
target(σ,τ) to starget(σ,τ) changes the rigidity or floppiness of the 

cell shape.  
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Chemotaxis and haptotaxis: In principle, cells can respond to both diffusible chemical 

signals and insoluble ECM molecules by moving along concentration gradients of these 

substances. Although chemotaxisis is readily accomodated within CompuCell3D, there is 

no evidence that the mesenchymal cells of the developing limb respond chemotactically 

to any of the molecules in our core genetic network. We therefore have not included 

chemotaxis in the simulations presented here. Haptotaxis requires a representation of an 

evolving, spatially-varying concentration field, and a mechanism linking the field to the 

framework for cell and tissue dynamics. The former depends on the particular ECM 

molecule (Sections 4.2 and 4.3). We denote the local concentration of the molecules in 

extracellular space by 
→

)(xC . An effective chemical potential, µ(σ) models haptotaxis, and 

the following term incorporates the effective chemical energy into the CPM energy 

formalism: 

 

 
(5) 

 

Cell Growth, Division and Cell Death: Equations 3, 4 and 5 used the energy formalism of 

the CPM to model certain cell behaviors. We also use the CPM lattice to model cell 

growth, division and death. Cell growth and death affect the CPM model parameters 

vtarget(σ,τ) and s(σ,τ). We model cell growth by allowing the values of vtarget(σ,τ) and 

s(σ,τ) to increase with time at a constant rate. Growth properties depend on cell type 

(Section 4.4). 

 We can model cell death simply by setting the cell’s target volume to zero.  

).()( xCEchemical

r
σµ=
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Cell division occurs when the cell reaches a fixed, type-dependent volume. We 

model division by starting with a cell of average size, vtarget= vtarget,average, causing it to 

grow at a constant rate until vtarget increases to 2vtarget,average, and splitting the dividing cell 

into two cells, each with a new target volume: vtarget /2. One daughter cell assumes a new 

identity (a unique value of σ). A breadth-first search selects the voxels which receive the 

new σ. The split is along a random, approximate cell diameter. The two halves are each 

connected.  

4.2 Modeling Molecular Scales: Reaction-Diffusion Equations 

Turing [33] introduced the idea that interactions of reacting and diffusing chemicals 

(usually of two species) could form self-organizing instabilities that provide the basis for 

biological spatial patterning (e.g., to explain animal coat patterning, see [15] for a 

review). A slow-diffusing activator (i.e., a chemical that has a positive feedback on its 

own production) and a fast-diffusing inhibitor can give rise to spatial patterns of high and 

low concentrations of activator. The key point is that the interaction of two processes 

(production and diffusion), can together destabilize a spatially homogeneous state. 

Various models have been proposed that RD mechanisms underlie the general features of 

chondrogenic patterning in the limb [3, 7] via morphogenetic signalling. We use this 

continuum PDE RD approach to model diffusible TGF-β in the limb domain. Such RD 

equations develop concentration patterns via the Turing instability mechanism. 

 We assume that diffusible morphogens diffuse in the mesoblast (consisting of 

ECM and cells) that fills the limb domain. Both cells and the ECM move within the limb 

domain, and the limb domain itself grows. We assume that advection effects are 

negligible since cell and ECM movement are much slower than diffusion.  
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Genetic programs cause cells to respond to threshold levels of TGF-β 

concentration (see Section 4.3), forming a spatial pattern that reflects the established 

pattern of TGF-β concentration. TGF-β thus forms the first prepattern which guides 

chondrogenic condensation.  

In our RD model, the cells both produce and respond to the prepattern rather than 

simply following a laid-out prepattern [3]. This feedback affects the stability of patterns, 

often helping to lock in (stabilize) a pattern which would be transient without feedback. 

The production of the substrate molecule fibronectin (described in Section 4.3), forms the 

second prepattern for cell condensation which provides feedback and stability.   

4.2.1 Reaction-Diffusion Continuum Submodels  
 
The general form for RD equations is:  

),(
2

2

1

uF
x

u
d

t

u
i

j

i
n

j

i

j

i γ+
∂

∂
=

∂

∂
∑

=

 
(6) 

Where i=1,..,M, u=(u1,..,uM)T, ui denotes the concentration of the ith chemical species, 
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where n̂ is the unit outward normal to the boundary of Ω. The initial conditions are: 



 22 

).()0,( xuxu in=  (8) 

Often, as here, the number M of chemical species is 2. Conventionally, u1 is an 

activator and u2 an inhibitor.  

For biological applications of RD see, amongst others, [6] and [15]. For 

simplicity, we assume isotropic diffusion, i.e., i

jd  does not depend on j (we will later 

drop this restriction), so: 

),(2
uFuD

t

u
γ+∇=

∂

∂
 

(9) 

where u=(u1,u2)
T and ),( 21 dddiagD = . Without loss of generality we can assume that:  

.,1 21 ddd ==  (10) 

For simplicity we also assume that Ω  is a cuboid:  

).,0(),0(),0( zyx lll ××=Ω  (11) 

Mathematically, the actions of activator and inhibitor mean that for a constant 

steady state u0, we have (∑F1/∑u1)>0 if u1 is an activator and (∑F2/∑u2)<0 if u2 is an 

inhibitor. Commonly, we also assume that the inhibitor inhibits the activator and the 

activator activates the inhibitor ((∑F1/∑u2)<0 and (∑F2/∑u1)>0 respectively), but a 

bifurcation can also take place if the inhibitor activates the activator and the activator 

inhibits the inhibitor ((∑F1/∑u2)>0 and (∑F2/∑u1)<0)).  

4.2.2 Turing Bifurcation 
 
Let u0 be a spatially uniform solution of F(u)=0 stable to spatially homogeneous 

perturbations. Grindrod [34] showed that u0 is also a stable solution of Equation 9 if d is 
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small. A Turing bifurcation occurs when, at the critical value of d = dcrit (for increasing, 

d, i.e., an increasing diffusion rate), u0 loses stability to a spatially varying stationary 

solution, generating a pattern [36]. This pattern first grows exponentially, but the 

nonlinear terms in the reaction kinetics F typically slow down the growth and eventually 

lead to a steady-state pattern. The wavelength of the final pattern need not correspond to 

the maximally unstable wavelength of the linearized equations. 

The geometry of the RD domain also helps determine the pattern. If the domain 

size and pattern scale are comparable, the shape and exact size of the domain have a 

crucial influence on the pattern. A central idea in explaining the emergence of different 

patterns in the avian limb through Turing-type RD mechanisms relies on this dependence. 

Newman and Frisch [7] and Hentschel et al. [3] suggested that variations in the width of 

the Active Zone might produce the different patterns corresponding to the stylopod, 

zeugopod and autopod. 

In addition, if the RD domain has certain spatial symmetries (for example a cube, 

sphere, or more generally, a rectangle whose edge ratios are integers), different types of 

pattern are possible. In a 2D square, these patterns are horizontal or vertical stripes, or 

spots. Ermentrout [35] has shown that stripes and spots cannot be simultaneously stable 

in this situation. Alber et al. [36] have generalized this result to 3D and higher 

dimensions. The nonlinear (quadratic and cubic) terms in the RD equations determine 

whether stripes or spots (or neither) are stable. Changing the nonlinear terms in F, can 

lead to a switch from stable spots to stable stripes or vice versa.  

4.2.3 Application to Modeling the Avian Limb  
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Chaturvedi et al. [13] and Izaguirre et al. [14] used an ad hoc Schnakenberg form for F in 

Equation 9 for their 2D model of avian limb patterning [15]. The RD equations in this 

earlier model acted autonomously, providing a prepattern to which the cells responded. 

Here we use RD equations based on recent experiments on chondrogenesis in the early 

vertebrate limb and additional hypotheses which Hentschel et al. [3] developed in a 2D 

continuum context for the densities of different subtypes of mesenchymal cells and the 

activator-dependent production rates of activator and inhibitor. The activator and 

inhibitor is produced by the cells and thus depends on cell density, leading Hentschel and 

coworkers to term this a “reactor-diffusion” model [3]. This model reproduces the 

periodicity and stripe patterns of a centered longitudinal section of the real limb (2D 

case).  

The RD equations based on [3] (corresponding to Equations 15 therein) thus 

become:  
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(12) 

Here ds are diffusion coefficients and cs are concentrations of diffusing species. 

Subscript a denotes the activator, and subscript i the inhibitor. Subscript s denotes stable-

state values. Subscripts x, y and z denote the spatial variation of the diffusion coefficients 

(equivalent to varying the limb cross-section as described below).  
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R0 is the density of mobile cells in the continuum model [3]. Effectively, β(ca) 

denotes the fraction of Ro cells that produce the activator and inhibitor in Equations 12 

through the mechanism of Ja and Ji. In [3], β corresponds to subtype R2 of type R0 (R2 

cells express FGF-2 receptor 1). The proportion β(ca) depends on the TGF-β 

concentration, ca, due to simplifications of more complicated equations [3]. The crucial 

assumption which justifies the simplifications is that the overall mobile cell density 

changes slowly compared with the rate of cell differentiation. See [3] for more details and 

a biological discussion of the simplifications. Section 4.4 describes the various cell types, 

their characteristics, and their transition rules in more detail, and also discusses our 

implementation of R0 and R2 cells.  

In Equation 12 we assume that the overall mobile cell density R0 is constant, 

effectively decoupling the RD dynamics from the cell dynamics and simplifying 

computation. In the range of interest of R0, the production of morphogens depends more 

on the rate constants and kinetic coefficients than on the cell density.  

R2 cells secrete TGF-β and inhibitor at activator-dependent rates Ja(ca) and Ji(ca), 

respectively. We use Hill kinetics [15] for these production rates [3]. The functional 

forms are: 
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The constant production rate J0 of the activator is small compared to the term 

Ja(ca) β(ca).  
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The cells also produce activator and inhibitor via the two terms, Ka(ca)R0 and 

Ki(ci)R0, on the right-hand side of Equations 12: 
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Here ψ(q) is a smooth step function with ψ(q) =1 for q near 1 and ψ(q) =0 for q<<1 and 

for q>>1 and ba and bi are constants. ψ causes the terms Ka(ca)R0 and Ki(ci)R0 to operate 

only near the equilibrium concentration. These terms, which change the nonlinear (cubic) 

terms in the Taylor expansion of the reaction kinetics F, are necessary to guarantee that 

the proximo-distal cross-sections of the patterns are spot-like rather than stripe-like, 

resulting in cylindrical bones7 (see also the discussion of the importance of nonlinear 

terms in Section 4.2.2 and references [35] and [36]). For studies of the effect of cubic 

terms on patterning in other physical models, including Rayleigh-Bénard convection and 

superconductivity, see [37], [38] and [39].  

Due to the form of the terms Ka(ca) and Ki(ci), the terms with rates Ja(ca) and 

Ji(ca) dominate overall morphogen production both close to and far from equilibrium. 

Ka(ca) and Ki(ci) fine-tune the morphogen production rates to bias the emerging pattern to 

select spots rather than stripes in the proximo-distal cross sections while the 

concentrations are still close to equilibrium.  

Pattern periodicity in RD depends on the solution domain. This dependence is 

biologically realistic: the antero-posterior width of the limb bud remains the same, but the 

                                                
7 We have effectively decoupled the RD prepattern (the first prepattern) from the cell dynamics by setting the cell 

density R0 constant to the average cell density as a zeroth approximation to the interface between the CPM based cell 

dynamics and RD based activator and inhibitor dynamics. Including a further feedback mechanism from the cell to 

the RD prepattern, for example by computing instantaneous local cell density from the CPM might obviate the 

additional third-order terms Ka(ca) and Ki(ci). See the discussion of prepatterning mechanisms in the introduction to 

section 3.2  
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dorso-ventral thickness changes in the proximo-distal direction [7]. Changing spatial 

domains are numerically problematic. Here, we simplify this problem by using changing 

diffusion coefficients (Equations 12), which is equivalent to changing the aspect ratio of 

the domain [7]. If L is a constant length, then the transformation x’=x/L leads to 

∑
2/∑x’

2
=L

2
 ∑

2/∑x
2, so the diffusion coefficient transforms as d’=d/L

2
. For example, 

doubling one side length (L=2) is equivalent to dividing the corresponding diffusion 

coefficient by 22. Without loss of a generality, we set dax=1. 

For a square domain, appropriately scaling the diffusion coefficients can produce 

different rectangular cross-sections in the forearm and digit areas.  

We have numerically solved the full 3D Equations 12. The stable cylindrical 

structures resemble bone elements (see Figure 5 and Section 6). These structures provide 

a first template/prepattern, which coupled with the stabilizing feedback mechanisms at 

the cell level, result in chondrogenic patterning (Sections 4.3 and 4.4). We discretized 

Equations 12 using an explicit finite-difference scheme over rectangular domains. Space 

and time discretization relate through standard stability criteria. Separately, or in 

combination, the set of parameters γ, the ratio lx/ly and the diffusion coefficients of the 

activator and inhibitor equivalently control the number of cylindrical elements and their 

geometry.  

4.3 Modeling Macromolecular Scales: Fibronectin Secretion 

 
Our earlier 2D simulations assumed that cells move over a substrate coated with varying 

concentrations of non-diffusing fibronectin molecules [13, 14]. In 3D, we still assume 

that fibronectin remains at its secretion location and use a separate grid to track its 
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concentration. We could also model fibronectin on the CPM grid by making it into a 

generalized cell and adding appropriate CPM parameters like λ and J.  

In our model, cells respond to the TGF-β chemical signal by producing fibronectin, 

and a cell-cell adhesion molecule (CAM) which we identify with N-cadherin. Cells, in 

turn, adhere to fibronectin-rich matrix and accumulate at points of highest concentration, 

because of their reduced mobility in this ECM microenvironment [8, 28, 29]. In addition, 

the fibronectin signal upregulates cell-cell adhesion, which enhances the accumulation of 

cells. Cells tend to cluster at high-fibronectin-concentration locations and reinforce this 

tendency by secreting more fibronectin.  

Thus, although the Turing instability triggers patterning of fibronectin, self-

enhancing, positive feedback, independent of TGF-β causes subsequent patterning. The 

fibronectin concentration pattern provides a prepattern for the cells. The model 

demonstrates global emergent phenomena resulting from local interactions. 

4.4 Cell Types and the State-Transition Model  

During morphogenesis, cells differentiate from initial multipotent stem cells into the 

specialized types of the developed organism. The concept of differentiation requires some 

discussion (see ref. [17]). Though every cell is different, identifying cells with broadly 

similar behaviors and grouping them as differentiation types is extremely convenient. 

Cell differentiation from one cell type to another is a comprehensive qualitative change in 

cell behavior, generally irreversible and abrupt (e.g., responding to new sets of signals, 

turning on or off whole pathways). All cells of a particular differentiation type share a set 

of parameters describing their state, while two different cell types (e.g., myoblasts and 

erythrocytes) have different parameter sets. Computationally, types are convenient but 
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not necessary. Cells of the same type can also exist in different states, corresponding to a 

specific set of values for the cell-type’s parameter set. A cell’s behavior depends on its 

state; two simulated cells behave identically in the same external environment if all 

parameters associated with their cell type are exactly the same, while cells of the same 

type with different parameter values can behave differently. Biologically, cells of the 

same type in different states typically differ less in their behavior than cells of two 

different types. Genetic and external cues influence both cells’ type and state.  

We model differentiation using a type-change map. Each type in this map 

corresponds to a cell type that exists during limb chondrogenesis. Change of a cell from 

one type to another corresponds to cell differentiation. The type-change map models 

regulatory networks by defining the rules governing type change, which accounts for the 

intra- and inter-cellular effects of chemical signals.  

In the avian limb, the initial precartilage mesenchymal cells can translocate, 

divide, and produce various morphogens and ECM molecules. We assume that cells in 

the Active Zone represent a cell type distinct from those in the Apical Zone. Specifically, 

unlike the Apical Zone cells, Active Zone cells respond to activator, inhibitor, and 

fibronectin. They can also produce activator and inhibitor, and correspond to the R0 type 

in Equations 12. Since β in Equations 12 implicitly accounts for the R2 type, we do not 

include R2 cells in the type-change map. When a responsive cell in the Active Zone 

senses a threshold local concentration of activator (TGF-β), its type changes to 

fibronectin-producing. A fibronectin-producing cell can upregulate its cell-cell adhesion 

(the parameter Jτ,τ’ in the CPM decreases). Cells that have not experienced local threshold 

levels of activator can respond to, but not produce fibronectin. All cell types divide. 
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4.5 The Scale of the Organ: Integration of Submodels 

 
The various biological mechanisms must work in a coordinated fashion. We therefore 

designed our computational environment to integrate the biological submodels while 

maintaining their modularity, e.g., by:  

1. Matching the spatial grid for RD and the CPM. 

2. Defining the relative number of iterations for the RD and CPM evolvers. 

The fibronectin and CAM submodels form a positive feedback loop (of fibronectin 

secretion and CAM upregulation) providing the biologically-motivated interface between 

the RD-based TGF-β prepattern and the CPM-based cell dynamics. TGF-β, the threshold 

concentration of which initiates differentiation (type change), provides the interface 

between RD and the type-change map. The type-change map chooses parameter sets and 

their parameters in the CPM representation.  

4.6 Environment Implementation: Modular Framework and Integration 

 
The front and back ends of the environment are distinct modules. The back-end consists 

of two engines that carry out most calculations—a computational engine, which 

combines the various biological submodels, and a visualization engine for graphics that 

can run independently. The front end to the engines provides a file-based user-interface 

for simulation parameters and visual display. The computational engine has three main 

modules: the CPM engine (stochastic, discrete), the Reaction-Diffusion engine 

(continuum, PDEs), and the type-change engine (a rule-based state automaton).  

The RD engine uses an explicit solver, based on forward time marching. We store 

these calculations as fields, e.g., the fibronectin concentration. The CPM simulator 

implements the lattice abstraction and the Monte Carlo procedure. The acceptance 
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probability function is Metropolis. We can view the CPM as an operation on a field of 

voxels. Various fields can evolve under their own set of rules—Metropolis dynamics for 

the field of voxels, RD for the field of morphogens. A chemical like fibronectin, which 

cells secrete and which then remains in place is another concentration field, with a 

reaction dynamics with no diffusion. A version of this environment, CompuCell3D8, is 

available for download. For the detailed design of the computational environment see  

[47]. 

In order to integrate these modules, we specify criteria for interpolating between the 

various grids and the order in which to evolve fields.  

Other sub-modules implement different cell responses, e.g., cell growth and mitosis.  

We used the Visualization ToolKit (VTK), available as freeware9 to develop our 

visualization software. 

5 Discussion of Simulation Results  

How do parameters affect the integrated model? We start with an initial distribution 

of undifferentiated cells in the ECM, with a cell-volume less than the average cell volume 

(Table 1), no initial fibronectin and a small, randomly perturbed, distribution of activator 

and inhibitor. The combination of morphogens, cell dynamics and cell differentiation 

produces the roughly periodic pattern of the major chondrogenic elements in the chick 

limb. Table 2 lists the important mechanisms and the corresponding control parameters, 

to emphasize that although the integrated model has a large number of parameters, only a 

few specific parameters control each mechanism.  

                                                
8 http://www.nd.edu/~lcls/compucell 
9 http://public.kitware.com/VTK/get-software.php 
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We first present a parameter set for normal patterning of chick forelimb 

precartilage condensation: one followed by two and then three primary parallel skeletal 

elements successively in the distal direction. Figure 5 shows a time series (in the growing 

distal direction) for the activator concentration during “first” prepattern formation. Cells 

exposed to an above-threshold activator concentration begin and continue to secrete 

fibronectin. In response to fibronectin, cells undergo haptotaxis and become more 

adhesive to each other so the fibronectin concentration (“second” prepattern) and cell-

condensation (skeletal elements) pattern follow the activator prepattern. 

Fibronectin produces a positive feedback loop that stabilizes cell condensations. 

Figure 6 shows the distribution of fibronectin in the limb at different times. The 

fibronectin pattern forms relatively quickly (about 20 times faster than the final cell 

condensations, see Figure 6 and its caption). Figure 7 shows simulations of the full 3D 

chick-limb chondrogenesis model, where the cells have condensed into the chondrogenic 

pattern of a chick forelimb. Table 3 gives the complete set of parameter values for these 

simulations. Parameters specific to the RD part of the model with cubic terms correspond 

to Equations 12.  

We next study parameter sets resulting in two cases of abnormal development.  

 Figure 8 shows a case where four rather than three digits form, corresponding to 

polydactyly. All parameters are the same as in normal development (Table 3), except that 

the transition of dax=dix to the value of 1/12 occurs later than normal, e.g., due to 

abnormal FGF signaling and/or late response of the cells secreting morphogens at the 

proximal boundary of the Apical Zone. Figure 9 (a) displays the fibronectin distribution 

and 9 (b) the resulting cell condensations.  
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Figure 10 shows a case of fused skeletal elements, corresponding in certain 

respects to the pathology of the human genetic condition known as Apert’s syndrome 

[42]. Figure 10 (a) shows the TGF-β (“first”) prepattern along the distally growing limb 

bud. In the proximal region, the one-cylinder pattern (one spot in transverse section) is 

stable, followed by a bifurcation of the solution into two cylindrical elements (two spots 

in cross-section). The two elements then fuse into one long stripe in the transverse 

section. Figure 10 (b) displays the corresponding fibronectin pattern. We obtained this 

pathology by setting dax=dix=1/14 in the digits (the three-skeletal-element region) instead 

of 1/12 (see Table 3), and having the transitions in dax and dix occur later than normal, 

e.g., due to an abnormal limb-cross-section aspect ratio or abnormal FGF signaling.  

The two pathological cases suggest that domain-size changes in the Apical and 

Active Zones, which we implemented a priori, affect the location and periodicity of 

skeletal element condensations. A fuller model would include FGF signaling from the 

AER to control the evolution of the Apical and Active Zones, and morphogen control of 

dorso-ventral and antero-posterior geometry.  

Work in progress: We are enhancing the realism of this class of models to include the 

complex geometry of the limb bud. We are also incorporating the effects of factors (e.g., 

Wnt-7A, Gli3 and Sonic hedgehog) that control limb geometry and zones.  
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Figure 2: Skeletal pattern formation: Time-series of 

chick limb-bud development in longitudinal section.  

For each figure, proximal is to the left, distal to the right, 

anterior up and posterior down. Black represents 

differentiated cartialge and stipple precartilage 

condensation. (Based on [7]). 
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Figure 3: Schematic diagram of chick limb organogenesis at mid-development 

(correponding to day 5 in Fig. 2), showing primary axes.  The earliest-developing region 

of the skeleton has differentiated into cartilage (black) by this stage. The region in which 

skeletal pattern is newly-forming is undergoing mesenchymal condensation (medium 

gray).  The digits at the distal region have not yet begun to form.   
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Figure 5: Time-series of the concentration 

of the diffusible morphogen TGF-β for 

Equations 12 (displayed along proximo-

distal cross sections) with time increasing 

along the distal direction (upwards). This 

“first” prepattern of cylindrically elongated 

parallel elements drives “final” cell 

condensation through the mediating 

“second” prepattern of non-diffusing 

fibronectin. Proximal direction is denoted 

by “p”, ventral by “v” and anterior by “a”. 
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(a) 

 

 

(b) 

Figure 6: Fibronectin production corresponding to normal chondrogenesis. Fibronectin 

accumulation is shown along distal direction, as time progresses and the limb grows. 

Haptotaxis of cells in response to fibronectin (“second” prepattern), and cells’ continuing 

fibronectin secretion, makes the patterning robust and does not require a persistent 

activator (“first”) prepattern. The fibronectin pattern establishes itself faster (a) 400 

Monte Carlo steps (half-formed limb) (b) 800 Monte Carlo steps (fully-formed limb) than 

the final cell condensations (1040 Monte Carlo steps, Figure 7), emphasizing 

fibronectin’s role in pattern consolidation. Fibronectin accumulates at its secretion 

location: its concentration in the humerus region in (b) is larger than in (a).  
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Figure 7: Cell condensation into 

humerus, ulna+radius, and digits 

after 1040 Monte Carlo steps. 

Visualization is done using volume 

rendering. The axes correspond to 

“p”, “a” and “v” of Figure 5.  
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Figure 8: Time series (successive 

transverse cross-sections in the distal 

direction) of TGF-β concentration in a 

growing limb bud, corresponding to the 

pathology of extra digits (4 digits form 

instead of 3, see Figure 9).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 48 

 

 
(a) 

 

  

 
 

(b) 

Figure 9: (a) Fibronectin distribution and (b) cell condensation, after 940 Monte Carlo 

steps, corresponding to the TGF-β (“first”) prepattern in Figure 8.  
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                      (a)                                                                       ((bb)) 

Figure 10: (a) Time series (successive transverse cross-sections in the distal direction) of 

the TGF-β concentration in a growing limb bud, corresponding to the pathology of 

Apert’s syndrome. (b) The fibronectin concentration field after 500 Monte Carlo steps 

(limb not fully formed). The radius and ulna fuse and digits fail to form. 
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Table 1: Summary of multiscale models. 

S. No. Mechanism Modeling approach 

1 Dynamics of morphogen fields Activator, TGF-β and inhibitor interacting 
via reaction-diffusion partial differential 
equations 

2 Establishment of fibronectin 
field  

A grid to accumulate fibronectin secreted by 
cells, modeled using the Cellular Potts Model 

3 Upregulation of cell-cell 
adhesivity 

Individual cell’s gene network modeled 
using ordinary differential equations 

4 Dynamics of cells and their 
response to morphogen fields 

Cellular Potts Model 

5 Mitosis An ad hoc approach based on a breadth first 
search incorporated into CompuCell 3. 

6 Geometry of the limb space Simplified into a 3D cuboidal domain 

7 Definition of subzones in the 
spatial domain in which 
mechanisms 1-5 are active 

Division of discretized space into zones 

8 Mechanism to stop activator 
and cell evolution once the 
desired patterns have formed 

Based on visualization and observation of 
numerical experiments 

 

Table 2: Specific roles of important parameters. 
 

 Phenomenon Governing 
parameter 

Equation/ Section 

1. Cell clustering Jτ,τ‘ 1st term in Equation 
2, detailed in 
Equation 3 (CPM) 

2. Limb prepatterning and patterning Can equivalently 
use one of the 

following: Dx/Dy, γ 

RD system 
Equations 15 and 16 

3.  Haptotaxis µ(σ) Equation 5 

4.  Cell volume λσ and vtarget  Equation 4 

5.  Cell growth leading to mitosis vtarget as a function 
of time 

Equation 5 

6.  Membrane fluctuations T Equation 1 
Boltzmann 
Dynamics in CPM 
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Table 3: Values of parameters for normal limb simulations. 

RD equations with stabilizing cubic terms 

Domain Length 2π 

Domain Width 6π/7 

γ 100.0 (humerus region), 180.0 (radius+ulna), 1710.0 (digits)  

J0 0.04 

ka 1.0 

ki 1.0 

R0 2.0 

D 5.0 

dax = dix 1.0 in humerus (1 skeletal element) region 
1/4 in radius + ulna (2 skeletal elements) region 
1/12 in digits (3 skeletal elements) region 

day = diy 0.15 

ba/(γ R0) 0.02 

bi/(γ R0) -0.6 

cas 1.32494 

cis 0.86545 

∆x π/35 

∆t 0.00002 

  

CPM parameters 

Fluctuation 
temperature T 

1.5 

J (non condensing) 7.0 

J (condensing) Up to 0.5 

Volume param., λσ 3.0 

Target volume, vtarget 16 voxels, grows to 32 voxels before mitosis 

Surface param., λσ Not used (Ø) 

Haptotaxis param., µ 50.0 

  

Fibronectin parameters 

Fibronectin production rate 0.15 per time step 

TGF-β threshold 0.15 

 

Integration, Grid and Numerics Parameters 

Domain 
Discretization 

Number of subdivisions in (X,Y,Z) = (71,31,211), corresponds to dorso-
ventral: antero-posterior: proximo-distal = 1: 2.3:6.8. A rectangular 
approximation to a typical limb bud is X=3.1mm, Y=1.6 mm, final Z 
length after growth=10.8mm (1.9:1:6.8). Same grid size used for CPM 
and RD. 

Time steps 100 RD steps per CPM step, 71x31x211 trials per CPM step  

Total time Day 4 to day 7 (total of 3 days) covering stages 20 to 30 of chick limb 
growth. Total time steps = 300 CPM steps 

 


